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Thermodynamics is a physical theory at once beautiful and useful: 
beautiful because its laws are simply expressed and deductions from 
them universally applicable, and useful because in distinguishing the 
possible from the impossible thermodynamics saves us from much 
fruitless effort. For these reasons, as well as for its undeniable empir-
ical success, thermodynamics deeply impresses those who grasp its 
essentials. Albert Einstein once boldly claimed that thermodynam-
ics, alone among physical theories, “will never be overthrown.”

Thermodynamics is nevertheless notoriously diffi cult to teach 
and diffi cult to learn. While much of classical and quantum physics 
can be framed in terms of easily pictured concepts or easily remem-
bered equations, classical thermodynamics grows out of the austere 
logic of possibility and impossibility encapsulated in its fi rst and 
second laws. That these laws are usually given verbal rather than 
mathematical expression hinders rather than aids readers unused to 
such formulations. 

Even so, most texts don’t bother much with the laws of thermo-
dynamics. While no one questions the laws per se, everyone hurries 
to get beyond them. What lies beyond the laws of thermodynamics 
is, on the one hand, a multitude of applications and, on the other, 
the special models of classical and quantum statistical mechanics. 
The diligent student of such applications and such models, while 
able to reproduce many complicated patterns of thought, may lack 
a coherent vision of thermodynamics itself. On too many occa-
sions accomplished scientists have told me, “I never understood 
thermodynamics.”

Mere Thermodynamics presents a vision of thermodynamics 
itself, its laws, their essential corollaries, useful methods, and impor-

Preface
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tant applications. This ordering—fi rst laws, then corollaries, meth-
ods, and applications—informs the whole text. My aim has been 
to present the subject in its most orderly and most plausible aspect, 
and to write a concise yet balanced text that allows the structure of 
classical thermodynamics to stand out—its limitations as well as its 
achievements.

In highlighting the intellectual structure of thermodynamics I 
have found it impossible to ignore the historical drama of its unfold-
ing. Certain contours of the subject have been permanently shaped 
by its history, and for this reason, this volume follows the tradi-
tional historically oriented approach with its heat engines, reversible 
cycles, and laws. The historical approach also naturally introduces, 
in its course, important phenomena and experimental outcomes.

The text aims to reward the reader’s attention with a maximal 
understanding of the subject’s most diffi cult parts: the second law 
of thermodynamics and the concept of entropy. Formally, the mean-
ing of any statement or law consists of what can be deduced from 
it. For this reason, and also because the second law was discovered 
before the fi rst, I develop consequences of each law apart from the 
other—the fi rst law in Chapter 4 and the second law in Chapter 5 
and Appendix B—before developing, in Chapter 6, consequences 
of the two combined. The fi rst and second laws of thermodynamics 
together lead to the concept of entropy. There is hardly any develop-
ment of physical theory more impressive than that taking us from the 
fi rst law and a simple verbal statement of the second law to the ex-
istence of entropy as a state variable. This transition, from words to 
mathematical expression, in Chapter 7, is crucial to thermodynam-
ics. But it also illustrates the distinction between theoretical physics, 
which in its fullness continually makes transitions of this sort, and 
the mathematical manipulation of physically meaningful variables.

Chapters 1–7 present concepts, laws, and important corollaries, 
Chapters 8–9 useful methods and essential applications. This mate-
rial and related end- of-chapter problems compose a brief course 
on classical thermodynamics. The remaining four chapters, 10–13, 
present more loosely sequenced, if fairly standard, topics: nonfl uid 
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variables, equilibrium and stability, two- phase systems, and the 
third law. In spite of the book’s title, I do, on occasion, invoke the 
molecular hypothesis—that matter is composed of  molecules—in 
order to motivate unfamiliar equations of state. But statistical meth-
ods, quantum concepts, and chemical reactions defi ne, by their ex-
clusion, the boundary of Mere Thermodynamics.

This book is designed for second-, third-, and fourth-year phys-
ics, chemistry, and pre- engineering undergraduate students who 
have studied or are concurrently studying multivariate calculus. 
Often these students have been inadequately introduced to basic 
thermodynamics in their fi rst physics course. Sometimes, in my own 
course, I create time for students to report on topics that address 
their own interests in thermodynamics. 

The Annotated Bibliography describes several books and a few ar-
ticles that provide foundation for, complement, or build upon the 
ideas presented here. I am indebted to their authors. But I am es-
pecially pleased to acknowledge students, friends, and colleagues 
who have personally contributed to Mere Thermodynamics. Ralph 
Baierlein, Galen Gisler, and Joel Krehbiel each read and commented 
on the whole text; Jeff Buller, Rickey Faehl, Bob Harrington, Blake 
Johnson, Rhon Keinigs, Dwight Neunschwander, Margaret Penner, 
Bill Peter, Paul Regier, and Bryce Schmidt each read and commented 
on part of the text. Chapter 13, on the third law of thermodynam-
ics, could not have been written without the aid of Ralph Baierlein, 
who gave generously of his time and expertise. Margaret Penner’s 
senior thesis inspired Appendix B, on the logical consequences of the 
second law as shown in 21 simple cycles. Willis Overholt skillfully 
drew or redrew the book’s fi gures. I wrote much of the text during 
a sabbatical leave from Bethel College of North Newton, Kansas. 
Finally, I offer heartfelt thanks to my editor at the Johns Hopkins 
University Press, Trevor Lipscombe. His encouragement and exper-
tise helped me enjoy the writing process. I dedicate this book to my 
wife, Allison, and two sons, Nathan and Micah. They stood by me 
during diffi cult times.
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1.1 Thermodynamics

The Greek roots of the word thermodynamics, thermo (heat) and 
dynamics (power or capacity), neatly compose a defi nition. Ety-
mologically, thermodynamics means the power created by heat, or 
as we would now say, the work created by heat. Because engines 
of many kinds produce work from heat, their study belongs to the 
science of thermodynamics. The concept of work is familiar from 
mechanics, but what is heat? Thermodynamics assigns its own spe-
cial meanings not only to the word heat but also to the terms system,
boundary, and state.

1.2 System

A thermodynamic system is simply that part of the universe with 
which we are concerned. We may, for instance, focus on a bucket 
of seawater or on a beam of iron. Thermodynamic systems may be 

O N E
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composed of several chemically distinct components (like seawater), 
or exist in several phases (as solid, liquid, or gas), or occupy spatially 
separate parts. We make progress most rapidly by attending fi rst to 
simple homogeneous,  single- phase systems.

1.3 Boundary, Environment, and Interactions

Each thermodynamic system is surrounded by a boundary separat-
ing the system from its environment. Boundaries regulate the inter-
action between the system and its environnment or between two 
systems. Boundaries can be divided into several kinds: those that 
permit or forbid work to be done on or by the system and those that 
permit or forbid heat to be absorbed or rejected by the system. For 
instance, a movable boundary allows mechanical work to be done 
on or by the system (see Fig. 1.1), while a rigid one does not. 

1.4 States and State Variables

A set of quantities called state variables defi ne the state of each 
thermodynamic system. State variables include those appropriate to 
a simple fl uid (pressure and volume), to a surface (surface tension 

FIGURE 1.1 Idealized thermodynamic system with a movable boundary 
that allows work F�x to be done on the system.
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and area), to black-body radiation (energy density and radiation 
pressure), and to an electrical contact (contact potential and cur-
rent). Different sets of state variables conveniently describe different 
thermodynamic systems. When a system interacts with its environ-
ment, its state variables change. 

Appropriate state variables can be identifi ed only after a thor-
ough investigation of the system. Thermodynamic state variables 
are measured with laboratory instruments—that is, macroscopic 
devices (pressure gauge, balance, and meter stick)—or are inferred 
from such measurements.

1.5 Equations of State

State variables enter into relations among themselves called equations
of state. These relations can be defi ned by tables of data, by numeri-
cal fi ts to those data, or by analytic models. An example of an ana-
lytic equation of state, which we take up in Chapter 9, is P = E / 3V,
where P is the pressure, E the internal energy, and V the volume of 
so-called cavity radiation. The equation of state V = Vo(1 + �oT – �oP)
relates the state variables of a solid, where T is the system tempera-
ture and Vo , �o , and �o are characterizing constants. Each equation 
of state reduces the number of independent state variables by one.

Thermodynamics is concerned only with systems described by 
state variables that are related by equations of state. A thermodynamic 
description per se makes no direct claim about a system’s ultimate 
components, about its atoms and molecules, their interactions, and 
their positions and velocities. Thermodynamics differs from most 
other sciences in not being reductionist. (See Problem 1.1.)

1.6 Work

Performing work on a system changes its state. Work may be per-
formed in a number of ways and not only, as in Figures 1.1 or 
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1.2a, by pushing a piston into a cylinder that contains the system. 
Mechanics and electrodynamics books describe different ways of 
performing work. For instance, a torque � applied to a rod that turns 
a paddle through an angle �� does work ��� on the liquid in which 
the paddle is immersed (Fig. 1.2b). One means of doing electrical 
work is to include within the system a circuit element across which 
a potential difference �� is applied. A charge q, in passing through 
the circuit element, loses energy q�� to the system at a rate I��, 
where I = dq / dt (Fig. 1.2c). Another way is to apply an externally 
generated electric fi eld E to the system. Then, as the system charges 
move and develop an electric dipole moment �P , the environment 
does a quantity of work E � �P on the system (Fig. 1.2d). (See 
Problem 1.2.)

FIGURE 1.2 Four ways of doing work on a system: (a) compressing the 
system, (b) rotating a paddle wheel immersed in the system, (c) energizing 
an electric circuit element that is part of the system, and (d) applying an 
electric fi eld to charges within the system.
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1.7 Heat

A system may interact with its environment in ways other than work. 
We know this because on occasion the state of a system changes 
even when no work is done on the system. One has only to think of 
what happens to a cup of hot coffee sitting on a table; inevitably it 
becomes colder. Let’s imagine a system with idealized boundary. The 
boundary is rigid, prohibiting mechanical work interactions; metal-
lic, through which an externally applied electric fi eld cannot pen-
etrate; and impermeable, so that mass and charge cannot enter or 
leave. Further imagine that this idealized boundary prohibits every 
other kind of work interaction. Even so, another kind of interaction 
with the environment can still change the system’s state variables. 
By defi nition, that which causes the state of a system to change 
during a nonwork interaction through an impermeable boundary 
is heat.

Of course, we can also conceive of an adiabatic boundary 
that, by defi nition, prohibits heat interactions, that is, heating 
and cooling. There are practical ways of constructing an adiabatic 
boundary. A so- called Dewar fl ask, named after its inventor Sir 
James Dewar (1842–1923), with rigid,  vacuum-containing, and 
radiation-refl ecting surfaces approximates an adiabatic, work-
prohibiting boundary. 

A boundary that allows heating is called diathermal. Systems 
that interact through a diathermal boundary are said to be in ther-
mal contact. Figure 1.3 illustrates various combinations of bound-
aries that allow only heat, only work, both heat and work, and 
neither heat nor work interactions. An adiabatic, work- prohibiting
boundary that is also closed to mass transfer completely isolates a 
system from its environment. (See Problem 1.3.)
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Chapter 1 Problems

1.1 Defi nitions. Defi ne system, boundary, adiabatic boundary, dia-

thermal boundary, environment, heat, state variables, and equation of state 
with a phrase or sentence. Be concise and be complete. 

1.2 Work or Heat? You grab a bottle of juice and shake it thoroughly. 
Is this an example of a work or a heat interaction? Recall that work can be 
described with mechanical or electromagnetic variables.

1.3 Interactions. In each of the following interactions indicate whether 
the system does work, has work done on it, or does no work and whether 
the system boundary is diathermal or adiabatic. 

(a) The system is the air contained within a bicycle tire along with a 
tire pump connected to it. The pump plunger is pushed down, forc-

FIGURE 1.3 Boundaries that prohibit and allow work and heat inter-
actions: (a) diathermal, work- prohibiting; (b) adiabatic, work- 
allowing; (c) diathermal, work- allowing; (d) adiabatic and work-
 prohibiting.
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ing air into the tire. Assume this interaction is over before the air 
signifi cantly cools. (S)1

(b) The system is the water and water vapor within a metal pot covered 
by a tight-fi tting lid. The pot is placed over a fl ame. The tempera-
ture and pressure of the water and water vapor increase.

(c) Following the interaction in part (b) the lid fl ies off the pot. Assume 
this happens very quickly.

(d) The system is the air contained within a room. The room doors and 
windows are closed and are of ordinary construction. A fan within 
the room is left running for one hour.

(e) The system is a mixture of hydrogen and oxygen. This combus-
tible mixture is contained within a rigid chamber. The mixture 
explodes.

1 “S” here and elsewhere indicates that a complete solution is found in Ap-
pendix D.
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2.1 Equilibrium

Classical thermodynamics is concerned with equilibrium states de-
scribed by a small set of macroscopic variables that change only 
when the system’s environment changes. Relatively sudden or vio-
lent interactions, such as those caused by pouring or stirring a fl uid, 
destroy equilibrium because they set in motion changes that persist 
even after the interaction is complete. Given time, an isolated sys-
tem not in equilibrium will evolve toward an equilibrium state that, 
when established, will persist indefi nitely. 

Two systems are in mutual equilibrium if the state variables of 
neither change when the two interact. One can further distinguish 
between several kinds of mutual equilibrium: one for each kind of 
interaction possible between systems, for example, thermal, me-
chanical, chemical, electrical, and magnetic. 

The concept of thermal equilibrium is unique to the science of 
thermodynamics. Two systems are in mutual thermal equilibrium 
if the state variables of neither change when the two are placed in 

T W O

Equilibrium
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thermal contact. When two initially isolated systems, not in mutual 
thermal equilibrium, are placed in thermal contact, they eventually 
achieve mutual thermal equilibrium.

2.2 Zeroth Law of Thermodynamics

Experience teaches us that two systems in mutual thermal equilib-
rium with a third are in thermal equilibrium with each other. Such 
relations are illustrated in Figure 2.1. Apparently, the relation of 
thermal equilibrium propagates through a third system interposed 
between two others as long as each is in thermal contact with its 
immediate neighbors. In this way the relation of thermal equilib-
rium is like the equality relation of arithmetic: both are transitive 
in that they carry across a middle term. Relatively late in the his-
tory of thermodynamics R. H. Fowler (1899–1944) elevated this 
universally observed fact to the status of a law: the zeroth law of 
thermodynamics.

The zeroth law of thermodynamics allows us to specify a single 
thermodynamic system as an indicator of thermal equilibrium. Sup-
pose this specially chosen  equilibrium- indicating system or thermom-
eter is brought successively into thermal contact with two systems 
and allowed to achieve equilibrium with each. If the thermometer’s 
state variables do not change when brought into successive contact 

FIGURE 2.1 The zeroth law of thermodynamics: two systems, A and C, in 
thermal equilibrium with a third, B, are in thermal equilibrium with each 
other.
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with the two systems, the two systems are in thermal equilibrium. 
If the thermometer state variables do change, the two systems are 
not in thermal equilibrium.

2.3 Empirical Temperature

The zeroth law of thermodynamics allows us to associate with each 
equilibrium state a state variable T, called the temperature, chosen 
in accordance with the rule that any two systems in thermal equilib-
rium have the same temperature and any two systems not in thermal 
equilibrium have different temperatures. So chosen, a system’s tem-
perature reveals all its relations of potential thermal equilibrium or 
disequilibrium with other systems whose temperature is known.

While the zeroth law itself does not dictate a method of assign-
ing temperatures to equilibrium states, scientists naturally prefer 
the convenience of a standard method. Recall that a thermometer 
brought into successive thermal contact with two systems reveals 
whether or not the two systems are or could be in thermal equilib-
rium. Why not designate one variable of one indicator, the other 
variables remaining fi xed, as the  temperature-measuring—that is, 
thermometric—variable of the thermometer? Temperatures based 
in this way on the equilibrium states of a particular thermometric 
system are called empirical temperatures.

One example of a thermometric property is the volume of the 
water- alcohol mixture in the common outdoor thermometer. The 
liquid is often colored red for easy viewing. How far the liquid 
rises in its small-bore glass tube represents its volume. Marks on 
the glass tube, corresponding to different volumes of the liquid, 
are denominated in degrees of temperature according to a rule or 
temperature scale.

Other kinds of thermometers are, of course, possible and 
have their uses. Environments that would freeze or vaporize the 
water- alcohol mixture or that allow no room for the thermometer 
bulb to be proximately placed render the water- alcohol thermom-
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eter impractical. In these cases a resistance thermometer with digital 
display might be appropriate. Resistance thermometers use the elec-
trical resistance of a piece of metal, often platinum, as the thermo-
metric property. When the platinum strip is brought into thermal 
equilibrium with another object, its resistance, calibrated in degrees, 
indicates the object’s temperature. Optical pyrometers employ the 
characteristic color of radiation emitted by hot objects as a thermo-
metric property. According to the zeroth law several thermometers 
may be used simultaneously if each is calibrated to return the same 
temperature when brought into mutual thermal equilibrium with 
the same system. (See Problem 2.1.)

2.4 Traditional Temperature Scales

The choice of temperature scale is distinct from the choice of ther-
mometric variable. All useful scales, however, require the tempera-
ture, T, to be an ever- increasing or ever- decreasing function T(X)
of the thermometric variable X. If the scale were not monotonic, 
two systems not in thermal equilibrium might be assigned the same 
temperature.

Traditional two-point temperature scales are defi ned by a linear 
function T(X) = aX + b, where X is the thermometric variable of 
the standard thermometer and a and b are constants that charac-
terize the scale. The characterizing constants a and b are chosen 
in order that values of the thermometric variable at two sensitive 
but easily reproduced fi xed  points—that is, X1 and X2—correspond 
to stipulated temperatures T1 and T2 . Typical fi xed points are the 
melting point of ice at atmospheric pressure—that is, the normal
ice point—and the boiling point of liquid water at atmospheric 
pressure—that is, the normal steam point. For instance, the Celsius 
scale is defi ned by assigning a temperature of 0°C to the normal ice 
point and 100°C to the normal steam point of water. The Fahrenheit 
scale assigns 32°F to the normal ice point and 212°F to the normal 
steam point of water. (See Problems 2.2–2.3.)
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2.5 Equilibrium Processes

Changes or processes that unfold very  slowly—so slowly that the 
system always remains in, or arbitrarily close to, equilibrium even 
as it passes from one state to  another—are called equilibrium or 
quasistatic processes. Quasistatic processes can be analyzed into 
indefi nitely small, temporally ordered parts, each standing for an 
equilibrium state, and can be represented by continuous lines on a 
state variable diagram. Of course, quasistatic processes are idealiza-
tions; they can be approximated but never fully realized.

Figure 2.2 illustrates a quasistatic process generated by a Joule 
 apparatus—a paddle wheel inserted into a  constant- volume fl uid 
system contained within an adiabatic boundary. The handle of the 
Joule apparatus turns the paddles very slowly, that is, quasistati-
cally, and very slowly causes the temperature of the fl uid to increase. 
The state variable diagram of Figure 2.2b represents the sequence 
of continuously spaced equilibrium states through which the fl uid 
moves as the handle turns.

FIGURE 2.2 A paddle wheel quasistatically stirs a  constant- volume system 
contained within an adiabatic boundary: (a) Joule apparatus with handle; 
(b) state variable diagram representing the sequence of equilibrium states 
through which the system passes.
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Chapter 2 Problems

2.1. Resistance Thermometer. The resistance of a platinum wire is 
found to be 7.000 ohms at the normal ice point of water (0.000°C and 
1 atm), 9.705 ohms at the normal steam point of water (100.0°C and 
1 atm), and 18.39 ohms at the normal melting point of sulfur (444.1°C 
and 1 atm). Suppose the resistance, R , versus temperature, T, in degrees 
Celsius falls close to the curve

  
R T( ) = R

o
1 + aT + bT 2( )

when Ro , a, and b are determined by measurements at the normal ice, 
steam, and sulfur points. 

(a)  Find Ro , a, and b.
(b) Invert R(T ) to fi nd the temperature T as a function of R. Require 

that T(R) be an ever- increasing function of R between the normal 
ice point and the melting point of sulfur.

(c) Suppose this thermometer is calibrated only at the ice and steam 
points and the constant b is arbitrarily chosen so that b = 0. What 
temperature would this thermometer calibrated in this way produce 
for the sulfur point (where R = 18.39	)? 

2.2. Traditional Temperature Scales. At what temperature would adja-
cent Celsius and Fahrenheit thermometers read the same number?

2.3. Réaumur Scale. Russian novels set in the 19th century sometimes 
refer to the two- point Réaumur temperature scale. According to this scale 
water freezes at 0 Ré and boils at 80 Ré. Find the Réaumur temperature 
that corresponds to 90°F. 
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3.1 Quantifying Heat

The concepts of temperature and heat were often confused before 
Joseph Black (1728–1799) carefully distinguished between the two 
in the late eighteenth century. While both are uniquely thermo-
dynamic concepts, each plays its own role within the subject. Tem-
perature, for instance, is an intensive state  variable—intensive be-
cause temperature does not depend in a direct way upon the size of 
the system. After all, two different-sized systems in mutual thermal 
equilibrium have the same temperature.

In contrast, heat is not a state variable at all but, rather, quanti-
fi es the interaction between a system and its environment allowed 
by a diathermal boundary. Early in the nineteenth century scientists 
adopted a water- standard defi nition of the quantity of heat. Accord-
ing to this defi nition, the absorption of one calorie (1 cal) of heat 
raises the temperature of one gram of water one degree Celsius under 
standard conditions. (The nutritional calorie, or kilocalorie, always 

T H R E E

Heat
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abbreviated with an initial  upper- case letter as in Cal, is by conven-
tion 1000 calories.) Here “standard conditions” means at 14.5°C 
and atmospheric pressure. That a gram of water under standard 
conditions expands, very slightly, as its temperature increases 1°C 
and in so doing pushes against and does work on the atmosphere in 
no way diminishes the precision of this operational defi nition. 

In principle, the  water- standard defi nition of a calorie allows 
one to quantify the heat exchanged in an arbitrary process. One 
simply arranges for the quantity of heat in question to be absorbed 
by a quantity of water whose temperature will, under standard con-
ditions, increase by exactly 1°C. That mass of water in grams is the 
number of calories transferred.

3.2 Calorimetry

Adopting the  water- standard defi nition of the calorie is equivalent 
to defi ning the heat capacity of one gram of water under standard 
conditions to be 1.00 cal / g °C. The heat capacity C of any object 
is the ratio of the quantity of heat dQ absorbed that increases its 
temperature dT under given conditions. Thus,

 
C = dQ

dT
. (3.1)

Heat capacity is an extensive state variable that is directly pro-
portional to the size of the system. In contrast, the specifi c heat, 

  
c

m
= 1

m

dQ

dT
, (3.2)

that is, the heat capacity per unit mass, is an intensive variable that 
characterizes the type of system. Molar specifi c heats,

c
mol

= 1

n

dQ

dT
, (3.3)
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where n is the number of moles in the system, are also useful in-
tensive state variables. The specifi c heat of aluminum, for instance, 
is 0.215 cal / g °C. Table 3.1 lists a few specifi c heats. Note that the 
specifi c heats of metals are small compared to that of water.

Heating a system usually increases its temperature, while cool-
ing usually decreases its temperature. But under certain conditions 
the transfer of heat to or from a system leaves its temperature un-
changed. For instance, one gram of boiling water at atmospheric 
pressure can absorb 539 cal of heat without increasing its tempera-
ture. Likewise, one gram of freezing water can reject 80 cal without 
changing its temperature. Heat transfers that leave a system’s tem-
perature unchanged, traditionally called latent heats, are associated 
with phase transitions. The latent heat of fusion is the heat necessary 
to melt one gram of solid at its normal melting point, and the latent
heat of vaporization is the heat necessary to vaporize one gram of 
liquid at its normal boiling point. Table 3.2 lists heats of transition,
normal melting, and normal boiling points of common materials.

Knowing the specifi c and latent heats of a variety of materials 
under a range of conditions allows one to determine the heat re-
quired to bring two systems not initially in equilibrium into mutual 

TABLE 3.1 Specifi c heats of common 
materials at 25°C and atmospheric 
pressure

Material  
Specifi c heat 

(cal/g °C)

Aluminum 0.215
Copper 0.093 
Gold 0.031
Iron 0.108
Lead 0.031
Mercury 0.033
Silver 0.056
Sodium chloride 0.210
Wood 0.406
Water 1.000
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thermal equilibrium. The methods of such inference compose the 
science of calorimetry. Suppose, for instance, a 50- g block of 75°C 
aluminum cools and achieves equilibrium with its 25°C environ-
ment. The heat lost by the aluminum during this process is 50 g ×
(75–25)°C × (0.215 cal / g °C), or 538 cal, provided the specifi c heat 
of aluminum remains approximately constant as it cools from 75 
to 25°C. Indirect, calorimetric measurements of heat are usually 
more convenient than ones resorting directly to the water- standard
defi nition of a calorie. (See Problems 3.1–3.4.)

3.3 What is Heat?

If you are still inclined to ask the question “What, exactly, is heat?” 
you are probably seeking an answer in terms of nonthermodynamic, 
microscopic quantities. Before Joule’s experiments of the 1840s two 
such answers were possible: (1) heat is its own kind of rarefi ed, un-
generate, indestructible, and probably massless fl uid; and (2) heat 
is a kind of motion. Either of these answers was consistent with the 
known calorimetric facts, but both were speculations that went be-
yond those facts. More importantly, each view is consistent with the 
defi nition of heat offered in Chapter 1: that which when transferred 

TABLE 3.2 Latent heats of fusion and vaporization and the melting and 
boiling points for common materials at atmospheric pressure 

Substance  
Melting point

(°C)  
Heat of fusion

(cal/g)  
Boiling point

(°C)  
Heat of vaporization

(cal/g)

Aluminum 660 95.3 2467 2940
Copper 1083 48.9 2567 1147
Gold 1063 48.9 2660 377
Iron 1535 65.6 2750 1503
Lead 328 5.85 1740 208
Mercury −39 2.82 357 69.3
Nitrogen −210 6.10 −196 47.8
Oxygen −219 3.30 −183 50.2
Water 0 80.0 100 539
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to or from a system through a work- prohibiting boundary changes 
the system’s state.

However, the idea that heat is a substance called caloric that is 
conserved in all processes was, in the early 1800s, the most convinc-
ingly straightforward of the two speculations. In thermal interac-
tions the caloric fl owed from one body to another; in melting and 
vaporization caloric was absorbed and stored; and in freezing and 
condensing caloric was liberated. While the caloric theory of heat is 
plausible and to this day remains useful in limited circumstances, it 
ultimately proved inadequate as a foundational theory. 

Today we recognize that neither idea—heat as caloric and heat 
as motion—is completely adequate. Rather, as we will fi nd in Chap-
ter 4, heat is a quantifi able nonwork energy transfer.

Chapter 3 Problems

3.1 Calorimetry. How many calories of heat must be transferred to 12 
g of copper in order to raise its temperature from 10°C to 35°C?

3.2 Specifi c Heat. One kilogram of hot (80.0°C) aluminum is placed 
into 10.0 L of 20.0°C water in a container with negligible heat capacity 
and adiabatic walls. After the aluminum and water have reached thermal 
equilibrium their common temperature is 21.3°C. Assume the specifi c heats 
of water and aluminum are constants. What is the specifi c heat of aluminum 
implied by this data?

3.3 Average Person. An average person weighs 65 kg and consumes 
2000 nutritional calories per day. If these nutritional calories were supplied 
to 65 kg of water, by how many degrees Celsius would the water increase? 
How many degrees Fahrenheit?

3.4 Latent Heat. How much heat is required to raise the temperature 
of 50.0 g of H2O ice at 0.00°C to 30.0°C? Assume an average 1.00 cal / g 
°C specifi c heat for water in this temperature range. 
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4.1 Count Rumford

Benjamin Thompson’s various  occupations—spy, social reformer, 
arms manufacturer, and  inventor—never kept him from aggressively 
promoting his own cause. He sought high offi ce and public honor, 
and on two occasions married rich widows. Born in colonial Wo-
burn, Massachusetts, Thompson (1753–1814) actively aided the 
Loyalist Party during the American Revolution. He fl ed to England 
in 1783 and later was knighted by King George III. For many years 
he served the Elector of Bavaria, who granted him the title “Count 
Rumford of the Holy Roman Empire,” even while Thompson con-
tinued to spy for the British.

In all Thompson was a keen observer of natural phenomena. 
While in charge of manufacturing arms for the Bavarian army he 
noticed that boring cannon produced large quantities of heat—heat 
that had to be carried away from the cannon by running water. 
He also determined that while the boring converted a single piece 
of metal stock into numerous metal fl akes, the specifi c heat of the 

F O U R

The First Law
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fl akes remained identical to that of the stock. Rumford could not 
believe that indefi nitely large amounts of a supposed ungenerate 
and indestructible caloric could be liberated from the metal without 
signifi cantly changing its properties. 

In his own words:

It was by accident that I was led to make the experiment of 

which I am about to give account. . . . Being engaged lately in 

superintending the boring of cannons in the workshops of the 

military arsenal at Munich, I was struck by the considerable 

degree of heat that a brass gun acquires in a short time in being 

bored, and with the still higher temperature (much higher than 

that of boiling water, as I found by experiment) of the metallic 

chips separated from it by the borer. . . .

It is hardly necessary to add, that anything which any 

insulated body, or system of bodies, can continue to furnish 

without limitation, cannot possibly be a material substance; 

and it appears to me to be extremely diffi cult, if not quite im-

possible, to form any distinct idea of anything, capable of being 

excited and communicated, in the manner the Heat was excited 

and communicated in these Experiments, except it be motion.

(“Inquiry Concerning the Source of the Heat Which Is Excited 

by Friction,” London Philosophical Transactions, 1798) 

Evidently, the visible motion of boring a cannon produces an invis-
ible motion in the smallest parts of the metal—a motion Rumford 
called heat.

More important than either Rumford’s speculation on the na-
ture of heat (“except it be motion”) or his claim that heat can 
be generated without limititation is his observation that the work 
of boring cannon causes a “considerable degree of heat.” It was 
already known, at least from the time of Joseph Black’s somewhat 
earlier investigations, that heat transferred to a body increases its 
temperature. Now Rumford had shown that work done on a system 
can produce the same effect.
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4.2 Joule’s Experiments

Julius Robert von Mayer (1814–1878) may have been the fi rst to 
infer the correct relationship between heat and work. Certainly he 
was the fi rst to envision the fi rst law of themodynamics and its 
great variety of applications. However, it was a series of experiments 
performed by the English brewer James Prescott Joule (1818–1889) 
that, taken as a whole, succeeded in turning Rumford’s primarily 
qualitative observations into a quantitative law of  behavior—the 
fi rst law of thermodynamics. For three decades, beginning in 1842, 
Joule performed a series of carefully controlled and increasingly 
precise laboratory versions of Rumford’s crude  cannon- boring 
experiment.

In each experiment Joule measured the amount of work per-
formed on a system through an adiabatic boundary and compared 
it with the amount of heat transferred to the system that caused the 
same temperature increase. Figure 4.1 illustrates one of his experi-
ments. As the mass, m , falls through a distance, h, the string turns a 
spindle attached to paddles that stir the liquid contained within an 
adiabatic boundary and performs work, mgh , on the fl uid.

FIGURE 4.1 Joule’s apparatus: a mass m falls through a distance h and 
performs work mgh by turning a spindle attached to a paddle wheel that 
is immersed in a liquid surrounded by an adiabatic boundary. Here g is 
the acceleration of gravity.
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In some of Joule’s experiments the liquid stirred was water, in 
some oil, and in others mercury. In some experiments work was 
supplied by stirring, in some by rubbing one surface on another, 
and in some by a current of electric charge falling through a po-
tential difference. In each experiment the work performed could 
be denominated in terms of a unit of force times a unit of distance. 
No wonder the Systeme International (SI) unit of work is called the 
joule (J). In all his experiments Joule found that the ratio of work 
performed to the heat transferred where each causes the same in-
crease in temperature is close to the same number. Its current value, 
4.186 J / cal, is known as the mechanical equivalent of heat. (See 
Problems 4.1–4.2.)

4.3 The First Law of Thermodynamics

From Joule’s experiments to the fi rst law of thermodynamics is but 
a short step. Since heat, Q , transferred to and work, W, done on 
a system may produce the same change of state, each must be one 
part of a single quantity. Since work done on a purely mechanical 
system is known to increase its mechanical energy, it is natural to 
identify the sum Q + W introduced into a thermodynamic system as 
an increase of its internal energy, �E . For this reason one common 
verbal expression of the fi rst law of thermodynamics is “energy is 
conserved if heat is taken into account.”

Algebraically the fi rst law of thermodynamics states that

Q + W = �E. (4.1)

Because heat, Q, work, W, and the change in internal energy, �E,
are, in general, signed quantities, Equation (4.1) goes beyond reca-
pitulating the bare facts of Joule’s experiments. The work may be 
done on or by the system or not at all (W > 0, W < 0, or W = 0) 
and by any means (mechanical, electrical, or magnetic); heat may 
be transferred to or rejected from the system or not at all (Q > 0, 
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Q < 0, or Q = 0); internal energy may increase, decrease, or remain 
the same (�E > 0, �E < 0, or �E = 0); and the work, W, and heat 
transfer, Q, may be simultaneous or successive. Adiabatic (Q = 0), 
diathermal (Q ≠ 0), work- allowing (W ≠ 0), and work- prohibiting
(W = 0) boundaries help realize these possibilities. In each process 
the algebraic sum of heat transferred to and work performed on the 
system Q + W changes the internal energy by �E.

The discovery of the fi rst law of thermodynamics allowed sci-
entists to redefi ne the calorie as a conventional quantity denomi-
nated in energy units. Before the experiments of Joule, heat transfer 
was merely considered to be the transfer of something, possibly the 
caloric, possibly a form of motion. After Joule, heat transfer was 
recognized as simply one means of energy transfer. Accordingly, one 
calorie could be redefi ned in terms of units of  energy—as exactly 
4.186 J. However, the historically prior,  water- standard defi nition of 
the calorie described in Chapter 3 remains consistent with all known 
thermodynamic facts. (See Problems 4.3–4.6.)

4.4 Thermodynamic Cycles

Among the many applications of the fi rst law the most important are 
to cycles. A sequence of interactions that returns a system to its ini-
tial state is a thermodynamic cycle. These interactions may include 
work and heat transfer. The fi rst law of thermodynamics [Eq. (4.1)] 
applied to a cycle reduces to

Q + W = 0 , (4.2)

where here, as before, Q and W stand for signed quantities that are 
positive when heat is absorbed by and when work is performed on 
the system.

Numerous engineered and natural processes are composed of 
cycles. Machines designed to operate indefi nitely do so by repeating 
the same cycle indefi nitely. So also do biological systems that main-
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tain homeostasis. In principle, a cycle leaves a system unchanged 
while changing its environment. Whatever is accomplished in the 
environment in one cycle, that is, heat transferred to or from or 
work performed on or by, is accomplished in double amounts in 
two cycles and in triple amounts in three cycles.

In Figure 4.2 and throughout Chapters 5 and 6 I employ tra-
ditional diagrams to denote the operation of a cycle. Accordingly, 
a circle stands for a system that has gone through one or more 
complete cycles. Everything outside the circle is the system’s environ-
ment. Arrows indicate the direction of an energy fl ow into or out 
of the system. What before, in purely algebraic formulations of the 
fi rst law of thermodynamics, were signed quantities Q and W are in 
these diagrams mere magnitudes. Thus, Q and W denote the amount 
while arrows denote the direction of energy transfer. Unsigned quan-
tities Q and W always label diagrams; in other circumstances, for 
generality, Q and W are signed. Thus, the context is important.

FIGURE 4.2 Cycles. The two cycles at the top—(a) the heat engine cycle 
and (b) the refrigerator cycle—are allowed by the fi rst law when Q = W. 
The two cycles at the bottom (c and d) are not allowed by the fi rst law for 
any values where Q > 0 and W > 0.
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Figure 4.2 illustrates, in this diagrammatic language, two pos-
sible cycles: (a) a heat engine cycle that extracts net heat from its 
environment and produces work and (b) a refrigerator cycle that 
consumes work and rejects net heat into its environment; in addi-
tion, it illustrates two impossible cycles, (c) and (d). In each pos-
sible cycle the system absorbs or rejects as much heat as work 
produced or consumed so that Q = W. Each impossible cycle, 
marked with a  symbol, necessarily violates the fi rst law of 
thermodynamics for any quantities Q and W where Q > 0 and 
W > 0.

Cycles in which net heat input or output does not balance the 
work produced or consumed can be reduced to a few types whose 
diagrams are easily recognized as violating the fi rst law. Suppose, 
for instance, a heat engine cycle of the form shown in Figure 4.2a 
produces more work, W, than heat consumed, Q, so that W > Q.
We could combine this prohibited heat engine cycle with an allowed 
refrigerator cycle of form illustrated in Figure 4.2b that consumes 
work, W
, and rejects the same amount of heat, so that Q
 = W
.
Suppose we adjust both cycles (as described in the next section) 
until the heat absorbed from the environment by the heat engine 
equals the heat rejected to the environment by the refrigerator, that 
is, so that Q
 = Q. Then, the combined system composed of the 
heat engine and the refrigerator peforms net positive work, W – 
W
 > 0, on the environment without exchanging net heat with the 
environment. However convenient, this and other one-fl ow cyclic 
processes, diagrammed in Figure 4.3, necessarily violate the fi rst law 
of thermodynamics.

