Historický úvod

Martin Štefaňák

24. září 2020

Martin Štefaňák

Kvantová mechanika

24. září 2020 1/26

ъ

Přehled

1) Úvod

- Záření absolutně černého tělesa
- 3 Fotoefekt
- 4 Comptonův rozptyl
- 5 de Broglieho hypotéza, vlnová funkce
- 6 Schrödingerova rovnice
 - Bornova intepretace
- 8 Dvouštěrbinový experiment

Popisujeme fyzikální procesy probíhající na úrovni atomů

- Rozměry $\sim 10^{-8}-10^{-12}~m$
- Hmotnosti $\sim 10^{-25}-10^{-31}~\text{kg}$
- Energie $\sim 10^{-1}-10^3~eV$
- Klasická fyzika v mikrosvětě selhává
- Nemáme s těmito jevy přímou zkušenost
- Chybí nám intuice pro fyzikální popis mikrosvěta

- Absorbuje a emituje EM záření na všech vlnových délkách
- Lze realizovat pomocí dutiny, jejíž stěny jsou zahřáté na konstantní teplotu T

Spektrální hustota energie

 $\rho(\nu, T) = ?$

Martin Štefaňák

Kvantová mechanika

24. září 2020 4/26

Stefan-Boltzmannův zákon

Celková vyzářená energie je úměrná čtvrté mocnině teploty

$$E(T) = V \int_{0}^{\infty}
ho(
u, T) d
u \sim T^4$$

Wienův posunovací zákon

Frekvence, na které je vyzářeno maximum energie, je přímo úměrná teplotě

$$o(
u, T) =
u^3 f\left(rac{
u}{T}
ight)$$

		Ä		
Mai	rtin	Sta	tanà	6
Ivia		Ole	iaiia	•

Wienův vztah

Pro velké frekvence přibližně platí

$$ho(
u, T) \sim
u^3 e^{-lpha
u/T}$$

Rayleigh-Jeansův vztah

Pro malé frekvence přibližně platí

 $\rho(\nu, T) \sim \nu^2 kT$

Martin Štefaňák

• • • • • • • • • • • •

- Maxwellovy rovnice pro EM pole v dutině s okrajovými podmínkami na stěnách
- Obecné řešení lze rozložit do módů určených $\vec{m} \in \mathbb{Z}^3_+$ a polarizací
- Časový vývoj módu LHO s frekvencí $\nu_m = \frac{c}{2l}m$
- Energie módu odpovídá energii LHO $\varepsilon(\nu_m, T)$
- Limita velkého objemu => přejdeme od sumy k integrálu

$$\langle {m E}
angle = V \int\limits_{0}^{\infty} \langle arepsilon(
u,T)
angle rac{8\pi}{c^3}
u^2 d
u$$

Martin Štefaňák

24. září 2020 7/26

Spektrální hustota energie

$$ho(
u,T) = \langle arepsilon(
u,T)
angle rac{8\pi}{c^3}
u^2$$

Klasický harmonický oscilátor

Ekvipartiční teorém - za kvadratický člen v hamiltoniánu ¹/₂kT

$$\langle \varepsilon(
u, T)
angle = kT$$

Rayleigh-Jeansův vztah

$$\rho(\nu,T) = \frac{8\pi}{c^3}\nu^2 kT$$

UV divergence - celková energie je nekonečná

	٩	▶ ▲ 臣	► < E >	2	$\mathcal{O}\mathcal{A}\mathcal{O}$
Martin Štefaňák	Kvantová mechanika		24. září 20	020	8/26

Planckův vztah

$$\rho(\nu, T) = \frac{8\pi}{c^3} \frac{h\nu^3}{e^{\frac{h\nu}{kT}} - 1}, \quad h = 6,62607015 \cdot 10^{-34} \text{ J s}$$

Malé frekvence - Rayleigh-Jeans

$$h\nu \ll kT \Longrightarrow
ho(
u, T) pprox rac{8\pi}{c^3}
u^2 kT$$

Vysoké frekvence - Wien

$$h\nu \gg kT \Longrightarrow
ho(
u, T) pprox rac{8\pi}{c^3} h\nu^3 e^{-rac{h\nu}{kT}}$$

