Entrance examination in mathematics

example
Mathematical Engineering
(1) (6 points) Solve the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+10 y=27 x \mathrm{e}^{x}
$$

together with conditions $y(0)=-2$ a $y^{\prime}(0)=1$.
(2) (2 points) Calculate Wronskian (Wronski Determinant) for functions $\mathrm{e}^{-2 x}, x \mathrm{e}^{-2 x}, x^{2} \mathrm{e}^{-2 x}$. Are these functions linearly dependent or not? Explain.
(3) (5 points) Create a Taylor's series of the function $g(x)=\mathrm{e}^{3 x}$ centered to the point $x=0$. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{4^{k} k!}
$$

4) (10 points) Let

$$
A=\left\{(x, y) \in \mathbb{R}^{2}:\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{4} \leqslant \frac{2 x y}{a b}\right\} .
$$

be a two-dimensional area and a, b be positive parameters. By means of the mapping $x=a r \cos (\varphi)$, $y=b r \sin (\varphi)$, calculate the integral $\int_{A} x^{2} y^{2} \mathrm{~d}(x, y)$.
(5) (2 points) Find sum and product of all eigenvalues of the matrix $\mathbb{H}=\left(\begin{array}{rrr}5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$.

6 (5 points) For which x the series $\sum_{n=1}^{\infty}\left(\frac{2^{n}}{n}+\frac{3^{n}}{n^{2}}\right) x^{n}$ is convergent?
(7) (4 points) Let X be a linear normed space and $f: X \rightarrow \mathcal{R}$ a mapping given by $f(x)=\|x\|, x \in X$. Prove its continuity.
(8) (6 points) Solve the differential equation

$$
2 x y-2 x+\left(x^{2}+3\right) y^{\prime}=0
$$

with the initial condition $y(1)=2$.

The admission exam is considered successful if the candidate has at least 20 points.

Entrance examination in mathematics

example
Applied Algebra and Analysis
(1) (6 points) Solve the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+10 y=27 x \mathrm{e}^{x}
$$

together with conditions $y(0)=-2$ a $y^{\prime}(0)=1$.
(2) (2 points) Calculate Wronskian (Wronski Determinant) for functions $\mathrm{e}^{-2 x}, x \mathrm{e}^{-2 x}, x^{2} \mathrm{e}^{-2 x}$. Are these functions linearly dependent or not? Explain.
3 (5 points) Create a Taylor's series of the function $g(x)=\mathrm{e}^{3 x}$ centered to the point $x=0$. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{4^{k} k!}
$$

4) (10 points) Let

$$
A=\left\{(x, y) \in \mathbb{R}^{2}:\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{4} \leqslant \frac{2 x y}{a b}\right\} .
$$

be a two-dimensional area and a, b be positive parameters. By means of the mapping $x=a r \cos (\varphi)$, $y=b r \sin (\varphi)$, calculate the integral $\int_{A} x^{2} y^{2} \mathrm{~d}(x, y)$.
(5) (2 points) Find sum and product of all eigenvalues of the matrix $\mathbb{H}=\left(\begin{array}{rrr}5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$.

6 (5 points) For which x the series $\sum_{n=1}^{\infty}\left(\frac{2^{n}}{n}+\frac{3^{n}}{n^{2}}\right) x^{n}$ is convergent?
(7) (5 points) Find Fourier transformation of function

$$
f(x)= \begin{cases}x-2, & 2 \leq x \leq 3 \\ 4-x, & 3 \leq x \leq 4 \\ 0 & x<2 \text { nebo } x>4\end{cases}
$$

8 (5 points) Find a solution of heat equation problem:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad 0<x<1, t>0 \\
& u(0, t)=u(1, t)=0, \\
& u(x, 0)=x^{2}-1 .
\end{aligned}
$$

[^0]
Entrance examination in mathematics

example
Mathematical informatics
(1) (6 points) Solve the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+10 y=27 x \mathrm{e}^{x}
$$

together with conditions $y(0)=-2$ a $y^{\prime}(0)=1$.
(2) (2 points) Calculate Wronskian (Wronski Determinant) for functions $\mathrm{e}^{-2 x}, x \mathrm{e}^{-2 x}, x^{2} \mathrm{e}^{-2 x}$. Are these functions linearly dependent or not? Explain.
(3) (5 points) Create a Taylor's series of the function $g(x)=\mathrm{e}^{3 x}$ centered to the point $x=0$. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{4^{k} k!}
$$

