Department of Mathematics/Faculty of Nuclear Sciences and Physical Engineering Name and Surname of Candidate Passport Number

Entrance examination in mathematics

example

Mathematical Engineering

(6 points) Solve the following differential equation

$$y'' - 2y' + 10y = 27xe^x$$

together with conditions y(0) = -2 a y'(0) = 1.

- 2 (2 points) Calculate Wronskian (Wronski Determinant) for functions e^{-2x} , xe^{-2x} , x^2e^{-2x} . Are these functions linearly dependent or not? Explain.
- 3 (5 points) Create a Taylor's series of the function $g(x) = e^{3x}$ centered to the point x = 0. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{4^k k!}.$$

4 (10 points) Let

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)^4 \le \frac{2xy}{ab} \right\}.$$

be a two-dimensional area and a,b be positive parameters. By means of the mapping $x=ar\cos(\varphi)$, $y=br\sin(\varphi)$, calculate the integral $\int_A x^2y^2\,\mathrm{d}(x,y)$.

- $(2 \text{ points}) \text{ Find sum and product of all eigenvalues of the matrix } \mathbb{H} = \begin{pmatrix} 5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$
- **6** (5 points) For which x the series $\sum_{n=1}^{\infty} \left(\frac{2^n}{n} + \frac{3^n}{n^2}\right) x^n$ is convergent?
- (4 points) Let X be a linear normed space and $f: X \to \mathcal{R}$ a mapping given by $f(x) = ||x||, x \in X$. Prove its continuity.
- 8 (6 points) Solve the differential equation

$$2xy - 2x + (x^2 + 3)y' = 0$$

with the initial condition y(1) = 2.

Department	of	Mathematics/	/Faculty	of	Nuclear	Sciences	and	Physical	Engineering	3

Name and Surname of Candidate	Passport Number
-------------------------------	-----------------

Entrance examination in mathematics

example

Applied Algebra and Analysis

(6 points) Solve the following differential equation

$$y'' - 2y' + 10y = 27xe^x$$

together with conditions y(0) = -2 a y'(0) = 1.

- 2 (2 points) Calculate Wronskian (Wronski Determinant) for functions e^{-2x} , xe^{-2x} , x^2e^{-2x} . Are these functions linearly dependent or not? Explain.
- 3 (5 points) Create a Taylor's series of the function $g(x) = e^{3x}$ centered to the point x = 0. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{4^k k!}.$$

4 (10 points) Let

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)^4 \le \frac{2xy}{ab} \right\}.$$

be a two-dimensional area and a,b be positive parameters. By means of the mapping $x=ar\cos(\varphi)$, $y=br\sin(\varphi)$, calculate the integral $\int_A x^2y^2\,\mathrm{d}(x,y)$.

- 6 (5 points) For which x the series $\sum_{n=1}^{\infty} \left(\frac{2^n}{n} + \frac{3^n}{n^2}\right) x^n$ is convergent?
- (5 points) Find Fourier transformation of function

$$f(x) = \begin{cases} x - 2, & 2 \le x \le 3, \\ 4 - x, & 3 \le x \le 4, \\ 0 & x < 2 \text{ nebo } x > 4. \end{cases}$$

(5 points) Find a solution of heat equation problem:

$$u_t = u_{xx}, \quad 0 < x < 1, \ t > 0$$

$$u(0,t) = u(1,t) = 0$$

$$u(x,0) = x^2 - 1.$$

Department of Mathematics/Faculty of Nuclear	Sciences and Physical Engineering
e and Surname of Candidate	Passport Number

Entrance examination in mathematics

example

Mathematical informatics

(6 points) Solve the following differential equation

$$y'' - 2y' + 10y = 27xe^x$$

together with conditions y(0) = -2 a y'(0) = 1.

2 (2 points) Calculate Wronskian (Wronski Determinant) for functions e^{-2x} , xe^{-2x} , x^2e^{-2x} . Are these functions linearly dependent or not? Explain.