Splňuje Stefan-Boltzmannův zákon

$$E(T) = V \int\limits_{0}^{\infty}
ho(
u, T) d
u \sim T^4$$

Martin Štefaňák

Srovnání Planck, Rayleigh-Jeans, Wien

Martin Štefaňák

Kvantová mechanika

24. září 2020 10/26

イロト イヨト イヨト イヨト

Střední hodnota energie LHO

$$\langle \varepsilon(\nu, T)
angle = rac{h
u}{e^{rac{h
u}{kT}} - 1}$$

Kvantování energie

Lze odvodit, pokud energie oscilátoru mohou nabývat pouze diskrétních hodnot, které jsou celočíselným násobkem základního kvanta energie

$$E_n = nh\nu, \quad n \in \mathbb{Z}_+$$

Hraje kvantum záření roli i v jiných procesech?

	¥ . v	
Mortin	Statan	512
warm	Sielalia	-IN

Fotoefekt

- UV záření způsobuje emisi elektronů z kovů
- Pro každý kov existuje jistá mezní frekvence ν₀
- Pro $\nu < \nu_0$ k emisi nedojde
- Kinetická energie vyletujících elektronů nezávisí na intenzitě UV

Eisteinovo vysvětlení

Jedno kvantum záření předá celou svojí energii jednomu elektronu

$$E_{kin} = h\nu - E_{ion}$$

Světlo se chová jako proud kvant s energií

$$E = h\nu$$

	¥ .	
Mantin	Chafai	141.
warun	Sieiar	IAK
	0.0.0	

Kvantum záření má hybnost

$$p = \frac{h}{\lambda}$$

-

Částicové chování

- Záření absolutně černého tělesa
- Fotoefekt
- Comptonův rozptyl

 $E = h\nu$ $p = \frac{h}{\lambda}$

< 🗇 🕨 < 🖃 >

- Částicově-vlnový dualismus je obecnou vlastností mikroskopických objektů
- Vztahy $E = h\nu$ a $p = \frac{h}{\lambda}$ platí i pro hmotné částice

Vlnová funkce

$$\psi_{ec{p},E}(ec{x},t) = Ae^{rac{i}{\hbar}(ec{p}\cdotec{x}-Et)}, \quad \hbar = rac{h}{2\pi}$$

Vlnové chování hmotných částic?

de Broglieho vlnová délka λ musí být srovnatelná s velikostí objektu d

Difrakce elektronů

- Davison a Germer zkoumali rozptyl elektronů na krystalu niklu
- Dochází k difrakci
- Elektrony se chovají jako vlny

$$\lambda = \frac{h}{p}$$

24. září 2020 16/26

 $\psi_{\vec{p},E}(\vec{x},t)$ musí být řešením nějaké vlnové rovnice

(Časová) Schrödingerova rovnice

$$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t}$$

Hamiltonián - operátor celkové energie

$$\hat{H} = -rac{\hbar^2}{2M}\Delta + V(\vec{x})\cdot$$

¥	
Manhim Ct	باغذمهم
Martin St	егапак
	orariar

A (1) > A (2) > A

- Schrödingerova rovnice je lineární v ψ
- Lineární kombinace dvou řešení je opět řešení

$$\hat{H}\psi_j = i\hbar \frac{\partial \psi_j}{\partial t} \Longrightarrow \psi = a\psi_1 + b\psi_2$$

Analogicky pro libovolný počet řešení

$$\psi = \sum_{j} a_{j} \psi_{j}$$

	•	
and the second second	OL - L	
Martin	Storana	
IVICU UIT	Oteraria	Υ.