4) (10 points) Let

$$
A=\left\{(x, y) \in \mathbb{R}^{2}:\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{4} \leqslant \frac{2 x y}{a b}\right\} .
$$

be a two-dimensional area and a, b be positive parameters. By means of the mapping $x=a r \cos (\varphi)$, $y=b r \sin (\varphi)$, calculate the integral $\int_{A} x^{2} y^{2} \mathrm{~d}(x, y)$.
(5) (2 points) Find sum and product of all eigenvalues of the matrix $\mathbb{H}=\left(\begin{array}{rrr}5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$.

6 (5 points) For which x the series $\sum_{n=1}^{\infty}\left(\frac{2^{n}}{n}+\frac{3^{n}}{n^{2}}\right) x^{n}$ is convergent?
(7) (5 points) Let $G=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}\right.$ a $\left.\operatorname{det}\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)=1\right\}$. Show that G equipped with the standard matrix multiplication is a group. What can be said about the eigenvalues of a matrix $M \in G$ if the order of M in G is equal to a given positive integer k. Find in G (if it exists) an element of order 2, an element of order 4, and an element of order $+\infty$.
8 (5 points) Given the ring $\mathbb{Z}[i]:=\{a+i b: a, b \in \mathbb{Z}\}$, where i is the imaginary unit and the operations + and \times are defined as in the field \mathbb{C} of complex numbers. Denote $\beta=i-1 \in \mathbb{Z}[i]$. We say that $x \in \mathbb{Z}[i]$ is related to $y \in \mathbb{Z}[i]$ and write $x \sim y$, if there exists $w \in \mathbb{Z}[i]$ such that $x-y=\beta w$. Show that \sim is an equivalence relation on $\mathbb{Z}[i]$. Decide whether $2 i \sim 2+i$.

The admission exam is considered successful if the candidate has at least 20 points.

Entrance examination in mathematics

example
Applied Mathematical Stochastic Methods
(1) (6 points) Solve the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+10 y=27 x \mathrm{e}^{x}
$$

together with conditions $y(0)=-2$ a $y^{\prime}(0)=1$.
(2) (2 points) Calculate Wronskian (Wronski Determinant) for functions $\mathrm{e}^{-2 x}, x \mathrm{e}^{-2 x}, x^{2} \mathrm{e}^{-2 x}$. Are these functions linearly dependent or not? Explain.
(3) (5 points) Create a Taylor's series of the function $g(x)=\mathrm{e}^{3 x}$ centered to the point $x=0$. For which x the Taylor's series is convergent? Use the result to determine the sum of the following series:

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{4^{k} k!}
$$

4) (10 points) Let

$$
A=\left\{(x, y) \in \mathbb{R}^{2}:\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{4} \leqslant \frac{2 x y}{a b}\right\} .
$$

be a two-dimensional area and a, b be positive parameters. By means of the mapping $x=a r \cos (\varphi)$, $y=b r \sin (\varphi)$, calculate the integral $\int_{A} x^{2} y^{2} \mathrm{~d}(x, y)$.
(5) (2 points) Find sum and product of all eigenvalues of the matrix $\mathbb{H}=\left(\begin{array}{rrr}5 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$.

6 (5 points) For which x the series $\sum_{n=1}^{\infty}\left(\frac{2^{n}}{n}+\frac{3^{n}}{n^{2}}\right) x^{n}$ is convergent?
(7) (5 points) Calculate the standard deviation of random variable described by probability density $g(x)=$ $16 \Theta(x) x \mathrm{e}^{-4 x}$, where $\Theta(x)$ is Heaviside unit-step function

$$
\Theta(x)= \begin{cases}0 & x \leqslant 0 ; \\ 1 & x>0 .\end{cases}
$$

8 (5 points) Find a probability density function of two independent and identically distributed random variables \mathcal{X}, \mathcal{Y} so that the sum $\mathcal{X}+\mathcal{Y}$ is exponentially distributed via probability density function $4 \Theta(x) \mathrm{e}^{-4 x}$. Advice: Use Laplace transform.

[^1]
[^0]: The admission exam is considered successful if the candidate has at least 20 points.

[^1]: The admission exam is considered successful if the candidate has at least 20 points.