Of course, one- fl ow processes that only produce work without 
absorbing or rejecting heat do exist: examples are a discharging 
capacitor or a piston released and pushing against its environment. 
And there are one- fl ow processes that simply release net heat, for 
instance, a cup of tea cooling down to room temperature. But none 
of these return the systems (capacitor, piston, tea) to their initial 
states. None of these processes are cycles.
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4.5 Cycle Adjustment

An adjustment that makes a single quantity in one cycle equal to 
a quantity of the same kind in another cycle can always be made. 
Consider, as before, a heat engine cycle that absorbs heat Q where 
Q > 0 and produces work W where W > 0 and a refrigerator cycle 
that rejects heat Q
 where Q
 > 0 and consumes work W
 where W
 
> 0. By repeating the heat engine cycle n times and the refrigerator 
cycle n
 times, where the integers n and n
 are chosen in such a way 
that their ratio, n / n′, is as close as desired to the ratio Q
 / Q, we can 
compose a third cyclic device out of the combined heat engine and 
refrigerator that exchanges no net heat with the environment, since 
nQ – n
Q
 = 0, yet formally exchanges net work, n
W
 – nW, with 
the environment. In similar fashion a single adjustment can always 
equalize any two, but no more than two, quantities of the same type, 
Q or W, in different cycles. Cycle adjustment prepares us for a simi-

FIGURE 4.3 Four one- fl ow cycles prohibited by the fi rst law of thermo-
dynamics. Here Q > 0 and W > 0.
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lar if more complex analysis of the second law of thermodynamics, 
a task taken up in Chapter 5. (See Problems 4.7–4.8.)

Chapter 4 Problems

4.1 Mechanical Equivalent of Heat. Rumford observed that when one 
horse turned a cannon bore for about 2.5 hr the temperature of 27 lb of 
water that was initially ice cold (i.e., near 0°C) rose to near boiling hot 
(i.e., near 100°C). Given that one horsepower is 33,000 ft- lb / min, that 1 kg 
weighs 2.2 lb, and that 1 in. = 2.54 cm, what is the mechanical equivalent 
of heat in joules per calorie implied by these rough numbers?

4.2 Waterfall. William Thomson (later known as Lord Kelvin) told 
the story (possibly apocryphal) of a holiday in Switzerland in which he saw 
a young man approaching him with what looked like a walking stick gin-
gerly balanced in vertical position. It was James Joule on his honeymoon! 
He had brought along a huge thermometer in order to compare the water 
temperature at the top and at the bottom of an 800- ft waterfall he and his 
bride were visiting. How much hotter at the bottom than at the top should 
Joule have expected the water to be?

4.3 Energy Balance. A system absorbs 45 cal of heat and performs 200 
J of work. What is the net change in internal energy, ΔE, of the system? 
Recall that ΔE may be positive or negative and that, in principle, ΔE = E

f

– Ei , where Ef and Ei are, respectively, the amounts of internal energy after 
the process and before the process.

4.4 Stirring. A liquid is stirred in a well- insulated container until its 
temperature rises. 

(a) Has heat been transferred to the liquid?
(b) Has work been performed on the liquid?
(c) What is the sign of ΔE?

4.5 Free Expansion. A well- insulated container with rigid walls is di-
vided into two parts separated by a partition that can be easily ruptured. 
A gas is initially contained in only one of these parts; the other part is 
completely evacuated. The partition is ruptured and the gas fi lls both parts 



28   M E R E  T H E R M O DY N A M I C S

of the system. Does the internal energy of the  system—that is, the gas—
increase, decrease, or remain the same?

4.6 Friction / Dissipation. A volume of gas is contained in a well-
 insulated cylinder with a well- insulated piston head as depicted in Figure 
4.4. The massless piston head may move but only by overcoming 0.2 new-
tons of kinetic friction. A 50- g mass is placed on top of the piston head. 
The piston head moves outward a distance of 25 cm. Ignore the pressure 
exerted by the atmosphere. 

 (a) What is the amount of work performed by the gas during this 
expansion?

(b) If we consider the gas, the cylinder, and the piston head to be part 
of the system, what is the change in internal energy, ΔE, of the 
system? 

4.7 First Law Equivalent. The fi rst law of thermodynamics can be 
formulated as the following statement of impossibility: “It is impossible to 
devise a cycle that has no effect other than the performance of work on or 
by the environment.” 

 (a) Use an indirect proof to show that this impossibility version of 
the fi rst law, the existence of heat engine and refrigerator cycles 
diagrammed in Figure 4.2a–b, and the possibility of adjusting 
and combining cycles, as explained in Section 4.5, together lead 
to the denial of the one- fl ow heat cycles diagrammed in Figure 
4.3c–d. (S)

(b) Show that the impossibility of the one- fl ow heat cycles diagrammed 
in Figure 4.3c–d, the existence of the heat engine and refrigerator 

FIGURE 4.4 Cylinder and piston head containing a gas. (See Problem 4.6.)
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cycles diagrammed in Figure 4.2a–b, and the possibility of adjust-
ing and combining cycles, as explained in Section 4.5, lead to this 
impossibility statement of the fi rst law. 

Parts (a) and (b) combined prove that, given the possibility of adjusting 
and combining cycles and the existence of heat engine and refrigerator 
cycles, the impossibility version of the fi rst and the denial of the one-
fl ow heat cycles diagrammed in Figure 4.3c–d are logically equivalent 
versions of the fi rst law of thermodynamics.

4.8 Cycle. A system undergoes the following four- stage cyclic process: 
In stage (1) the system absorbs 226 cal of heat and does 50 J of work; in 
(2) the system adiabatically does 30 J of work; and in (3) the system rejects 
100 cal of heat while the environment does 80 J of work on the system. 
Stage (4) is also adiabatic. Is work done on or by the system in stage (4)? 
How many joules of work? 
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5.1 Sadi Carnot 

Sadi Carnot (1796–1832) was the brilliant son of an illustrious fa-
ther. Lazare Carnot had appointed Napoleon to his fi rst indepen-
dent command and organized the fourteen armies that conquered 
Europe. As an 18- year- old military student, Sadi participated in the 
defense of Paris. But by 1824 Napoleon was dead, having been im-
prisoned on a small island in the mid- Atlantic; Lazare too had died 
in exile; and Sadi was living a quiet life in Paris studying physics and 
economics. That year Sadi Carnot laid the foundations for an idea 
more consequential than the Napoleonic conquest of Europe—an 
idea we now call the second law of thermodynamics. 

Carnot’s immediate goal in his essay “Refl ections on the Motive 
Power of Heat and on Machines Fitted to Develop That Power” was 
to identify a theoretical limit on the effi ciency of heat engines. He 
found the origin of that limit in his observation that “the production 
of motion in steam engines is always accompanied by a circum-
stance on which we should fi x our attention. This circumstance is 

F I V E

The Second Law
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the re- establishing of equilibrium in the caloric; that is, its passage 
from a body in which the temperature is more or less elevated to 
another in which it is lower.” Carnot was so impressed with this 
idea—that all heat engines receive heat from a hot body and reject 
waste heat to a cold body—that he repeated it seven times in seven 
consecutive paragraphs of the “Refl ections.”

Carnot worked without benefi t of the fi rst law of thermo-
dynamics. After all, his “Refl ections” appeared some 20 years be-
fore Joule’s convincing experiments of the 1840s. Instead of the 
fi rst law, Carnot favored, as did many others in 1824, the theory of 
caloric, according to which heat is a substance that can neither be 
created nor destroyed. 

Not until 1850 did Rudolph Clausius harmonize Carnot’s idea 
with the conservation of energy and call the two, respectively, the 
second and fi rst laws of thermodynamics. Interestingly, Clausius’s 
ordering of the two laws of classical thermodynamics reverses the 
order of their discovery. In this chapter we explore, as did Sadi Car-
not in 1824, the consequences of the second law without assuming 
the fi rst law. In this way we isolate the logical content of the second 
law and recreate the intellectual context of its discovery.

5.2 Statements of the Second Law

Figure 5.1 illustrates the essential feature of Carnot’s idea: the sim-
plest possible heat engine operating in a cycle extracts heat, QH ,
from a hot heat reservoir, rejects waste heat, QC , to a colder one, 
and produces work, W. Here and elsewhere I use the term heat res-
ervoirs instead of Carnot’s hot and cold bodies. By defi nition, heat 
can be added to or extracted from a heat reservoir without changing 
its temperature. A heat reservoir has infi nite heat capacity.

Figure 5.2 illustrates heat engines that, according to Carnot, are 
too simple to be possible. As before, forbidden cyclic processes are 
identifi ed with a  symbol. Of course, Carnot would have found 
the explicit prohibition of engines 5.2b and 5.2c unnecessary, even 
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apart from his new principle, since each violates the conservation 
of caloric. Similarly, today we fi nd the impossibility of engines 5.2a 
and 5.2c obvious because each of these necessarily violates the fi rst 
law of thermodynamics. However, if we assume neither the con-
servation of energy nor the conservation of  caloric—as we do in 
this  chapter—all three statements of impossibility are necessary to 
express Carnot’s principle. Cast into negative form that principle 
becomes a version of the second law of thermodynamics:

FIGURE 5.1 Carnot’s simplest heat engine, operating in a cycle, extracts 
heat, QH , from a heat reservoir at temperature TH ; performs work, W; 
and rejects waste heat, QC , to a reservoir at a lower temperature, where 
TC < TH . Carnot, the caloricist, would assume that QH = QC .

FIGURE 5.2 Heat engines too simple to be possible. Carnot’s second law 
forbids each because each cycle produces work by exchanging heat with 
fewer than two heat reservoirs.
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A process whose only result is to exchange heat with fewer than 
two different heat reservoirs and produce work is impossible. 

Carnot himself never articulated this version of the second law, but 
this statement so closely follows from Carnot’s own words that I 
take the liberty of calling it Carnot’s second law.

Other, better known statements of the second law originated 
with William Thomson (1824–1907) and Rudolph Clausius (1822– 
1888). According to Thomson’s second law,

A process whose only result is to extract heat from one heat 
reservoir and produce work is impossible, 

and, according to Clausius’s second law,

A process whose only result is to extract heat from one heat reservoir 
and reject heat to another hotter heat reservoir is impossible. 

The Thomson and Clausius statements of the second law are dia-
grammed in Figure 5.3.

FIGURE 5.3 (a) Heat engine forbidden by Thomson’s second law. (b) Heat 
fl ow process forbidden by Clausius’s second law. Here, we intentionally 
strip Thomson’s and Clausius’s statements of any  fi rst- law  content—that 
is, we assume neither that Q = W in (a), nor that QH = QC in (b).
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Each of these three statements of the second law—Carnot’s, 
Thomson’s, and Clausius’s—prohibits certain cyclic processes. Each 
statement is verbally distinct from the other two. It is clear, however, 
that Thomson’s second law, because it forbids only a subset of those 
forbidden by Carnot’s second law, restricts the world less severely 
than Carnot’s. And I will show that Carnot’s second law is logically 
equivalent to Clausius’s second law. (See Problem 5.1.)

5.3 Equivalence and Inequivalence

In order to demonstrate the equivalence and inequivalence of dif-
ferent versions of the second law, we explicitly assume that certain 
heat engines and heat fl ow processes are possible. These include 
the simplest heat engine of Carnot, a simple refrigerator cycle, and 
heat fl ow from a hotter heat reservoir to a colder one. In one form 
or another each of these cyclic processes has often been approxi-
mated in technology or observed in nature. All three are illustrated 
in Figure 5.4.

We can now show that Carnot’s and Clausius’s versions of the 

FIGURE 5.4 Explicitly allowed cyclic processes: (a) simple heat engine; 
(b) simple refrigerator; (c) heat fl ow from a hotter to a colder heat 
reservoir.
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second law are logically equivalent. We do this by establishing that 
Clausius’s second law implies Carnot’s second law (Claim 1) and 
that Carnot’s second law implies Clausius’s second law (Claim 2). If 
we can establish both Claim 1 and Claim 2, we establish the logical 
equivalence of the Carnot and Clausius versions of the second law. 

Claim 1 is that Clausius’s second law implies Carnot’s second 
law. We prove Claim 1 by proving its contrapositive, namely, that to 
deny Carnot’s second law leads to a denial of Clausius’s second law. 
Each of the three different ways of violating Carnot’s second law 
leads to a violation of Clausius’s second law. Suppose, for instance, 
we construct, as diagrammed in Figures 5.2a and 5.5a, cyclic heat 
engine 1 that produces work W without exchanging heat with its 
environment. We are free to adjust the work W produced by heat 
engine 1 so that it supplies the work consumed W ′ by allowed re-
frigerator 2 in Figure 5.5a. The net result of the combined cyclic 
operation of the supposed heat engine and the explicitly allowed 
refrigerator, cycle 1&2, is to extract heat QC from a reservoir at 
temperature Tc and reject heat QH to a reservoir at higher tempera-
ture TH without consuming work—a clear violation of Clausius’s 
second law.

FIGURE 5.5 (a) A supposed heat engine that violates Carnot’s second law 
and an allowed refrigerator. (b) The combined heat transfer resulting from 
the adjustment W = W
. Heat engine 1&2 violates Clausius’s second law.
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The other ways of violating Carnot’s second law—that is, those 
that suppose the existence of the engines diagrammed in Figure 5.2b 
and c—similarly lead to violations of Clausius’s second law. One has 
only to closely follow the pattern of proof already  established—each 
time adjusting the work W produced by the supposed heat engine to 
provide the work W ′ needed to run an allowed refrigerator. In each 
case the combined engine can be made to violate Clausius’s second 
law. The logic of these deductions is made clear in Figures 5.6 and 
5.7. Consequently, the contrapositive of Claim 1—that a violation 
of Carnot’s second law leads to a violation of Clausius’s second 
law—is established. Therefore, Claim 1 is established.

Next we prove Claim 2—that Carnot’s second law leads to 
Clausius’s second law. We again do so by proving its contraposi-
tive—that violating Clausius’s second law leads to a violation of 
Carnot’s second law. If we can violate Clausius’s second law, then 
we can arrange for heat QC to be extracted from a reservoir at 
temperature Tc and heat QH to be rejected to a hotter reservoir at 
temperature TH without consuming work. This supposed cyclic heat 
fl ow, diagrammed in Figures 5.3b and 5.8a, can be adjusted to ex-

FIGURE 5.6 (a) A supposed heat engine, 1, that violates Carnot’s second 
law and an allowed refrigerator, 2. (b) The combined heat transfer result-
ing from the adjustment W = W
. Heat engine 1&2 violates Clausius’s 
second law.
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tract exactly that heat deposited in the Tc reservoir Q′C by the explic-
itly allowed heat engine diagrammed in Figure 5.4a and in Figure 
5.8a. The net result of combining these cycles is to exchange heat 
with a single reservoir at temperature TH and produce work W as 
shown in Figure 5.8b. Of course, we do not know whether the heat 

FIGURE 5.7 (a) A supposed heat engine, 1, that violates Carnot’s second 
law and an allowed refrigerator, 2. (b) The combined heat transfer result-
ing from the adjustment W = W
. Heat engine 1&2 violates Clausius’s 
second law.

FIGURE 5.8 (a) A supposed heat fl ow process, 1, that violates Clausius’s 
second law and an allowed heat engine, 2. (b) The combined heat engine 
resulting from the adjustment QC = QC
 . Heat engine 1&2 violates Car-
not’s second law.
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exchanged Q′H – QH with the reservoir at temperature TH in Figure 
5.8b is positive, negative, or zero, but each of these three possibili-
ties violates Carnot’s second law.

Since we have established both Claim 1, that Clausius’s second 
law implies Carnot’s second law, and Claim 2, that Carnot’s second 
law implies Clausius’s second law, we have established the logical 
equivalence of these two versions of the second law. We leave it to 
the reader to show that a similar attempt to prove the equivalence 
of the Thomson and Clausius formulations fails, as it must. (See 
Problem 5.2.)

5.4 Reversible Heat Engines

In his quest to conceptualize heat engine operation Carnot invented 
the idea of a reversible cycle. Reversible cycles and processes are 
those that proceed indefi nitely slowly (that is, quasistatically) in 
order that the system state always remain in equilibrium and also 
without friction or internal dissipation. An important feature of re-
versible cycles and processes is that they are uniquely calculable. But 
here we exploit only their eponymous—that is,  naming—character: 
a reversible process can proceed in reverse.

Reversing a reversible heat engine transforms it into a reversible 
refrigerator: the work produced by the engine is now consumed by 
the refrigerator, the heat extracted by the engine from the hotter 
reservoir is now rejected to it, and the heat rejected by the engine to 
the colder reservoir is now extracted from it. A reversible cycle that 
is run once in one direction and then run once again in the other 
direction would completely undo all that it has accomplished. Of 
course, reversible heat engine and refrigerator cycles are idealiza-
tions; they can be approximated but never fully realized in prac-
tice. Furthermore, as we shall see, some simple cycles are inherently 
irreversible.

The following theorems on reversible heat engines that oper-
ate between two temperature reservoirs, also called Carnot cycles,
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are consequences of their eponymous property and of either the 
Carnot or the Clausius version of the second law but do not require 
the fi rst law of thermodynamics. Sadi Carnot proved Proposition 
I (sometimes called Carnot’s theorem) and assumed the truth of 
Propositions II and III.

Carnot was primarily interested in the greatest effi ciency of the 
simplest cyclic heat engine. This effi ciency is the ratio of the work 
the engine produces, W, to the heat it absorbs from the hotter of 
its two reservoirs, QH , that is W / QH . Recall that, apart from the 
fi rst law, which Carnot did not accept, this effi ciency has irreducible 
units of calories / joule. Carnot asked, What is the greatest effi ciency 
of such a reversible heat engine and on what does this effi ciency 
depend or not depend?

Proposition I (Carnot’s theorem): No heat engine operating be-
tween two heat reservoirs can be more effi cient than a reversible 
heat engine.

Style of Proof: By contradiction
Proof:
Suppose the contradiction of Proposition I—that is, an irreversible 

heat engine Ir is more effi cient than a reversible one R operating 
between the same two heat reservoirs. See Figure 5.9a.

According to this supposition and the defi nition of heat engine ef-
fi ciency WR / QR

H < WIr  / QIr
H .

Adjust the two engines so that QR
H = QIr

H .
Then WR < WIr.
Reverse the reversible engine R as shown in Figure 5.9b and com-

bine the two engines into one as shown in Figure 5.9c.
The combined engine produces work WIr – WR > 0 and exchanges 

heat QIr
C – QR

C with one heat reservoir at temperature TC .
Since this deduction contradicts Carnot’s second law, one of the 

previous assumptions must be false.
Since all assumptions except the original one are unimpeachable, the 

contradiction of Proposition I must be false.
Therefore, Proposition I has been proven.
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Proposition II: All reversible heat engines operating between the 
same two heat reservoirs have the same effi ciency.

The proof of Proposition II follows the pattern established by 
the proof of Proposition I and is left as an exercise. (See Problem 
5.3.) An immediate consequence of Proposition II is that the effi -
ciency of a reversible heat engine operating between two heat res-
ervoirs is a function ε(TH ,TC) of the reservoir temperatures TC and 

FIGURE 5.9 Illustrations for the proof of Proposition I (Carnot’s theo-
rem). (a) A reversible engine R and an irreversible heat engine Ir operat-
ing between the same two heat reservoirs. (b) The reversible engine R 
is reversed. (c) The adjustment QR

H = QIr
H is made and the two engines 

combined.
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TH > TC alone. Carnot and others recognized the importance of the 
function ε(TH ,TC). They sought, and sometimes assumed, its form 
but were never able to deduce ε(TH ,TC) from the second law alone.

Proposition III: The effi ciency of a reversible heat engine operat-
ing between two heat reservoirs decreases as the lesser of the 
two temperatures increases.

Style of Proof: Direct 

Proof:
Consider two reversible heat engines, 1 and 2, operating between 

a common reservoir with temperature TH and different colder 
reservoirs with temperatures TM and TC where TH > TM > TC , as 
shown in Figure 5.10.

Construct a third reversible heat engine 3 operating between the 
reservoirs with temperatures TM and TC .

Adjust engines 1 and 3 so that Q1
M = Q3

M . This adjustment combines 

FIGURE 5.10 Reversible heat engines used in the proof of Proposition III.
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engines 1 and 3 into a single engine 1&3 from which the TM

reservoir is effectively eliminated.
Adjust engines 1&3 and 2 so that Q1

H = Q2
H(≡QH).

According to Proposition II, (W 1 + W 3) / QH = W 2 / QH .
Therefore, W 2 / QH ≥ W 1/ QH , that is, ε(TH , TC) ≥ ε(TH , TM) the 

equality being realized only when TC = TM .
Therefore, Proposition III has been proven.

William Thomson realized, in 1848, that Proposition III al-
lowed one to use the effi ciency of a reversible heat engine oper-
ating between two heat reservoirs as a thermometric property. A 
temperature scale based upon this thermometric property would 
be independent of the working fl uid or the design of any particular 
reversible heat engine and in this sense would be universal or abso-
lute. Although interesting, absolute temperature scales based on the 
second law alone are not as convenient as ones that depend upon 
both the fi rst and second laws of thermodynamics. (See Problems 
5.3–5.4 and Appendix B.)

5.5 Refrigerators and Heat Pumps

Refrigerators and heat pumps are heat engines with special pur-
poses. A refrigerator transfers heat from a cold body to a hot body 
in order to maintain the temperature of the cold body, while a heat 
pump transfers heat from a cold body to a hot body in order to 
maintain the temperature of the hot body.

Let’s consider a refrigerator operating between two reservoirs 
at temperatures TH and TC < TH . The best refrigerator will extract 
the most heat QC from the colder reservoir for a given cost, that 
is, for a given work, W, necessary to run the refrigerator. For this 
reason engineers have invented a refrigerator coeffi cient of perfor-
mance, QC / W, that quantifi es refrigerator operation; the better the 
refrigerator performs the higher QC / W. Interestingly, no refrigera-
tor operating between two heat reservoirs can have a higher coef-
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fi cient of performance than one run by a reversible engine, that is, a 
reversed Carnot engine. The proof follows a pattern similar to that 
followed in proving Carnot’s  theorem—that no heat engine operat-
ing between two heat reservoirs can have a higher effi ciency than 
a reversible engine—and is outlined in Problem 5.5. (See Problems 
5.5–5.6.)

Chapter 5 Problems

5.1 Faulty Second Law. Carefully consider the following formulation 
of the second law: A process that extracts heat from one heat reservoir and 

produces work is impossible.

(a) How is this different from Thomson’s second law?
(b) Describe a  counter- example to this faulty formulation of the second 

law. 
[Hint: Review Sections 4.4 and 5.2.]

5.2 Clausius’s Second Law. Prove that the following processes lead to 
a violation of Clausius’s second law: 

(a) A cyclic process that absorbs heat from a reservoir and produces 
work as shown in Figure 5.2b (S).

(b) A cyclic process that rejects heat to a reservoir and produces work 
as shown in Figure 5.2c. 

[Hint: See Figures 5.6 and 5.7.]

5.3 Proposition II. Prove Proposition II using the same methods used 
in proving Proposition I.

5.4 Proposition III. Prove Proposition III without appealing to Propo-
sition I (Carnot’s Theorem) or Proposition II. 

[Hint: Construct an indirect proof based on contradicting Carnot’s 
second law.]

5.5 Ideal Refrigerator Performance. Prove that no refrigerator oper-
ating between two heat reservoirs has a higher coeffi cient of performance 
Q

C  / W than one run by a reversible engine. To do so, show that the ne-
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gation of this statement—that the coeffi cient of performance Q ′C  / W ′ of 
an irreversible refrigerator is higher than the coeffi cient of performance 
QC / W of a reversible refrigerator operating between the same two heat 
reservoirs—leads to a violation of the second law. 

[Hint: Diagrams may be helpful. By supposition Q ′C  / W ′ > QC  / W. First 
reverse the reversible refrigerator, then adjust Q ′C = QC so that the sup-
position leads to W > W ′. This violates Carnot’s second law.]

5.6 Ideal Heat Pump Performance. The coeffi cient of performance of a 
heat pump is QH  / W. Prove that no heat pump operating between two heat 
reservoirs has a higher coeffi cient of performance than one run by a revers-
ible engine. Follow the pattern of proof established in Problem 5.5. 
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6.1 Rudolph Clausius

In 1850 the young Rudolph Clausius (1822–1888) solved a problem 
worthy of his vocation in theoretical physics: harmonizing Carnot’s 
analysis of heat engines and Joule’s discovery of energy conserva-
tion. Clausius fi rst remarked on the diffi culty of either retaining all 
or abandoning all of Carnot’s analysis. Then he discerned a middle 
course.

A careful examination shows that the new method does not 

stand in contradiction to the essential principle of Carnot, but 

only to the subsidiary statement that [in heat engine operation] 

no heat is lost, since in the production of work it may very well 

be the case that at the same time a certain quantity of heat is 

consumed and another quantity transferred from a hotter to a 

colder body, and both quantities of heat stand in defi nite rela-

tion to the work that is done. 

S I X

The First and Second Laws
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In abstracting Carnot’s “essential principle” (that is, the second 
law) from its inessential expression and replacing the conservation 
of caloric with Joule’s “new method” (that is, with the fi rst law), 
Clausius created classical thermodynamics. The two laws of clas-
sical thermodynamics, in combination, imply the existence of an 
absolute or thermodynamic temperature scale, the so- called Kelvin 
scale, and validate a theorem fi rst proved by Clausius and appro-
priately called Clausius’s theorem. These concepts transform the 
mainly verbal and logical expressions of the fi rst and second laws we 
have seen thus far into a powerful mathematical theory. We explore 
this transition from words to mathematics in this chapter and the 
next.

6.2 Thermodynamic Temperature

The effi ciency, ε, of a heat engine operating between two heat res-
ervoirs is defi ned by

ε = W

Q
H

, (6.1)

where W is the work produced by the engine and QH is the heat 
absorbed by the engine from the hotter reservoir. According to the 
fi rst law, the heat absorbed yet not transformed into work,

QC = QH – W, (6.2)

is rejected to the colder reservoir. Thus, the ratio of heat rejected 
to heat absorbed, QC  / QH , is related to the effi ciency of the engine, 
ε, by

Q
C

Q
H

= 1 − ε. (6.3)

According to Carnot’s theorem all reversible heat engines op-
erating between reservoirs with the same two temperatures, TC and 
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TH —that is, all Carnot  cycles—are described by the same effi ciency 
function, ε(TC ,TH). Consequently, the heat ratio function

Q
C

Q
H

= f (T
C

,T
H

), (6.4)

where f (TC ,TH) ≡ 1 – ε(TC ,TH), also depends only upon the two 
temperatures, TC and TH , and not otherwise upon the design or 
composition of the reversible heat engine.

This heat ratio function f (TC ,TH) has certain easily discovered 
properties. For instance, since according to Equations (6.1) and 
(6.2) and the convention that QH > 0, QC > 0, and W > 0,

0 ≤ f (T
C

,T
H

) ≤ 1. (6.5)

We also fi nd, from the following reasoning, that f(TC ,TH) obeys the 
cyclic property

  
f (T

1
,T

2
)f (T

2
,T

3
) = f (T

1
,T

3
)  (6.6)

and, consequently, that

f (T,T) = 1. (6.7)

To derive Equation (6.6) consider three heat reservoirs with ascend-
ing temperatures, T1 ≤ T2 ≤ T3 , and two Carnot cycles operating 
between the reservoirs. The heat ratio of the Carnot cycle operating 
between temperatures T1 and T2 is

Q
C
1

Q
H
2

= f (T
1
,T

2
), (6.8)

and the heat ratio of a Carnot cycle operating between T2 and T3 is 

Q
C
2

Q
H
3

= f (T
2
,T

3
), (6.9)

where the numerical superscripts denote the reservoir from which 
heat is absorbed or to which heat is rejected. By adjusting the heat 
extracted, Q2

H , from the middle (T2) reservoir by the fi rst Carnot 
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cycle and the heat rejected, Q2
C , into the middle (T2) reservoir by 

the second Carnot cycle so that Q2
C = Q2

H , we combine these two 
Carnot cycles into one whose only consequence is to extract heat 
Q3

H from the hottest (T3) reservoir and reject heat Q1
C to the coldest 

(T1) reservoir. Thus, the combined cycle is also a Carnot cycle with 
its own heat ratio

Q
C
1

Q
H
3

= f (T
1
,T

3
) . (6.10)

Since Q2
H = Q2

C , Equations (6.8)–(6.10) imply

Q
C
1

Q
H
2

 i 
Q

C
2

Q
H
3

=
Q

C
1

Q
H
3

, (6.11)

which is equivalent to the cyclic property f(T1 ,T2)f(T2 ,T3) = f(T1 ,T3), 
that is, to

f (T
1
,T

2
) =

f (T
1
,T

3
)

f (T
2
,T

3
)
. (6.12)

Note that whatever the functional form of f(T1,T3) or, equivalently, 
f (T2 ,T3), it allows the dependence on T3 to disappear from the 
 right- hand side of Equation (6.12).

The only function f (TC ,TH) observing the properties stated in 
Equations (6.5)–(6.7) has the structure

f (T
C

,T
H

) =
�(T

C
)

�(T
H

)
. (6.13)

Whatever the form of �(T ), Equation (6.13) allows us to adopt 
a thermodynamic temperature scale that is independent of any 
one system. Essentially, we defi ne a thermodynamic temperature 
� = �(T ) so that 

�
C

�
H

=
�(T

C
)

�(T
H

)
. (6.14)
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Because QC  / QH = f (TC ,TH) = �(TC) / �(TH) = �C  / �H , adopting a 
thermodynamic temperature scale is equivalent to adopting the heat 
ratio of a Carnot cycle as the thermometric property. And because 0 
≤ QC ≤ QH , thermodynamic temperatures are such that 0 ≤ �C / �H ≤ 
1. The equality �C / �H = 1 obtains only when TC = TH . Furthermore, 
�C → 0 for arbitrary �H only as QC → 0. Thus, thermodynamic tem-
peratures are  single- sign—that is, all are non- negative (the common 
choice) or non- positive and all have a common limiting value of 
zero. This defi nition of thermodynamic temperature depends upon 
both the fi rst and second laws. After all, if caloric were conserved, 
then QC = QH and the heat ratio QC  / QH could not serve as a thermo-
metric property.

Equation (6.14) allows many different thermodynamic temper-
ature scales, each with a  different- sized degree. The Kelvin degree 
is defi ned so that the temperature of the triple point of water is 
273.16 K. On the other hand, the Rankine degree is, by defi ni-
tion, exactly 5 / 9 of one Kelvin  degree—that is, exactly the size of a 
Fahren heit degree.

Expressed in terms of thermodynamic temperatures the ef-
fi ciency of a reversible heat engine operating between two heat 
 reservoirs—that is, the effi ciency of a Carnot  cycle—is

ε(�
C

,�
H

) = 1 −
�

C

�
H

. (6.15)

This effi ciency obeys those theorems proposed by Carnot in the 
simplest possible way: it agrees with Proposition II, that all Carnot 
cycles have the same effi ciency, and with Proposition III, that the 
effi ciency of all Carnot cycles decreases as the colder of the two 
temperatures increases.

Thermodynamic temperatures similarly reduce equations of 
state to relatively simple forms. Because we use thermodynamic 
temperatures (usually the Kelvin scale) almost exclusively in what 
follows, we will abandon the notational distinction between thermo-
 dynamic � and empirical temperatures T that has been adopted 
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thus far. Henceforth, all temperatures are denoted with the com-
mon symbol T. The context indicates the kind of temperature 
 intended—empirical or thermodynamic. (See Problems 6.1–6.6.)

6.3 Clausius’s Theorem

According to Carnot’s theorem (Proposition I), the effi ciency, 1 – 
QC  / QH , of an arbitrary cyclic heat engine operating between hotter 
and colder heat reservoirs is less than or equal to the effi ciency, 
1 – TC  / TH , of a reversible engine operating between the same two 
heat  reservoirs—that is,

  

1 −
Q

C

Q
H

≤ 1 −
T

C

T
H

 (6.16)

or, alternatively,

Q
H

T
H

+
−Q

C

T
C

≤ 0, (6.17)

where here, as in Chapter 5, QH > 0 and QC > 0. The equality in 
Equations (6.16) and (6.17) obtains only when the arbitrary cycle 
is reversible. Inequality (6.17) is one instance of Clausius’s theorem 
or Clausius’s inequality.

In order to represent Clausius’s theorem in its most general form 
we return to the general custom of using the symbols Q and W 
to represent signed quantities associated with a particular system. 
Thus Q > 0 when the system absorbs heat, Q < 0 when the system 
gives up heat, W > 0 when the system produces work, and W < 0 
when the system consumes work. In the language of this convention, 
Clausius’s theorem states that

  

Q
H

T
H

+
Q

C

T
C

≤ 0  (6.18)

when the cycle operates between two heat reservoirs. 
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Suppose a system experiences a cyclic, but otherwise arbitrary, 
process that produces or consumes work, W, while exchanging heat, 
Q1,Q2 ,…,Qi ,…Qn , with n reservoirs each having respective tem-
peratures T1,T2 ,…Ti ,…Tn . Again, when W > 0 the system produces 
work, when W < 0 the system consumes work, when Qi > 0 the sys-
tem absorbs heat from the ith reservoir, and when Qi < 0 the system 
rejects heat to the ith reservoir. Clausius’s theorem applied to this 
complex arbitrary cycle requires that

Q
i

T
ii=1

n

∑ ≤ 0, (6.19)

where the equality sign obtains only when the complex cycle is re-
versible. These relationships are represented in Figure 6.1, in which 
the arrows represent the direction of positive work and heat fl ow 
rather than the actual direction of work and heat fl ow in a particular 
case. 

To prove Clausius’s theorem [Eq. (6.19)] we combine the com-
plex arbitrary cycle with n Carnot cycles operating between the n 
reservoirs with temperatures T1,T2 ,…Ti ,…Tn and another reservoir 
of arbitrary temperature To. Each of the n Carnot cycles exchanges 
heat Q
i with each Ti reservoir, produces (or consumes) work W
i , and 
exchanges heat Q
oi with the To reservoir, so that

 

  

Q
i
′

T
i

+
Q

oi
′

T
o

= 0  (6.20) 

for each i. Furthermore, each Carnot cycle is adjusted so that it sup-
plies to or extracts from each of the n reservoirs that heat extracted 
from or supplied to it by the original complex cycle. In this way 

Q
i = –Qi (6.21)

and the n reservoirs with temperatures T1,T2,…Ti ,…Tn merely trans-
mit heat. 

The result of combining the original arbitrary complex cycle 
and the n Carnot cycles is to create a simple cycle that extracts net 



FIGURE 6.1 Complex cycle interacting with n heat reservoirs. The n Carnot cycles 
absorb or reject the same heat, Q
i = –Qi , rejected to or absorbed from the n heat 
reservoirs. 
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heat Σn
1Q
oi from the To reservoir and produces work W + Σn

iW
i . But 
the Thomson and Carnot statements of the second law prohibit 
a cycle from absorbing heat from a single heat reservoir and pro-
ducing work. Therefore, W + Σn

iWi ≤ 0, which, given the fi rst law, 
implies 

W + W
i

i

n

∑ = Q
oi
′

i=1

n

∑ ≤ 0 . (6.22)

Since, from Equation (6.20), each quantity Q
oi = –Q
i To / Ti and, from 
(6.21), Q
i = –Qi , (6.22) becomes

Q
i

T
ii=1

n

∑ ≤ 0, (6.23)

where the common factor To has been factored from each term of 
the sum.

However, Equation (6.23) establishes only part of Clausius’s 
theorem. The balance of the proof must demonstrate that the equal-
ity sign in (6.23) obtains when the original, arbitrary, complex cy-
clic process is reversible. If the original cyclic process is reversible, 
every part of the combined cycle is reversible. Reversing the com-
bined cycle reverses the signs of all heat exchanges in (6.23) and so 
produces

Q
i

T
ii=1

n

∑ ≥ 0, (6.24)

which obtains, along with (6.23), for complex reversible cyclic 
transformations if and only if

Q
i

T
ii=1

n

∑ = 0. (6.25)

This completes the proof of Clausius’s theorem.
Because Clausius’s theorem [Eq. (6.23)] does not restrict the 

number n, each fi nite heat exchange Qi with a heat reservoir of 
temperature Ti can be subdivided into an indefi nitely large number 
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of infi nitesimal interactions dQ . Thus, Clausius’s theorem can also 
be expressed as

dQ

T
≤ 0�∫ , (6.26)

where the circle on the integral sign reminds us that the infi nitesimal 
heat quantities dQ are those absorbed by the system in the course of 
a complete cycle. Recall also that the temperature T in (6.26) is that 
of the reservoir with which the system interacts and not necessar-
ily the temperature of the system. The equality sign is realized only 
when the cycle is reversible. In that case T is the common tempera-
ture of the system and the reservoirs with which it exchanges heat. 
Finally, the work W produced by the system experiencing the cyclic 
transformation is, according to the fi rst law, equal to the total heat 
absorbed by the system so that, in this notation,

W = dQ�∫ . (6.27)

(See Problems 6.7–6.8.)