3 (5 points) Create a Taylor's series of the function $g(x) = e^{3x}$ centered to the point x = 0. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{4^k k!}.$$

4 (10 points) Let

Name

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)^4 \le \frac{2xy}{ab} \right\}.$$

be a two-dimensional area and a,b be positive parameters. By means of the mapping $x=ar\cos(\varphi)$, $y=br\sin(\varphi)$, calculate the integral $\int_A x^2y^2\,\mathrm{d}(x,y)$.

 $(2 \text{ points}) \text{ Find sum and product of all eigenvalues of the matrix } \mathbb{H} = \begin{pmatrix} 5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$

6 (5 points) For which x the series $\sum_{n=1}^{\infty} \left(\frac{2^n}{n} + \frac{3^n}{n^2}\right) x^n$ is convergent?

(5 points) Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \text{ a } \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1 \right\}$. Show that G equipped with the standard matrix multiplication is a group. What can be said about the eigenvalues of a matrix $M \in G$ if the order of M in G is equal to a given positive integer k. Find in G (if it exists) an element of order 2, an element of order 4, and an element of order $+\infty$.

8 (5 points) Given the ring $\mathbb{Z}[i] := \{a+ib: a, b \in \mathbb{Z}\}$, where i is the imaginary unit and the operations + and \times are defined as in the field \mathbb{C} of complex numbers. Denote $\beta = i-1 \in \mathbb{Z}[i]$. We say that $x \in \mathbb{Z}[i]$ is related to $y \in \mathbb{Z}[i]$ and write $x \sim y$, if there exists $w \in \mathbb{Z}[i]$ such that $x - y = \beta w$. Show that \sim is an equivalence relation on $\mathbb{Z}[i]$. Decide whether $2i \sim 2 + i$.

The admission exam is considered successful if the candidate has at least 20 points.

Department of Mathematics/Faculty of Nuclear Sciences and Physical Engineering					
Name and Surname of Candidate	Passport Number				

Entrance examination in mathematics

example

Applied Mathematical Stochastic Methods

1 (6 points) Solve the following differential equation

$$y'' - 2y' + 10y = 27xe^x$$

together with conditions y(0) = -2 a y'(0) = 1.

- 2 (2 points) Calculate Wronskian (Wronski Determinant) for functions e^{-2x} , xe^{-2x} , x^2e^{-2x} . Are these functions linearly dependent or not? Explain.
- 3 (5 points) Create a Taylor's series of the function $g(x) = e^{3x}$ centered to the point x = 0. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{4^k k!}.$$

4 (10 points) Let

$$A = \left\{ (x,y) \in \mathbb{R}^2 : \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)^4 \leq \frac{2xy}{ab} \right\}.$$

be a two-dimensional area and a,b be positive parameters. By means of the mapping $x=ar\cos(\varphi)$, $y=br\sin(\varphi)$, calculate the integral $\int_A x^2y^2\,\mathrm{d}(x,y)$.

- (2 points) Find sum and product of all eigenvalues of the matrix $\mathbb{H} = \begin{pmatrix} 5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.
- 6 (5 points) For which x the series $\sum_{n=1}^{\infty} \left(\frac{2^n}{n} + \frac{3^n}{n^2}\right) x^n$ is convergent?
- (5 points) Calculate the standard deviation of random variable described by probability density $g(x) = 16\Theta(x)xe^{-4x}$, where $\Theta(x)$ is Heaviside unit-step function

$$\Theta(x) = \begin{cases} 0 & x \le 0; \\ 1 & x > 0. \end{cases}$$

 $oxed{8}$ (5 points) Find a probability density function of two independent and identically distributed random variables X, \mathcal{Y} so that the sum $X + \mathcal{Y}$ is exponentially distributed via probability density function $4\Theta(x)\mathrm{e}^{-4x}$. Advice: Use Laplace transform.

The admission exam is considered successful if the candidate has at least 20 points.