24. září 2020 18/26

$$\hat{H}\psi(\vec{x}) = E\psi(\vec{x})$$

Řešení bezčasové Schrödingerovy rovnice — stacionární stavy

$$\hat{H}\psi = E\psi = i\hbar \frac{\partial \psi}{\partial t} \Longrightarrow \psi(\vec{x}, t) = e^{-\frac{i}{\hbar}Et}\psi(\vec{x})$$

• de Broglieho vlna je stacionární stav volné částice s $E = \frac{p^2}{2M}$

$$\psi_{\vec{p},E}(\vec{x},t) = Ae^{-\frac{i}{\hbar}Et}e^{\frac{i}{\hbar}\vec{p}\cdot\vec{x}} \Longrightarrow \hat{H}\psi_{\vec{p},E} = \frac{p^2}{2M}\psi_{\vec{p},E}$$

Martin Štefaňák

Schrödinger nalezl řešení pro elektron v atomu vodíku

$$V(r)\sim -\frac{1}{r}$$

Výsledky odpovídají Bohrovu modelu

$$E_N = -rac{R}{N^2}, \quad N \in \mathbb{N}$$

• Vlnová funkce $\psi_N(\vec{x})$ musí být kvadraticky integrabilní

$$\int_{\mathbb{R}^3} |\psi_{\sf N}(ec{x})|^2 d^3x < \infty$$

	•	
and the second second	OL - L	
Martin	Storana	
IVICU UIT	Oteraria	Υ.

▲ 同 ▶ → 三 ▶

Bornova interpretace vlnové funkce

- Vlnová funkce představuje popis stavu kvantové částice
- $\psi(\vec{x}) \sim amplituda pravděpodobnosti nalezení částice v bodě <math>\vec{x}$

$$|\psi(\vec{x})|^2 \sim W_{\psi}(\vec{x})$$

• Předpovědi kvantové mechaniky mají pravděpodobností charakter

$$W(ec{x}\in V)\sim \int_V |\psi(ec{x})|^2 d^3x$$

Vlnové funkce musí být kvadraticky integrabilní

$$\int_{\mathbb{R}^3} |\psi(ec{x})|^2 d^3x = \mathcal{K} < \infty \longrightarrow w_\psi(ec{x}) = rac{|\psi(ec{x})|^2}{\mathcal{K}}$$

Martin Štefaňák

24. září 2020 21/26

de Broglieho vlna není kvadraticky integrabilní

$$\psi_{\vec{p},E}(\vec{x},t) = Ae^{rac{i}{\hbar}(\vec{p}\cdot\vec{x}-Et)} \Longrightarrow |\psi_{\vec{p},E}(\vec{x},t)|^2 = |A|^2 = konst.$$

- de Broglieho vlna nepopisuje fyzikálně realizovatelný stav částice
- Kvantová částice nemůže mít absolutně přesně určenou hybnost
- Můžeme ale realizovat superpozici

$$\psi(\vec{x},t) = \int\limits_{\mathbb{R}^3} \tilde{\psi}(\vec{p}) \ \psi_{\vec{p},E}(\vec{x},t) \ d^3p$$

• Pokud $\tilde{\psi}(\vec{p})$ je kvadraticky integrabilní, pak je i $\psi(\vec{x}, t)$

	č. i	· · · ·
Martin	Stel	lanak
inter till	0.01	anar

Dvouštěrbinový experiment

• Otevřená jen jedna štěrbina S_j — stav částice popsaný $\psi_j(x)$

Pravděpodobnost dopadu do bodu x

$$|\psi_j(x) \sim |\psi_j(x)|^2$$

Martin Štefaňák

Kvantová mechanika

Dvouštěrbinový experiment

- Otevřené obě štěrbiny, není možné rozlišit, kterou částice prošla
- Stav částice superpozice

$$\psi(\mathbf{x}) = \psi_1(\mathbf{x}) + \psi_2(\mathbf{x})$$

- Sčítají se amplitudy
- Pravděpodobnost dopadu do bodu x

$$w(x) \sim |\psi_1(x) + \psi_2(x)|^2$$

- Nelze rozlišit trajektorie kvantové částice se chovají jako vlny
- Dochází k interferenci

	Ó. / Y/I	
Mortin	Stotanal	
ivia un	Jielalia	AN.