Chapter 6 Problems

6.1 Engine Effi ciencies 
(a) What is the maximum effi ciency of a heat engine operating between 

reservoirs with temperatures of 20°C and 500°C? (S) 
(b) Suppose an actual engine operating between these two tempera-

tures produces 120 J of work and rejects 180 J of heat to the colder 
reservoir each cycle. What is the effi ciency of this engine? 

6.2 Refrigerator. A reversible refrigerator engine extracts heat from 
the inside of a refrigerator compartment kept at 8°C and rejects unwanted 
heat QH to its 20°C exterior. Find the work required to extract one calorie 
from the interior of the refrigerator compartment.
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6.3 Air Conditioner. Recall from Section 5.5 that the coeffi cient of 
performance of a refrigerator operating between two heat reservoirs is 
QC / W.

(a) What is the coeffi cient of performance of an air conditioner that 
consumes 3 kW of electrical power and extracts heat from the 
house at a rate of 40 kW? 

(b) What is the highest possible QC / W for an air conditioner operating 
between 25°C and 40°C? 

6.4 Three- Reservoir Heat Engine. A reversible heat engine extracts 
heat QH > 0 from a reservoir at temperature TH and heat QM = aQH > 0 
from a reservoir at temperature TM ≤ TH while rejecting waste heat QC > 0 
to a reservoir at temperature TC ≤ TM . 

(a) Derive an expression for the effi ciency of this  three- reservoir heat 
engine in terms of a and the three temperatures TH , TM , and TC , 
where the effi ciency is the total work produced divided by the total 
heat extracted from the two hotter reservoirs. 

[Hint: Divide the reversible  three- reservoir heat engine into two inde-
pendent Carnot  engines—one operating between reservoirs with tem-
peratures TH and TM and the other operating between reservoirs with 
temperatures TM and TC .]
(b) Show that this expression reduces to expected results in the limits 

a → 0 and TM → TC .

6.5 Newton’s Law of Cooling. A building is maintained at tempera-
ture TH with a reversible heat pump operating between the building and a 
colder environment at temperature TC < TH . The heat pump consumes elec-
trical power at a constant rate �W . The building also loses heat according to 
Newton’s law of cooling, that is, at a rate �(TH – TC) where � is constant. 
Show that the building temperature is maintained at temperature 

T
H

= T
C

+
�W

2�
1 + 1 +

4�T
C

�W

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

6.6 Radiation Cooling. A Carnot engine generates work at a rate 
�W  by operating between reservoirs at temperatures TC and TH > TC . The 
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 lower- temperature reservoir is a fi nite body with surface area A that main-
tains its temperature by radiating electromagnetic energy into space at a rate 
BAT 4

C , where B is a universal constant.
(a) Express �W  in terms of TC , TH , B , and A.
(b) Suppose one wants to minimize the area A of the colder reservoir 

while generating work at a given rate �W  by extracting heat from 
a reservoir at given temperature TH . What is this minimum area A 
and what is the temperature TC of the colder reservoir that mini-
mizes the area?

6.7 Three- term Clausius Inequality. An  arbitrary—that is, not neces-
sarily  reversible—cycle extracts heat Q3 > 0 from a reservoir of temperature 
T3 , extracts heat Q2 > 0 from a reservoir of temperature T2 , and rejects 
heat Q1 > 0 to a reservoir of temperature T1. What is the relevant Clausius 
inequality?

6.8 Finite Heat Reservoirs. Two fi nite objects are identical in every 
way except that one has initial temperature TC and the other initial tem-
perature TH > TC . Assume that the objects neither expand nor contract 
upon changing temperature and that their heat capacity, C, is independent 
of temperature.

(a) Show that, according to calorimetric principles, when the objects 
are placed in direct thermal contact, their fi nal equilibrium tem-
perature is (TC + TH) / 2.

(b) Suppose the two objects are brought into thermal equilibrium by 
producing work with a reversible heat  engine—that is, a Carnot 
engine, operating between the two objects. Show that their fi nal 
equilibrium temperature is T

H
T

C
. 

[Hint: Imagine heat exchanges of differential size.]
(c) How much work is produced in the process described in (b)? 
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7.1 The Meaning of Reversibility

All quasistatic—that is, all indefi nitely slow—heat transfers are 
necessarily reversible for the following reason. A quasistatic heat 
exchange between a system and its environment occurs only when 
the two are essentially in thermal equilibrium; otherwise the heat 
transfer is not indefi nitely slow. Shifting the temperature of a system 
or its environment up or down an infi nitesimal amount reverses a 
quasistatic heat transfer. Thus, reversible heat fl ows occur between 
objects at essentially the same temperature.

Quasistatic work, however, is not necessarily reversible; only 
work performed both quasistatically and without dissipation is 
completely reversible. Consider, for instance, the work performed 
on a fl uid system contained within the Joule apparatus of Figure 
2.2a. If the handle turns the paddles indefi nitely slowly, the fl uid 
occupies a series of equilibrium states as its temperature increases 
indefi nitely slowly. Reversing the direction of the handle’s turning 
requires a fi nite change in the applied torque. Furthermore, doing 

S E V E N

Entropy
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so would not reverse the order of equilibrium states through which 
the fl uid passes. Stirring a fl uid is not reversible because the work 
performed is dissipated via internal friction.

Sadi Carnot recognized a very practical consequence of re vers-
i bil ity in heat engines: reversible heat engines are the most effi cient 
ones possible. Of course, the engineers of his day already knew that 
minimizing dissipation increased engine effi ciency. But Carnot was 
the fi rst to discover that minimizing temperature differences between 
the thermally conducting parts of an engine and its environment also 
increased effi ciency. If engine effi ciency is the goal, both sources of 
irreversibility—dissipation and  fi nite- temperature heat- exchange—
should be minimized.

Rudolph Clausius also applied the concept of reversibility—in 
his case, to advance the theory of thermodynamics. According to 
Clausius’s theorem for reversible cycles,

   

dQ
rev

T�∫ = 0, (7.1)

where T is the common temperature of the system and the en-
vironment with which it exchanges heat. As we shall see, every kind 
of reversible interaction, work as well as heat, establishes a link 
between a system and its environment that irreversibility breaks. 
Here and elsewhere, I use the symbols dQrev and dWrev (and Qrev 
and Wrev) to emphasize that the indicated heat or work exchanged 
is reversible.

7.2 Entropy 

Clausius’s genius was to see that Equation (7.1) implies the existence 
of a new, purely thermodynamic state variable. Clausius called this 
new state variable entropy in parallel with the word energy and af-
ter the Greek � �����
 (ē tropē) or � �����
 (ē strophē), both of 
which refer to “turn”—appropriate since entropy regulates the turn 
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or direction of thermodynamic processes. The Greek letter sigma, 
, beginning �����
 may have provided Clausius with the conven-
tional symbol, S, for entropy. 

According to Clausius, a system changes its store of en-
tropy by 

 
dS ≡

dQ
rev

T
  (7.2)

during a differential reversible heat exchange. Recall that here T is 
the common temperature of the system and its environment and dQ 
> 0 (dQ < 0) when a system absorbs (rejects) heat.

However, we fi rst need to prove that entropy exists and has the 
properties of a state variable. Because we want a coherent thermo-
dynamics, we cannot simply assume that entropy with its usual 
properties is a state variable any more than we could (erroneously) 
assume that the heat absorbed by a system is a state variable. State 
variables are not simply words with arbitrarily assigned meanings. 
Empirical temperature is a meaningful state variable only because 
thermometers exist, and thermometers exist only because the zeroth 
law of thermodynamics is invariably observed. Internal energy is 
a meaningful state variable only because the fi rst law of thermo-
dynamics obtains. The proof that entropy is a state variable requires 
indirectly, through Clausius’s theorem, both the fi rst and second 
laws of thermodynamics.

Fortunately, the proof is quite simple. Consider a system that 
experiences a reversible cycle while exchanging heat with its envi-
ronment. Its heat exchanges observe Clausius’s theorem for revers-
ible cycles [Eq. (7.1)]. Allow the cycle to begin in an initial state, 
called A; proceed reversibly through a continuous series of other 
states, denoted path 1, to an intermediate state B; and reversibly 
continue through other states, denoted path 2, to the initial state A 
at the end of the cycle. Figure 7.1 diagrams this cycle in a state space 
described by two generic variables, X and Y. Thus, the path integral 
in Equation (7.1) may be divided into two parts so that
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dQ
rev

TA
1

B

∫ +
dQ

rev

TB
2

A

∫ = 0, (7.3)

where paths 1 and 2 defi ne each integral. Paths 1 and 2 are arbi-
trary, apart from representing reversible transformations between 
the two states. Because we can imagine fi xing path 1 from A to B 
and replacing path 2 from B to A with alternative reversible paths 
2, as illustrated in Figure 7.1,

  

dQ
rev

TB

A

∫  = constant , (7.4)

for any reversible process taking the system from state B to 
state A. 

Since a path integral of the kind ∫A
B dQrev  / T can formally de-

pend only on its endpoints or on the reversible path connecting its 
endpoints, and since the latter dependence is specifi cally denied by 
property (7.4), the integral ∫A

B dQrev / T must depend only upon its 
endpoint states A and B. This conclusion justifi es our defi ning an 
entropy function S of state A such that

  

S(A) = S(O) +
dQ

rev

TO

A

∫ , (7.5)

FIGURE 7.1 Reversible cyclic transformation of a system from state A to 
state B along path 1 and returning from state B to state A along path 
2 or one of its alternatives. The variables X and Y describe a generic 
two- variable state space.
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where the reference state O and its entropy S(O) are both, in prin-
ciple, arbitrary parts of the defi nition. Typically, we assign the refer-
ence state and its entropy according to widely adopted convention 
or local convenience. Note that the SI unit of entropy is the joule 
per degree Kelvin (J / K). 

The arbitrary element in defi nition (7.5) is completely analo-
gous to the arbitrary element in the defi nition of energy. Neither 
entropy nor energy is known absolutely; each is known relative to 
an arbitrary value assigned to an arbitrary reference state. The ref-
erence state and its entropy are arbitrary because only differences 
in the entropies of two states are measurable. The measure of any 
entropy difference, say, S(A) – S(B), is, according to defi nition (7.5) 
and the ordinary rules of integration,

  
S(A) − S(B) =

dQ
rev

TB

A

∫ . (7.6)

When the two states, A and B, are differentially separated, (7.6) 
reduces to its differential equivalent, 

 
dS =

dQ
rev

T
. (7.7)

(See Problem 7.1.)

7.3 Entropy Generation in Irreversible Processes

Reversible processes are idealized processes because they unfold in-
defi nitely slowly and without dissipation. All actual processes are 
irreversible and only approach reversibility in more or less degree. 
Clausius’s theorem, �dQ / T ≤ 0, shows how an actual irreversible 
process is limited by an ideal reversible one. Again, imagine a com-
plete cycle divided into two parts: an irreversible process, Ir, taking 
the system from state A to state B and a reversible process, R, taking 
the system from state B back to state A. Since the cycle, considered 
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as a whole, is irreversible, it must observe Clausius’s theorem for 
irreversible cycles, which, in this case, is

  

dQ

T
+

dQ
rev

TB
R

A

∫
A
Ir

B

∫ < 0. (7.8)

Since process R is reversible, we use (7.6) to replace ∫A
BR

dQrev / T in 
(7.8) with S(A) – S(B) so that 

  

dQ

T
+ S(A)

A
IR

B

∫ − S(B) < 0, (7.9)

that is,

  

S(B) − S(A) > dQ

TA
Ir

B

∫ . (7.10)

The following analysis reveals that an irreversible transforma-
tion of a thermally isolated system always increases a system’s en-
tropy. In thermal isolation the system exchanges no heat, that is, 
dQ = 0, and the right hand side of (7.10) vanishes. Consequently, 
S(A) < S(B), or, in more suggestive notation,

S(f ) > S(i), (7.11)

where i denotes the initial state of a thermally isolated system and f 
its fi nal state after irreversible transformation. Of course, rule (7.11) 
also describes irreversible transformations of systems that are com-
pletely, and not only thermally, isolated. (See Problems 7.2–7.4.)

7.4 The Entropy Generator

The device illustrated in Figure 7.2 consists of a Joule apparatus in 
thermal contact with a heat reservoir. As the mass, m, falls a dis-
tance h the paddle wheel turns and slowly stirs the fl uid. During this 
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process the fl uid remains in thermal equilibrium with the reservoir. 
The fl uid maintains the same temperature, the same volume, and 
the same pressure, and, consequently, the same energy and entropy. 
Because work mgh is done on the fl uid, a quantity of heat mgh 
must leave the fl uid and enter the heat reservoir. Since the fl uid and 
reservoir have the same temperature, T, the latter absorbs heat re-
versibly and increases its entropy by mgh / T. We call this device an 
entropy generator.

Let’s apply the defi nition of entropy (7.6) and Clausius’s theo-
rem (7.10) to each part of the entropy generator, fl uid and reservoir, 
and to its whole. As the weight falls, the fl uid remains in the same 
state. Therefore, 

Sfl uid( f ) – Sfl uid( i ) = 0. (7.12)

However, the fl uid rejects a quantity of heat, mgh. Applying (7.10) 
to the fl uid produces the trivially correct inequality –mgh / T < 0. At 
the same time the heat reservoir reversibly absorbs heat mgh. There-
fore, (7.6) applies to the heat reservoir and reduces to 

Sres( f ) – Sres( i ) = mgh / T. (7.13)

FIGURE 7.2 Entropy generator composed of Joule apparatus in thermal 
equilibrium with a heat reservoir. The mass falls, turns the paddle wheel, 
and stirs the fl uid.
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Finally, the composite system consisting of both the fl uid and the heat 
reservoir is irreversibly transformed while thermally, but not me-
chanically, isolated from its environment. Thus, (7.10) produces 

Stotal( f ) > Stotal( i ) . (7.14)

Equations (7.12)–(7.14), although having different origins, are 
clearly mutually consistent. (See Problem 7.5.)

7.5 Entropy Corollaries

Several corollaries follow from the laws of thermodynamics and the 
defi nition of entropy. Some have already been justifi ed or illustrated; 
the remaining are easily developed.

Entropy is not conserved. Energy and entropy are similar kinds of 
quantities: both are extensive state variables, and neither is known 
absolutely but only in relation to a reference state. Yet there is an 
important difference between the two: total energy is always con-
served; total entropy is never, in practice, conserved. The entropy 
generator, for instance, creates total entropy. According to (7.11), an 
irreversible process of a thermally isolated system creates entropy.

Entropy is an extensive state variable. An extensive state variable, 
such as energy or volume, is one whose quantity is directly propor-
tional to the size of the system, while an intensive state variable, 
such as temperature or pressure, is independent of system size. En-
tropy is an extensive variable by virtue of its relation to other state 
variables. We know that the entropy of a system changes during a 
differential reversible heat exchange by dS = dQrev / T and that, ac-
cording to the fi rst law,

dE = dQrev + dW. (7.15)

Therefore,

 
dS = dE − dW

T
. (7.16)
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Because the system energy E is an extensive variable, because the dif-
ferential work dW done on the whole system is the sum of the work 
done on each of its parts, and because each part of an equilibrium 
system has a common temperature T, dS and its integral S are each 
the sum of quantities descriptive of parts of the system. For this 
reason, entropy is an extensive variable.

Occasionally, neither energy nor entropy appears to be propor-
tional to the size of the  system—as, for instance, when in dividing 
a system in two, new surfaces with non- negligible energy and en-
tropy are created. But in such cases, conceiving of the surface itself 
as another system or phase in equilibrium with and open to the 
bulk phase preserves the fact that energy and entropy are extensive 
variables.

Entropy is additive. The entropy of two or more systems, even 
when these systems have different temperatures and / or structures, 
sum to the entropy of the whole conceived as a composite system. 
For instance, the entropy increase associated with the entropy gen-
erator is the sum of the changes in the entropy of the generator fl uid 
and in the entropy of the generator reservoir. Thus, according to this 
corollary and equations (7.12)–(7.14),

Stotal( f ) – Stotal(i ) = [Sfl uid( f ) – Sfl uid(i )] + [Sres( f ) – Sres(i )]

  
= 0 + mgh

T
> 0. 

(7.17)

Conditions suffi cient to establish this corollary follow from 
the facts that entropy is an extensive variable and that any two 
states can be connected with a reversible process. Thus, consider a 
composite system initially composed of two parts with a common 
temperature. Because entropy is an extensive variable, the entropy 
of the composite system S(i ) is the sum S1(i ) + S2(i ) of the entropy 
of its two parts, that is,

S(i ) = S1(i ) + S2(i ). (7.18)
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Furthermore, because any two states can be connected with a rever-
sible process and because entropy change is calculable along a re-
versible process via dS = dQrev / T, we may conceive of a complex re-
versible process that takes the two systems 1 and 2 from each of their 
initial states with common temperature to two arbitrary fi nal states 
with different temperatures. Suppose the net entropy increment 
of system 1 is �S1 = S1( f ) – S1(i ) and the net entropy increment of 
system 2 is �S2 = S2( f ) – S2(i ). Then we can, without fear of contra-
diction, offer as a defi nition that the net entropy increment of the 
composite system �S = S( f ) – S(i ) is

�S ≡ �S1 + �S2. (7.19)

Given Equation (7.18), Defi nition (7.19), and the meaning of �S1,
�S2 , and �S we fi nd that

S( f ) = S1( f ) + S2( f ). (7.20)

Accordingly, the entropy of two or more arbitrary systems sums to 
the entropy of the composite system composed of both of the two 
arbitrary systems.

An increase in entropy degrades energy. In other words, irrevers-
ibility always diminishes the amount of work that can be extracted 
from an isolated system. Recall that the cyclic operation of a simple 
heat engine extracts heat QH > 0 from a heat reservoir at tempera-
ture TH , produces work W > 0, and rejects waste heat QC > 0 to a 
colder heat reservoir at temperature TC < TH , as illustrated in Figure 
7.3. (Here, we revert to our earlier convention according to which 
heat, Q, and work, W, are magnitudes.) Suppose this heat engine 
operates, as do all real engines, irreversibly. Since the composite 
system composed of the engine system and both heat reservoirs is 
isolated, its total entropy increases—that is, �SIr > 0, where �SIr is 
the sum of the entropy change of each part of the composite system. 
Thus,

�SIr = �Sengine + �SH + �SC > 0. (7.21)
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Given that �Sengine = 0, �SH = –QH / TH , and �SC = QC  / TC , Equation 
(7.21) becomes 

   

�S
Ir

=
−Q

H

T
H

+
Q

C

T
C

> 0. (7.22)

Using the fi rst law of thermodynamics, WIr = QH – QC , to eliminate 
QC from (7.22) produces 

   

T
C

�S
Ir

= −W
Ir

+ Q
H

1 −
T

C

T
H

⎛

⎝
⎜

⎞

⎠
⎟ > 0. (7.23)

Clearly, WR = QH(1 – TC  / TH) is the work that could be extracted 
from this system if the cycle were reversible. In these terms, the 
inequality of (7.23) reduces to

WIr < WR . (7.24)

The irreversible cycle produces less work from the same input heat 
QH than a reversible process would. Irreversibility degrades the en-
ergy into a form less available for producing work.

The entropy of a thermally isolated system cannot decrease. Only 
three possibilities exist: (1) A thermally isolated system remains in 

FIGURE 7.3 Simple heat engine that extracts heat QH > 0 from a reservoir 
at temperature TH , produces work W > 0, and rejects waste heat QC > 0 
to a colder reservoir at temperature TC < TH .
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a particular equilibrium state. Then all its state variables, including 
entropy, remain constant. (2) A thermally isolated system transforms 
reversibly from one equilibrium state to another. Then its entropy 
remains constant even as its other state variables change. (3) A ther-
mally isolated system transforms irreversibly from one equilibrium 
state to another. Then its entropy increases. Therefore, the entropy 
of a thermally isolated system never decreases. Of course, what 
holds for a thermally isolated system also holds for a completely 
isolated system. If the universe is an isolated system, the entropy of 
the universe cannot decrease.

A completely isolated system that can evolve only by diminishing its 
entropy is in stable equilibrium. A completely isolated system changes 
its state either reversibly or irreversibly. If reversibly, its entropy 
remains the same; if irreversibly, its entropy increases. Therefore, 
any process that demands that the entropy of an isolated system de-
crease is an impossible process. If an isolated system cannot change 
except by diminishing its entropy, that system cannot change. The 
equilibrium state of a system that admits no thermodynamic change 
is called a stable equilibrium. This corollary is also called the cri-
terion of maximum entropy for the thermodynamic stability of a 
completely isolated system. (See Problems 7.6–7.7.)

7.6 Thermodynamic Arrow of Time

The dynamical laws describing gravitational, electromagnetic, and 
most nuclear particle interactions are reversible. Whatever evolves 
in one order can also evolve in reverse order. One has only to look 
at Newton’s second law of motion for an example of this time 
symmetry. If a function of time, f (t), solves Newton’s second law, 
an identical function, f (– t), with –t replacing t, also solves Newton’s 
second law. 

The entropy corollaries highlight a fact that has no analog out-
side the realm of thermodynamics: thermodynamic processes are 
not time- reversible. Thermally isolated systems always evolve in the 
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direction of increasing entropy—never in the direction of decreas-
ing entropy. Entropy even quantifi es time asymmetry. The larger 
the entropy of an isolated system, the more advanced in time its 
evolution.

Thermodynamic time asymmetry originates in the prohibitions 
of the second law of thermodynamics. The second law, for instance, 
allows work to be dissipated within a single-temperature heat res-
ervoir but does not allow a single-temperature reservoir to produce 
work.

Sometimes one hears that only natural or spontaneous pro-
cesses evolve in the direction of increasing entropy. Here, the words 
“natural” and “spontaneous” simply refer to changes in an isolated 
system. Systems that evolve without outside interference evolve 
spontaneously, however complicated or engineered their construc-
tion. Even processes maintained with external input must obey the 
second law of thermodynamics. When the context of any process 
is expanded to include all its interacting parts, the larger system 
always proceeds in the direction of increasing entropy.

Much effort has been directed to reducing thermodynamics, 
including the law of increasing entropy, to particle physics mediated 
through statistical methods. Interestingly, the qualitative difference 
between time- symmetric and time- asymmetric processes has meant 
that these efforts have not been entirely successful. The effort itself 
raises the question of what constitutes an explanation. Why, for 
instance, do we strive to explain some phenomena (for example, 
thermodynamic processes) in terms of others (for example, particle 
interactions)? Why are some laws considered more foundational 
than others? We cannot answer these questions here, but in my judg-
ment the second law of thermodynamics remains a candidate for 
the foundational. Thermodynamics, alone among physical theories, 
is consistent with our sense of time and with a qualitative distinc-
tion between cause and effect, past and future. Thermodynamics 
alone provides a physical basis for what Arthur Eddington called 
the arrow of time.
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Chapter 7 Problems

7.1 An object with heat capacity C absorbs heat and changes its tem-
perature from Ti to Tf . What is the entropy increase?

7.2 Entropy Change, I. Does the entropy of the following system in-
crease, decrease, or remain the same as it experiences each of the following 
changes of state?

(a) One gram of water absorbs enough heat at 373 K and atmospheric 
pressure to evaporate. (S)

(b) One gram of water freezes at standard temperature and pressure.
(c) A 1- kg bag of sand falls from a  second- story window and lands on 

the pavement below.
(d) A frictionless piston very slowly compresses one mole of gas con-

tained within an adiabatic jacket.
(e) One mole of gas is reversibly and isothermally compressed.
(f) A closed stopcock keeps one mole of gas in one part of a glass 

container. The other part is evacuated. The stopcock is opened. See 
Figure 7.4.

(g) The composite system is the hot coffee contained within an insu-
lated thermos and an ice cube. The ice cube is dropped into the 
thermos and the thermos lid is replaced. The ice cube melts.

7.3 Entropy Change, II. Calculate the entropy change of these systems 
as a result of the following processes. (When necessary, use the data sup-
plied in Tables 3.1 and 3.2.) Express all answers in SI units.

(a) Twenty- fi ve grams of aluminum melts. (S)
(b) Ten grams of steam at 100°C and atmospheric pressure condense 

to liquid water at the same temperature and pressure.
(c) One kilogram of hot (80.0°C) aluminum is placed into 2 L of 

20.0°C water in a container with negligible heat capacity and adia-

FIGURE 7.4 A closed stopcock keeps one mole of gas in one side of the 
container. The other side is evacuated. (Used in Problem 7.2f.)
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batic walls. The water and aluminum reach thermal equilibrium. 
Assume the specifi c heats of aluminum and water are constants. 

[Hint: First fi nd the temperature of the fi nal equilibrium state. Then 
imagine a reversible heat fl ow process that takes the aluminum and the 
water from their initial state to their fi nal state and calculate the as-
sociated entropy change. Since entropy is a state variable, the entropy 
increment of the imagined reversible process must be the same as the 
entropy increment of the actual irreversible process.]

7.4 Carnot Cycle. Recall that a Carnot cycle is a reversible cycle that 
extracts heat QH from a hot reservoir at temperature TH, produces work 
W, and rejects waste heat QC to a cold reservoir at temperature TC < TH .
Carnot cycles are, necessarily, composed of four distinct reversible parts: 
two isothermal and two isentropic (constant entropy) processes. Because 
the heat reservoirs are single-temperature and heat is exchanged reversibly, 
heat exchange occurs only in the isothermal processes. Since dS = dQrev / T,
the reversible isentropic processes are, necessarily, adiabatic. Express the 
following in terms of the heat reservoir temperatures, TH and TC , and the 
entropies of the system, S1, and S2 > S1, during each adiabatic process. 

(a) The heat absorbed during the isothermal process (S1,TH) →
(S2 ,TH) (S)

(b) The heat rejected during the isothermal process (S2 ,TC) → (S1,TC)
(c) The total work produced in one cycle
(d) The total area contained by the cycle in S – T space 
[Hint: You may want to diagram the Carnot cycle in S – T space.] 

7.5 Electric Current. An electric current of 200 mA is maintained for 
3 sec in a 20- ohm resistor. The temperature of the resistor remains constant 
at 25°C. 

(a) What is the change in the entropy of the resistor?
(b) What is the change in the entropy of the resistor’s environment?
[Hint: Consider the similarity with the entropy generator of Section 
7.4.]

7.6 Equilibration. Consider two identical, fi nite blocks of metal each 
with constant heat capacity C . Initially, one is at temperature T

H and the 
other is colder, with temperature TC < TH . [Hint: Review Problem 6.8]
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(a) The two blocks are placed in thermal contact and allowed to equili-
brate. According to Problem 6.8 their fi nal temperature is (TH + 
TC) / 2. What is the total change in the entropy of the two blocks?

(b) Imagine the two blocks, again at temperatures TH and TC < TH , are 
allowed to equilibrate by means of a reversible heat engine operat-
ing between the two blocks. According to Problem 6.8 their fi nal 
temperature is T

H
T

C
. What is the total change in the entropy of 

the two blocks? 

7.7 Benzene. A fl ask containing one mole of liquid benzene at its nor-
mal freezing point of 5.5°C is brought into thermal contact with a large 
ice- water reservoir until the benzene has frozen solid. The benzene remains 
at 5.5°C. The molecular weight of benzene is 78.1 g / mole, its heat of fusion 
is 30.3 cal  / g, and its specifi c heat is 0.416 cal  / (g °C).

(a) What is the decrease of the entropy of the benzene?
(b) What is the total increase of the entropy of the combined benzene 

and ice- water reservoir system? 
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8.1 What Is a Fluid?

The word fl uid suggests a material that takes the shape of its con-
tainer. A gas is a compressible fl uid, a liquid is a relatively incom-
pressible fl uid, and a solid, because of its rigidity, is not a fl uid at 
all. But here we adopt another, closely related but distinct use of 
the word fl uid. Any system adequately described by the variables 
pressure, P, volume, V, and temperature, T, is a fl uid. In principle, 
a fl uid can realize values of P, V, and T appropriate to a material 
in any of its phases—gas, liquid, or solid. Of course, a fl uid model 
of a solid ignores its rigidity—and rigidity distinguishes solids from 
liquids. But the function of any model is to abstract certain features 
from a too- complex reality and ignore others.

Useful fl uid variables neatly divide themselves into two kinds: 
extensive and intensive. Extensive variables, such as system mole 
number, n; volume, V; internal energy, E; and heat capacity, C, are 
directly proportional to the size of the system and, consequently, in 
any one system directly proportional to each other. Intensive vari-

E I G H T

Fluid Variables
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ables, such as temperature, T; pressure, P; and molar density, n  / V, 
are independent of system size. Grasping this distinction, illustrated 
in Figure 8.1, allows one to recognize which relations among fl uid 
variables are quantitatively coherent and which are not.

Fluid descriptions are appropriate when pressure is  single- valued. 
Figure 8.2 shows a  pressure- measuring device in different positions 
and orientations. The device consists of a spring attached to a plate. 
The material whose pressure is to be measured is in front of the plate, 
completely separated from the evacuated region behind the plate. The 
compression (or extension) of the spring, relative to its position 
when a vacuum is on both sides of the plate, measures the material 
pressure. When the compression or extension is independent of the 
orientation of the measuring device, the material pressure is isotro-
pic. When the compression or extension is independent of the posi-
tion of the measuring device, the material pressure is homogeneous. 
When the system pressure is both isotropic and homogeneous, a 

FIGURE 8.1 One fl uid system divided into two parts. Since the energy is 
an extensive state variable, the energy of the whole is E = E1 + E2 . Since 
temperature is an intensive state variable, the temperature of the whole is 
T = T1 = T2 .

FIGURE 8.2 Pressure- measuring devices. Their orientation and position test 
whether the material pressure is isotropic and homogeneous.
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single pressure, P, adequately describes the system. Solids typically 
have different pressures in different directions. For this reason, solid 
pressures are best represented by a stress tensor—an important tool 
but one that lies beyond the scope of this book.

The SI unit of pressure is the Pascal (Pa). By defi nition 1 Pa = 1 
N / m2. However, other pressure units are also common. Relatively 
high pressures are sometimes measured in bars or atmospheres 
where 1 bar = 105 Pa and 1 atm = 1.01 × 105 Pa = 1.01 bar. Low 
pressures—for instance, those achieved in vacuum  systems—are of-
ten measured in torrs, where 1 torr = 1 / 760 atm. These and other 
pressure units are listed in Appendix A. When part of a system pulls 
on its neighboring parts, its pressure is negative. Solids can pull as 
well as push, but so can liquids. The maximum negative pressure 
sustainable by a material is called its ultimate tensile strength. Steel, 
for instance, has an ultimate strength close to 109 Pa, while liq-
uids have ultimate strengths on the order of 106 Pa. (See Problems 
8.1–8.2.) 

8.2 Reversible Work

Reversible interactions link a system to its environment. For in-
stance, reversible heat exchanges proceed in increments dQrev that 
are related to system state variables and their increments by dQrev =
TdS. Reversible work also proceeds in increments dWrev that are like-
wise related to system state variables and their increments. When the 
system is a fl uid, this relation is quite transparent.

Figure 8.3 illustrates reversible work preformed on a fl uid sys-
tem. Here, a piston quasistatically and without dissipation—that 
is, reversibly—compresses a fl uid. The force exerted by the piston 
head on the fl uid is only infi nitesimally larger than the force exerted 
by the fl uid on the piston head; otherwise, the compression would 
be too fast and, consequently, irreversible. The work Wrev performed 
by the environment on the fl uid in reversibly compressing the fl uid 
through a distance �x is
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Wrev = PA�x

 = –P�V, 
(8.1)

where A is the surface area of the piston head, P is the fl uid pres-
sure, and V the fl uid volume. A minus sign appears in Equation (8.1) 
because �V < 0 when W > 0. Consequently, infi nitesimal reversible 
work dWrev is related to infi nitesimal compression dV and fl uid pres-
sure P by

dWrev = –PdV. (8.2)

Reversible work of any kind can always be expressed in terms of 
system state variables and changes in state variables. Irreversible 
work cannot be so expressed.

 The equation dWrev = –PdV does not imply that Wrev is a state 
variable for the same reason that the equation dQrev = TdS does not 
imply that Qrev is a state variable. The amount of work performed, 
Wrev , and the quantity of heat exchanged, Qrev , in a reversible pro-
cess depends upon the path chosen to connect its initial and fi nal 
states. Many texts invent a special  notation—for example, dW in 
place of dW—to distinguish “imperfect” differentials whose inte-
grals are path- dependent from “perfect” differentials of state vari-
ables whose integrals depend only upon the limits of integration. 
Here we forgo any special notation and simply recall that W, Wrev , 
Q, and Qrev are not state variables; they quantify processes rather 
than states. (See Problems 8.3–8.4.)

FIGURE 8.3 Compression of a fl uid system. When the compression is revers-
ible, the work done on the fl uid is �Wrev = –P � �V, where �V = –A � �x.
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8.3 Fundamental Constraint

The fi rst law of thermodynamics for reversible processes, dE = dQrev 
+ dWrev ; the second law of thermodynamics implicit in dQrev = TdS; 
and the expression for reversible work on fl uid systems, dWrev = 
–PdV, together imply a differential relation

dE = TdS – PdV (8.3)

among the fl uid variables E, T, S, P, and V. While Equation (8.3) is 
motivated by a reversible process, the result describes, not necessar-
ily a process, but rather, a constraint among fl uid variables imposed 
by the laws of thermodynamics. We call (8.3) the fundamental con-
straint on fl uid systems. The fundamental constraint (8.3) is a trea-
sure trove of information on the relations among fl uid variables.

The mathematical structure of the fundamental constraint dE = 
TdS – PdV is identical to the structure assumed by the differential of 
a function x(y,z) of two independent variables y and z, that is, by

  

dx = �x

�y

⎛
⎝⎜

⎞
⎠⎟

z

dy + �x

�z

⎛
⎝⎜

⎞
⎠⎟

y

dz . (8.4)

Important consequences follow immediately from this structure. But 
fi rst note the possibly unusual practice of attaching subscripts to the 
partial derivatives (�x / �y)z and (�x / �y)y in (8.4). When the identity 
of and distinction between dependent, x, and independent, y and z, 
variables is obvious, such notation is unnecessary. But fl uid systems 
are described with a large number of  variables—for example, at 
least P, V, T, E, and S—each pair of which can serve as independent 
variables and each one of which can be an independent variable. 
Not to clearly identify the independent variables risks missing the 
crucial difference between, say, (�E / �V)S and (�E / �V)T .

Because the mathematical identity (8.4) takes the same form as 
the fundamental constraint (8.3), the terms in (8.3) and (8.4) must 
enter into analogous relations. In particular, because the variables 
x, (�x / �y)z , y, (�x / �y)y , and z occupy the same position in (8.4) 
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as the fl uid variables E, T, S, –P, and V occupy in (8.3), it fol-
lows that

  
T = �E

�S

⎛
⎝⎜

⎞
⎠⎟

V

 (8.5)

and

  
P = − �E

�V

⎛
⎝⎜

⎞
⎠⎟

S

. (8.6)

Equations (8.5) and (8.6) are called equations of state. Furthermore, 
because the order of partial differentiation is inconsequential, that 
is, because �2E / �S�V = �2E / �V�S, such cross-differentiation applied 
to these equations of state, (8.5) and (8.6), implies

  

�T

�V

⎛
⎝⎜

⎞
⎠⎟

S

= − �P

�S

⎛
⎝⎜

⎞
⎠⎟

V

, (8.7)

one of four possible fl uid Maxwell relations, so called after James 
Clerk Maxwell (1831–1879), who fi rst collected them.

The function E(S,V) and the fundamental constraint dE = TdS 
– PdV completely describe a fl uid. For this reason E(S,V ) is called 
a thermodynamic characterizing function. After all, its derivatives 
(�E / �S)V and (�E / �V)S generate expressions, through (8.5) and (8.6), 
for the remaining fl uid variables, respectively, T and P. 

Of course, the fundamental constraint dE = TdS – PdV might, 
equivalently, be written as dS = dE / T + (P / T )dV or as dV = (T / P)
dS – dE / P. These, in turn, imply the existence of other characterizing 
functions S(E,V ) and V(S,E) with their own proper independent 
variables and consequences parallel in form to (8.5) and (8.6), for 
instance, the equations of state 1 / T = (�S / �E)V and P / T = (�S / �V)E . 
Such expressions are often very useful. 

Other systems that allow different kinds of reversible work have 
their own fundamental constraints. A form that allows for different 
kinds of reversible work is

 
dW

rev
= F

i
i

∑ dX
i
, (8.8)
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where the Fi and Xi are known, respectively, as generalized forces 
and their associated generalized displacements. The generalized fun-
damental constraint is

 
dE = TdS + F

i
i

∑ dX
i
. (8.9)

A fl uid, of course, admits only one kind of reversible work: one for 
which the generalized force F is –P and the generalized displacement 
X is V. In this case, the generalized fundamental constraint (8.9) 
reduces to the particular fundamental constraint (8.3) for fl uids. 
(See Problems 8.5–8.6.)

8.4 Enthalpy

The energy characterizing function E(S,V) is not always convenient. 
Because its independent variables, S and V, are not so easily manipu-
lated or measured, other extensive state functions with the dimen-
sion of energy and independent variables from among the possibili-
ties P, V, T, and S have been defi ned. The enthalpy

H ≡ E + PV (8.10)

is one; we will encounter others in Section 8.5. Formally (8.10) 
defi nes a Legendre transformation. The goal of a Legendre transfor-
mation is to replace the dependent variable E(S,V) with another, say 
H(S,P), having independent variables, S and P in place of S and V. 
The enthalpy’s independent variables are more convenient in special 
circumstances.

The effect of the Legendre transformation (8.10) becomes clear 
when we use it to replace E with H in the fundamental constraint 
dE = TdS – PdV. For instance, from the defi nition H ≡ E + PV we 
have dH = dE + PdV + VdP. Using this result to eliminate dE in 
dE = TdS – PdV produces

dH = TdS + VdP. (8.11)
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Thus, the enthalpy has its own proper independent variables, S and 
P, and its own equations of state, 

  
T = �H

�S

⎛
⎝⎜

⎞
⎠⎟

P

 (8.12)

and

  
V = �H

�P

⎛
⎝⎜

⎞
⎠⎟

S

. (8.13)

These, in turn, imply the  cross- differentiation 

  

�T

�P

⎛
⎝⎜

⎞
⎠⎟

S

= �V

�S

⎛
⎝⎜

⎞
⎠⎟

P

, (8.14)

which is another Maxwell relation. 
Enthalpy simplifi es the description of a constant pressure pro-

cess such as might unfold in a system exposed to the atmosphere. 
In a reversible  isobaric—that is, constant  pressure—process the en-
thalpy version of the fundamental constraint (8.11) reduces to

dH = TdS 

 = dQrev . 
(8.15)

Therefore,

�H = Qrev . (8.16)

In this special case the change in enthalpy, �H, is identical to the 
heat, Qrev , reversibly absorbed or rejected by the fl uid. For this rea-
son, enthalpy is sometimes referred to as heat  content—a designa-
tion we should avoid. Heat, after all, is never contained within a 
system; heat is not a state variable.

Heat exchange Q also equals enthalpy change �H in many 
irreversible processes. Consider, for instance, the special but fre-
quently realized case of chemicals rapidly reacting while immersed 
in a fl uid system that is open to the atmosphere. Suppose both the 
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atmospheric pressure exerted on the system and the system volume 
remain well- defi ned state variables as the reaction proceeds (Fig. 
8.4a). In this case the work W performed by the atmosphere on 
the fl uid is –Po(Vf – Vi ), where Po is atmospheric pressure and Vf – Vi 
is the change in the system volume. Consequently, the fi rst law of 
thermodynamics applied to the fl uid becomes

Ef – Ei = Q – Po(Vf – Vi ), (8.17)

which on rearranging asserts that

Q = (Ef + PoVf) – (Ei + PoVi ) 

 = Hf – Hi

 = �H . 

(8.18)

This step requires that the fl uid return to its initial mechanical equi-
librium with P = Po after the chemical reaction is complete.

Figure 8.4b illustrates another circumstance in which irrevers-
ible heat exchange equals the change in an energy function. Here, 
the fl uid volume is held constant, as in a so- called bomb calorimeter, 
while a chemical reaction proceeds irreversibly. Therefore, W = 0 
and the fi rst law reduces to �E = Q. (See Problem 8.7.)

FIGURE 8.4 Reacting chemicals surrounded by a fl uid contained in a calo-
rimeter with adiabatic boundaries. (a) Constant pressure calorimeter with 
Q = �H. (b) Constant volume bomb calorimeter with Q = �E.
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8.5 Helmholtz and Gibbs Free Energies

Other thermodynamic characterizing energy functions are similarly 
useful in different but parallel circumstances. The Helmholtz free 
energy

A ≡ E – TS (8.19)

and the Gibbs free energy

G ≡ E + PV – TS (8.20)

also compose Legendre transformations that transform the funda-
mental constraint dE = TdS – PdV into its equivalents

dA = –SdT – PdV (8.21)

and

dG = –SdT + VdP. (8.22)

Thus, A = A(T,V ) and G = G(T,P). The Helmholtz and Gibbs 
forms of the fundamental relation, (8.21) and (8.22), imply a 
pair of equations of state, and each pair of these produces, via 
 cross- differentiation, another Maxwell relation. The four Maxwell 
relations generated in this way are

  

�T

�V

⎛
⎝⎜

⎞
⎠⎟

S

= − �P

�S

⎛
⎝⎜

⎞
⎠⎟

V

, (8.23)

  

�T

�P
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S

= �V

�S

⎛
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⎞
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P

, (8.24)

  

�S

�V

⎛
⎝⎜

⎞
⎠⎟

T

= �P

�T

⎛
⎝⎜

⎞
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V

, (8.25)

and

  

�S

�P

⎛
⎝⎜

⎞
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T

= − �V

�T

⎛
⎝⎜

⎞
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P

. (8.26)
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The Helmholtz free energy is convenient when temperature and 
volume are easily controlled or measured as, say, when a fl uid slowly 
evolves in thermal equilibrium with a constant temperature envi-
ronment. When such a process is also reversible, the fundamental 
constraint dA = –SdT – PdV reduces to dA = – PdV, which, in turn, 
integrates to 

  

�A = − PdV
Vi

Vf

∫ . (8.27)

Thus, reversible work performed on, or by, an isothermal fl uid 
increases, or decreases, its Helmholtz free energy. Its symbol, A, 
derives from the fi rst letter of the German word Arbeit, meaning 
“work.” Another important use of A(T,V) is to relate statistical 
models to their correlative thermodynamic descriptions. But this 
application lies beyond the boundary of this book.

The outstanding application of the Gibbs free energy, G(T,P), 
is to a system experiencing a phase transition while in thermal and 
mechanical contact with its environment. Of course, a system expe-
riencing a reversible, isobaric, and isothermal process conserves its 
Gibbs free energy. We take up this important application in Chapter 
12. (See Problem 8.8.)

8.6 Partial Derivative Rules

At a certain point the study of thermodynamics appears to degener-
ate into manipulating a mass of partial derivatives. We have already 
reached this point, but the charge of “degeneration” is unfair. After 
all, partial derivatives expressing how one variable depends on an-
other when a third variable is held constant are typical experimental 
outcomes. To understand how these outcomes imply yet other de-
rivatives and functions not so easily measured would seem a great 
advance. The tools required for these implications are the theorems 
or rules that follow from the general properties of state functions. 
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Mastering these rules allows us to push through any mass of partial 
derivatives.

Recall that every state function x = x(y,z) with two independent 
variables implies the differential form

  

dx = �x

�y

⎛
⎝⎜

⎞
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z

dy + �x

�z

⎛
⎝⎜

⎞
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y

dz . (8.28)

Alternatively, we might solve x = x(y,z) for y = y(x,z) and form
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z

dx + �y

�z

⎛
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⎠⎟

x

dz . (8.29)

Among the three differentials dx, dy, and dz only two can be inde-
pendent. Eliminating dy from among (8.28) and (8.29) produces 
the relationship
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between two independent differentials dx and dz. Choosing dz = 0 
generates the reciprocal rule,
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which replaces a partial derivative with the reciprocal of its inverse. 
Choosing dx = 0 generates
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which, given the reciprocal rule, is equivalent to the reciprocity 
rule
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The reciprocity rule generates new derivatives from old ones by 
 cycling the dependent and independent variables into new positions. 
The pattern of the variable position in (8.33) is easily remembered. 

We will also exploit the chain rule. Recall, from  single- variable 
calculus, that if x = x(y) and y = y(z), then x = x[y(z)] and
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Suppose, though, that each dependent variable is a function of two 
independent variables so that x = x(y,w) and y = y(z,w). Then x = 
x[y(z,w),w]. Forming the partial derivatives (�x / �z)w and (�x / �w)z 
produces
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and
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both of which are applications of the chain rule. We refer to the lat-
ter (8.36) as the multivariate chain rule. 

All partial derivative identities involving fl uid variables can be 
derived from the reciprocal rule, the reciprocity rule, a chain rule, 
and a fundamental constraint. For example, a single fundamental 
constraint directly implies only a single Maxwell relation. But the 
three  rules—reciprocal, reciprocity, and  chain—can transform any 
one fl uid Maxwell relation into the three others. As an example, 
apply reciprocity to either side of (�T / �V)S = –(�P / �S)V . Then apply 
the reciprocal and the chain rule to the result. This procedure gener-
ates either (�T / �P)S = (�V / �S)P or (�T / �P)V = (�V / �S)T . Another ap-
plication of the same procedure to either of these produces the fourth 
Maxwell relation (�S / �P)T = –(�V / �T)P . (See Problems 8.9–8.10.)
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8.7 Thermodynamic Coeffi  cients

Of all possible partial derivatives of the form (�X / �Y)Z where X, Y, 
and Z are any three of the fi ve fl uid variables E, T, S, P, and V, those 
partial derivatives with easily manipulated, controlled, or measured 
variables are the most useful. Some of these have been normalized 
and given special names. The isothermal compressibility
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, (8.37)

its inverse the bulk modulus 
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and the adiabatic compressibility
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quantify the degree to which a fl uid system can, under given condi-
tions, be compressed. The larger the compressibility, the more easily 
compressed the system. The isobaric expansivity
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 (8.40)

quantifi es the degree to which a system expands with increase in 
temperature. The isochoric pressure coeffi cient 
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 (8.41)

can be measured or, alternatively, inferred from an identity, �V = 
�P / (P�T), that follows from the reciprocity and reciprocal rules ap-
plied to the variables P, V, and T. Each of the so- called thermo-
dynamic coeffi cients �T , �S , �P , and �V is the inverse of an intensive 
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variable that is itself a function of state. Their values at the mate-
rial’s triple point, where gas, liquid, and solid phases coexist, and at 
other standard states are available in reference books. (See Problem 
8.11.)

8.8 Heat Capacities

A fl uid has at least two heat capacities that are distinguished from 
one another by the conditions maintained as the fl uid exchanges 
heat. The heat capacity with volume held constant is expressed by
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(8.42)

where the last step follows from inspecting the fundamental relation 
dE = TdS – PdV. In contrast, the heat capacity with pressure held 
constant takes the form
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(8.43)

where the last step follows from the enthalpy form of the fundamen-
tal relation dH = TdS + VdP.

Typically, CP > CV because more heat is required to increase 
the temperature of a fl uid when it is free to expand and perform 
work on its environment than when the fl uid is not free to expand. 
Analytically, the inequality CP > CV follows from the equations CP 
= T(�S / �T)P and CV = T(�S / �T)V and the multivariate chain rule ap-
plied to the function form S(T,P) = S[T,P(V,T )], that is,
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Therefore, 
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The Maxwell relation (�S / �P)T = –(�V / �T )P transforms the latter 
into
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Finally, the reciprocity and reciprocal rules applied to (�P / �T)V 
transform (8.46) into
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Therefore, CP > CV as long as (�P / �V )T < 0. The latter, as we will 
fi nd in Chapter 11, is a requirement for the intrinsic stability of a 
fl uid system. (See Problems 8.12–8.18.)

Chapter 8 Problems

8.1 Pressure Units. Complete the following table. 

Pascal atm torr mm Hg

(a) 50 × 103

(b) 1

(c) 10–6

(d) 30

8.2 Extensive and Intensive Fluid Variables. The internal energy E of 
n moles of a particular fl uid system is related to its pressure P and volume 
V by

E = aPV 2, 
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where a = 2.5 × 10−5 / m3 and n = 5. The system’s internal energy, E, volume, 
V, and mole number, n, are extensive variables, while the system’s pressure, 
P, is an intensive variable. Determine the complete dependence of E on P, 
V, and n by determining the dependence of a on n.

8.3 Reversible Paths. A fl uid system is reversibly transformed from 
state A to state C along the two paths shown in Figure 8.5. In answer-
ing questions (a)–(e) one does not need to know the system’s equations of 
state.

(a) Along which path, ABC or AB
C, is more work done by the 
system?

(b) Along which path is more heat absorbed by the system?
(c) Suppose the system is carried through a complete cycle ABCB
A. 

How much work is done by the system? How much heat is ab-
sorbed by the system?

(d) What is the net change in the system energy when carried through 
ABCB
A?

(e) What is the net change in the system entropy when carried through 
ABCB
A?

8.4 Reversible Work. A syringe closed at one end is composed of a 
piston and cylinder and contains a fl uid system. Suppose the piston, whose 
 cross- sectional diameter is 3.5 cm2, is initially 7.0 cm from the bottom of the 
cylinder. The syringe piston moves without friction and does 0.50 J of work 

FIGURE 8.5 Two different reversible paths, ABC and AB
C, take a system 
from state A to state C. (Used in Problem 8.3)



90   M E R E  T H E R M O DY N A M I C S

while slowly compressing the fl uid 3.0 mm. (Assume the fl uid pressure, P, is 
changed very little during this compression.) Find P in atmospheres.

8.5 Hypothetical Characterizing Function. Suppose the characterizing 
function of a fl uid takes the form 

  
E S,V( ) = a

S2

V
,

where a is a constant that characterizes the particular hypothetical system.
(a) Determine the equations of state that assume the form T = T(S,V ) 

and P = P(S,V ). (S)
(b) Show that, as expected, the Maxwell relation (�T / �V)S = –(�P / �S)V 

reduces to a tautology.

8.6 Entropy Form of the Fundamental Relation. We rewrite the fun-
damental constraint dE = TdS – PdV in its equivalent entropy form dS = 
(1 / T)dE + (P / T)dV.

(a) Find the forms of the two equations of state that follow from the 
entropy form of the fundamental  constraint—that is, fi nd the de-
rivatives of the dependent variable S in terms of its proper indepen-
dent variables E and V that give expressions for T and P.

(b) Use  cross- differentiation to fi nd the relation between the derivatives 
of T and P.

8.7 Chemical Reaction. A mole of the  solid- phase chemical MgCO3 
decomposes into a mole of gas CO2 and a mole of solid MgO at a constant 
temperature of 900 K and atmospheric pressure by absorbing 26,000 cal 
of heat. Both initial and fi nal states may be described with fl uid variables. 
The molar volumes of MgCO3 , MgO, and CO2 are, respectively, 0.028 L, 
0.011 L, and 740 L. Find

(a) �H = Hf – Hi , and
(b) �E = Ef – Ei .

8.8 Maxwell Relations, I. Derive the Maxwell relations from the fun-
damental constraint dE = TdS – PdV, the defi nitions H = E + PV, A = E – TS, 
and G = E + PV – TS, and  cross- differentiation.
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8.9 Maxwell Relations, II. Derive the following Maxwell relations 
from (�T / �V )S = –(�P / �S)V and the reciprocal, reciprocity, and chain rules. 
List each rule as it is invoked.

(a) (�T / �P)S = (�V / �S)P

(b) (�T / �V )P = –(�P / �S)T

(c) (�T / �P)V = (�V / �S)T

8.10 Reciprocity. The equation 2x 2 + y 3z 4 = 0 defi nes a relation among 
the three variables x, y, and z. Calculate each partial derivative (�x / �y)z ,
(�y / �z)x , and (�z / �x)y independently by taking the appropriate partial de-
rivatives of the equation. Form the product (�x / �y)z(�y / �z)x(�z / �x)y and 
show that, as expected, it equals −1.

8.11 Thermodynamic Identity, I. Derive the identity �V = �P / P�T from 
the reciprocity rule applied to the fl uid variables.

8.12 Helmholtz Free Energy. Determine the following thermodynamic 
properties of a system whose Helmholtz free energy, A(T,V ), is known. 
Each property should be expressed in terms of A, its derivatives, and the 
independent variables T and V. Use the Maxwell relations along with the 
reciprocal, reciprocity, and chain rules when necessary.

(a) P, (b) S, (c) E, (d) CV , (e) �T , (f) �P , and (g) �V .

8.13 Heat Capacities. Starting from defi nitions of CP and CV , show 
that CP – CV = TV�2

P  / �T .

8.14 Thermodynamic Identity, II. Show that CP  / CV = �T  / �S .

8.15 Extensive and Intensive Variables. Divide the following fl uid 
variables and functions of fl uid variables, P, V, T, E, E 2, S, PV, H, T / H,
�T , CV , n, cV = CV / n and (�V / �T)P , into (1) extensive variables, (2) intensive 
variables, and (3) variables that are neither extensive nor intensive. State 
variables such as E –1 and H � S are neither extensive nor intensive.

8.16 Joule Coeffi cient. Start with the fundamental constraint dE =
TdS – PdV, form each term into a derivative with respect to V with T held 
constant, and use reciprocity and one of the Maxwell relations to derive an 
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expression for the so- called Joule coeffi cient (�T / �V )E = (P / CV)(1 – T�V) 
where �V ≡ P –1(�P / �T)V . 

The importance of this relation lies in its application to gases. The Joule 
coeffi cient can be measured in a chamber that allows a gas to expand iso-
 energetically into a vacuum. The coeffi cients CV and �V are directly related 
to the system’s equations of state. See Figure 8.6. 

8.17 Joule- Thomson Coeffi cient. Start with the fundamental constraint 
dH = TdS + VdP, form each term into a derivative with respect to P with 

FIGURE 8.6 Expansion chamber. When the membrane is punctured, the gas 
expands into the evacuated chamber without doing work or absorbing 
heat. Used to measure the Joule coeffi cient (�T / �V )E . (See Problem 8.16.)

FIGURE 8.7 A system of gas to the left of the porous plug with volume Vi 
is maintained at pressure Pi by the left- hand piston. After it has passed 
through the plug, the gas is maintained at a lower pressure, Pf < Pi , with 
larger molar volume, Vf  / nf > Vi  / ni , by the  right- hand piston. For this 
reason the total work performed on the gas is PiVi – PfVf . Since the channel 
walls are adiabatic, the gas exchanges no heat with its environment so 
that Q = 0. According to the fi rst law of thermodynamics, the enthalpy of 
the gas is conserved, i.e., Ei + PiVi = Ef + PfVf , as it passes through the plug. 
(Used in Problem 8.17.)
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T held constant, and use one of the Maxwell relations to derive an expres-
sion for the so- called Joule- Thomson coeffi cient (�T / �P)H = (V / CP)(T�P – 1) 
where CP = (�H / �T)P and the isobaric expansivity �P ≡ V –1(�V / �T)P . 

The importance of this relation lies in its application to gases. The 
Joule- Thomson coeffi cient is measured by forcing a gas through a channel 
partially stopped with a porous plug, as illustrated in Figure 8.7. The gas 
conserves its enthalpy as it moves through the plug. The coeffi cient CP is 
readily measured, and the isobaric expansivity �P is directly related to the 
system’s equations of state. (S)

8.18 Incompressible Solid. Suppose a block of an incompressible solid 
(that is, with constant V) is subjected to an adiabatic reversible increase of 
pressure from Pi to Pf . Show that the ratio of its fi nal temperature, Tf , to its 
initial temperature, Ti , is given by
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f

T
i

= exp
V�

P

C
P

P
f

− P
i( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.



94

9.1 The Ideal Gas

The ideal gas law has been important for so long that it has achieved 
the status of an icon. For two centuries PV = nRT was the only 
known equation of state. It universally and accurately describes 
low-density gases; no adjustable parameters are required to char-
acterize individual gases in the low- density regime. As a result the 
pressure, P, of a constant- volume, low- density gas thermometer is 
a good indicator of thermodynamic temperature. Furthermore, its 
simplicity makes the ideal gas a favorite among theorists, teachers, 
and textbook writers. Even so the ideal gas is only one model among 
many.

The ideal gas is defi ned by two empirically descriptive rules: 
Boyle’s law and Joule’s law. Robert Boyle (1627–1691) found that 
if the temperature of a gas is constant, the product PV is also con-
stant. In other words,

PV = f (T ) , (9.1)

N I N E

Simple Fluid Systems
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where f (T ) is an as yet undetermined function of tempera-
ture, T. Joule’s law, that the energy of a gas depends only on its 
temperature, 

E = E(T ) , (9.2)

summarizes experiments performed much later, by Gay- Lussac in 
1807 and more accurately by James Joule in 1845. In these experi-
ments gases expanded freely and adiabatically into a vacuum. As 
the gas neither exchanged heat nor performed work on the environ-
ment, its expansion was an irreversible, energy- conserving process. 
Gay- Lussac and Joule found that the temperature of a gas changed 
very little during free expansion even as its pressure and volume 
changed signifi cantly.

Of course, Boyle’s and Joule’s laws refer to empirical tempera-
ture. Only empirical temperatures are directly measurable, and 
Boyle, Gay- Lussac, and Joule (in 1845) knew nothing of thermo-
dynamic temperatures. However, all useful temperatures are mono-
tonic functions of each other. 

Conditions (9.1)–(9.2) and the fundamental constraint for fl u-
ids, dE = TdS – PdV, are suffi cient to generate the P – V – T equation 
of state of an ideal gas. Note that Equations (9.1) and (9.2) link the 
variables P, V, T, and E. These variables are, for all kinds of fl uid 
systems, either those measured or those related by very plausible as-
sumptions. For this reason, the method we adopt here will be useful 
throughout Chapter 9. In particular, the cross-differentiation 
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arising from the entropy form of the fundamental constraint dS = 
(1 / T )dE + (P / T )dV provides the most directly useful relation im-
posed by thermodynamics. 

Since, in this case, E = E(T ), T is constant when E is constant. 
Therefore, the left- hand side of Equation (9.3) vanishes. Using 
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Boyle’s law, P = f (T ) / V, to eliminate P from the right- hand side 
reduces (9.3) to
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which is equivalent to the total derivative
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According to the chain rule, (9.5) is equivalent to
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which, ruling out dT / dE = 0, identifi es f (T ) / T as a constant. In 
this way we fi nd that PV / T is a constant independent of any of the 
thermodynamic variables of an ideal gas. Because V is an extensive 
variable and P and T are intensive variables, the constant PV / T must 
be proportional to an extensive quantity. If we choose PV / T � n, 
where n is the number of moles of gas in the system, then

PV = nRT, (9.7)

where the proportionality constant R = 8.31 J / (K mole) is called the 
gas constant.

While PV = nRT applies to all ideal gases, the energy equation 
of state E = E(T ) realizes different forms for different kinds of ideal 
gases. The simplest realization of E = E(T ) is

E = CVT (9.8)

where CV is a state- independent heat capacity at constant volume. 
In this case the molar specifi c heat cV = CV / n assumes dramatically 
different values for different types of ideal gases. For instance, cV 
= 3R / 2 for monatomic gases such as helium and argon, and cV = 
5R / 2 for diatomic gases such as nitrogen, oxygen, and hydrogen. 
In general, cV = fR  / 2, where f is the number of degrees of freedom 
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(e.g., 3,5,6,…) of the particles composing the gas. The value of
f and consequently the value of cv shift abruptly at certain critical 
temperatures.

The two equations of state, PV = nRT and E = CVT, allow us to 
solve the identities (8.5a), T = (�E / �S)V , and (8.5b), P = –(�E / �V)S , 
for the energy- characterizing function E = E(S,V ). These equations 
become
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and
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They integrate to 
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+ f (V)  (9.11)

and
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C
V

lnV + g(S) , (9.12)

where f (V ) and g(S) are functions whose consistency requires, apart 
from additive constants, that f (V ) = –(nR / CV)ln V and g(S) = S / CV . 
Therefore,
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where Eo = E(So ,Vo) or, equivalently,
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where So = S(Eo ,Vo). Either of these functions, (9.13) or (9.14), com-
pletely characterizes an ideal gas with constant heat capacity CV 
because both equations of state, (9.7) and (9.8), follow from ap-
propriate derivatives.

Equation (9.14) immediately yields a very useful relation among 
the state variables of an ideal gas that has been reversibly and adia-
batically transformed. Because, in this case, dQrev = TdS = 0, the 
entropy remains invariable, and S(E,V ) = S(Eo ,Vo) in (9.14). The 
latter reduces (9.14) to (E  / Eo)

CV (V / Vo)
nR = 1, that is, to 

ECVVnR
 = constant. (9.15)

The ideal gas equations of state, E = CVT and PV = nRT, allow us 
to eliminate the internal energy E in favor of the pressure P so that 
(9.15) further transforms to 

PV � = constant, (9.16)

where � is defi ned by the ratio of heat capacities

   

� ≡  
C

P

C
V

, (9.17)

which, in turn, can be shown (see Problem 9.2) to be related to nR 
and CV by � = 1 + nR / CV . (See Problems 9.1–9.9.)

9.2 Room- Temperature Elastic Solid

The distinguishing feature of a solid, apart from its rigidity, is its 
relative incompressibility. Most materials that are solid phase at 
standard temperature (273 K) and pressure (1 atm) change their 
volume very little as their temperature and pressure is diminished to 
zero. Therefore, in this regime, we expect the equation of state of a 
solid to assume a form V = V(T,P) that we can accurately describe 
as a linear function of T and P with relatively small coeffi cients. 
Expanding V = V(T,P) around P = 0 and T = 0 produces 
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where Vo = V (0,0) and the partial derivatives (�V / �P)T,o and (�V / �T)P,o 
are evaluated at P = 0, T = 0. Equation (9.18) is equivalent to 

V = Vo(1 + �PoT – �ToP), (9.19)

where the characterizing coeffi cients, �Po ≡ Vo
–1(�V / �T)P,o and �To  ≡ 

–Vo
–1(�V / �P)T,o , are evaluated at P = 0 and T = 0. Equivalently, 
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This model incorporates, at least roughly, the behavior we expect 
of any solid material near room temperature and atmospheric 
pressure. 

A complete thermodynamic description also requires informa-
tion about how the internal energy, E, depends upon state variables. 
Most room- temperature solids have a state- independent heat capac-
ity at constant volume CV whose value is given by the law of Dulong 
and Petit, CV = 3nR. Then (�E / �T)V = CV integrates to

E = CVT + f (V ), (9.21)

where the function f (V ), as we shall see, is determined by the re-
quirement that the two equations of state, (9.20) and (9.21), are 
consistent with each other and the fundamental constraint. Again 
we use the entropy form of the fundamental constraint dS = (1 / T )
dE + (P / T)dV and exploit cross-differentiation
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Using the equation of state (9.20) to eliminate P from (9.22) 
produces
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While the independent variables associated with the derivatives are 
E and V, the quantities on which they operate are functions of T 
and V. One straightforward way to proceed is to solve the energy 
equation (9.21) for T = T(E,V ), replace T in (9.23) with T(E,V ), 
and complete the derivatives. Equivalently, and more easily, we can 
use the chain rule to perform the derivatives implicitly so that (9.23) 
becomes
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The derivatives (�T / �V )E on the left side of (9.24) and (�T / �E)V on 
the right side of (9.24) are linked by the reciprocity rule (�T / �V )E

(�V / �E)T (�E / �T)V = –1, applied to the variables T, V, and E. This 
reciprocity rule reduces (9.24) to
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Integrating this result produces

   

E =
(V 2 − 2VV

o
)

2�
To

V
o

+ g(T). (9.26)

This equation and E = CVT + f (V ) are consistent only if, apart from 
an arbitrary constant,

   

E = C
V
T +

(V − V
o
)2

2�
To

V
o

. (9.27)

Apparently, elastic energy is stored in the solid as its volume departs 
from its reference value, Vo . Equations of state (9.20) and (9.27) 
completely describe this model of a room- temperature solid. (See 
Problem 9.10.)
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9.3 Cavity Radiation

Material bodies continually absorb and re- emit electromagnetic ra-
diation. If you have stood in front of a blazing fi re on a cold night, 
you have felt your skin absorbing electromagnetic radiation. When 
emitting and absorbing bodies are not in mutual equilibrium, such 
emission and absorption is an irreversible process. However, when 
emitting and absorbing bodies are in mutual equilibrium, the radia-
tion can be characterized as a thermodynamic fl uid with tempera-
ture, energy, volume, entropy, and pressure.

A simple way to imagine such equilibrium or cavity radiation is 
to visualize, as in Figure 9.1, an evacuated cavity of volume V sur-
rounded by a material with temperature T. The cavity radiation and 
the surrounding material achieve mutual equilibrium as radiation 
is continually exchanged across the cavity. When cavity radiation 
reversibly absorbs heat dQrev from the walls, its entropy increases by 
dS = dQrev / T. When its walls expand, cavity radiation performs PdV
reversible work. In every way cavity radiation seems well described 
by the fl uid variables P, V, T, E, and S, which, in turn, are related to 
each other by the fundamental constraint dE = TdS – PdV.

Equations of state follow directly from the laws of electromag-
netism and thermodynamics. According to Maxwell’s theory of 

FIGURE 9.1 A cavity fi lled with equilibrium radiation. 
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electromagnetic radiation a beam of unidirectional light exerts a 
pressure P equal to its energy density E / V when absorbed. But when 
the radiation is isotropic, as in a cavity,

  
P = 1

3

E

V
. (9.28)

As we shall see, the energy density E  / V is a function of temperature 
T alone, that is,

  

E

V
= e(T) , (9.29)

where e(T) is an as yet undetermined universal function of 
temperature. 

Any dependence other than (9.29) would violate the second 
law of thermodynamics. If, for instance, E / V = e(T,X ) where X 
was, say, the volume or parameterized the shape of the cavity or 
the condition of its walls, then we could arrange for two cavities, 
A and B, with the same temperatures, T, and different values of X, 
such that e(T,XA) > e (T,XB), to exchange radiation through a small 
connecting tube. Since the fl ux of radiant energy is proportional to 
local energy density, net energy would be transferred from cavity A 
to cavity B. This heat fl ux would increase the temperature of cavity 
B and decrease the temperature of A and so violate the Clausius 
statement of the second law.

The cavity walls are both a source and a sink of cavity radiation. 
If the cavity volume expands isothermally, its walls emit the cavity 
radiation needed to keep E / V constant. If the cavity volume con-
tracts isothermally, the walls absorb cavity radiation. Such behavior 
distinguishes a cavity fi lled with radiation from a cavity fi lled with 
gas. Gas and cavity radiation are both fl uids. But gas is a conserved 
quantity; cavity radiation is not.

There are a number of ways to solve the two equations of state, 
P = E  / 3V and E  / V = e (T ), and the fundamental constraint dE = TdS 
– PdV for the function e(T). We could again use cross-differentiation 
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resulting from the entropy form of the fundamental constraint, but 
the result also falls out quickly if we simplify the equations of state 
by shifting independent variables from (E ,V ) to (e,V ), where e = 
E  / V. Then P = E / 3V becomes

  
P = e

3
 (9.30)

and the fundamental constraint

d(eV ) = TdS – PdV. (9.31)

Using Equation (9.30) to eliminate P from the constraint (9.31) 
produces

  
dS = 4e

3T
dV + V

T
de . (9.32)

Therefore, (�S / �V)e = 4e / 3T and (�S / �e)V = V / T. Cross differentia-
tion produces
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Since T is constant when e is constant, this equation reduces to
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T
, (9.34)

which integrates to 

e(T ) = aT 4 , (9.35)

that is, to 

E / V = aT 4 . (9.36) 

Integration of Equation (9.34) allows for a to be an arbitrary func-
tion of V, but we also know that E  / V is a function of T alone. The 
universal constant a is called the radiation constant.
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Cavity radiation is ubiquitous and universal. Its equations of 
state contain no adjustable parameters. All objects in thermal equi-
librium produce such radiation whether they contain extended cavi-
ties or not. All objects in thermal equilibrium necessarily absorb the 
same frequencies they radiate. For this reason cavity radiation is also 
called black-body radiation. The sun, for instance, emits an observ-
able fl ux of cavity radiation equal to one- fourth the speed of light in 
a vacuum, c / 4, times aT 4, that is, BT 4 where the Stefan-Boltzmann
constant B(≡ ca  / 4). When further analyzed, cavity radiation sup-
plies important clues as to how atoms and molecules absorb and emit 
electromagnetic radiation. (See Problems 9.11–9.16.)

Chapter 9 Problems

9.1 Ideal Gas, I. Show that, for an ideal gas with constant CV , the 
adiabatic compressibility � S = P –1(1 + nR  / CV) –1.

9.2 Ideal Gas, II. Show that, for an ideal gas with CV = fnR  / 2, where f
is the number of degrees of freedom of the molecules composing the gas,

(a) CP – CV = nR;
(b) CP  / CV = 1 + 2 / f, where � ≡ CP  / CV and � = 1 + 2 / f.

9.3 Adiabatic Transformation. A reversible adiabatic transformation 
is one for which dQrev = 0. Starting from the fi rst law of thermodynamics 
for reversible, adiabatic transformations of an ideal gas show that

(a) During a reversible adiabatic transformation of an ideal gas the fol-
lowing are constant: TV �–1, PV �, and P 1– �T �. Here � ≡ CP / CV . (S)

(b) The expression for the entropy of an ideal gas S(E,V ) reduces to a 
constant when the results of part (a) are substituted into the expres-
sion S(E,V ).

9.4 Polytropes of an Ideal Gas. If we require the ratio dQ / dT to be a 
constant C under all conditions, the fi rst law of thermodynamics applied to 
a fl uid dE = dQ – PdV reduces to the constraint dE = CdT – PdV. Solutions 
of this constraint are called polytropes, and when PV = nRT and E = CVT
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they are called polytropes of an ideal gas. Polytropes are used extensively 
in modeling stellar structures.

(a) Exploiting what we know about ideal gases from Problems 9.2 
and 9.3, derive a quantity that is constant during the reversible 
polytropic expansion (or contraction) of an ideal gas.

(b) Show that when dQ = 0 (that is, when C = 0), this constant quantity 
reduces to the quantity held constant during an adiabatic expansion 
or contraction. 

(c) Show that the constant found in (a) reduces to a reasonable result 
when C = C

V .
(d) Show that the constant found in (a) reduces to a reasonable result 

when C = CP .

9.5 Adiabatic Expansion. Three moles of O2 gas at an initial tempera-
ture of 400°C and a pressure of 25 atm are expanded adiabatically until 
the fi nal temperature is 100°C. Find the fi nal pressure. Assume that O2 is 
an ideal gas with � = 7 / 5.

9.6 Adiabatic Compression in a Diesel Engine. A diesel engine requires 
no spark plug. Rather, its fuel ignites spontaneously when sprayed into the 
highly compressed air of an engine piston. Suppose that initially the air within 
a diesel engine piston is at 1 atm and that the engine piston adiabatically 
compresses the air by a factor of 15. This factor, by which the piston volume 
is decreased, is called the compression ratio. The ratio of specifi c heats for air 
CP  / CV[≡ �] = 7 / 5. Find the pressure of the completely compressed air.

9.7 Carnot Cycle with Ideal Gas as Working Fluid. Suppose n moles of 
ideal gas for which E = CVT is the working fl uid of a Carnot cycle operat-
ing between reservoirs with temperatures TC and TH > TC , as illustrated in 
Figure 9.2. The subscripts 1, 2, 3, and 4 denote the states at which adiabats 
and isotherms intersect. Thus, TH = T1 = T2 , TC = T3 = T4 , S2 = S3 , and S4 =
S1. Also � ≡ CP  / CV . Determine the following in terms of n, TH , TC , V1 , V2 ,
V3 , V4 , and CV .

(a) The work W1→2 done by the ideal gas during the isothermal process 
1 → 2

(b) The heat QH absorbed by the ideal gas during the isothermal pro-
cess 1 → 2
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(c) The work W2→3 done by the ideal gas during the adiabatic process 
2 → 3

(d) The total work W done by the ideal gas in one cycle
(e) The effi ciency W / QH of the cycle implied by the answers to parts (b) 

and (d). Show that this effi ciency is consistent with the effi ciency, 
1 – TC  / TH , of a Carnot cycle. 

[Hint: You will have to use the equations of state for an ideal gas and 
the results of Problem 9.3a.] 

9.8 Joule Expansion. An ideal gas for which E = CVT is confi ned to the 
left side of a chamber surrounded by an adiabatic wall, as shown in Figure 
8.6. The right- hand side is evacuated. The partition is punctured, and the 
fl uid quickly and irreversibly occupies the whole chamber. The initial state 
volume and pressure of the n moles of this gas are Vi and Pi . The fi nal vol-
ume is Vf . Express the following in terms of Vi , Vf , Pi , and n.

(a) The change in energy �E of the ideal gas
(b) The change in entropy �S

(c) The fi nal pressure Pf

(d) The fi nal temperature Tf

9.9 Air Standard Otto Cycle. The cylinders of a gasoline engine con-
tain rapidly burning fuel, reject waste gases, and draw in replacement fuel 
during different parts of a highly irreversible, nonequilibrium cycle. Even 
so, important features of the gas engine cycle can be modeled and discov-
ered by analyzing the reversible air standard Otto cycle illustrated in Figure 
9.3. The working fl uid is an ideal diatomic gas for which �[≡ CP  / CV] = 7 / 5 

FIGURE 9.2 State variable diagrams for Carnot cycle. (Used in Problems 
9.7 and 9.14.)
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and E = CVT. The cycle consists of four strokes: (1) compression 1 → 2 
during which the piston rapidly, and thus adiabatically, compresses the fl uid 
from its largest, VL, to its smallest volume, VS ; (2) explosion 2 → 3 during 
which heat is rapidly and isochorically deposited in the fl uid raising its tem-
perature from T2 to T3 > T2 while V = VS ; (3) power 3 → 4 during which the 
piston rapidly and adiabatically expands from VS to VL, delivering work to 
the environment; and (4) exhaust 4 → 1 during which the fl uid isochorically 
rejects heat to a continuous series of reservoirs with temperatures between 
T4 and T1 < T4 while V = VL. During the adiabatic strokes PV � and TV �–1 
remain constant, while during the isochoric strokes V remains constant. 
The processes 1 → 5 → 1 during which, in a more complete cycle, waste 
is rejected and fuel replenished are not part of the air standard Otto cycle. 
Express answers in terms of the temperatures T1 , T2 , T3 , and T4 , the heat 
capacity at constant volume CV , and the ratio of specifi c heats � ≡ CP  / CV . 
Find the following:

(a) The adiabatic work done on the fl uid during the compression 
stroke

(b) The heat isochorically absorbed by the fl uid during the explosion 
stroke

(c) The adiabatic work performed by the fl uid on its environment dur-
ing the power stroke

(d) The heat rejected by the fl uid during the exhaust stroke
(e) The relative ordering of temperatures T1 , T2 , T3 , and T4 
[Hint: see Figure 9.3.]
(f) The cycle effi ciency—that is, the ratio of work delivered to heat 

absorbed—in terms of the compression ratio r ≡ VL / VS

[Hint: Use the relationship between the heat capacity at constant vol-
ume CV , nR, and � for an ideal gas.] 
(g) The numerical value of the effi ciency for a compression ratio 

r = 10

9.10 Room- Temperature Solid. The energy- characterizing function 
for a room- temperature solid is 
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where Eo is an arbitrary integration constant with energy units. 
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(a) Show that the two equations of state for a room- temperature solid, 
P = �PoT / �To + (1 – V / Vo) / �To and E = CVT + (V – Vo)

2 / (2�ToVo), can be 
generated from E(S,V ) and appropriate derivatives of E(S,V ). (S)

(b) [More diffi cult] Integrate these two equations of state of the room-
 temperature solid and, in this way, generate its energy- characterizing 
function.