Dvouštěrbinový experiment

- Otevřené obě štěrbiny, je možné rozlišit, kterou částice prošla
- Náhodně se vybere jedna z možností

$$\psi_1(x) \lor \psi_2(x)$$

- Sčítají se pravděpodobnosti
- Pravděpodobnost dopadu do bodu x

- Lze rozlišit trajektorie kvantové částice se chovají jako částice
- Nedochází k interferenci

 $W(x) \sim |\psi_1(x)|^2 + |\psi_2(x)|^2$

Martin Štefaňák

Kvantová mechanika

24. září 2020 25/26

- Mikroskopické objekty mají jak vlastnosti částic, tak vlnění
- V závislosti na typu experimentu se projeví buď vlastnosti částic, nebo vlnění
- Částicové a vlnové vlastnosti jsou komplementární

Stavy a pozorovatelné

Martin Štefaňák

6. října 2020

Martin Štefaňák

Kvantová mechanika

6. října 2020 1 / 39

3 × 4 3

3 Energie harmonického oscilátoru

Popis stavů kvantové částice

- Pozorovatelné veličiny v kvantové mechanice
- 3 Energie harmonického oscilátoru
- 4 Moment hybnosti

A .

Kvantová částice v \mathbb{R}^3

- Okamžitý stav je popsán vlnovou funkcí $\psi(\vec{x})$ komplexní funkce
- Bornova interpretace $\psi(\vec{x})$ musí být kvadraticky integrabilní

$$\int\limits_{\mathbb{R}^3} |\psi(ec{x})|^2 \; d^3x < \infty$$

• $\psi(\vec{x})$ a $c\psi(\vec{x})$, $c \neq 0$ popisují stejný fyzikální stav

Dodatečná normalizační podmínka

$$\int_{\mathbb{R}^3} |\psi(\vec{x})|^2 \ d^3x = 1 \Longrightarrow w_{\psi}(\vec{x}) = |\psi(\vec{x})|^2$$

• Princip superpozice — $a\psi_1 + b\psi_2$ je také přípustný stav částice

Je superpozice kvadraticky integrabilní?

Minkowskiho nerovnost

$$\left(\int_{\mathbb{R}^3} |\psi_1 + \psi_2|^2 \, d^3x\right)^{\frac{1}{2}} \leq \left(\int_{\mathbb{R}^3} |\psi_1|^2 \, d^3x\right)^{\frac{1}{2}} + \left(\int_{\mathbb{R}^3} |\psi_2|^2 \, d^3x\right)^{\frac{1}{2}}$$

• Kvadraticky integrabilní funkce — vektorový prostor $\mathcal{L}^2(\mathbb{R}^3, d^3x)$

• Po jisté úpravě lze zavést skalární součin — Hilbertův prostor

$$\mathscr{H} = L^2(\mathbb{R}^3, d^3x)$$

Martin Štefaňák

Vektorový prostor se striktně pozitivní formou (\cdot, \cdot) (skalární součin)

• Pozitivní forma na $\mathscr{L}^2(\mathbb{R}^3, d^3x)$

$$(\psi,\phi) = \int\limits_{\mathbb{R}^3} \overline{\psi}(\vec{x})\phi(\vec{x})d^3x$$

- Není striktně pozitivní $(\psi, \psi) = \mathbf{0} \Leftrightarrow \psi \sim \mathbf{0}$
- Vektorový prostor tříd funkcí $L^2(\mathbb{R}^3, d^3x) = \mathscr{L}^2(\mathbb{R}^3, d^3x)/_{\sim}$
- Na $L^2(\mathbb{R}^3, d^3x)$ je forma striktně pozitivní

$L^2(\mathbb{R}^3, d^3x)$ je pre-Hilbertův prostor

Skalární součin indukuje

- normu vektoru $\|\psi\| = \sqrt{(\psi, \psi)}$
- vzdálenost vektorů (metriku) $\rho(\psi, \phi) = \|\psi \phi\|$