9.11 Cavity Radiation, I. Show that the energy equation of state for 
cavity radiation, E / V = aT 4, where a is a constant, follows directly from 
the pressure equation of state, P = E / 3V, the fundamental constraint dE = 
TdS – PdV, and the condition (� / �V)(E  / V)T = 0.

9.12 Cavity Radiation, II 
 (a) Show that the characterizing function E(S,V ) for cavity radiation is 

given by E(S,V ) = (3S / 4)4 / 3 / (aV)1 / 3. (S)
(b) Show that its two equations of state, (9.28) and (9.36), follow from 

appropriate derivatives of this function. 

9.13 Adiabatic Cavity Radiation. Show that when a region fi lled with 
cavity radiation quasistatically and adiabatically expands or contracts, the 
quantities TV 1 / 3 and PV 4 / 3 remain constant.

9.14 Carnot Cycle with Cavity Radiation as Working Fluid. Cavity 
radiation, described by equations of state P = E / 3V and E  / V = aT 4, is the 
working fl uid of a Carnot cycle operating between reservoirs with tempera-
tures TC and TH > TC , as illustrated in Figure 9.2. The subscripts 1, 2, 3, and 

FIGURE 9.3 Reversible air standard Otto cycle. The solid line 1 → 2 → 3 
→ 4 → 1 represents the air standard Otto cycle. The dashed line 1 → 5 → 
1 represents exhaust and intake strokes. (Used in Problem 9.9.)
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4 denote the states at which adiabats and isotherms intersect. Thus TH =
T1 = T2 , TC = T3 = T4 , S2 = S3 , and S4 = S1. Determine the following in terms 
of TH , TC , V1, V2 , V3 , and V4 .

(a) The work W1→2 done by the cavity radiation during the isothermal 
expansion 1 → 2

(b) The heat QH absorbed by the cavity radiation during the isothermal 
expansion 1 → 2

(c) The work W2→3 done by the cavity radiation during the adiabatic 
process 2 → 3

(d) The total work W done by the cavity radiation during one cycle
(e) The effi ciency W / QH of the cycle implied by answers to parts (b) 

and (d). Show that this effi ciency is consistent with the effi ciency, 
1 – TC  / TH , of a Carnot cycle. 

[Hint: You will have to use the equations of state for cavity radiation 
and the other results of Problem 9.12.] 

9.15 Solar Pressures. The sun may be considered a sphere of ideal gas 
composed of neutral molecules, electrons, and ions with a superimposed 
sphere of equilibrium cavity radiation. The gas density and temperature 
vary from the center to the surface of the sphere. Find the ideal gas pressure 
and the pressure of the cavity radiation at the following places within the 
sun; express these pressures in atmospheres; and form the ratio of ideal gas 
pressure to cavity radiation pressure.

(a) The solar center at which the mole number density of solar gas 
(neutral molecules, electrons, and ions) is 8.3 × 107 moles / m3 and 
the temperature 1.5 × 107 K

(b) The photosphere—that is, the visible solar surface—at which the 
mole number of solar gas is 0.17 moles / m3 and the temperature is 
5800 K

9.16 Solar Constant. The solar fl ux originates at the solar photo-
sphere, spreads uniformly in all directions, and eventually strikes the earth. 
Calculate the solar constant, that is, the magnitude of the solar fl ux at the 
earth in W / m2. Recall that the fl ux of cavity radiation is c / 4 times the cavity 
radiation energy density E / V. Use the data from Problem 9.15  and the facts 
that the solar radius RS = 6.96 × 108 m and the mean sun- earth distance is 
RSE = 1.50 × 1011 m.
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10.1 Nonfl uid Variables

The analytical methods presented thus far apply generally to any 
kind of system and not only to those described with fl uid variables. 
Nonfl uid systems retain temperature, T, internal energy, E, and en-
tropy, S, as variables but differ in the way reversible work is done. 
Every fundamental constraint assumes the form

 
dE = TdS + F

i
i

∑ dX
i
, (10.1)

where Σi Fi dXi is the total reversible work done on the system and 
Fi dXi is one among its several possible contributions. In order to 
fully describe each system we need to know each generalized force, 
Fi ; its associated displacement, Xi ; and a set of equations of state, T 
= T(S,X1,X2 , ...) and Fi = Fi(S,X1,X2 , ...), for each i or, alternatively, 
a characterizing energy as a function of its proper variables, say, 
E(S,X1,X2 ,...). When reversible work is done in only one way, the 
internal energy is a function of two independent  variables—the en-

T E N

Nonfl uid Systems
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tropy, S. and a displacement, X. But multivariate systems are quite 
possible.

10.2 The Theoretician’s Rubber Band

The theoretician’s rubber band is a one- dimensional system of 
length L that exists only in tension. We represent this tension with 
an inherently positive variable F > 0. The differential reversible work 
done on the system dWrev when its length is increased differentially 
by dL is

dWrev = FdL . (10.2)

Therefore, its fundamental constraint is 

dE = TdS + FdL ; (10.3)

its associated equations of state assume the forms T = (�E  / �S )L

and F = (�E  / �L)S ; and the associated Maxwell relation is (�T / �L)S

= (�F / �S)L.
Interestingly, the thermal expansivity of rubber in constant ten-

sion is negative, that is, (�L / �T )F < 0, as can be demonstrated by 
hanging a weight from a length of rubber band, heating the rub-
ber band with a match, and observing the weight rise. In other 
words, assuming that the rubber band behaves like a Hooke’s Law 
spring with F�L, its spring constant is an increasing function of 
temperature. The simplest equation of state that incorporates this 
behavior is

F = �TL, (10.4) 

where the constant � > 0. This equation of state limits, but does not 
determine, the form assumed by the energy equation of state. 

In order to relate the internal energy E to the variables ap-
pearing in Equation (10.4)—F, T, and L—we isolate terms con-
taining these variables on the right-hand side of the fundamen-
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tal constraint, so that dS = (1 / T )dE – (F / T )dL, and pick out the 
 cross- differentiation 
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. (10.5)

Given the tensile equation of state F = �TL, relation (10.5) implies 
(�T / �L)E = 0. According to this result, temperature, T, is not a func-
tion of L. Consequently, T must be a function of internal energy, E, 
alone, or, conversely,

E = E(T ) . (10.6)

This result is unexpected. For Equation (10.6) claims that stretch-
ing a rubber band slowly, that is, isothermally, does not increase its 
internal energy. Apparently, isothermal stretching forces heat out of 
the rubber band at the same rate that work is done on it. 

Other interesting facts about rubber bands follow readily from 
the entropy form of the fundamental constraint (10.3), dS = (1 / T )
dE – (F / T)dL, and the tensile equation of state (10.4), F = �TL. For 
instance,
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T
< 0 . (10.7)

Apparently, the entropy of a rubber band decreases as its length is 
quasistatically increased when its energy, that is, temperature, is 
held constant. Another interesting fact follows from the chain rule
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From the fundamental constraint dE = TdS + FdL, we know that 
(�E / �L)S = F. Given E = E(T ) and the reciprocal rule (�T / �E )S = 
1 / (�E / �T )S , Equation (10.8) becomes
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. (10.9)
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Since we have specifi ed that F > 0, and, as we will fi nd in Chapter 
12, dE / dT > 0 is required for intrinsic stability,

   

�T

�L
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S

> 0. (10.10)

Apparently, stretching a rubber band quasistatically and adiabati-
cally increases its temperature. In practice, adiabatic stretching of 
a rubber band must be done quickly in order to prevent heat from 
entering or leaving the band. (See Problem 10.1.)

10.3 Paramagnetism

Materials composed of atoms having a magnetic dipole moment 
respond in various ways to an applied magnetic fi eld. When only a 
small fraction of the atomic dipoles align themselves with the ap-
plied magnetic fi eld (the usual case), the material is called paramag-
netic. On the other hand, a relatively large fraction of the atomic 
dipoles within small regions, or domains, of ferromagnetic mate-
rials spontaneously align with each other even in the absence of an 
applied fi eld. In the presence of an applied fi eld the ferromagnetic 
domains themselves become aligned with one another and with the 
applied fi eld. Here we limit our discussion to paramagnetism.

Figure 10.1 sketches an experimental apparatus designed for 
studying the response of a paramagnetic material. A  current- carrying 
solenoid creates a relatively uniform magnetic fi eld, Bo , in the inte-
rior of the solenoid into which a sample of paramagnetic material 
has been inserted. This fi eld exerts a torque on the atomic dipoles 
and causes them to align, in varying degrees, with Bo . These dipoles, 
in turn, create a magnetic fi eld, Bm , that adds to the applied fi eld, 
Bo , and creates a net fi eld

B = Bo + Bm (10.11)

within the material.
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Paramagnetic materials are thermodynamic systems. They can 
exchange heat and work with their environment. The currents that 
create Bo do reversible work

  

dW
rev

=
B

o

�
o

dB
m

 (10.12)

on the paramagnetic material, where here, �o is the so- called per-
mittivity of free space. If only magnetic work can be done on the 
system, its fundamental constraint is 

  

dE = TdS +
B

o

�
o

dB
m
 ; (10.13)

the associated equations of state assume the forms T = (�E / �S )Bm
 

and Bo / �o = (�E / �Bm)S ; and  cross- differentiation of these produces 
�o(�T / �Bm)S = (�Bo / �S)Bm

. One often fi nds reversible magnetic work 
expressed as dWrev = �oHdM, where H[≡ Bo / �o] is the magnetic in-
duction and M [≡ Bm / �o] the magnetic moment per unit volume. The 
notations H and M emphasize the utterly different sources of these 
fi elds, but here I fi nd it more suggestive to retain the symbols Bo and 
Bm because they remind us of the common nature of these fi elds.

In general, the response fi eld Bm is an ever- increasing function, 
Bm(Bo), of the applied fi eld, Bo. Pierre Curie (1850–1906) experimen-
tally discovered an equation of state for paramagnetic materials, 

  
B

m
= C

B
o

T
, (10.14)

FIGURE 10.1 A sample of magnetic material inside a solenoid.
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where the Curie constant,  C, characterizes the material. Curie’s law 
(10.14) expresses the competing effects of the applied fi eld, Bo , and 
the temperature, T; the former promotes while the latter inhibits 
magnetization. Later, Paul Langevin derived a more general equa-
tion of state for paramagnetic materials from a statistical model, 
but Curie’s law remains valid for the regime of relatively small mag-
netizations and high temperatures. We confi ne our analysis to this 
regime.

Interestingly, the reversible work and equation of state ex-
pressions of the theoretician’s rubber band and of a paramagnetic 
material are structurally identical. Compare Equation (10.2) with 
(10.12) and (10.3) with (10.13). For this reason deductions from the 
former can be transformed into deductions from the latter via the 
transformations F → Bo / � and L → Bm . In particular, the energy of a 
paramagnetic material, like that of a rubber band, is a function of 
temperature alone, that is, E = E(T ).

The heat capacity of a paramagnetic material in a constant ap-
plied fi eld, that is, 

  

C
Bo

= T
�S

�T

⎛
⎝⎜

⎞
⎠⎟

Bo

, (10.15)

enters into the expression
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=
CB

o

�
o
TC

Bo

 (10.16)

(derived below), which, in turn, encapsulates the idea behind the 
technique of adiabatic demagnetization. Since each quantity on the 
 right- hand side of Equation (10.16) is positive, (�T / Bo)S > 0. There-
fore, the temperature, T, of the paramagnetic system decreases as 
the applied fi eld, Bo , is quasistatically turned down. Scientists have 
used adiabatic demagnetization to achieve laboratory temperatures 
below 10–6 K. 

Equation (10.16) and the inequality (�T / Bo)S > 0 that it im-
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plies follow from the reciprocity rule applied to the variables T, Bo , 
and S:
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= −1. (10.17)

The reciprocal rule and Equation (10.15) transform (10.17) into
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o
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S
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�S
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C
Bo

. (10.18)

Furthermore, one can show that (�S / �Bo)T = � –1
o (�Bm / �T)Bo

 is one of 
the four  cross- differentiations following from the magnetic system’s 
fundamental constraint Eq. (10.13). This relation and Curie’s law, 
(10.14), transform (10.18) into the desired result (10.16). (See Prob-
lems 10.2 and 10.3.)

10.4 Surfaces

Surface tension is a macroscopic manifestation of intermolecular 
attraction. Its effects are especially dramatic in liquids, where inter-
molecular attraction tends to minimize surface area. Small droplets 
assume the shape of a perfect sphere, since that shape minimizes the 
surface area of a given volume. 

We conceptualize a surface as a distinct thermodynamic system 
with its own internal energy, E; temperature, T; and entropy, S. In 
place of a volume, a surface has an area, A. One way to defi ne sur-
face tension, , is to say that the reversible work done on a surface 
in changing its area by dA is 

dWrev = dA . (10.19)

Equivalently, surface tension is the force that a surface exerts normal 
to its edge per unit edge length in its local plane, as illustrated in 
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Figure 10.2. Given Equation (10.19), the fundamental constraint of 
a surface is dE = TdS + dA. 

In determining the equations of state of any system we appeal 
either to observations of the system or to a reasonable theoretical 
model of the system or to both. Here I choose to start with a very 
simple theoretical model of a surface and deduce what relations 
follow from that model.

Figure 10.3a shows the cross section of a surface on a mo-
lecular scale. Imagine that each molecule strongly attracts and is 
strongly attracted to its nearest neighbors yet also strongly resists 
intermolecular penetration. In this way the molecules slide around 
each other and always maintain a given spacing. Therefore the aver-
age density of molecules within the bulk phase and on the surface 
remains constant. As the surface stretches, molecules rise up from 
the bulk to occupy new openings on the surface; the bulk volume 
shrinks and the surface area grows. As the surface contracts, mol-
ecules in the surface sink into the bulk phase below. Of course, this 
model describes only certain kinds of surfaces.

According to the model the net intermolecular force seen by 
one molecule is roughly described by the potential well shown in 
Figure 10.3b. Within the bulk phase, net forces on a molecule van-
ish. Equivalently, a molecule may move freely on the fl oor of the 
potential well. When drawn up into the  surface—that is, to the po-

FIGURE 10.2 The surface tension  is that force, F, exerted by or on a 
surface in its plane normal to its edge divided by the edge length, Y, that 
is,  = F / Y. The work done on the surface in increasing its length by dX is 
FdX, that is, (F / Y)YdX or dA.
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tential  shelf—a molecule overcomes net attractive forces pulling it 
back into the bulk. To escape the surface altogether a molecule must 
overcome the net attractive forces pulling it back into the surface. 
The potential shelf defi ning the surface is approximately halfway 
between the bulk phase potential fl oor and the  fi eld- free potential 
beyond the surface.

Thus, the energy of the surface is directly proportional to the 
number of molecules it contains. Since these are necessarily evenly 
distributed, surface energy is also proportional to surface area, 
that is,

E = f (T )A , (10.20)

where the function f(T ) is not yet known. Furthermore, since each 
molecule interacts only with its nearest neighbors, the surface ten-
sion, , is independent of the surface area, A, that is, 

 = (T ) . (10.21)

The fundamental constraint dE = TdS + dA, given (10.20), 
relates the two unknown functions f (T ) and (T ). Because condi-
tions (10.20) and (10.21) are expressed in terms of , A, T, and E 
we again use the  cross- multiplication arising from the entropy form, 
dS = (1 / T)dE – ( / T)dA, of the fundamental constraint, that is,

FIGURE 10.3 (a)  Molecular- scale  cross section of a surface. Molecules 
move into or out of the surface as the surface expands or contracts. 
(b) Associated energy level diagram.
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Performing these derivatives implicitly produces
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. (10.23)

The reciprocity relation applied to the variables T, A, and E and the 
reciprocal relation converts (10.23) into 
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The equation of state E = f (T )A, in turn, transforms this result 
into

   
f (T) = −T 2 d

dT

(T)

T

⎡

⎣
⎢

⎤

⎦
⎥ , (10.25)

that is, into

   
f (T) = (T) − T

d(T)

dT
. (10.26)

Therefore, the energy equation of state (10.20) assumes the form

   
E = (T) − T

d(T)

dT

⎡

⎣
⎢

⎤

⎦
⎥ A  (10.27)

with the surface tension function (T ) remaining unspecifi ed.
To specify the function (T) requires new physics. For instance, 

we know that above a certain critical temperature, Tc , surface tension 
vanishes and neither liquids nor their surfaces exist. Therefore, this 
model should be valid only for T ≤ TC . Several empirically motivated 
equations of state with this property have been investigated. The 
so- called Eötvös and Ferguson energy equations of state are taken 
up in the problems. Here we introduce the simple assumption that 
f (T ) = cT, that is,
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E = cAT, (10.28)

where c is a constant specifi c heat for constant surface area 
[≡ A–1(�E / �T )A]. This choice leads, via integration of (10.27) with 
the initial condition (TC) = 0, to

   

(T) = cT  ln
T

C

T

⎛

⎝
⎜

⎞

⎠
⎟ for 0 ≤ T ≤ T

C
 (10.29)

and (T ) = 0 when T > TC . (See Problems 10.4–10.7.)

10.5 Chemical Potential

The model of a surface just outlined associates changes in surface 
area with the absorption or rejection of its matter. If each mole 
added to or subtracted from a surface increases or decreases its 
area by a fi xed amount, Ao , the number of moles in the surface, n, 
is related to its area, A, by 

 

n = A

A
o

, (10.30)

where the constant Ao depends only upon the kind of molecule com-
posing the surface. If we use Equation (10.30) to replace surface 
area A with mole number n in our description, the fundamental 
constraint of a surface becomes

dE = TdS + �dn , (10.31) 

where the intensive variable � ≡ Ao is called the chemical 
 potential—something of a misnomer that suggests, incorrectly, that 
chemical reactions are necessarily the agent of mole number change. 
Here the energy has become a function, E(S,n), of the independent 
variables, S and n, so that T = (�E / �S)n and � = (�E / �n)S .

Transforming the thermodynamic description of a surface in 
this way changes nothing except our point of view—but point of 
view is important. The idea that the internal energy can change 
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not only through heat exchange and work, but also through the 
transfer of matter, expands the range of phenomena described by 
thermodynamics to include open systems. This change of view origi-
nates with the work of J. Willard Gibbs (1839–1903), who may 
have been the greatest mathematical physicist the United States has 
ever produced. Gibbs made important contributions to electromag-
netic theory, vector analysis, and statistical mechanics as well as to 
thermodynamics.

Our model of a surface has allowed us to replace one of its 
independent variables with system mole number. But most impor-
tant realizations of open systems are of composite or heterogeneous 
systems whose different parts are each open subsystems. Matter in 
each subsystem can be transformed into matter in other subsystems 
either by phase change (for instance, from liquid to vapor) or by 
chemical reaction. 

To model a homogeneous, open fl uid subsystem we simply add 
its mole number, n, to the list of its independent variables so that E 
= E(S,V,n) and append the term �dn to its fundamental constraint 
so that

dE = TdS – PdV + �dn . (10.32)

The term �dn describes how the addition (dn > 0) or subtraction 
(dn < 0) of moles changes the subsystem energy. Because the mole 
number n is now an independent variable, deductions from Equa-
tion (10.32) must be appropriately generalized. Among those taking 
the form of an equation of state are T = (�E / �V)V,n , –P = (�E / �V)S,n , 
and

   

� = �E

�n

⎛
⎝⎜

⎞
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S,V

. (10.33)

Equation (10.33) describes a relation among system variables, in-
cluding their dependence on system mole number, n. For this reason 
we expect the function �(S,V,n) to be closely related to the physics 
of a closed system for which n is constant. 
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Just how �(S,V,n) might follow from the characterizing energy 
of a closed system E(S,V) in which the mole number, n, appears only 
as a parameter depends upon the crucial distinction between exten-
sive and intensive variables. When a fl uid system simply changes its 
size while keeping its intensive variables, T, P, and �, constant, each 
of its extensive variables, E, S, V, and n, changes by the same frac-
tion. For instance, if n increases by 2% and the intensive variables 
remain constant, the extensive variables E, S, and V each increase 
by 2%. Likewise, if n changes by the differential amount dn while 
the intensive variables T, P, and � are held constant, the ratio dn / n 
must equal each of the ratios dE / E, dS / S, and dV / V. Denoting this 
 differential- sized ratio as �, we have � = dE / E, � = dS / S, and � = 
dV / V as well as � = dn / n. Substituting these variations into the fun-
damental relation for an open system, Equation (10.32), produces 
the relation

  
� = E − TS + PV

n
. (10.34)

In other words, the chemical potential of a system composed of a 
single substance is its Gibbs free energy, G = E + TS – PV, per unit 
mole. The same result can be derived from any other form of the 
fundamental constraint. For instance, if we impose the same varia-
tion on dH = TdS + VdP + �dn, including the constraint dP = 0 on 
the intensive variable P we again arrive at Equation (10.34).

The chemical potential of an ideal gas in terms of independent 
variables S, V, and n may be found from (10.34), the equations of 
state, and the function E(S,V ) taken from (9.13). The result is 
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where the dependence on n has been made explicit by defi ning the 
specifi c constants as eo = Eo / n, so = So / n, �o = Vo / n, and cV = CV / n. 
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Note that, as required, � is an intensive variable. The chemical po-
tential of other fl uids and nonfl uids may be found with a similar 
method.

We know that two systems in thermal equilibrium have the 
same temperature and that two fl uid systems in mechanical equi-
librium have the same pressure. These facts suggest that two open 
systems in equilibrium also have the same chemical potential. A 
general proof of this speculation requires developing general criteria 
for equilibrium, as we do in Chapter 12. Here I present a simpler, if 
more specialized, argument.

Consider two fl uid phases, denoted 1 and 2, of one substance 
contained within the piston and cylinder diagramed in Figure 10.4. 
These phases could be a liquid in equilibrium with its vapor. Each 
phase can exchange mole number with the other. Therefore, their 
fl uid variables are constrained by

dE1 = T1dS1 – P1dV1 + �1dn1 (10.36)

and 

dE2 = T2dS2 – P2dV2 + �2dn2. (10.37)

Since the two phases are in thermal and mechanical equilibrium, 

T1 = T2 = T (10.38)

and 

FIGURE 10.4 A cylinder and piston containing a system composed of two 
fl uid phases.
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P1 = P2 = P. (10.39)

Now, consider the properties of the larger system composed of 
both phases taken together. On the one hand, the composite system 
is a fl uid described by the fl uid variables E, T, S, P, and V. The com-
posite system may exchange heat and work with its environment but 
not mole number. (Each phase exchanges mole number only with 
the other phase.) Therefore, its fundamental constraint is

dE = TdS – PdV. (10.40)

On the other hand the system energy, apart from surface terms, 
which we assume to be negligible, is the sum of energies of the two 
phases, so that

E = E1 + E2. (10.41)

In like manner the other extensive system variables are sums of their 
parts:

S = S1 + S2, (10.42)

V = V1 + V2. (10.43)

The sum of the phase mole numbers, however,

n = n1 + n2, (10.44)

is a constant that enters into the description of the composite system 
not as a variable but only as a fi xed parameter. For this reason, the 
moles gained by one phase are lost by the other—that is, dn = 0 or

dn1 = –dn2. (10.45)

Adding the fundamental constraints of the two phases, (10.36) and 
(10.37), and using (10.38)–(10.39), (10.41)–(10.43), and (10.45) 
result in

dE = TdS – PdV + (�1 – �2)dn1. (10.46)
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These two descriptions of the same composite system, (10.40) and 
(10.46), are consistent only when

�1 = �2. (10.47)

Therefore, two phases are in equilibrium if and only if their tem-
perature, pressure, and chemical potential are equal. (See Problems 
10.8–10.10.)

10.6 Multivariate Systems

A fl uid that exchanges mole number with its environment requires 
three independent variables for a complete description. So also does 
a gas composed of paramagnetic particles. The fundamental con-
straint of the former is dE = TdS – PdV + �dn, while that of the 
latter is dE = TdS – PdV + (Bo / �o)dBm . One can easily imagine more 
complex systems that require four independent  variables—for ex-
ample, a paramagnetic gas that exchanges mole number with its 
environment. In general, an independent variable is required for 
each way the system energy may be reversibly changed.

Equations of state, energy-characterizing functions, and  cross- 
differentiations follow from a multivariable fundamental constraint 
in the same way these follow, in the two- variable case, from dE = 
TdS – PdV. As a relatively simple example we explore the conse-
quences of the fundamental constraint, 

dE = TdS – PdV + �dn, (10.48)

of a fl uid system that can exchange mole number with its environ-
ment. Its energy is a function, E(S,V,n), of its three proper variables, 
S, V, and n. Its three equations of state take the form T = (�E / �S)V,n , 
–P = (�E  / �V)S,n , and � = (�E  / �n)S,V . Following from these are three 
 cross- differentiations
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, (10.49)
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and
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The fi rst, (10.49), reproduces a Maxwell relation already encoun-
tered [Eq. (8.7)], while (10.50) and (10.51) are unique to open fl uid 
systems with variable mole number.

Legendre transformations produce old and new characterizing 
functions with the dimensions of energy E, E + PV(≡ H), E – TS(≡ A), 
E – �n, E + PV – TS(≡ G), E + PV – �n, E – TS – �n, and E + PV – 
TS – �n. Each of these has its own set of independent variables and 
each its own equations of state and  cross- differentiations. Applying 
the reciprocity and reciprocal rules directly to (10.49)–(10.51) pro-
duces new  cross- differentiations. (See Problems 10.11 and 10.12.)

Chapter 10 Problems 

10.1 Rubber Band Maxwell Relations. Find the four  Maxwell- type 
relations among  fi rst- order partial derivatives of rubber band variables T, S, 
F, and L implied by the fundamental constraint dE = TdS + FdL. Generate 
these with the reciprocity, reciprocal, and chain rules or from an appropri-
ate transformation of the Maxwell relations for a fl uid.

10.2 Paramagnetic Material. Show that the energy, E, of a paramag-
netic material that obeys Curie’s law is a function of temperature, T, alone. 
Work only from what we know about paramagnetic materials. (S)

10.3 Magnetic Maxwell Relations. Find the four  Maxwell- type rela-
tions among  fi rst- order partial derivatives of the paramagnetic material 
variables T, S, Bo , and Bm implied by the fundamental constraint dE = TdS 
+ (Bo / �o)dBm . Generate these with the reciprocity, reciprocal, and chain 
rules.
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10.4 Surface Work. The surface tension of water, , is 0.073 N / m 
when T = 298 K. How much reversible work is required to spread a 3.0 
mm- radius spherical drop of water into a circular sheet that is 50 cm in 
diameter? (Note: A sheet has two surfaces.)

10.5 Constant Specifi c Heat of Surface. Show that the characterizing 
energy E(S,A) = cATc exp(S / A) is consistent with the equations of state, E 
= cAT and  = cT ln(Tc / T ), for a surface.

10.6 Eötvös Equation. The Eötvös equation of state for surface ten-
sion is (T ) = o(1 – T / Tc), where T ≤ Tc . Show that, given the Eötvös 
equation of state and the context of the theoretical picture given in the fi rst 
part of Section 10.4, 

(a) the internal energy E = oA, and
(b) the entropy S = oA / Tc . (S)

10.7 Ferguson Equation. The Ferguson equation of state for surface 
tension is (T) = o(1 – T / Tc)

n, where n ≥ 1 and is a generalization of the 
Eötvös equation of Problem 10.6. Assume the Ferguson equation of state 
and the theoretical picture given in the fi rst part of Section 10.4. Find

(a) the function E(A,T ), and
(b) the function S(A,T ).

10.8 Chemical Potential of an Ideal Gas, I. Verify that Equation 
(10.35) follows directly from � = (E – TS + PV) / n and what we know from 
Chapter 9 about the ideal gas.

10.9 Chemical Potential of an Ideal Gas, II. The chemical potential 
of an ideal gas, �(S,V,n), may be derived directly from the partial deriva-
tive, (�E / �n)S,V , of the energy of an ideal gas, E(S,V,n), in which the system 
mole number enters as an explicit variable. To do so one must fi rst rewrite 
E(S,V ) as found in Equation (9.13), that is,
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,
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in terms of specifi c quantities cV = CV / n, eo = Eo / n , so = So / n, and �o = Vo / n that 
are independent of the variables S, V, and n. Then show that integrating 
� = (�E / �n)S,V reproduces the result � = G / n found in (10.35).

10.10 Cavity Radiation. Show that the chemical potential of cavity 
radiation is zero by showing that the Gibbs free energy of cavity radiation 
is zero. (That the Gibbs free energy of cavity radiation vanishes identically 
is a sign that the variables T and P of cavity radiation cannot both be in-
dependent variables.)

10.11 Start from the fundamental constraint dE = TdS – PdV + �dn 
and the defi nitions of enthalpy, Helmholtz free energy, and Gibbs free en-
ergy and prove the following:

(a) 
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(c) 
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10.12 Prove the following relations among variables describing a 
 single- phase, open fl uid system.
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E L E V E N

Equilibrium and Stability

11.1 Mechanical and Thermal Systems

Recall that an equilibrium state is one described by a small set of 
thermodynamic variables that change only when the system’s envi-
ronment changes. Thus, two systems in continuous thermal contact 
are in mutual thermal equilibrium, and two systems in thermal equi-
librium have, by defi nition, the same temperature. I have also re-
ferred to the concept of mechanical equilibrium, according to which 
two fl uid systems in mutual mechanical equilibrium have the same 
pressure. This chapter gives these observations a new foundation. 

When two systems completely isolated from the rest of the 
universe and initially isolated from one another are allowed to 
interact—for instance, through a heat- conducting wall, a movable 
partition, or a permeable membrane—they seek new equilibrium 
states. Not every equilibrium state is stable, however. The prediction 
of new stable equilibria is, according to H. B. Callen, the fundamen-
tal problem of thermodynamics.

Identifying the stable equilibria of a thermodynamic system is 
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analogous to identifying the stable equilibria of a mechanical sys-
tem. Figure 11.1 shows the potential energy function U(x) of a me-
chanical system with one degree of freedom, here quantifi ed with 
the variable x. Points where the fi rst derivative of U(x) vanishes, that 
is, where dU / dx = 0, are equilibria. These are further divided into 
stable and unstable equilibria according to the sign of the second de-
rivative of the potential energy function d 2U / dx 2. Stable equilibria 
are those for which dU / dx = 0 and d 2U / dx 2 > 0; unstable equilibria 
are those for which dU / dx = 0 and d 2U / dx 2 < 0. A system displaced 
a very small distance from a point of stable equilibrium will oscillate 
around that point, while a system displaced a very small distance 
from an unstable equilibrium will be forced from its vicinity. Points 
B and D in Figure 11.1 are stable equilibria, while point C is an un-
stable equilibrium. Point A is not an equilibrium at all.

Thermodynamic systems differ from simple mechanical ones in 
having a very large number of internal degrees of  freedom—on the 
order of several times the number of particles composing the system. 
Only when a thermodynamic system is in equilibrium are all these 
degrees of freedom effectively represented by a few thermodynamic 
variables. Thus, thermodynamic systems have many nonequilibrium 
states and can experience a variety of nonequilibrium processes. 

FIGURE 11.1 Potential energy function, U(x), of a mechanical system with 
one degree of freedom. Points B, C, and D are equilibria; point A is not 
an equilibrium. Point B is most stable, C is unstable, and D is stable but 
less so than B.
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Thermodynamic systems use nonequilibrium processes to seek out the 
most stable equilibrium state available consistent with the constraints 
imposed upon them. For this reason unstable equilibria are never 
maintained, and all states that are relatively but not absolutely stable 
have a limited lifetime. Of course, the latter so- called metastable states 
(analogous to point D in Fig. 11.1) may, if long- lived, be empirically 
indistinguishable from absolutely stable ones (analogous to point B).

Thermodynamic systems also differ from mechanical ones in 
the function minimized or maximized at stable equilibrium. The 
ther mo dy namic function of state maximized at stable equilibrium 
is, according to the entropy corollaries of Section 7.5, the entropy. 
From this idea we will develop intrinsic stability criteria for a fl uid 
and a deeper understanding of why an initially  single- phase fl uid 
breaks into two phases.

11.2 Principle of Maximum Entropy

The criterion for identifying the stable equilibria of thermodynamic 
systems has already been encountered in Section 7.5. This criterion 
is the principle of maximum entropy: 

A completely isolated system that may evolve only by diminish-
ing its entropy is in stable equilibrium. 

Consider, for instance, the two systems illustrated in Figure 11.2. 
Rigid, adiabatic, and impermeable walls completely isolate the two 

FIGURE 11.2 Two systems completely isolated from each other and from 
the rest of the universe. When their mutual boundary is changed to one 
that conducts heat or is allowed to move, the two systems seek a new 
state of stable equilibrium.
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systems from each other and from the rest of the universe. Their 
fundamental constraints are

  

dS
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= 1

T
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+
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T
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 (11.1)

and
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2
. (11.2)

As usual, Si = Si(Ei ,Vi), 1 / Ti = (�Si / �Ei)Vi
, and Pi  / Ti = (�Si / �Vi)Ei

 where 
i = 1,2. The entropy of the composite system is

S(E 1 ,V1,E 2 ,V2) = S1(E 1,V1) + (E 2 ,V2). (11.3)

When the two systems are completely isolated from one other, there 
is no particular relation between their temperatures, T1 and T2 , and 
pressures, P1 and P2 . If, however, we relax one of the constraints, 
the composite system will evolve to a new, stable equilibrium that 
maximizes its total entropy.

As an example, suppose we allow the two systems to interact 
thermally but not otherwise. In general, the systems will exchange 
heat irreversibly, and their energies, E 1 and E 2 , will change subject 
to the constraints

E 1 + E 2 = E (a constant)  (11.4)

and

V1,V2 = constant. (11.5)

Constraint (11.4) allows us to eliminate the variable E 2 in favor 
of E – E 1 . Then the entropy of the composite system reduces to a 
function of a single  variable—that is, to S(E 1) = S1(E 1) + S2(E – E 1), 
where we have suppressed dependence on the constants V1 and V2 . 

We are now in a position to apply the equilibrium (dS / dE 1 = 0) 
and stability (d 2S / dE 2

1 < 0) criteria associated with the principle of 
maximum entropy. In doing so, note that S2 is a function of the 
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variable E 1 only through the combination E – E 1 . The chain rule 
produces
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and so the equilibrium condition, dS / dE1 = 0, reduces to 

T1 = T2 . (11.7)

The stability condition, d 2S / dE 2
1 < 0, follows from
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where T1 = T1(E 1) and T2 = T2(E 2) = T2(E – E 1). The chain rule re-
duces (11.8) to

  

d 2S

dE
1
2

= −1

T
1
2

⎛

⎝
⎜

⎞

⎠
⎟

dT
1

dE
1

+ 1

T
2
2

⎛

⎝
⎜

⎞

⎠
⎟

dT
2

dE
1

  

= −1

T
1
2C

V ,1

+ −1

T
2
2C

V ,2

, 

(11.9)

where dEi  / dTi = CV, i because the Vi , for i = 1, 2, are constants. Evalu-
ating d 2S / dE2

1 at the equilibrium condition T1 = T2 further reduces 
(11.9) to
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Since temperatures are real numbers, d 2S / dE2
1 < 0 is equivalent to
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C
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⎟ > 0 . (11.11)
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Inequality (11.11) is not our fi nal result, however. Since we have 
made no assumptions concerning the size or identity of systems 1 
and 2 other than that they are both fl uids in thermal equilibrium, 
condition (11.11) must hold generally. In particular, suppose sys-
tem 2 is identical to system 1. Then CV,1 = CV,2[≡ CV], and (11.11) 
becomes

CV > 0. (11.12)

Inequality (11.12) expresses a condition of intrinsic stability. Any 
fl uid in equilibrium must have a positive heat capacity at constant 
volume CV .

Because the mathematical tools we have employed thus far de-
pend only upon the local properties of the entropy function—that 
is, on its fi rst and second derivatives at a  point—they do not, in 
general, distinguish between relative and absolute stability. Yet, be-
cause there is only one point of stable equilibrium in this simple ap-
plication, it must be absolutely stable. In similar ways, the context 
often allows us to distinguish between relative or metastable and 
absolutely stable equilibria.

11.3 Other Stability Criteria

All stability criteria originate from the differential Clausius in-
equality

dQ ≤ TodS , (11.13)

where here, To is the temperature of the environment with which the 
system exchanges heat, dQ, and dS is the differential entropy change 
generated by this heat exchange. Only when the change associated 
with the variation is reversible is the equality sign realized and the 
temperature of the environment, To , equal to the temperature of the 
system, T. The Clausius inequality and all inequalities that follow 
from it constrain the allowed variations that result from equilibrium 
and nonequilibrium processes.
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Imagine an indefi nitely complex system that may contain differ-
ent phases and kinds of particles or may be fragmented into different 
parts whose interactions are constrained in various ways. However 
complex, we allow this system to interact with its environment in 
only two ways: heat exchange, dQ, and work, PdV. Furthermore, 
we require its environment to be so large compared with the sys-
tem as to be a reservoir with constant temperature To and pressure 
Po. Since the following analysis is theoretical, we have no diffi culty 
in imposing these and other constraints (for example, constant en-
tropy) that would be diffi cult to realize in practice.

If the complex system is completely isolated from its environ-
ment, dQ = 0, dV = 0, and consequently dE = 0. Then the Clausius 
inequality (11.13) reduces to

(dS)E ,V ≥ 0, (11.14)

where the subscripts E and V denote the system state variables held 
constant during the variation dS. Inequality (11.14) allows only 
those differential variations that, leaving the system energy and 
volume unchanged, also leave unchanged or increase the system 
entropy. From here it is only a short step to the principle of maxi-
mum entropy: 

A completely isolated system that may evolve only by diminish-
ing its entropy is in stable equilibrium. 

We have already applied the principle of maximum entropy to a 
system composed of two homogeneous subsystems, but this deriva-
tion allows for much broader application.

By redefi ning the way this complex system may interact with 
its environment, we derive other stability criteria. Some of these 
will prove very convenient. We prepare for these derivations in the 
following way. The heat, dQ, absorbed by the system and work, 
–PodV, done on the system are related to each other by the fi rst law, 
dE = dQ – PodV. This relation in the form dQ = dE + PodV trans-
forms the Clausius inequality (11.13) into
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dE + PodV ≤ TodS . (11.15)

The principle of maximum entropy follows immediately from 
(11.15) but so also do other stability criteria.

Suppose we allow only those changes that preserve the system 
volume and entropy—that is, we adopt the constraints dV = 0 and 
dS = 0. Then (11.15) reduces to

(dE)V,S ≤ 0. (11.16)

The constraints imposed (constant volume and entropy) prohibit 
variations that increase the energy. Thus, this variation establishes 
the following principle of minimum energy:

A system that, preserving its volume and entropy, can change 
only by increasing its energy is in stable equilibrium.

Next, suppose we allow only those changes that preserve the 
system entropy and maintain mechanical equilibrium with the res-
ervoir so that dS = 0 and dP = 0. In this case (11.15) reduces to 
[d(E + PoV )]S ,P ≤ 0, which, given the condition of mechanical equi-
librium P = Po and the defi nition of enthalpy H = E + PV, is equiva-
lent to 

(dH )S ,P ≤ 0. (11.17)

Since the constraints imposed prohibit those variations that increase 
the system enthalpy, we have the principle of minimum enthalpy:

A system that, preserving its entropy and maintaining constant 
pressure, can change only by increasing its enthalpy is in stable 
equilibrium.

Suppose we allow only those changes that preserve the system 
volume and maintain thermal equilibrium with the environment so 
that dV = 0 and dT = 0. Then (11.15) reduces to [d(E – ToS)]V,T ≤ 0, 
which, given the equilibrium condition T = To and the defi nition of 
Helmholtz free energy A = E – TS, is equivalent to

(dA)V,T ≤ 0. (11.18)
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These variations never increase the Helmholtz free energy and lead 
to the principle of minimum Helmholtz free energy:

A system that, preserving its volume and maintaining constant 
temperature, can change only by increasing its Helmholtz free 
energy is in stable equilibrium.

Finally, allowing only those changes that maintain mechanical 
and thermal equilibrium with the reservoir, we have the constraints 
dT = 0 and dP = 0. In this case (11.15) reduces to [d(E + PoV – ToS)]V,T

≤ 0, which, given T = To , P = Po , and the defi nition of Gibbs free 
energy G = E + PV – TS, is equivalent to

(dG)T,P ≤ 0. (11.19)

These allowed variations never increase the Gibbs free energy and 
establish the principle of minimum Gibbs free energy:

A system that, maintaining constant temperature and pressure, 
can change only by increasing its Gibbs free energy is in stable 
equilibrium.

Table 11.1 summarizes these allowed variations and the stabil-
ity criteria that follow from them. Each derives from the Clausius 
inequality applied to a complex system that is interacting, or not in-
teracting, with an environmental reservoir. Since a system’s entropy 
is rarely controlled, the principles of minimum energy and enthalpy 
are less useful in practical applications than the others. The Gibbs 
free energy is especially important because the constraints, dT = 0 

TABLE 11.1 Stability criteria for thermodynamic systems

Constraint  Constraint  
Allowed 
variation  

Equilibrium 
criterion  

Stability 
criterion

dE = 0 dV = 0 (dS)E,V ≥ 0 (dS)E,V = 0 S max
dS = 0 dV = 0 (dE)S,V ≤ 0 (dE)S,V = 0 E min
dS = 0 dP = 0 (dH)S,P ≤ 0 (dH)S,P = 0 H min
dV = 0 dT = 0 (dA)V,T ≤ 0 (dA)V,T = 0 A min
dT = 0 dP = 0 (dG)T,P ≤ 0 (dG)T,P = 0 G min
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and dP = 0, that lead to its minimization are exactly those naturally 
imposed by maintaining thermal and mechanical equilibrium with 
the atmosphere.

11.4 Intrinsic Stability of a Fluid

The stability criteria described above and listed in Table 11.1 al-
low us to uncover the several conditions that make simple fl uids 
intrinsically stable. We have already discovered, from the principle 
of maximum entropy, one such condition: a fl uid in stable thermal 
equilibrium with itself must have CV > 0. The other conditions are 
also very plausible, even expected. Still, we learn much by seeing 
how they emerge from the stability criteria.

We need only consider a composite system composed of two 
simple fl uid subsystems, 1 and 2—just as considered in Section 11.2 
and illustrated in Figure 11.2. However, we vary the constraints 
applied to the composite system as well as those applied by the 
boundary separating the two subsystems in order to bring into play 
different stability criteria. 

Suppose, for instance, the composite system has a constant vol-
ume and constant entropy. Then, according to Table 11.1, its total 
energy

E(S1 ,V1 ,S2 ,V2) = E 1(S1 ,V1) + E 2(S2 ,V2), (11.20)

subject to the two constraints

V1 + V2 = V (a constant) (11.21)

and

S1 + S2 = S (a constant), (11.22)

is a minimum at stable equilibrium. The constraints (11.21) and 
(11.22) reduce the energy, E, of the composite system to a function 
of only two variables, S1 and V1 , so that
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E(S1 ,V1) = E 1(S1,V1) + E 2(S – S1 ,V – V1). (11.23)

First, let’s further restrict the individual subsystem entropies, S1 and 
S2 , to be constant while allowing the subsystems to exchange volume 
by doing reversible work on one another. Then (11.23) becomes the 
 single- variable function

E(V1) = E 1(V1) + E 2(V – V1), (11.24)

where we have suppressed dependence on the constant S1 . Recall 
that P = –(�E / �V)S . Therefore, equilibrium, dE  / dV1 = 0, and stabil-
ity, d 2E / dV 2

1 > 0, conditions reduce to 

P1 = P2  (11.25)

and
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respectively. Because P1 = P1(V1) and P2 = P2(V – V1) the chain rule 
reduces (11.26) to
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> 0 . (11.27)

Since the subscripts “1” and “2” are arbitrarily assigned, and the 
stability condition (11.27) must obtain for subsystems of any size, 
and since the derivatives dP1 / dV1 and dP2 / dV2 assume constant val-
ues of S1 and S2 , (11.27) is equivalent to 
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S
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Thus, only fluids with positive adiabatic compressibility 
�S[= –V –1(�V / �P)S] are intrinsically stable. Increasing the pressure 
on an adiabatically enclosed fl uid must decrease its volume. If we 
begin again with Equations (11.20)–(11.22) and this time preserve 
the volume of each subsystem, allowing each to exchange heat re-
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versibly with the other, and then follow the same pattern of calcu-
lation, we fi nd the equilibrium, T1 = T2 , and the intrinsic stability, 
CV > 0, conditions already given by (11.7) and (11.12).

Applying, in the same way, the principle of minimum Helmholtz 
free energy to two subsystems with constant, identical temperatures 
and with constant total volume while allowing each to do reversible 
work on each other results in the intrinsic stability condition

   

�P

�V

⎛
⎝⎜

⎞
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T

< 0. (11.29)

And, similarly, the principle of minimum enthalpy leads to

CP > 0. (11.30)

These conditions of intrinsic fl uid stability—CV > 0, CP > 0, (�P / �V)T 
< 0, and (�P / �V )S < 0—are somewhat redundant, for one can 
show that (�P / �V)S < 0 and CP > 0 if and only if (�P / �V )T < 0 and 
CV > 0. 

The conditions of intrinsic stability are examples of an even 
more general principle called Le Châtelier’s principle: 

A system in stable equilibrium that experiences a change in its 
state variables initiates processes that tend to restore the system 
to equilibrium. 

For example, when the pressure exerted by the environment on a 
stable fl uid increases by even a small amount, the fl uid’s volume 
must decrease and, since (�P / �V )T < 0, cause the fl uid pressure to 
increase. In this way the fl uid is brought back into equilibrium with 
its environment. Any fl uid not having this property would cata-
strophically explode or collapse. (See Problems 11.1–11.4.)

Chapter 11 Problems

11.1 Another Stability Criterion. C. J. Adkins lists a number of stabil-
ity criteria, including one that constrains the system energy E and entropy 
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S to be constants. Identify the associated state variable and whether it is 
minimized or maximized.

11.2 Room-Temperature Solid. Show that a room- temperature elastic 
solid is stable by showing that its equations of state observe (�P / �V)T < 0, 
(�P / �V)S < 0, and CP > 0. (Note: CV > 0 is part of the model defi nition.)

11.3 Cavity Radiation. Show that the equations of state for cavity 
radiation are intrinsically stable by showing that (�P / �V )T < 0, (�P / �V )S

< 0, CV > 0, and CP > 0.

11.4 Equivalence. Show that (�P / �V)S < 0 and CP > 0 follow from the 
conditions (�P / �V)T < 0 and CV > 0 for any fl uid. 

[Hint: Use Equation (8.47) relating CP and CV and a condition analo-
gous to (8.44) that relates (�P / �V)T and (�P / �V)S .]
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12.1 Phase Diagrams

Water is the prime example of a substance that, within the range of 
commonly experienced pressures and temperatures, realizes all three 
phases: solid, liquid, and vapor. Each phase coexists with another 
in equilibrium at certain temperatures and pressures. Ice fl oating 
in water melts at T = 0.0°C and P = 1 atm, and liquid water boils 
at T = 100°C and P = 1 atm. All three phases of water coexist in 
equilibrium at its triple point (T = 273.16 K, P = 6 102 Pa, V / n = 18 
10–6 m3 / mol). Diagrams illustrating these regions of thermodynamic 
variable space are called phase diagrams.

 The phase diagram of water is, however, neither the easiest to 
measure nor the easiest to understand once measured. In fact, CO2

and several other gases that can be liquefi ed at relatively comfort-
able temperatures yielded the fi rst accurately mapped phase dia-
grams. These originated with the Irish chemist Thomas Andrews 
(1813–1885), who began a series of experiments in 1861 in which 
he isolated CO2 gas in a glass tube fi tted with a piston. By compress-

T W E L V E

Two- Phase Systems
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ing, decompressing, heating, and cooling the CO2 Andrews explored 
its phase diagram. 

If one compresses CO2 gas slowly enough to keep it in thermal 
equilibrium with its environment, its pressure at fi rst increases with 
decreasing volume in rough agreement with Boyle’s law, P�1 / V.
Eventually, at several tens of atmospheres of pressure, the CO2 gas 
(or vapor as it is called in this regime) begins to liquefy and collect 
in the bottom of the tube. Compression of the liquid- vapor mixture 
merely converts more vapor into liquid until complete liquefaction 
is achieved. At this point further compression of the liquid requires 
very high pressures. Several of Andrews’ CO2 isotherms are shown 
in Figure 12.1.

That the liquid condensed in the bottom of Andrews’ tube rather 
than at its top is, of course, a consequence of gravity. Without grav-
ity, or, equivalently, in free fall, the liquid would collect indifferently 
in several parts of the tube. Still, the volume of each phase would 
increase or decrease at the expense of the other during compression 
and expansion.

Several features of Andrews’ diagram attract our attention. One 
is that the horizontal isotherm- isobars in the two- phase liquid- vapor
region shrink with increasing temperature, to a point—the critical
point on the 87.7°F isotherm. A critical pressure Pc (72.8 atm) and a 
critical molar volume Vc  / n (94.2 10−6 m3 / mol) as well a critical tem-
perature Tc (87.7°F) identify the critical point. Each pure substance 
has its own liquid- vapor phase transition and unique critical point. 
Critical point data for several substances are shown in Table 12.1.

Liquid and vapor are said to coexist in the two- phase region, 
which is sometimes called the vapor dome. Along the vapor dome 
boundary, indicated with the dashed line in Andrews’ phase diagram 
(Fig. 12.1), the liquid and vapor phases are each saturated. The 
saturated liquid and vapor curves and the critical isotherm neatly 
divide phase space into four parts: 

1. Within the vapor dome, liquid and vapor phases coexist in 
equilibrium.
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2. Above its critical isotherm, no amount of pressure can liquefy 
a substance, which in this region is called a gas. 

3. Below the critical isotherm and to the right of the saturated 
vapor curve, the substance is called a vapor. 

4. Below the critical isotherm and to the left of the saturated 
liquid curve, the substance is liquid phase. 

 Each substance that boils at atmospheric pressure has a normal 
boiling temperature, defi ned as that temperature whose isotherm, 
within the vapor dome, falls on top of the P = 1 atm isobar. We 

FIGURE 12.1 Phase diagram for carbon dioxide as measured by Thomas 
Andrews. Temperatures are in degrees Fahrenheit.  Adapted from Mott-
 Smith, The Concept of Heat, p. 97.
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may experimentally control the boiling process as Andrews did by 
slowly and isothermally expanding a saturated liquid. During such 
expansion heat is drawn into the system and the system moves along 
an isotherm- isobar. In the kitchen we boil water in a less controlled 
fashion by heating the saturated liquid. Then the volume of the 
system expands rapidly. In principle, boiling takes place throughout 
the bulk of the whole liquid. Evaporation, on the other hand, occurs 
only on a liquid’s surface.

Compressing a liquid drives it toward the liquid- solid phase 
transition. Within the two- phase region of this transition, liquid 
is converted into solid along an isotherm- isobar. This feature, il-
lustrated in the generic phase diagram of Figure 12.2, recalls the 
liquid- vapor transition. But in many ways the two transitions are 
quite different. The solid- liquid transition has no associated critical 
temperature or critical point. And near room temperature, most sol-
ids expand only a few percent upon melting. In contrast, common 
liquids expand by a factor of a thousand or more upon vaporizing. 
Note that one can solidify but not liquefy a gas whose temperature 
remains above its critical temperature.

The right- hand boundary of the solid- liquid transition region 
meets the left- hand boundary of the liquid- vapor transition region 
at the triple point. Here, all three common phases of a substance 
coexist in equilibrium. Actually, the locus of points in P- V- T space 
at which vapor, liquid, and solid coexist forms a line, the triple line, 

TABLE 12.1 Critical-point data for several substances

Substance
 

  

Pc

105 Pa

 
  

Vc

n
mol

10−6 m3

⎛
⎝⎜

⎞
⎠⎟

 
 

Tc

K

 
 

PcVc

nRTc

Ne 27 42 44 0.310
Ar 49 72 151 0.279
Kr 55 92 209 0.291
N2 34 90 126 0.292
CO2 74 94 304 0.275
H2O 221 59 647 0.242
O2 50 73 155 0.283
H2  13  65  33  0.308
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also shown in Figure 12.2. Below the triple line, a vapor and its 
solid coexist. 

Phase diagrams may be represented with other pairs of coordi-
nates or even as a surface extended in three- dimensional P- V- T space, 
as illustrated in Figure 12.3. James Clerk Maxwell (1831–1887) 
once created a plaster cast whose surface reproduced a phase dia-
gram of water and shipped it across the Atlantic to the American 
thermodynamicist J. Willard Gibbs. Gibbs showed it to his Yale 
students but was quite reluctant to reveal the giver’s identity—such 
was the fame of Maxwell and the modesty of Gibbs. Maxwell was 
fond of visualizations, but one need not go so far as to create a plas-
ter cast. Merely acquiring the skill necessary to draw Figure 12.3 
by hand would instill an intimate knowledge of the P- V- T surface. 
(See Problem 12.1.)

12.2 Van der Waals Equation of State

The structure of the vapor dome, with its parallel isotherms and iso-
bars and critical point, cries out for a molecular- level explanation. 

FIGURE 12.2 Isotherm (heavy line) in P- V space showing  liquid- vapor and 
 solid- liquid phase transitions. Solid- liquid (s- l ),  liquid- vapor (l- v), and 
 solid- vapor (s- v) coexistence regions are indicated.  Adapted from Walton, 
Three Phases of Matter, p. 12, Fig. 1.11c.
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The Dutch physicist J. D. Van der Waals (1837–1923) provided 
such an explanation in 1879 and won the Nobel Prize for his work 
in 1910. Van der Waals reasoned that the assumptions that allow 
one to derive the ideal gas law, PV = nRT, from a molecular model 
fail for the liquid state. Chief among these failed assumptions are 
that molecules neither attract one another nor occupy space. Rather, 
Van der Waals knew that liquids cohere as if their molecules attract 
one another and strongly resist compression as if their molecules 
maintain a minimum spacing.

Thus, Van der Waals introduced a minimum volume, Vo , to the 
ideal gas law by subtracting Vo from V in PV = nRT. And he intro-
duced molecular attraction by imagining that each molecule attracts 
all others, within a fi xed range of infl uence, a fi xed amount along 
a line connecting their centers. In this way, the net attractive force 
pulling any one molecule in a particular direction is proportional 
to the density of molecules, n / V, within its range of infl uence. Since 
the number of molecules that feel this pull is also proportional to 
n / V, the total attraction felt by the molecules on one side of a sur-
face for molecules on the other side is proportional to the product 
of the net attraction exerted on each molecule and the density of 

FIGURE 12.3 P- V- T surface of a substance that expands upon melting.
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molecules. Consequently, Van der Waals subtracted a term propor-
tional to (n / V)2 from the pressure, P, in PV = nRT. Together, these 
modifi cations produce the Van der Waals equation of state

  
P = nRT

(V − nb)
− a

n

V

⎛
⎝⎜

⎞
⎠⎟

2

, (12.1)

where the proportionality constant a and the minimum molar vol-
ume b = Vo  / n characterize a particular molecule. Figure 12.4 shows 
several Van der Waals isotherms that pass through and above the 
vapor dome.

We expect the energy equation of a Van der Waals fl uid to be 
constrained but not completely determined by its equation of state 
(12.1). From the fundamental constraint dE = TdS – PdV we have

  

�E

�V

⎛
⎝⎜

⎞
⎠⎟

T

= T
�S

�V

⎛
⎝⎜

⎞
⎠⎟

T

− P , (12.2)

FIGURE 12.4 Isotherms of the Van der Waals equation of state. Adapted 
from Callen, Thermodynamics, p. 148, Fig. 9.1.
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which, given the Maxwell relation (�S / �V )T = (�P / �T)V , is equiva-
lent to

  

�E

�V

⎛
⎝⎜

⎞
⎠⎟

T

= T
�P

�T

⎛
⎝⎜

⎞
⎠⎟

V

− P. (12.3)

The right-hand side of Equation (12.3) can be evaluated on the basis 
of the Van der Waals equation of state (12.1) alone, and in this way, 
reduces (12.3) to the requirement

   

�E

�V

⎛
⎝⎜

⎞
⎠⎟

T

= a
n

V

⎛
⎝⎜

⎞
⎠⎟

2

. (12.4)

Integrating Equation (12.4) yields a form,

  
E = f (T) − a

n2

V
, (12.5)

consistent with a constant- volume heat capacity CV = df (T ) / dT. The 
Van der Waals equation of state and the laws of thermodynamics take 
us no further. If we assume a constant CV , then (12.5) reduces to

  
E = C

V
T − a

n2

V
. (12.6)

Note that equations (12.5) and (12.6) predict a fi nite temperature 
drop in a gas that iso- energetically increases its volume by expand-
ing from one chamber into another without PdV work or heat 
exchange.

12.3 Two- Phase Transition

According to Figure 12.4 the Van der Waals isotherms have a posi-
tive slope within a certain region of the vapor dome. Yet we know 
that any fl uid for which (�P / �V)T > 0 is intrinsically unstable. The 
basic idea is, even apart from formal analysis, quite plausible: spa-
tially separate parts of a constant- temperature fl uid whose pressure 
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increases as its volume increases (or whose pressure decreases as its 
volume decreases) would explode (or implode). Surrounding this re-
gion of intrinsic instability is a region of metastability. When a fl uid 
is forced into either the unstable or the metastable region, it transi-
tions to a nearby stable equilibrium state—an equilibrium state with 
lower Gibbs free energy and two distinct phases.

To illustrate this process let’s map out how the pressure, P(V,T),
and Gibbs free energy, G(P,T ), evolve as a fl uid moves along an 
isotherm from the liquid to the vapor side of its two- phase region—
from A to B to C to D to E to F as shown in Figures 12.5a and 
12.5b. Recall that (�G / �P)T = V > 0. The topology of Figure 12.5b 
then follows inevitably from that of Figure 12.5a because the slope 
of the G versus P isotherm is positive and increases with increas-
ing volume. As the fl uid moves from A to B to C, the pressure and 
thus the Gibbs free energy decrease at a relatively slow rate. From 
point C to point D the slope (�P / �V)T changes sign so that (�P / �V)T

> 0, the system pressure increases with volume, and the Gibbs free 
energy increases at a rate proportional to its now larger volume. At 
point D the slope (�P / �V )T changes sign again so that (�P / �V )T < 0, 
P resumes its decrease with increasing V, the volume V is yet larger, 
and the Gibbs free energy decreases more quickly. Note the point 
B-E in Figure 12.5b at which the Gibbs free energy curve necessarily 
intersects itself.

The dynamics of a two- phase system follows inevitably from 
the topology of Figures 12.5a and 12.5b. As the liquid is slowly 
expanded and its pressure decreased, its state evolves quasistatically 
along the isotherm from point A toward point B. Eventually the 
liquid crosses the intersection B- E and occupies a state just beyond 
B between B and C. Since there is a nearby state with less Gibbs 
free energy and the same temperature and pressure (found by fol-
lowing an isobar in Figure 12.5b down onto the curve FE), the 
principle of minimum Gibbs free energy ensures that this low Gibbs 
free energy state is sought out. In more physical terms, some liquid 
vaporizes and collects around bubbles that are usually present in 
the fl uid while the remaining liquid remains at point B as saturated 



FIGURE 12.5 Isotherms of a two- phase system. (a) Isotherm in P- V space. States along 
path CD are intrinsically unstable, states along paths ED and CB are metastable, and 
states along paths AB and EF are stable. An  isotherm- isobar (double line) connects 
points B and E. (b) Isotherm in G- P space. States along path CD are intrinsically un-
stable, states along paths BC and DE are metastable, and states along paths AB and EF 
are stable.
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liquid. As the system is further expanded, more saturated liquid 
transforms into saturated vapor. Metastable states along BC and 
DE can be occupied only with great care—when an experimenter 
removes all bubbles and particles around which the fl uid can vapor-
ize and condense.

The points B and E, by construction, anchor the two ends of 
an isotherm- isobar, as shown in Figure 12.5a. The molar volume of 
the fl uid at point B, �L ≡ VL / nL , is that of the pure saturated liquid, 
and the molar volume at point E, �V ≡ VV / nV , is that of the pure 
saturated vapor. In like manner the other extensive properties of the 
two coexisting phases are those whose molar values are associated 
with the phase points B and E. As the fl uid vaporizes, a few moles 
of saturated liquid, dnL, disappear from phase point B and, since 
the sum

n = nL + nV (12.7)

is constant, reappear as moles of saturated vapor, dnV = –dnL, at 
phase point E. In this way, each of the two phases continues to 
occupy points B and E at either end of an isotherm- isobar on the 
boundary of the two- phase region. At the same time the volume of 
the two- phase system,

V = nL�L + nV�V , (12.8)

evolves continuously from VV to VL. The two- phase system, as a 
whole, occupies all the intermediate points of the isotherm- isobar, 
while each phase, individually, occupies the ends of the isotherm-
isobar.

The other extensive properties of a two- phase system evolve in 
similar fashion during condensation or vaporization. For example, 
the system energy 

E = nLeL + nV eV , (12.9)

entropy

S = nLsL + nV sV , (12.10)
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and heat capacity at constant volume 

CV = nLcL
V + nVcV

V (12.11)

are all continuous functions of nL and nV [= n – nL]. In each case, 
lowercase letters, eL, eV , sL, sV , cL

V , and cV
V , denote molar quantities 

of the saturated fl uid evaluated on the two- phase boundary (for ex-
ample, eL ≡ EL / n, eV ≡ EV  / n).

Figures 12.5a and 12.5b suggest a system of identifying phase 
transitions. As the fl uid is compressed, the partial derivative (�G / �P)T 
changes discontinuously from VV to VL < VV at the transition point 
B- E. A phase transition accompanied by a discontinuity in the 
fi rst- order partial derivatives of the Gibbs free energy, (�G / �P)T = 
V or (�G / �T )P = –S, is a fi rst- order phase transition according to 
a classifi cation scheme invented by Paul Ehrenfest. Higher- order 
phase transitions—in which discontinuities fi rst appear in higher-
 order partial derivatives of the Gibbs free energy [for example, in 
(�2G / �P2)T , (�2G / �T 2)P , (�2G / �P�T)]—identify second-  and higher-
 order phase transitions. (See Problems 12.2–12.4.)

12.4 Maxwell Construction

The saturated vapor and saturated liquid phase points lie on either 
end of an isotherm- isobar defi ned by a P- V- T equation of state. 
When this is a Van der Waals equation of state,

  

P = RT

(V
L

/n − b)
− a

n

V
L

⎛

⎝⎜
⎞

⎠⎟

2

 (12.12)

and

  

P = RT

(V
V

/n − b)
− a

n

V
V

⎛

⎝
⎜

⎞

⎠
⎟

2

. (12.13)

Together these two equations are not suffi cient to determine the 
three functions VL(T ), VV(T ), and P(T) that defi ne the boundary of 
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the two- phase region. However, we also know that saturated liq-
uid and vapor phases on the same isotherm- isobar must have equal 
Gibbs free energies, G(T,P)L(≡ EL + PVL – TSL) and G(T,P)V(≡ EL + 
PVL – TSV). Thus, a third condition,

EL + PVL – TSL = EV + PVV – TSV , (12.14)

obtains. The physics of this third condition (12.14) may also be 
expressed in terms of the variables P, V, and T, already appearing 
in the other two conditions. In this way we will, in principle, be able 
to solve the three equations—(12.12), (12.13), and the replacement 
of (12.14)—for the three unknowns functions, VL(T ), VV(T ), and 
P(T ), that defi ne the boundary of the two- phase system.

In order to replace (12.14) with a more useful equivalent—
known as the Maxwell construction—we prove that the work done 
by a two- phase system in expanding from 100% saturated liquid 
(phase point B in Fig. 12.5a) to 100% saturated vapor (phase point 
E) along the isotherm- isobar BE is the same as the work done by the 
system in expanding from B to E along the Van der Waals isotherm 
BCDE. That these two path integrals, ∫PdV, are identical follows 
from the Helmholtz form of the fundamental constraint, 

dA = –SdT – PdV, (12.15)

and the requirement that dT = 0 along each path. Integrating (12.15) 
along the isotherm- isobar BE produces 

  

A(T,V
V

) − A(T,V
L
) = − PdV

B→ E
∫

= –P(T )(VV – VL) . 
(12.16)

On the other hand, integrating (12.15) along the Van der Waals 
isotherm from B to C to D to E produces

  

A(T,V
V

) − A(T,V
L
) = − P(V ,T)

T =const
dV

VL

VV

∫ , (12.17)
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where P(V,T ) is given by the Van der Waals P- V- T equation of state 
(12.1). Since the left- hand sides of equations (12.16) and (12.17) are 
identical, the condition 

  

P(T)(V
V

− V
L
) = P(V ,T)

T =const
dV

VL

VV

∫  (12.18)

is graphically equivalent to choosing the isotherm- isobar in Figure 
12.5a so that the two shaded areas are equal. Those states described 
by the equation of state but cut off from it by a properly chosen 
isotherm- isobar are, except with very special attention to suppress-
ing instability, never realized. 

For the Van der Waals equation of state, (12.1), condition 
(12.18) reduces to

  

P(T)(V
V

− V
L
) = RT

V /n − b)
− a

n2

V 2

⎡

⎣
⎢

⎤

⎦
⎥dV

VL

VV

∫ . (12.19)

Although we can complete the integral in (12.19), the result and the 
other two conditions that defi ne the vapor dome boundary, (12.12) 
and (12.13), must be solved numerically for the three functions 
VL(T ), VV(T ), and P(T ).

12.5 Clausius- Clapeyron Equation

The P- V- T equation of state of a fl uid system with two independent 
state variables takes the form of an equation, P = P(V,T ), with two 
independent variables, here V and T, and a single dependent vari-
able, here P. However, stable equilibria within a two- phase region 
are described by

P = P(T ) , (12.20)

where V assumes any value within a fi nite range defi ned by the 
boundary of the two- phase region. The function P(T ) also describes 
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the projection of the two- phase region in P- V- T space, as shown in 
Figure 12.3, onto P- T space, as shown in Figure 12.6.

While the laws of thermodynamics alone cannot determine the 
function P(T ), Emile Clapeyron (1799–1864) discovered that the 
second law of thermodynamics does constrain the form taken by its 
derivative dP / dT, that is, constrains the slope of the curves in Fig-
ure 12.6. Clapeyron’s analysis, published in 1832, was performed 
without benefi t of the fi rst law. Rudolph Clausius later built upon 
Clapeyron’s result.

Recognizing that the Gibbs free energy, G(T,P), is uniform 
along an isotherm- isobar within a two- phase region is the key to 
deriving the Clausius- Clapeyron equation. Consider the two dif-
ferentially separated isotherm- isobars within the two- phase region 
of P- V space as shown in Figure 12.7. The Gibbs free energy of a 
two- phase system described with variables P, T, and volume Va , here 

FIGURE 12.6 The two- phase regions of Fig. 12.3 projected onto curves in 
the P- T plane. The triple line (s- l- g in Fig. 12.3) projects onto a point.

FIGURE 12.7 Differentially spaced  isotherm- isobars in a two- phase region.
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denoted G(T,P)a , is identical in value to the Gibbs free energy with 
the same variables P, T, and a different volume Vb , that is, G(T,P)b , 
since these points are on the same isotherm- isobar. Likewise, the 
Gibbs free energy with independent variables P + dP, T + dT, and 
volume Va is identical in value to the Gibbs free energy with variables 
P + dP, T + dT, and volume Vb . Symbolically,

G(T,P)a = G(T,P)b (12.21)

and

  
G(T + dT,P + dP)

a
= G(T + dT,P + dP)

b
, (12.22)

where, of course, G(T,P)a ≠ G(T + dT, P + dP)a and G(T,P)b ≠ 
G(T + dT,P + dP)b . Note, again, that the Gibbs free energy depends 
only on its independent variables, T and P, and not on the system 
volume, V. Rather, the volume V, according to the Gibbs form of 
the fundamental constraint dG = – SdT + VdP, specifi es the deriva-
tive (�G / �P)T .

Subtracting both sides of (12.21) from both sides of (12.22) 
produces

G(T + dT,P + dP)a – G(T,P)a = 

G(T + dT,P + dP)b – G(T,P)b , 
(12.23)

which is equivalent to

  
dG(T,P)

a
= dG(T,P)

b
. (12.24)

Making use of the fundamental constraint dG = –SdT + VdP, Equa-
tion (12.24) becomes

 
−S

a
dT + V

a
dP = −S

b
dT + V

b
dP, (12.25)

that is,

  

dP

dT
=

(S
b

− S
a
)

(V
b

− V
a
)

. (12.26)
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The entropy difference Sb – Sa is not directly measurable. However, 
Sb – Sa is related to the latent heat of transition Qa→b because

 
dQ

rev
= TdS , (12.27)

which can be integrated along an isotherm to yield

  
Q

a→ b
= T(S

b
− S

a
) . (12.28)

This result reduces (12.26) to the Clausius- Clapeyron equation

  

dP

dT
=

Q
a→ b

T(V
b

− V
a
)

, (12.29)

where Qa→b is the latent heat of transition of the process that 
takes the system from Va to Vb along the two- phase isotherm- 
isobar.

The Clausius- Clapeyron equation determines the local slope of 
the P- T space phase- boundaries, as depicted in Figure 12.6, and ex-
plains several more or less commonly experienced phenomena. One 
is that the boiling temperature of water decreases with increased 
elevation and, consequently, decreased atmospheric pressure. For 
instance, at the boiling temperature of water, 100°C, and atmo-
spheric pressure, P = 1 atm, the latent heat of vaporization of water 
is given by QL→V = 539 cal / g, the volume of one gram of liquid 
water by VL = 1.04 cm3 / g, and the volume of one gram of water 
vapor by VV = 1.67 103 cm3 / g so that VV – VL ≈ VV. These values 
imply

   

dP

dT
= 3.62 × 103  i 

Pa
oC

   
= 1

28
 i 

atm
oC

. 

(12.30)

Thus, each 1 / 28 atm drop in pressure depresses the boiling point 
of water one degree Celsius. At the top of Mount Everest, where 
P = 0.35 atm, the boiling point of water is reduced by 0.65 × 28°C, 
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or about 18°C—that is, to 82°C, provided that the boiling point 
depression rate remains constant over this interval.

Except near the critical point, vaporization increases the volume 
of a substance by a large factor. And vapor states at least roughly 
approximate an ideal gas. These approximations, VV – VL ≈ VV and 
VV ≈ nRT / P, transform the Clausius- Clapeyron equation (12.29) 
into a useful rule:

 

dP

dT
≈

Q
L→V

TV
V

  
≈

(Q
L→V

/n)P

RT 2
. 

(12.31)

The freezing- point depression of water is a less directly experi-
enced but also interesting phenomenon. At T = 0°C water contracts 
upon melting, from VS = 1.09 cm3 / g to VL = 1.00 cm3 / g so that 
VL – VS = –0.09 cm3 / g. Furthermore, the latent heat of fusion of 
water QS→L = 80 cal / g. These values imply

   

dP

dT
= −130 i 

atm
oC

. (12.32)

Therefore, an increase of 130 atm depresses the freezing point—that 
is, the melting point—of water by one degree Celsius. 

It has been claimed (and disputed) that the tiny edges of ice 
skate blades, as they support a human body, produce pressure suf-
fi cient to melt the ice below and allow the skater to glide on a layer 
of water. An even more dramatic demonstration of the freezing-
 point depression of water occurs when two weights are hung on the 
ends of a wire that passes over a block of ice. The force exerted by 
the wire lowers the melting point of the ice beneath the wire and, if 
the weights are suffi ciently heavy, causes it to melt. The wire pushes 
through the water which then returns to atmospheric pressure and 
refreezes. In this way the wire gradually passes through an otherwise 
intact block of ice. (See Problems 12.5–12.7.)
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12.6 Critical Point

The highest- temperature isotherm that passes through the two-
 phase region does so at the critical point where it infl ects, that is, 
simultaneously satisfi es, 

   

�P

�V

⎛
⎝⎜

⎞
⎠⎟

T

= 0  (12.33)

and

   

�2P

�V 2

⎛

⎝⎜
⎞
⎠⎟

T

= 0 . (12.34)

The Van der Waals equation of state (12.1) and the conditions 
(12.33), and (12.34) produce the critical point coordinates,

  
P

c
= a

27b2
, (12.35)

  

V
c

n
= 3b , (12.36)

and

  
T

c
= 8a

27Rb
, (12.37)

in terms of the parameters, a and b, that characterize the Van der 
Waals fl uid. These, in turn, imply a Van der Waals critical compres-
sion factor

  

P
c
V

c

nRT
c

= 3

8
= 0.375 (12.38)

that is about 30% higher than those found in Table 12.1. A differ-
ence of this size between Van der Waals theory and actual experi-
mental outcomes is typical. (See Problems 12.8–12.11.)
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Chapter 12 Problems

12.1 P- V Phase Diagram. Draw the P- V phase diagram for a sub-
stance that shows all three common phases. Label the solid, liquid, and gas 
phases; the various coexistence regions; the critical point; the triple point; 
and the triple line. Distinguish between gas and vapor.

12.2 Lever Rule. The lever rule relates the fraction in each phase of 
a two- phase system to its volume, V, relative to parameters at each end of 
the isotherm- isobar. The relation is that of a lever with “masses” nL and 
nV balanced at distances (V – VL) and (VV – V ), respectively, from a pivot 
at V. Thus, 

  
n

L
(V − V

L
) = n

V
(V

V
− V) .

Derive the lever rule from the idea, encapsulated in Equations (12.7) 
and (12.8), that each phase coexisting in a two- phase system is the phase 
of a purely saturated fl uid.

12.3 Two- Phase Region. One hundred grams of H2O are at atmo-
spheric pressure and 100°C. If 5 g are in vapor phase and 95 g in liquid 
phase, what is the total volume of the system? Use the specifi c volumes 
found near the end of Section 12.5.

12.4 Heat Capacity. Show that during a fi rst- order phase transition 
in which (�G / �T )P changes discontinuously, the specifi c heat at constant 
volume CV → ∞.

12.5 Boiling Point Elevation. A particular liquid boils at 130°C at a 
pressure of 1.0 atm and has a heat of vaporization of 1.44 × 103 cal  / mol. At 
what temperature will this liquid boil if its pressure is raised to 1.05 atm? 
Assume that dP / dT remains constant over this interval.

12.6 Clausius- Clapeyron Rederived. Derive the Clausius- Clapeyron 
equation (12.26) by applying the reciprocity theorem in the two- phase re-
gion. Follow these steps: (a) reciprocity on variables P, V, and T; (b) a 
Maxwell relation that shifts from variables P, V, and T to variables S, V, 
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and T; (c) the chain rule; and fi nally, (d) the evaluation of partial derivatives 
in the two- phase region.

12.7 Saturated Vapor Model. Assume that the volume of a saturated 
liquid is ignorably small compared with the volume of the saturated vapor 
at the same temperature and that the ideal gas equation of state, PV = nRT, 
describes the saturated vapor. 

(a) Given these assumptions derive an expression for P(T ) within a 
region of the vapor dome for which the heat of transition Ql→�

 is 
a constant independent of temperature. Use the initial condition 
P = Po when T = To to evaluate the integration constant. 

[Hint: Use Equation 12.31.] (S)
(b) Use this relation and the data presented near the end of Section 12.5 

to reestimate the number of degrees the boiling point of water is 
depressed at the top of Mount Everest.

12.8 Van der Waals Critical Point. Derive the Van der Waals critical 
point expressions Pc = a / 27b 2, Vc = 3bn, and Tc = 8a / 27Rb from the condi-
tions for infl ection of the Van der Waals isotherm.

12.9 Dieterici Equation of State. The Dieterici equation of state,

  

P = RT

V

n
− ′b

⎛
⎝⎜

⎞
⎠⎟

exp
− ′a n

RTV

⎧
⎨
⎩

⎫
⎬
⎭

,

also models the liquid- vapor two- phase region. Find the critical point data, 
Pc , Vc , Tc , and the critical compression factor, PcVc / nRTc , it implies. Is this 
PcVc / nRTc closer to those collected in Table 12.1 than that predicted by the 
Van der Waals equation of state?

12.10 Mie- Grüneisen Equation of State. The Mie- Grüneisen P- V- T 
equation of state,

  

P =
n

m
RT

V
+

3B
o

(n − m)

V
o

V

⎛

⎝⎜
⎞

⎠⎟

(n + 3) / 3

−
V

o

V

⎛

⎝⎜
⎞

⎠⎟

(m + 3) / 3⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ ,

where nm is the number of moles, models the transition between a vapor 
and a generic condensed phase. With four characterizing parameters (n, m, 
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Vo , and Bo with n > m) it can fi t data more closely than either the Van der 
Waals or the Dieterici P-V- T equation of state, since these have only two 
characterizing parameters. Find expressions for the critical point data Pc , Vc ,
Tc , and for the critical compression factor PcVc / nRTc in terms of the model’s 
characterizing parameters.

12.11 Cross-Differentiation. Suppose we postulate the existence of 
equations of state having the forms P = (nRT / V) + f (V ) and E = ∫CV(T )dT

+ g(V ). Show that cross- differentiation arising from the entropy form of 
the fundamental constraint dS = (1 / T )dE + (P / T )dV requires that f (V ) =
–dg(V ) / dV.
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13.1 The Principle of Thomsen and Berthelot

The third law of thermodynamics was developed over a number 
of years, beginning in 1906 with the contributions of the German 
physical chemist Walther Nernst (1864–1941). Nernst proposed 
two different versions of what he called a new heat theorem. Max 
Planck (1858–1947) proposed a third, stronger version of the third 
law. While closely related, these three  versions—here referred to 
as entropy change, unattainability, and absolute entropy—have 
distinct contents. Each is an attempt to bring the low- temperature
behavior of physical systems under one principle.

The third law of thermodynamics is sometimes called the 
Nernst postulate after its originator. The designation third law, al-
though very common, is in some ways pretentious. The third law 
is neither as foundational nor as consequential as the other laws of 
thermodynamics. Yet it cannot be derived from the other laws, and 
it provides a useful constraint on low- temperature experiments and 
theories.

T H I R T E E N

The Third Law
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Nernst’s initial motivation was to explain the principle of Thom-
sen and  Berthelot—actually more a rule of thumb than a principle. 
According to Julius Thomsen (1826–1909) and Marcellin Berthelot 
(1827–1907), chemical reactants tend to realize the most exother-
mic reaction possible, that is, the reaction that produces the most 
heat. Recall from Equation (8.18) that the heat absorbed, Q, by a 
 constant- pressure system is the change in the system enthalpy, �H. 
Thus, according to the principle of Thomsen and Berthelot, chemi-
cal systems realize the state with the smallest possible enthalpy. This 
principle seemed a plausible explanation of many phenomena even 
if it was known, in the late nineteenth century, to have a number 
of exceptions.

But Nernst knew that the appropriate stability criterion for 
chemical systems maintained at constant temperature and atmo-
spheric pressure is minimum Gibbs free energy, not minimum en-
thalpy. Gibbs free energy, G[≡ E + PV – TS ], is related to enthalpy, 
H[≡ E + PV ], through their defi nitions by

 H = G + TS. (13.1)

Thus, changes in the enthalpy, �H, and Gibbs free energy, �G, in a 
 constant- temperature process are related by

  �H = �G + T�S. (13.2)

That, according to (13.2), �H = �G in the limit T → 0 alone does 
not explain the relative usefulness of the principle of Thomsen and 
Berthelot. But if �S were to remain small as T → 0, the principle 
of Thomsen and Berthelot might hold over a considerable range of 
temperatures.

13.2 Entropy Change 

Nernst adopted the limit �S → 0 as T → 0 as the entropy change 
version of the third law: 



166   M E R E  T H E R M O DY N A M I C S

The entropy change �S in any reversible isothermal process ap-
proaches zero as the temperature approaches zero. 

Entropy change implies that certain thermodynamic coeffi cients 
vanish as T → 0. Consider, for instance, a fl uid described in terms 
of the independent variables T and V, as is appropriate when adopt-
ing the Helmholtz form of the fundamental constraint, dA = –SdT 
– PdV. Then the equations of state assume the form S = S(V,T ) and 
P = P(V,T ). Because the partial derivative (�S / �V )T is defi ned by 
the limit

   

�S

�V

⎛
⎝⎜

⎞
⎠⎟

T

= lim
�V →0

S(V + �V ,T) − S(V ,T)
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⎡

⎣
⎢

⎤

⎦
⎥

T =cons

 (13.3)

and, according to entropy change �S = S(V + �V,T ) – S(V,T) → 0 
as T → 0, then

   

�S

�V

⎛
⎝⎜

⎞
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T

→ 0 as T → 0  (13.4)

as long as these two limits, �V → 0 and T → 0, may be taken in 
either order. For the same reason

   

�S

�P

⎛
⎝⎜

⎞
⎠⎟

T

→ 0 as T → 0. (13.5)

These limits, in turn, imply, through Maxwell relations (8.25) and 
(8.26), that
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�T
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⎞
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P

→ 0 as T → 0  (13.6)

and

   

�P

�T

⎛
⎝⎜

⎞
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V

→ 0 as T → 0 . (13.7)

Thus, according to the entropy change version of the third law, the 
isobaric expansivity �P = V–1(�V / �T )P and pressure coeffi cient �V = 
P –1(�P / �T )V both vanish in the limit T → 0. Furthermore, according 
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to (8.46), CP – CV = T(�V / �T )P(�P / �T )V . Therefore, entropy change 
also requires that

  
C

P
− C

V
→ 0 as T → 0. (13.8)

That these predictions have been frequently confi rmed supports the 
entropy change version of the third law. 

Further deductions from entropy change require adopting the 
fi nite entropy  hypothesis—that the entropy S(V,T ) remains fi nite 
as V is held constant and T → 0. This hypothesis is natural to and 
explicit in the absolute entropy version of the third law that we con-
sider later. Here we adopt the fi nite entropy hypothesis as a separate 
assumption. According to entropy change,

   
�S = S(V

2
,T) − S(V

1
,T) → 0 as T → 0  (13.9)

for arbitrary V2 and V1. Thus, we may replace V2 in (13.9) with V3 
or any other value of V and, using the fi nite entropy hypothesis, 
conclude that

  
S(V

1
,0) = S(V

2
,0) = S(V

3
,0) . . . , (13.10)

where the notation S(V,0) denotes the limit of S(V,T) as T → 0. This 
means that all curves S = S(V,T ) for constant V must approach a 
common value of entropy So ≡ S(V,0) as T → 0 for arbitrary V, that 
is, each system approaches a unique entropy as T → 0. Additionally, 
all isochors must have positive slope (�S / �T)V > 0 when T > 0, since 
CV = T(�S / �T)V and CV > 0 is required of any T > 0 system in stable 
equilibrium. These properties are illustrated in Figure 13.1.

 13.3 Unattainability

The unattainability version of the third law follows from and is 
logically equivalent to the entropy change version of the third law. 
According to unattainability, the equivalent of which was fi rst pro-
posed by Nernst in 1912, 
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No reversible adiabatic process starting at a non- zero tempera-
ture can take a system to zero temperature. 

We cannot, for instance, cool a gas to zero temperature by revers-
ibly and adiabatically (that is, isentropically) expanding the gas. 
Unattainability also applies to the technique of adiabatic demagne-
tization. We cannot cool a magnetic material to zero temperature 
by reversibly and adiabatically turning down the applied magnetic 
fi eld.

In order to prove the equivalence of entropy change and un-
attainability we need to prove two propositions: (1) that entropy 
change implies unattainability and (2) that unattainability implies 
entropy change. Equivalently, and more conveniently, we prove the 
contrapositive of each of these propositions. In these proofs we take 
for granted the fi nite entropy hypothesis that S(V,T ) remains fi nite 
as T → 0 and the stability requirement that (�S / �T)V > 0 whenever 
T > 0.

The contrapositive of proposition 1 is that a denial of unattain-
ability leads to a denial of entropy change. To deny unattainability 

FIGURE 13.1 Curves S = S(V,T ) for constant values of V. According to the 
entropy change version of the third law and the fi nite entropy hypothesis, 
these isochors must all approach the same entropy, So , as T → 0. Stability 
requires that (�S / �T )V > 0 when T > 0.
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means that an isentropic process exists that intersects the T = 0 axis. 
Such a process would take the system along an isentrope from an 
initial state with V = Vi and T = Ti to a fi nal state with V = Vf and T 
= 0, as illustrated in Figure 13.2. Isochors that pass through the end-
points of this isentrope are also shown. These isochors must inter-
sect the T = 0 axis at different values of entropy, S(Vi ,0) and S(Vf ,0) ≠ 
S(Vi , 0), as shown. Consequently, S(Vf ,T ) – S(Vi ,T ) does not vanish 
in the limit T → 0 as required by entropy change. Therefore, a denial 
of unattainability leads to a denial of entropy change.

The contrapositive of proposition 2 is that a denial of entropy 
change leads to a denial of unattainability. If we deny entropy 
change, an isothermal process Vi → Vf exists for which the en-
tropy change S(Vf ,T) – S(Vi ,T) does not approach zero as T → 0. This 
supposed nonvanishing, zero- temperature, isothermal process is 
also illustrated in Figure 13.2. Consequently, isochors, V = Vi and 
V = Vf , emerge from each end of this isotherm and further defi ne 
an isentrope that intersects the T = 0 axis at the point S = S(Vf ,0). In 
this way unattainability is denied. Therefore, denial of entropy 
change leads to a denial of unattainability, and the logical equivalence 
of these two versions of the third law has been demonstrated.

FIGURE 13.2 Two impossible isochors, V = Vi and V = Vf , that defi ne an 
isentrope intersecting the T = 0 axis and a fi nite isotherm along the 
T = 0 axis. These are used in proving the logical equivalence of the 
entropy change and unattainability versions of the third law.



170   M E R E  T H E R M O DY N A M I C S

The unattainability version of the third law is often loosely 
characterized as declaring impossible all processes that attain abso-
lute zero temperature. Certainly, unattainability prohibits any pro-
cess from reaching the point T = 0 and S = S0 in a fi nite number of 
isotherms and isentropes. Such process would have to include at 
least one isentrope that intersects the T = 0 axis, and this is explic-
itly forbidden by the unattainability version of the third law. Thus, 
any process that begins with  fi nite- sized isotherms and isentropes 
and attempts to angle its way toward the points T = 0 and S(Vf ,T ) 
– S(Vi ,T ) without intercepting either the T = 0 or the S = S0 axes, as 
illustrated in Figure 13.3b, must eventually fail or become a smooth 
path. However, an equilibrium process that follows a smooth path 
in S- T space, as illustrated in Figure 13.3a, is not forbidden by un-
attainability, since this path is effectively composed of an infi nite 
number of isotherms and isentropes. Neither does unattainability 
forbid a non-equilibrium process that somehow takes a fl uid system 
from an arbitrary state to the T = 0 and S = So state. However, it is 
diffi cult to imagine how such a  smooth- path or a non-equilibrium 
process might, in practice, be realized.

FIGURE 13.3 (a) A supposed  smooth- curve reversible process that reaches 
the T = 0, S = So state. (b) A process composed of isotherms and isen-
tropes that attempts to reach the T = 0, S = So state without fi rst intersect-
ing either the T = 0 or the S = So axes.
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13.4 Absolute Entropy

The fi nite entropy hypothesis plus the entropy change (or unattain-
ability) version of the third law together constitute the absolute 
entropy version of the third law. This version of the third law origi-
nates with Max Planck, whose own description is worth quoting: 
“The gist of the theorem is contained in the statement that, as the 
temperature diminishes indefi nitely, the entropy of a chemically ho-
mogeneous body of fi nite density approaches indefi nitely near to 
a defi nite value, which is independent of the pressure, the state of 
aggregation and the special chemical modifi cation.”

Note the two parts of Planck’s statement: (1) that the entropy 
of a system approaches a defi nite (that is, fi nite) value as T → 0 and 
(2) that this limiting value is independent of other thermodynamic 
variables, including chemical modifi cations to the system. Part 2 
is equivalent to Nernst’s entropy change version, while part 1 is 
the fi nite entropy hypothesis. Thus, absolute entropy is a stronger 
statement than either entropy change or unattainability per se; the 
former implies the latter, but the latter do not imply the former.

One consequence of the restriction to fi nite limiting entropies is 
that the heat capacity

  
C

V
→ 0 as T → 0  (13.11)

and, in view of (13.8), 

  
C

P
→ 0 as T → 0. (13.12)

To demonstrate (13.11), integrate the relation CV = T(�S / �T)V and 
so produce

  

S(V ,T) − S(V ,0) =
C

V
(V , ′T )

′T
d ′T

0

T

∫ . (13.13)

Given that S(V,0) and S(V,T ) are fi nite, the integral on the right-
hand side of (13.13) must be fi nite, its integrand must be integrable, 
and, consequently, CV → 0 as T → 0. Calorimetric measurements 
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have confi rmed the zero- temperature limits, (13.11) and (13.12), of 
the heat capacities CV and CP .

Evidence that the entropy of a system approaches the same fi nite 
value as T → 0 independently of its volume, pressure, or arrange-
ment of atoms into molecules requires comparing the entropies of 
a system in different states as each approaches zero thermodynamic 
temperature. Since only the entropy difference between two states 
connected with a reversible process can be measured, such com-
parisons require the reversible transformation of one of two initially 
identical systems into another state and the cooling of each system 
to very low temperatures. The transformation could be the chemi-
cal decomposition of one substance into component substances, a 
structural (that is, allotropic) transition from one form of solid into 
another, or a transition from liquid to glass or glass to liquid. In 
any case, the entropy change attending the transition of one system 
into another state and the subsequent cooling is compared with 
the entropy change attending the cooling of the originally identi-
cal system. The absolute entropy and entropy change forms of the 
third law require that these entropy changes be identical, and careful 
measurements show that they are.

Interestingly, the absolute entropy version of the third law 
makes no claim about the relative value of the limiting entropy of 
systems that cannot be reversibly transformed into one another. In 
fact, the entropy of systems that cannot be reversibly transformed 
into one another cannot be compared with one another. Such ther-
modynamically disconnected systems include those composed of nu-
clei with different neutron-to-proton ratios. However, this inability 
to compare gives us the freedom to adopt as a convention the same 
(or even differing) limiting entropies for thermodynamically discon-
nected systems. Those who construct tables of absolute entropy for 
a variety of elements take advantage of this freedom, although they 
do not often mention that the relative size of entropies belonging 
to systems that cannot be reversibly transformed into each other 
carries no information.

Occasionally one fi nds formulations of the third law that miss 
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this, possibly subtle, point. For instance, the statement that “the 
entropy of all perfect crystals is the same at thermodynamic zero” 
mixes physical law and allowed convention. A more correct version 
of the third law using the same language would be “the entropy of 
all perfect crystals may be taken to be the same at thermodynamic 
zero.”

Chapter 13 Problem

13.1 Low- Temperature Limit of Cavity Radiation. Many of the equa-
tions of state discussed in this volume incorporate a constant heat capacity 
CV appropriate only for high- temperature systems. However, the equations 
of state for cavity radiation, in Section 9.3, should obtain for all tempera-
tures, including those down to the T → 0 limit. Show that cavity radiation 
observes the following limits. 

(a) 
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(b) 
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(c) 
  
C

V
→ 0 as T → 0 .
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Physical Constants in SI Units 

Name Symbol and Value

Gas constant R = 8.31 J / (K mole)
Stefan-Boltzmann constant B = 5.67 × 10–8 W / (m2 K4)
Magnitude of the electric charge e = 160 × 10–19 C
Acceleration of gravity g = 9.8 m / s2

Speed of light in vacuum c = 3.00 × 108 m / s
Radiation constant a = 4B/c = 7.56 × 10–16 kg / (s2 K4m)
Permeability of free space �o = 4� × 10–7 H / m
Mechanical equivalent of heat J = 4.186 J / cal

Standard Defi nitions

Name Symbol and Defi nition

Atmospheric pressure 1 atm = 1.01 × 105 Pa
= 760 Torr
= 760 mm Hg
= 14.7 lbs / in2

Bar  1 bar = 105 Pa
Standard temperature  273 K
Standard (or normal) pressure 1 atm
Volume of ideal gas at standard 
 temperature and pressure 22.4 m3 / mol
Nutritional calorie 1 Cal = 103 cal
Liter 1 L = 103 cm3 = 10–3 m3

Appendix A

Physical Constants and Standard Defi nitions
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One way to characterize the logical content of a statement is to 
identify all of its consequences. But the fi rst and second laws of 
thermodynamics are too fundamental for this kind of characteriza-
tion; they have far too many consequences. Yet, we can do the next 
best thing: identify all the consequences of the laws for a certain 
small but important class of cycles—those cyclic processes that ex-
change heat with two or fewer heat reservoirs and that may or may 
not produce or consume work. There are 21 distinct simple cyclic 
processes belonging to this class. Indefi nitely complex cycles can 
be built up out of these simple ones. Each of the 21 simple cycles 
is diagrammed in Figure B.1. Note that when heat is exchanged 
with only one reservoir the distinction between hotter and colder 
reservoirs collapses.

Three of the 21 catalog cycles, identical to those in Figure 5.4, 
are explicitly allowed. These are already marked, in Figure B.1, with 
the symbol ✓. The fi rst law and each version of the second law 
prohibit certain other simple processes. Our task is to fi nd the other 
cycles necessarily forbidden by the fi rst law or a particular version 
of the second law and mark them with the symbol . We assume 
that all those not forbidden are allowed. In this way each thermo-
dynamic law will generate its own pattern of ✓ and  symbols on 
the catalog—a kind of logical fi ngerprint. Those versions of the 
second law with identical fi ngerprints are logically equivalent. 

By “necessarily violate” the fi rst law I mean cycles that can be 
proven equivalent to one of the one- arrow cycles, diagrammed in 
Figure 4.3. These directly violate the fi rst law. By “necessarily vio-
late” a version of the second law I mean cycles that can be proven 
equivalent to one of the cycles, diagrammed in Figures 5.2 and 5.3, 

Appendix B

Catalog of 21 Simple Cycles
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that directly violates a version of the second law. Catalog cycles that 
necessarily violate the fi rst law of thermodynamics are fairly obvi-
ous: (1b), (1c), (1e), (1f), (2b), (2f), (2g), (3c), (3e), and (3g). These 
are marked  in Figure B.2. Others, such as (1d), do not necessarily 
violate the fi rst law because their violation or nonviolation is con-
tingent upon the values of QH , QC , and W.

When inspecting the consequences of a particular version of the 
second law, say, Thomson’s second law, one can immediately mark 

FIGURE B.1 The catalog of 21 simple cycles that exchange heat with two 
or fewer heat reservoirs and that may or may not produce or consume 
work. Each one of the explicitly allowed cycles, also displayed in Fig. 5.4, 
is here marked with the symbol ✓.
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cycle (2e) on a copy of the catalog with a forbidden symbol, . To 
fi nd which others of the 21 cycles necessarily violate Thomson’s sec-
ond law requires more effort. As an example, consider the catalog 
cycle (1e), which extracts heat from a single heat reservoir without 
producing or consuming work. We can prove in the following way 
that this cycle necessarily violates both Carnot’s and Thomson’s 
second law. The cyclic process in question is denoted 1 in Figure 
B.3. We combine supposed cycle 1 with the explicitly allowed heat 
engine cycle 2. The two cycles are adjusted so that supposed cycle 

FIGURE B.2 Catalog of 21 simple cycles. Explicitly allowed cycles are 
marked ✓ and cycles necessarily prohibited by the fi rst law are marked .
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1 extracts the same heat from the reservoir at temperature TC that 
the explicitly allowed heat engine 2 rejects to that reservoir. Thus, 
QC = Q
C. The net result is a combined cyclic process 1&2 that simply 
extracts heat from a single reservoir and produces work W
—a clear 
violation of both Carnot’s and Thomson’s second laws. This viola-
tion follows for any positive initial values of QC , Q
H , Q
C , and W
. 
Therefore, we should mark cycle (1e) of both the Thomson and the 
Carnot catalogs with the symbol .

Any two logically equivalent versions of the second law should 
have identical catalogs, that is—have an identical pattern of ✓ and 

 markings. Likewise, any two catalogs with identical markings 
must follow from logically equivalent laws. For instance, since Car-
not’s second law is logically equivalent to Clausius’s second law, 
these two versions of the second law should allow and forbid exactly 
the same simple cycles. And since Thomson’s second law is less re-
strictive than either Carnot’s or Clausius’s, the former should forbid 
fewer cycles than either of the latter.

FIGURE B.3 Indirect proof that cyclic process 1 is necessarily forbidden by 
both Carnot’s and Thomson’s second laws. Supposing that cyclic process 
1 is possible necessarily leads to an engine 1&2 that violates the Carnot 
and Thomson statements of the second law.
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Appendix B Problems

B.1 Thomson. Which of the 21 simple cycles represented in Figure 
B.1 are necessarily forbidden by Thomson’s statement of the second law of 
thermodynamics?

B.2 Necessarily Forbidden. Determine which of the 21 simple cycles 
are necessarily forbidden

(a) by Carnot’s second law;
(b) by Clausius’s second law.

B.3 Another Second Law. Show that the following version of the sec-
ond law is at least as restrictive as Thomson’s second law by fi nding which 
of its catalog cycles are necessarily forbidden:

A cyclic process that extracts heat from at least one reservoir but does 

not reject heat to another reservoir is impossible.

B.4 First and Second Laws. Show that the Thomson and the Carnot / 
Clausius statements of the second law necessarily forbid the same catalog 
cycles when each is assumed in conjunction with the fi rst law. 
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Adiabatic boundary. A boundary that prohibits heat interactions.
Arrow of time. A property of isolated thermodynamic systems that requires 

their entropy to increase during an irreversible process.
Boundary. The surface that separates a system from its environment. A 

boundary permits or forbids work to be done on or by the system, 
permits or forbids heat exchange, and permits or forbids matter to 
enter or leave the system.

Cycle. A sequence of interactions that returns a system to its initial state.
Diathermal boundary. A boundary that permits heat exchange.
Effi ciency, heat engine. The ratio of the work produced by a heat engine to 

the heat it absorbs from the hotter of the two reservoirs with which 
it interacts.

Entropy. An extensive thermodynamic state variable that quantifi es a sys-
tem’s accumulated irreversible change relative to a reference state.

Equation of state. A relation among state variables.
Equilibrium process. Same as quasistatic process.
Equilibrium state. A state that changes only when the system’s environment 

changes.
Fluid. A class of systems that can be adequately described by a temperature, 

a volume, and a single-valued pressure.
Heat. That which when transferred to or from a system through an 

impermeable, work- prohibiting boundary changes the system’s state.
Heat capacity. The quantity of heat absorbed or rejected by a system per 

unit change in temperature caused by that interaction.
Heat pump. A heat engine that transfers heat from a cold body to a hot 

body in order to maintain the temperature of the hot body.
Heat reservoir. An object to and from which indefi nite quantities of heat can 

be transferred without changing its temperature. The heat capacity of 
a heat reservoir is indefi nitely large.

Appendix C

Glossary of Terms
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Ice point, normal. The temperature at which ice melts at atmospheric 
pressure.

Intensive state variable. A thermodynamic variable that is independent of 
the size of the system.

Intrinsic stability. The stability of a homogeneous system arising from the 
mutual stability among its spatially separate parts.

Isentropic process. An entropy-conserving process.
Isobaric process. A constant pressure process.
Isochoric process. A constant volume process.
Isothermal process. A constant temperature process.
Latent heat. The net quantity of heat absorbed or rejected during a phase 

transition. The absorption or rejection of latent heat leaves a system’s 
temperature unchanged.

Latent heat of fusion. The heat required to melt one gram of solid at its 
normal melting point.

Latent heat of vaporization. The heat required to vaporize one gram of 
liquid at its normal boiling point.

Mechanical equivalent of heat. The ratio of work performed on a system to 
the heat absorbed by the same system that will cause the same increase 
in temperature. Its value is 4.186 joules / calorie.

Molar specifi c heat. Heat capacity per unit mole.
Nernst postulate. The third law of thermodynamics, especially those ver-

sions originating with the German physical chemist Walther Nernst 
(1864–1941).

Principle of Thomsen and Berthelot. A rule of thumb stating that chemical 
reactants realize the most exothermic reaction possible.

Quasistatic process. A series of changes that unfold so slowly that the sys-
tem always remains arbitrarily close to an equilibrium state.

Refrigerator. A heat engine that transfers heat from a cold body to a hot 
body in order to maintain the temperature of the cold body.

Reversible process. A process that proceeds indefi nitely slowly, that is, quasi-
statically, and without friction or internal dissipation.

Specifi c heat. Heat capacity per unit mass.
Stable equilibrium. The equilibrium state of a system that admits no 

thermodynamic change.
State. A system’s condition as determined by the values of its state variables. 

A thermodynamic state is described by a relatively small number of 
variables.



G LO S S A R Y  O F  T E R M S   183

State variables. Variables whose value describes a system. The state vari-
ables of a system may change when the system interacts with its 
environment.

Steam point, normal. The temperature at which liquid water vaporizes at 
atmospheric pressure.

System. That part of the universe with which one is concerned. Each system 
is surrounded by a boundary with defi nite properties.

Temperature, empirical. Temperature as determined by the empirical state 
of a particular system.

Temperature, thermodynamic. Temperature as determined by either the 
heat ratio or the effi ciency of a Carnot cycle.

Thermal equilibrium. The relationship of two systems when those sys-
tems are such that if allowed to interact thermally through a work-
prohibiting, impermeable boundary do not change their state.

Thermometer. An equilibrium-indicating system.
Triple point. The thermodynamic state at which the solid, liquid, and vapor 

phases of a pure substance coexist.
Vapor dome. The region of thermodynamic phase space in which a liquid 

and its vapor coexist.
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1.3 Interactions. In each of the following interactions indicate whether 
the system indicated does work, has work done upon it, or does no work 
and whether the system boundary is diathermal or adiabatic.

(a) The system is the air contained within a bicycle tire along with a 
tire pump connected to it. The pump plunger is pushed down, forc-
ing air into the tire. Assume this interaction is over before the air is 
signifi cantly cooled.

Work is done on the air as the pump handle is forced down. The interaction 
occurs relatively quickly, and the air does not have time to cool—that is, 
there is no time for heat to be transferred from the air inside the pump to 
its environment. Thus, the system boundary is effectively adiabatic.

4.7 First Law Equivalent. The fi rst law of thermodynamics can be 
formulated as the following statement of impossibility: “It is impossible to 
devise a cycle that has no effect other than the performance of work on or 
by the environment.” 

(a) Use an indirect proof to show that this impossibility version of 
the fi rst law, the existence of heat engine and refrigerator cycles 
diagrammed in Figure 4.2a–b, and the possibility of adjusting and 
combining cycles, as explained in Section 4.5, together lead to the 
denial of the one- fl ow heat cycles diagrammed in Figure 4.3c–d. 

In constructing an indirect proof we assume the contradiction of the state-
ment to be proven and argue to some kind of absurdity. Given the purpose 
of both parts of this problem, the absurdity with which we wish to conclude 
is the possibility of the two one- fl ow heat cycles diagrammed in Figure 
4.3c–d. The contradiction of the stated impossibility version of the fi rst 
law is “It is possible to devise a cycle that has no effect other than the per-
formance of work on or by the environment.” Thus, we can devise cycles 

Appendix D

Selected Worked Problems
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that simply produce or consume work. We adjust these cycles so that they 
supply or consume the work consumed or produced by the legitimate heat 
engine and refrigerator cycles as diagrammed in Figure 4.2a–b. One such 
combination of two cycles is shown in Figure D.1.

A second cycle that simply consumes work is constructed in very simi-
lar fashion. These two cycles produce the absurdity consisting of declaring 
that the two one- fl ow heat cycles diagrammed in Figure 4.3c–d are possible, 
that is, of contradicting the impossibility of the two one- fl ow heat cycles. 

5.2 Clausius’s Second Law. Prove that the following processes lead to 
a violation of Clausius’s second law: 

(a) A cyclic process that absorbs heat from a reservoir and produces 
work as shown in Figure 5.2b. 

The strategy of this proof is illustrated in Figure D.2. On the left we see the 
supposed cycle that absorbs heat from a reservoir and produces work. Since 
this supposed cycle draws heat from only one reservoir, its temperature as 
well as its placement above or below the cycle symbol is arbitrary. This sup-
posed cycle is combined with the explicitly allowed refrigerator cycle that 
is also shown. The work produced by the supposed cycle, W, and the work 
consumed by the refrigerator, W
, are adjusted until W = W
. The combined 
cycle merely extracts heat Q

C + Q
C from the TC reservoir and rejects heat QH 
to the hotter TH  reservoir—clearly a violation of Clausius’s second law. 

6.1 Engine Effi ciencies 
(a) What is the maximum effi ciency of a heat engine operating between 

reservoirs with temperatures of 20°C and 500°C? 

FIGURE D.1 A supposed cycle (on the left) that simply produces work is 
combined with a legitimate refrigerator cycle (in the middle) to produce a 
cycle (on the right) that simply produces heat. The combination is made 
by adjusting the two cycles on the left until W = W
.
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The maximum effi ciency, ε = 1 – TC  / TH , is achieved by a Carnot cycle 
operating between a hotter reservoir with temperature TH and a colder 
one with temperature TC . However, this relation applies only when the 
temperatures are thermodynamic temperatures. We change Celsius tem-
peratures to Kelvin ones by adding 273° to the former. Then the maximum 
effi ciency of this engine becomes ε = 1 – (20° + 273°) / (500° + 273°), that 
is, 62%.

7.2 Entropy Change, I. Does the entropy of the following system in-
crease, decrease, or remain the same as it experiences each of the following 
changes of state? 

(a) One gram of water absorbs enough heat at 373 K and atmospheric 
pressure to evaporate. 

The water absorbs heat at a constant 373 K temperature. Since the system 
absorbs heat, its entropy increases. 

FIGURE D.2 A supposed cycle (on the left) that extracts heat from a single 
reservoir and produces work is combined with a legitimate refrigerator 
cycle (in the middle) to produce a cycle (on the right) that simply extracts 
heat from a colder reservoir and rejects heat to a hotter one. The com-
bined cycle is made by adjusting the supposed and legitimate cycles until 
W = W
.
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7.3 Entropy Change, II. Calculate the entropy change of these systems 
as a result of the following processes. (When necessary, use the data sup-
plied in Tables 3.1 and 3.2.) Express all answers in SI units. 

(a) Twenty- fi ve grams of aluminum melts. 

From Table 3.2 we fi nd that the heat of fusion of aluminum is 95.3 cal / g and 
that its melting temperature is 660°C. Thus, 25 g of aluminum absorb 25 × 
95.3 cal as it melts. Since the melting is a  constant- temperature process, the 
change in entropy is given by �S = Q / T, that is, (25 × 95.3) / (660 + 273) = 
2.55 · cal / K, or 10.7 J / K.

7.4 Carnot Cycle. Recall that a Carnot cycle is a reversible cycle that 
extracts heat QH from a hot reservoir at temperature TH , produces work W, 
and rejects waste heat QC to a cold reservoir at temperature TC < TH . . . . 
(See Chapter 7 for complete problem description.) 

(a) The heat absorbed during the isothermal process (S1,TH) → 
(S2,TH).

Since during an isothermal process �S = Q / T, where Q is the heat absorbed, 
therefore, Q = T�S, and in this case Q = TH(S2 – S1).

8.5 Hypothetical Characterizing Function. Suppose the characterizing 
function of a fl uid takes the form 

  
E(S,V) = a

S2

V
,

where a is a constant that characterizes the particular hypothetical system. 
(a) Determine the equations of state that assume the form T = T(S,V ) 

and P = P(S,V ). 

We fi rst need to remind ourselves of the fundamental constraint for which 
the energy, E, is a dependent variable and S and V are independent vari-
ables: dE = TdS – PdV. From this form we see that T = (�E  / �S)V . Now ours 
is the straightforward task of taking the derivative of the function of E given 
above with respect to S while holding V constant and setting the result equal 
to T. The result: T = 2aS  / V. A similar procedure produces P = aS2 / V2. 
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8.17 Joule- Thomson Coeffi cient. Start with the fundamental con-
straint dH = TdS + VdP, form each term into a derivative with respect to P 
with T held constant, and use one of the Maxwell relations to derive an 
expression for the so- called Joule- Thomson coeffi cient (�T / �P)H = (V / CP)
(T�P – 1) where CP = (�H  / �T)P and the isobaric expansivity �P ≡ V–1(�V / �T)P. 
(See Chapter 8 problems for a complete problem statement.) 

Starting with dH = TdS + VdP we form, as directed,

  

�H

�P

⎛
⎝⎜

⎞
⎠⎟

T

= T
�S

�P

⎛
⎝⎜

⎞
⎠⎟

T

+ V .

First, apply the reciprocity relation involving the three variables, H, P, and 
T, that is, 

   

�H

�P

⎛
⎝⎜

⎞
⎠⎟

T

�P

�T

⎛
⎝⎜

⎞
⎠⎟

H

�T

�H

⎛
⎝⎜

⎞
⎠⎟

P

= −1,

to fi nd that

  

�H

�P

⎛
⎝⎜

⎞
⎠⎟

T

= − �H

�T

⎛
⎝⎜

⎞
⎠⎟

P

�T

�P

⎛
⎝⎜

⎞
⎠⎟

H

.

Use this result on the left- hand side and recognize that CP = (�H / �T )P. 
Thus,

  

−C
P

�T

�P

⎛
⎝⎜

⎞
⎠⎟

H

= T
�S

�P

⎛
⎝⎜

⎞
⎠⎟

T

+ V .

The derivative (�S / �P)T can be transformed with the Maxwell relation 
(�S / �P)T = – (�V / �T )P the  right- hand side of which helps compose the 
coeffi cient �P = V –1(�V / �T)P . The desired result follows immediately. 

9.3 Adiabatic Transformation. A reversible adiabatic transformation 
is one for which dQrev = 0. Starting from the fi rst law of thermodynamics 
for reversible, adiabatic transformations of an ideal gas show that 

(a) During a reversible adiabatic transformation of an ideal gas the 
following are constant: TV �–1, PV �, and P1– �T �. Here � ≡ CP / CV .
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The fi rst law of thermodynamics for a reversible transformation of a fl uid 
is dE = dQ – PdV. When the transformation is also adiabatic, dQ = 0 and 
thus dE = –PdV. When the gas is ideal with constant heat capacity CV , P = 
nRT / V and E = CVT. Making these substitutions into the differential equa-
tion dE =  –PdV produces CVdT = –(nRT / V)dV, that is,

 

dT

T
= − nR

C
V

⎛

⎝⎜
⎞

⎠⎟
dV

V
,

which is integrated to produce ln[TVnR / CV] = constant, that is, TVnR / CV = 
constant. The ideal gas identity CP – CV = nR and the defi nition � ≡ CP / CV 
turn this result into the fi rst of the requested adiabatic constants.

The other constants follow from using the equation of state PV = nRT 
to eliminate undesired variables in favor of desired ones. For instance, us-
ing V = nRT / P to eliminate V in TV �–1 = constant produces T(nRT / P)�–1 
= T �P1– �(nR)�–1 = constant. This simplifi es to T �P1– � = constant, where we 
have changed the meaning of the constant term. Finally, the third adiabatic 
constant, PV �, is derived by using the ideal gas equation of state to eliminate 
T from TV �–1 = constant. 

9.10 Room- Temperature Solid. The energy-characterizing function 
for a room- temperature solid is 

   
E(S,V) =

(V − V
o
)2

2�
To

V
o

+ E
o
exp

S

C
V

−
�

Po
V

C
V

�
To

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

where Eo is an arbitrary integration constant with energy units. 
(a) Show that the two equations of state for a room- temperature solid, 

P = �PoT / �To + (1 – V / Vo) / �To and E = CVT + (V – Vo)
2 / (2�ToVo), can 

be generated from E(S,V ) and appropriate derivatives of E(S,V ). 

The fundamental constraint dE = TdS – PdV alerts us to the fact that the 
associated equations of state take the form T = (�E / �S)V and P = –(�E / �V)S. 
Taking the partial derivative of the given function E(S,V) with respect to 
S generates

   
T =

E
o

C
V

⎛

⎝⎜
⎞

⎠⎟
exp

S

C
V

−
�

Po
V

C
V

�
To

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.
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This is a legitimate equation of state but is not in requested form. The 
requested form follows from using the given function E(S,V ) to eliminate 
the entropy S from the above expression in favor of E and V. In practice we 
need only solve the above for the exponential term, that is,

   
exp

S

C
V

−
�

Po
V

C
V

�
To

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

C
V
T

E
o

,

and eliminate this term from the functional form E(S,V). The equation of 
state following directly from P = –(�E / �V)S must be similarly transformed 
by eliminating the exponential factor in order to produce the requested 
form. 

9.12 Cavity Radiation, II 

(a) Show that the characterizing function E(S,V) for cavity radiation is 
given by E(S,V ) = (3S / 4)4 / 3 / (aV)1 / 3.

In order to derive the characterizing function, E(S,V), for cavity radiation, 
we start from its two equations of state: P = E / 3V and E = aVT 4. Then 
we produce differential equations which can be integrated to yield either 
E(S,V ) or S(E,V ). If the latter is the result, then we solve for the former. 
The fundamental relation dE = TdS – PdV produces T = (�E / �S)V and P = 
–(�E / �V)S , while dS = dE  / T + (P /  T)dV leads to 1 /  T = (�S / �E)V and P / T = 
(�S / �V)E . The integrations are more straightforward when we use the latter 
two equations of state. We use the given equations of state to eliminate all 
but the independent variables E and V from the left- hand side of the two 
formal equations of state. Thus,

   

�S

�E

⎛
⎝⎜

⎞
⎠⎟

V

= aV

E

⎛
⎝⎜

⎞
⎠⎟

1/ 4

and

   

�S

�V

⎛
⎝⎜

⎞
⎠⎟

E

= a1/ 4E3 / 4

3V 3 / 4
.

In integrating these differential equations it is important to account for the 
partial derivatives. For instance, when we integrate the fi rst by holding V 
constant, any integration constants will be arbitrary functions of V. Thus, 
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dS = (aV )1 / 4E –1 / 4dE integrates to S(E,V ) = 4(aV )1 / 4E3 / 4 / 3 + f (V ), where the 
function f (V ) is as yet undetermined. In similar fashion the second dif-
ferential equation integrates to S(E,V) = 4a1 / 4E3 / 4V 1 / 4 / 3 + g (E). These two 
expressions for S(E,V ) are compatible if and only if f(V ) and g(V ) are iden-
tically zero. Then, S(E,V ) = 4(aV )1 / 4E 3 / 4 / 3, which when inverted produces 
the desired expression, E(S,V ) = (3S / 4)4 / 3 / (aV)1 / 3. 

10.2 Paramagnetic Material. Show that the energy, E, of a paramag-
netic material that obeys Curie’s law is a function of temperature, T, alone. 
Work only from what we know about paramagnetic materials. 

What we know about paramagnetic materials includes the fundamental 
constraint dE = TdS + (Bo / �o)dBm and Curie’s law, Bm = CBo / T. Since we 
want to derive a result on the relationship of the energy, E, to the variables 
Bm , Bo , and T, we seek formal relations that contain only these variables 
and not the entropy. Such a relation is found by recasting the fundamental 
relation in entropy form, that is, dS = dE / T – (Bo / �oT )dBm . From this we 
extract the  cross- differentiation

   

�

�B
m

1

T

⎛
⎝⎜

⎞
⎠⎟

E

= − �

�E

B
o

�
o
T
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⎠⎟
Bm

.

Making use of Curie’s law to eliminate Bo from the  right- hand side 
produces

    

�

�B
m

1

T

⎛
⎝⎜

⎞
⎠⎟

E

= − �

�E

B
m

�
o

C

⎛

⎝⎜
⎞
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Bm

.

The  right- hand side vanishes and the left- hand side becomes (�T / �Bm)E = 0. 
Thus, the temperature, T, is not a function of Bm but only of energy, E, that 
is, T = T(E). The inverse of this relationship shows that energy is a function 
of temperature alone. 

10.6 Eötvös Equation. The Eötvös equation of state for surface ten-
sion is (T) = o(1 – T / Tc), where T ≤ Tc . Show that, given the Eötvös equa-
tion of state and the context of the theoretical picture of Section 10.4, 

(a) the internal energy E = oA, and 
(b) the entropy S = oA  / Tc .
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The fundamental constraint for a surface is dE = TdS + dA, where from 
what we know of the general theoretical context of section 10.4 E(T ) = 
[(T ) – T(d / dT )]A. Substituting the Eötvös equation of state into this 
expression produces the answer given in part (a). To fi nd an expression for 
the entropy we write the fundamental constraint in entropy form, that is, 
dS = dE / T – ( / T )dA. Since E = oA, substitution into this version of the 
fundamental constraint yields dS = (o – )dA / T, which, given the Eötvös 
equation, reduces to dS = odA / Tc . The latter can be integrated directly to 
produce the result sought in part (b). 

10.12 Prove the following relations among variables describing a 
 single- phase, open fl uid system.

(a) 

   

�T

�n

⎛
⎝⎜

⎞
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S ,P

= ��

�S

⎛
⎝⎜

⎞
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P ,n

 and 
�V

�n

⎛
⎝⎜

⎞
⎠⎟

S ,P

= ��

�P

⎛
⎝⎜

⎞
⎠⎟

S ,n

.

The key to deriving these relations is to start with the correct fundamental 
constraint and make formal deductions from it. The independent variables 
appearing in the fi rst relationship above, (�T / �n)S,P = (�� / �S)P,n , are S, P, and 
n. We need a version of the fundamental constraint for an open fl uid system 
with these independent variables. Transforming the characterizing function 
from energy to enthalpy, H(= E + PV ), produces the desired form, dH = 
TdS + VdP + �dn. The equations of state that follow from this form are T = 
(�H / �S)P,n , V = (�H / �P)S,n , and � = (�H / �n)S,P . The relations sought follow 
from equating the appropriate  cross- differentiations. For instance, since 
� 2H / �n�S = � 2H / �S�n, then (�T / �n)S,P = (�� / �S)P,n . The other  Maxwell- like 
relations follow in similar fashion from other  cross- differentiations. 

12.7 Saturated Vapor Model. Assume that the volume of a saturated 
liquid is ignorably small compared with the volume of the saturated vapor 
at the same temperature and that the ideal gas equation of state, PV = nRT, 
describes the saturated vapor. 

(a) Given these assumptions derive an expression for P(T ) within a 
region of the vapor dome for which the heat of transition Ql→�

 is 
a constant independent of temperature. Use the initial condition 
P = Po when T = To to evaluate the integration constant. 

[Hint: Use Equation 12.31.]
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We start with the  Clausius- Clapeyron equation, dP / dT = Qa→b / T(Vb – Va), 
since this regulates the function P(T ) within a phase transition. Let state b 
be that of the saturated vapor and state a be that of the saturated liquid. 
Then Qa→b is the latent heat of vaporization. Given that the volume of the 
saturated liquid, Va , is ignorably small compared with the volume of the 
saturated vapor, Vb , at the same temperature, dP / dT = Qa→b / TVb . Further-
more, we treat the saturated vapor as an ideal gas so that Vb = nRT / P. Thus, 
we fi nd Equation 12.31, dP / dT = PQa→b / nRT 2. Since P and T are the only 
variables, we may separate these variables and integrate the result using the 
given initial conditions. Thus,

  

dP

P
=

Q
a → b

nR

dT

T 2

so that

  

dP

P
Po

P

∫ =
Q

a → b

nR

dT

T 2
To

T

∫ .

Completing the integration produces ln(P / Po) = (Qa→b / nR)(1 / To – 1 / T ), 
which can be solved for the desired function, P(T ) = Po exp[(Qa→b / nR)
(1 / To – 1 / T )].

13.1 Low- Temperature Limit of Cavity Radiation. Many of the equa-
tions of state discussed in this volume incorporate a constant heat capacity 
CV appropriate only for high- temperature systems. However, the equations 
of state for cavity radiation, in Section 9.3, should obtain for all tempera-
tures, including those down to the T → 0 limit. Show that cavity radiation 
observes the following limits. 

(a) 
   

�S

�V

⎛
⎝⎜

⎞
⎠⎟

T

→ 0 as T → 0 .

First the function S(V,T ) for cavity radiation must be found. Then the par-
tial derivative will follow easily. The quickest route is to start with the char-
acterizing function E(S,V ) = (3S / 4)4 / 3 / (aV )1 / 3 given in Problem 9.12, solve 
for S(V,E), and then eliminate E in favor of T and V via the equation of 
state E = aVT 4. Accordingly, S(T,V) = 4aVT 3 / 3. Thus, (�S / �V)T = 4aT 3 / 3, 
which vanishes in the T → 0 limit.  
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1.2 Work

1.3 (a) Adiabatic; work done on system. (b) Diathermal; no work 
done. (c) Adiabatic; system does work. (d) Diathermal; work done 
on system. (e) Adiabatic; no work done.

2.1 (a) Ro = 7.000 	, a = 3.92 10–3 / °C, b = –5.82 10 –7 / °C2.

 (b) 
  
T = a 2b( ) 1 + 4b a2( ) R R

o
− 1( ) − 1⎡

⎣
⎤
⎦ .

 (c) 421.1°C.

2.2 −40°C and −40°F

2.3 26 Ré

3.1 28 cal

3.2 0.221 cal / g °C

3.3 30.8°C or 87.4°F

3.4 1500 cal

4.1 5.48 J / cal

4.2 0.571°C

4.3 −11.6 J

4.4 (a) No. (b) Yes. (c) Positive.

4.5 Internal energy remains the same

4.6 (a) 0.172 J. (b) −0.122 J.

4.8 527 J of work is done by the system

Appendix E

Answers to Problems
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6.1 (a) 62%. (b) 40%.

6.2 0.043 cal

6.3 (a) 13. (b) 20.

6.4 (a) 
  
(1 − T

H
T

C
)/(1 + a) + (1 − T

M
/T

C
)a/(1 + a)

6.6 (a) 
    

�W = 
B
AT

C
4

T
H

T
C

− 1
⎛

⎝⎜
⎞

⎠⎟
.

 (b) 

    

A = 44 �W

33 
B
T

H
4
 and T

C
= 3

4
T

H
.

6.7 Q
3
/T

3
+ Q

2
/T

2
− Q

1
/T

1
≤ 0

6.8 (c) W = C T
H

+ T
C

− 2 T
H

T
C( )

7.1 
  
C ln(T

f
/T

i
)

7.2 (a) Increases. (b) Decreases. (c) Increases. (d) Remains the same. 
(e) Decreases. (f ) Increases. (g) Increases.

7.3 (a) 10.7 J /  K. (b) –60.5 J / K. (c) 14.1 J / K.

7.4 (a) T
H

(S
2

− S
1
) . (b) T

C
(S

1
− S

2
). (c) (T

H
− T

C
)(S

2
− S

1
). 

(d) 
  
(T

H
− T

C
)(S

2
− S

1
).

7.5 (a) No change. (b) +8.05 × 10–3 J / K.

7.6 (a) 
  
C ln[(T

H
+ T

C
)2 /4T

H
T

C
] . (b) Zero.

7.7 (a) −35.6 J /  K. (b) 36.3 J / K.

8.1 Left to right: Row (a): 0.49 atm, 380 torr, 380 mm Hg. 

 Row (b): 1.01 × 105 Pa, 760 torr, 760 mm Hg. 

 Row (c): 1.30 × 10−4 Pa, 1.30 × 10−9 atm, 10–6 mm Hg. 

 Row (d): 4.0 × 103 Pa, 4.0 × 10−2 atm, 30 torr. 

8.2 E = bPV 2 / n, where b = 1.25 × 10−4 mole / m3

8.3 (a) Path ABC. (b) Path ABC. (c) 2 × 105 J, 2 × 105 J. (d) 0. (e) 0.

8.4 4.7 atm
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8.5 (a) T = 2aS/V , P = aS2 /V 2 .

8.6 (a) 1/T = (�S/�E)
V

, P/T = (�S/�V)
E
. 

(b) (�/�V)
E
(1/T) = (�/�E)

V
(P/T).

8.7 (a) 26,000 cal = 1.09 × 105 J. (b) 3.38 × 104 J.

8.12 (a) P = −(�A/�V)
T
. (b) S = −(�A/�T)

V
. (c) E = A − T(�A/�T)

V
. 

(d) C
V

= −T(�2A/�T 2)
V

. (e) �
T

= 1/[V(�2A/�V 2)
T

]. 
(f) �

P
= −(�2A/�V�T)/V(�2A/�V 2)

T
. 

(g) �
V

= (�2A/�T�V)/(�A/�V)
T

.

8.15 Extensive: V, E, S, PV, H, CV , n, and (�V /�T)
P

. Intensive: P, T, 
and cV . Neither: E2, T / H, and �T .

9.4 (a) TC − CV V CV − C P = const.

9.5 3.17 atm

9.6 44.3 atm

9.7 (a) 
  
W

1→ 2
= nRT

H
ln(V

2
/V

1
). (b) Q

H
= nRT

H
ln(V

2
/V

1
) . 

(c) 
  
W

2→ 3
= C

V
(T

H
− T

C
). 

(d) 
  
W = nRT

H
ln(V

2
/V

1
) + nRT

C
ln(V

4
/V

3
).

9.8 (a) �E = 0. (b) �S = nRln(V
f
/V

i
) . (c) 

  
P

f
= P

i
V

i
/V

f
. 

(d) T
f

= P
i
V

i
/nR.

9.9 (a) nR(T
2

− T
1
)/(� − 1). (b) C

V
(T

3
− T

2
) . (c) nR(T

3
− T

4
)/(� − 1). 

(d) C
V

(T
4

− T
1
). (e) T

3
> T

4
> T

2
> T

1
. (f) 1 − r1− � . (g) 0.602.

9.14 (a) W
1→ 2

= (aT
H
4 /3)(V

2
− V

1
) . (b) Q

H
= (4aT

H
4 /3)(V

2
− V

1
) .

 (c) 
  
W

2→ 3
= a(V

2
T

H
44 − V

3
T

C
4 ) . 

 (d) W = (aT
H
4 /3)(V

2
− V

1
) + a(V

2
T

H
4 − V

3
T

C
4 ) + (aT

C
4 /3)(V

4
− V

3
)

+ a(V
4
T

C
4 − V

1
T

H
4 ).

9.15 (a) Ideal gas pressure: 1.02 × 1011 atm; radiation pressure: 1.27 
× 108 atm; ratio = 809. (b) Ideal gas pressure: 8.11 × 10 – 2 atm; 
radiation pressure: 2.82 × 10 – 6 atm; ratio = 2.88 × 104.

9.16 1.38 kW / m2
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10.1 (�T /�L)
S

= (�F /�S)
L
; −(�S/�L)

T
= (�F /�T)

L
; (�T /�F)

S
= −(�L/�S)

F
; 

and (�S/�F)
T

= (�L/�T)
F

10.3 �
o
(�T /�B

m
)

S
= (�B

o
/�S)

Bm
; 
   
−�

o
(�S/�B

m
)

T
= (�B

o
/�T)

Bm
; 

−�
o
(�T /�B

0
)

S
= (�B

m
/�S)

Bo
; and �

o
(�S/�B

o
)

T
= (�B

m
/�T)

Bo

10.4 2.87 × 10–2 J

10.7 (a) E(A,T) = 
o
A 1 − T

T
c

⎛

⎝⎜
⎞

⎠⎟

n −1

1 + T

T
c

(n − 1)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. 

 (b) S(A,T) =
An

o

T
c

1 − T

T
c

⎛

⎝⎜
⎞

⎠⎟

n −1

. 

11.1 The volume V; it is minimized.

12.3 8.45 × 103 cm3

12.5 141°C

12.7 (a) P/P
o

= exp{(Q
l → v

/nR)(T
o
−1− T −1)}. (b) 28°C (50°F).

12.9 P
c

= ( ′a /4 ′b 2)e−2 , V
c

= 2n ′b , T
c

= ′a /4R ′b , and 
P

c
V

c
/nRT

c
= 2e− 2 = 0.271

12.10 
  
P

c
= B

o

m

n + 3

⎛
⎝⎜

⎞
⎠⎟

(n + 3) / (n − m )
m + 3

n

⎛
⎝⎜

⎞
⎠⎟

(m + 3) / (n − m )

,

 V
c

= V
o

n + 3

m

⎛
⎝⎜

⎞
⎠⎟

3 / (n − m )
n

m + 3

⎛
⎝⎜

⎞
⎠⎟

3 / (n − m )

, 

 T
c

=
B

o
V

o

n
m

R

m

n + 3

⎛
⎝⎜

⎞
⎠⎟

m / (n − m )
m + 3

n

⎛
⎝⎜

⎞
⎠⎟

n / (n − m )

, 

 
P

c
V

c

n
m

RT
c

=
nm

(n + 3)(m + 3)

B.1 (1c), (1e), (2c), and (2e)

B.2 Both (a) and (b): (1b)–(1f), (2b)–(2f) 

B.3 (1c), (1e), (2c), (2e), (3c), (3e), and (3g)
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An item appears here for at least one, and usually for both, of two reasons: 
I consulted it in writing the text, and / or I recommend it for further study. 
Publication dates always refer to the fi rst edition unless two dates appear. 
Then the earlier date refers to the edition actually consulted and the second 
one (in parentheses) to the fi rst edition.

Adkins, C. J. Equilibrium Thermodynamics. 2nd ed. London: McGraw-
Hill, 1975 (1968). 
A carefully written textbook, more complete and at a higher level than 
Mere Thermodynamics. Contains a description of C. Caratheodory’s 
reformulation of thermodynamics. 284 pages. 

Baierlein, Ralph. Thermal Physics. Cambridge: Cambridge University Press, 
1999.
This text and the one by Daniel Schroeder (listed below) are good 
examples of the “thermal physics” approach that integrates classical 
thermodynamics and statistical physics into one narrative. 442 pages. 

Brown, Sanborn C. Count Rumford—Physicist Extraordinary. New York: 
Anchor, 1962. 
A short, popular biography of this colorful fi gure by a professional 
physicist. Quotes from original sources. 178 pages. 

Callen, H. B. Thermodynamics. New York: John Wiley & Sons, 1960. 
A pioneering text that develops the subject from a set of simple, inde-
pendent postulates. Callen’s approach falls between those that proceed 
from the fi rst and second laws of thermodynamics and those, like Cara-
theodory’s, that proceed from minimal assumptions. 376 pages. 

Carnot, Sadi. Refl ections on the Motive Power of Fire. Introduced and 
translated by E. Mendoza. New York: Dover, 1960. 
Contains seminal papers by S. Carnot (1824), E. Clapeyron (1834), 
and R. Clausius (1850). The fi rst 12 pages of Carnot’s Refl ections lu-
cidly present the foundations of the second law of thermodynamics 

Annotated Bibliography
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without presuming either the fi rst law or the special properties of ideal 
gases. For those with a taste for original sources. 152 pages. 

The Dictionary of Scientifi c Biography. Edited by Charles Coulston Gillespie. 
New York: Scribner’s, 1974. 
The standard reliable source in 18 volumes. 

Eddington, Arthur. The Nature of the Physical World. New York: Mac-
millan, 1928. 
Chapter 5 contains a discussion of the thermodynamic basis of what 
Eddington calls the arrow of time. 361 pages. 

Einstein, A. “Autobiographical Notes.” In Albert Einstein: Philosopher- 

Scientist, ed. P. A. Schilpp. New York: Harper and Row, 1959. 
Einstein’s assessment of thermodynamics appears on page 33. 600 
pages.

Fermi, Enrico. Thermodynamics. New York: Dover, 1956 (1936). 
A marvel of concision that has withstood the test of time. However, 
Fermi overuses the ideal gas. 160 pages. 

Finn, C. P. B. Thermal Physics. 2nd ed. London: Chapman and Hall, 1993 
(1986).
In spite of its title, this undergraduate textbook focuses on classical 
thermodynamics. At about the same level as Mere Thermodynamics.
256 pages. 

Lemons, Don S., and Carl M. Lund. “Thermodynamics of High Tempera-
ture, Mie- Grüneisen Solids.” American Journal of Physics 67 (1999): 
1105–8.
Presents an alternative two- phase equation of state. 

Lemons, Don S., and Margaret K. Penner. “Sadi Carnot’s Contribution to 
the Second Law of Thermodynamics.” American Journal of Physics

76 (2008): 21– 25.
Contains a proof that, without assuming the fi rst law, Thomson’s and 
Clausius’s versions of the second law are not logically equivalent.

Lewis, Gilbert N., and Merle Randall. Thermodynamics. Revised by 
K. S. Pitzer and L. Brewer. 2nd ed. New York: McGraw- Hall, 1961 
(1923).
Early-twentieth-century expansive “introduction to research” and 
“guide for anyone who wishes to use thermodynamics in productive 
work.” 723 pages. 
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Magie, W. F. Source Book in Physics. Cambridge: Harvard University Press, 
1965 (1935). 
Excerpts from a large number of important primary sources with bio-
graphical introductions. 620 pages. 

Mahan, Bruce H. Elementary Chemical Thermodynamics. Mineola, N.Y.: 
Dover, 2006 (1963). 
The title says it all. 155 pages. 

Mott-Smith, Morton. The Concept of Energy Simply Explained. New York: 
Dover, 1964 (1934). 
Good histories of classical thermodynamics are hard to fi nd, but this 
engaging, if poorly titled, popularization serves the purpose quite well. 
Frequently quotes original sources. 215 pages. 

———. The Concept of Heat and Its Workings Simply Explained. New 
York: Dover 1962 (1933). 
Elementary and verbal, yet accurate, description of basic thermo-
dynamic phenomena. 165 pages. 

Pippard, Brian. Elements of Classical Thermodynamics for Advanced 

Students of Physics. Cambridge: Cambridge University Press, 1960 
(1957).
A precise if somewhat abstract formulation of classical thermo-
dynamics. 165 pages. 

Planck, Max. Treatise of Thermodynamics. Mineola, N.Y.: Dover, 1990 
(1922).
The last chapter contains Planck’s version of the third law of thermo-
dynamics. 247 pages. 

Potter, Merle C., and Craig W. Somerton. Engineering Thermodynamics.
New York: McGraw- Hill, 1996 (1993). 
Outlines rather than narrates thermodynamics. Full of worked ex-
amples and problems arising from engineering practice. 377 pages. 

Schamp, H. “Independence of the First and Second Laws of Thermo-
dynamics.” American Journal of Physics 30 (1962): 825– 29.
Argues that one can and should develop the consequences of the sec-
ond law without assuming the fi rst law. 

Schroeder, Daniel. Thermal Physics. New York:  Addison-Wesley, 1999.
Sklar, Lawrence. Physics of Chance. Cambridge: Cambridge University 

Press, 1993. 
Philosophical analysis of statistical mechanics with an informative 
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chapter entitled “The Reduction of Thermodynamics to Statistical 
Mechanics.” 437 pages. 

Tabor, D. Gases, Liquids, and Solids. 2nd ed. Cambridge: Cambridge Uni-
versity Press, 1979 (1969). 
Has very much the same purpose and style as A. J. Walton’s Three 

Phases of Matter (listed below) at half the length. 233 pages. 
Vanderslice, J. T., H. W. Schamp, Jr., and E. A. Mason. Thermodynamics.

Englewood Cliffs, N.J.: Prentice-Hall, 1966. 
Proof that good books don’t always stay in print. This text inspired 
the tactic, adopted in Chapter 5 and in Appendix B, of considering the 
consequences of the second law without assuming the fi rst law. At a 
slightly more advanced level than Mere Thermodynamics. 244 pages. 

Walton, Alan J. Three Phases of Matter. Oxford: Oxford University Press, 
1983 (1976). 
Designed to “give students a real feel for what solids, liquids, and gases 
are like at the atomic level.” Relates macroscopic properties to micro-
scopic forces. Filled with interesting data and discussions of experi-
mental methods. Complements Mere Thermodynamics. 482 pages. 
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absolute temperature. See tempera-
ture, thermodynamic 

adiabatic: boundary, 181g; compress-
ibility, 86; compression of fl uid, 
105p; demagnetization, 115–116; 
expansion of cavity radiation, 
108p; expansion of fl uid, 105p

adiabatic transformation, 105p,
188–189w

air conditioner, 55p
allotropic transition, 172
Andrews, Thomas, 142
arrow of time, 68–69, 181g

Berthelot, Marcellin, 165
Black, Joseph, 14, 20
blackbody radiation. See cavity 

radiation
boiling point: depression of water, 

158–159; elevation of, 161p; nor-
mal, 144; table of values, 17

boundary, 181g; adiabatic, 5, 181g;
diathermal, 5, 181g; of system, 2

Boyle, Robert, 94
Boyle’s law, 94–95
bulk modulus, 86

caloric, 18, 31, 32
calorie, 14, 23; nutritional, 14–15. 

See also mechanical equivalent of 
heat

calorimeter, bomb, 81
calorimetry, 15–17, 18p

Carnot, Lazare, 30
Carnot, Sadi, 30–31, 58
Carnot cycle, 38–39, 71p, 187w; of 

cavity radiation, 108–109p; ef-
fi ciency of, 49; of ideal gas, 105p

Carnot’s principle, 32–33, 46
Carnot’s second law, 32–33, 

178–179, 180p
Carnot’s theorem, 39
catalog of 21 simple cycles, 176–180
cavity radiation, 101–104, 108p,

190–191w; in Carnot cycle, 108–
109p; chemical potential of, 128p;
cooling due to, 55–56p; equations 
of state, 102–103; low tempera-
ture limit of, 173p, 193–194w;
stability of, 141p

chain rule, 85; multivariate, 85
characterizing function, 78, 90p,

187w
Le Châtelier’s principle, 140
chemical potential, 120–125; of cav-

ity radiation, 128p; of ideal gas, 
122, 127p, 127–128p; relation to 
Gibbs free energy, 122

Clapeyron, Emile, 156
Clausius, Rudolph, 31, 33, 45, 58, 

59, 156
Clausius-Clapeyron equation, 

155–159, 161–162p
Clausius inequality, 56p; in stability 

criteria, 134–135. See also Clau-
sius’s theorem

Index

The letter g following a page number indicates a glossary entry; the letter p, a 
problem; and the letter w, a worked problem.
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Clausius’s second law, 33, 43p, 179, 
185w, 189p

Clausius’s theorem, 46, 50–54, 
61–62; for continuous reversible 
cycles, 58; in differential form, 142

coeffi cient of performance: of heat 
pump, 44; of refrigerator, 42–43

critical isotherm, 156
critical point, 143–144; of Mie-

Grüneisen fl uid, 162–163p; table 
of values, 145; of Van der Waals 
fl uid, 160, 162p

cross-differentiation, 78, 95, 163p; in 
multivariate system, 125–126

Curie, Pierre, 114
Curie constant, 114–115
Curie’s law, 114–115
cycle, 23–25, 29p, 181g; adjustment 

of, 26–27; explicitly allowed, 34; 
prohibited by second law, 34. See
also Carnot cycle

diesel engine, 105p
Dieterici equation of state, 162p
differential, perfect vs. imperfect, 76

Eddington, Arthur, 69
effi ciency: of Carnot cycle, 54; of 

heat engine, 54p, 181g, 185–186w
Einstein, Albert, ix
energy, internal, 22–23, 181g; deg-

radation of, 66–67; principle of 
minimum, 136

enthalpy, 79–81, 165; as heat con-
tent, 80; principle of minimum, 
136–137

entropy, 58–61, 181g; additivity of, 
65–66; change of, 70–71p, 186w,
187w; corollaries, 64–68; and 
energy degradation, 66–67; exten-
sivity, 64–65; form of fundamental 
relation, 90; generator of, 62–64; 
increase, 64, 66–68; in irreversible 
process, 61–62; not conserved, 64; 
principle of maximum, 131–135; 
and stability, 68; units of, 61

entropy change version of third law, 
165–167

Eötvös equation of state, 127p,
191–192w

equation of state, 3, 78, 181g
equilibria: mechanical, 130; stable, 

182g; thermodynamic, 130–134, 
138–140

equilibrium, 8–9; mutual, 8; of open 
system, 123–125; process, 12, 
181g; stable, 181; state, 181g;
thermal, 8, 181g

equilibrium radiation. See cavity 
radiation

evaporation, 145
expansivity, isobaric, 86
extensive state variables, 15, 73–74, 

88–89p, 91p

Ferguson equation of state, 127p
ferromagnetism, 113
fi nite entropy hypothesis, 167, 168, 

171
fi rst law of thermodynamics, 

22–23, 25, 26, 28–29p, 176–177, 
184–185w

fl uid, 73–75, 181g; intrinsic stability 
of, 138–140, 141p; reversible 
work of, 75–76

Fowler, R. H., 9
freezing point depression of water, 159
fundamental constraint on a fl uid, 

77–79, 95; entropy form of, 90; 
generalized, 110

fundamental problem of thermo-
dynamics, 129

Gay-Lussac, 95
Gibbs, J. Willard, 121, 146
Gibbs free energy, 82–83; approach 

to Clausius-Clapeyron equation, 
156–157; of cavity radiation, 
128p; principle of minimum, 137, 
150, 165; relation to chemical 
potential, 122, 128p; and third 
law, 165
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heat, 5, 14–15, 181g; of fusion, 
16; nature of, 17–18; quasistatic, 
57–58; of vaporization, 16

heat capacity, 15, 181g; at constant 
pressure, 87, 91p; at constant 
volume, 87, 91p; during fi rst order 
phase transition, 161p; per unit 
mole, 15; ratio of fl uid heat capaci-
ties, 98

heat content, 80
heat engine, 31, 32; effi ciency of 

ideal, 49, 54p, 55p; reversible, 
38–42

heat of transition, 16; table of values, 
17

heat pump, 42–43, 44p, 181g
heat reservoir, 31, 56p, 181g
Helmholtz free energy, 82–83, 91p;

principle of minimum, 136–137; 
symbol of, 83

Hooke’s law, 111

ice point, normal, 11, 182g; table of 
values, 17

ideal gas, 94–98, 104p; adiabatic 
transformation of, 104p, 105p;
chemical potential of, 122, 127p,
127–128p; entropy of, 97–98; 
equations of state, 96; Otto cycle 
of, 106–107p; polytropes of, 105p

intensive state variables, 14, 73–74, 
88–89p, 91p, 182g

intrinsic stability, 182g; of a fl uid, 
88, 138

isentropic process, 182g
isobaric expansivity, 86
isobaric process, 182g
isochoric pressure coeffi cient, 86
isochoric process, 182g
isothermal compressibility, 86
isothermal process, 182g

Joule, James, 17, 21–22, 27p
Joule apparatus, 12, 21–22, 62–64
Joule coeffi cient, 91–92p
Joule expansion, 106p

Joule’s law, 94–95
Joule-Thomson coeffi cient, 92–93p,

188w

latent heat, 16, 18p, 182g; of fusion, 
16, 182g; table of values, 17; of 
vaporization, 16, 182g

Le Châtelier’s principle, 140
Legendre transformation, 126
lever rule, 161p

maximum entropy, 131–134; prin-
ciple of, 135

Maxwell, James Clerk, 146
Maxwell construction, 153–155
Maxwell relations: of a fl uid, 78, 80, 

82, 85, 90–91p, 192w; of an open 
fl uid system, 128p; of a para-
magnetic system, 126–127p; of a 
rubber band, 126p

mechanical equivalent of heat, 22, 
23, 27p, 182g; value of, 175

metastability, 131, 152
Meyer, Julius Robert von, 21
Mie-Grüneisen equation of state, 

162–163p
minimum energy, principle of, 136
molar specifi c heat, 182g. See also

heat capacity: per unit mole
multivariate system, 125–126

Napoleon I, 30
Nernst, Walter, 164
Nernst postulate, 164, 182g. See also

third law of thermodynamics
Newton’s law of cooling, 55p
normal boiling point. See normal 

steam point
normal ice point, 11
normal steam point, 11, 144
nutritional calorie, 14–15; defi nition 

of, 175

open system, 121–124
Otto cycle, 106–107p
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paramagnetism, 113–116, 126p,
191w

phase diagram, 142–146, 181p
phase transition, 143, 149–153; 

fi rst order, 153; higher order, 153; 
Maxwell construction of, 153–155

Planck, Max, 164; his version of 
third law, 171–173

polytropes of ideal gas, 104–105p
pressure: solar, 109p; units of, 75, 

88p

quasistatic process, 12, 182g

radiation constant, 103; value of, 
175

radiation cooling, 55–56p
reciprocal rule, 84
reciprocity rule, 84, 91p
“Refl ections on the Motive Power of 

Heat and on Machines Fitted to 
Develop That Power” (Carnot), 
30–31

refrigerator, 42–43, 43–44p, 182g;
effi ciency of ideal, 42–43, 54p

reversibility, 89–90p; meaning of, 
57–58

reversible: cycle, 38; heat engine, 
38–42, 58; heat pump, 42–43, 
44p; process, 182g; refrigerator, 
42–43; 43–44p

reversible work: of a fl uid, 75–76, 
89–90p; generalized, 78–89

rubber band, 111–113
Rumford, Count. See Thompson, 

Benjamin

saturated vapor, ideal gas model of, 
162p, 192–193w

second law of thermodynamics, 31–
34; Carnot’s version, 33, 178–179, 
180p; Clausius’s version, 33, 43p,
185w; Thomson’s version, 33

solar constant, 109p
solar pressure, 109p
solid, room temperature elastic, 

93p, 98–100, 107–108p, 141p,
189–190w; equations of state, 
98–100; incompressibility of, 93p;
stability of, 141p

specifi c heat, 15, 18p, 182g; of 
surface, 127p; table of values for 
common materials, 16

stability, 68, 129–130; of fl uid, 
138–140, 141p; mechanical, 130; 
thermodynamic, 130–131

stability criteria, 131–138, 140–
141p; table of, 137

state, 2–3, 182g
state variables, 2–3, 183g; of fl uid 

state, 74
steam point, normal, 11, 183g; table 

of values, 17
Stefan-Boltzmann constant, 104; 

value of, 175
surface, as thermodynamic system, 

116–120; energy of, 117–118
surface tension, 116–117; models of, 

119–120, 127p. See also Eötvös 
equation of state; Ferguson equa-
tion of state

system, 1–2, 183g; mechanical, 
129–130; multivariate, 125–126; 
thermal, 130–131

temperature, empirical, 10–11, 183g
temperature, thermodynamic, 

183g. See also thermodynamic 
temperature

temperature scale, 10–11; Celsius, 
11; Fahrenheit, 11; Réaumer, 13p;
two-point, 11

tensile strength, 75
thermal equilibrium, 183g. See also

equilibria; equilibrium
thermodynamics: etymology, 1; fun-

damental problem of, 129
thermodynamic temperature, 42, 

46–50, 183g
thermometer, 9, 13p, 183g
third law of thermodynamics, 164–

173; absolute entropy version 



I N D E X   207

of, 171–173; entropy change ver-
sion of, 165–167; unattainability 
version of, 167–170

Thompson, Benjamin, 19–20; can-
non boring experiment of, 19–20

Thomsen, Julius, 165
Thomsen and Berthelot, principle of, 

164–165, 182g
Thomson, William, 27p, 33, 42
Thomson’s second law, 33, 177–179, 

179p, 180p
triple line, 145–146
triple point, 87, 145–146, 183g

Van der Waals, J. D., 147
Van der Waals fl uid: critical point of, 

162p; equation of state, 146–149; 
Maxwell construction of phase 
transition for, 153–155

vapor dome, 143, 183g

work, 2, 3–4,6p; generalized, 78–79, 
110–111; quasistatic, 57–58; 
reversible, 75–76

zeroth law of thermodynamics, 9–10
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