Hilbertův prostor H

Vektorový prostor se skalárním součinem, který je úplný

Cⁿ se standardním skalárním součinem je Hilbertův prostor
L²(R³, d³x) je Hilbertův prostor

Separabilní Hilbertův prostor

Obsahuje všude hustou nejvýše spočetnou podmnožinu

< □ > < □ > < □ > < □ >

Postulát 1

- Prostor možných stavů kvantové částice je separabilní Hilbertův prostor *H*
- Stav kvantové částice je popsán nenulovým vektorem $\psi \in \mathscr{H}$
- Bez újmy na obecnosti lze volit $\|\psi\| = 1$
- Skalární součin určuje amplitudu pravděpodobnosti přechodu mezi stavy

$$W_{\psi
ightarrow \phi} = |(\phi, \psi)|^2$$

- Globální fáze ψ a $e^{i\alpha}\psi$ popisují stejný fyzikální stav
- Relativní fáze $\chi(\alpha) = \psi + e^{i\alpha}\phi$ popisují různé fyzikální stavy

Volba Hilbertova prostoru

- Kvantová částice v $\mathbb{R}^3 \mathcal{H} = L^2(\mathbb{R}^3, d^3x)$
- Kvantový LHO $\mathcal{H} = L^2(\mathbb{R}, dx)$
- Částice na úsečce (∞ potenciálová jáma) $\mathcal{H} = L^2((a, b), dx)$
- Spin $\frac{1}{2}$ $\mathscr{H} = \mathbb{C}^2$

Ortonormální báze (ONB)

• Ortonormální množina $B = \{\psi_n\} \subset \mathscr{H}$

$$(\psi_n,\psi_m)=\delta_{n,m}$$

• Ortogonální doplněk B[⊥] je nulový vektor

$$(\phi, \psi_n) = \mathbf{0} \ \forall n \implies \phi = \mathbf{0}$$

 \mathscr{H} je separabilní \Longrightarrow existuje nejvýše spočetná ortonormální báze
Nechť $B = \{\psi_n | n \in \mathbb{N}\}$ je ONB v $\mathcal{H}, \psi \in \mathcal{H}$

$$\psi = \sum_{n=1}^{\infty} (\psi_n, \psi) \ \psi_n$$

Parsevalova rovnost

$$\|\psi\|^2 = \sum_{n=1}^{\infty} |(\psi_n, \psi)|^2$$

	¥ . v
and the second second	O1 - I
Martin	Storanak
	Oteranan

Pro každý spojitý lineární funkcionál Φ ∈ ℋ* existuje právě jeden vektor φ ∈ ℋ takový, že

$$\forall \psi \in \mathscr{H}, \; \Phi(\psi) = (\phi, \psi)$$

H a *H*^{*} jsou izomorfní

$$\mathscr{H}\simeq \mathscr{H}^*$$

- *H* abstraktní Hilbertův prostor
- Vektor z \mathscr{H} ket $|\psi\rangle$
- Skalární součin $|\psi\rangle$, $|\phi\rangle \in \mathscr{H} \langle \psi | \phi \rangle$
- Lineární funkcionál z \mathscr{H}^* bra $\langle \psi |$
- Rieszovo lemma $|\psi\rangle \longleftrightarrow \langle \psi|$ je navzájem jednoznačné

Konečná dimenze $N, \mathscr{H} \simeq \mathbb{C}^N$

$$|1
angle \equiv egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix}, \quad |2
angle \equiv egin{pmatrix} 0 \ 1 \ dots \ 0 \end{pmatrix}, \quad \dots, |N
angle \equiv egin{pmatrix} 0 \ 0 \ dots \ 1 \end{pmatrix}$$

Standardní báze \mathscr{H}^*

$$\begin{array}{rcl} \langle 1| &\equiv & (1,0,\ldots,0), \\ \langle 2| &\equiv & (0,1,\ldots,0), \\ &\vdots \\ \langle N| &\equiv & (0,0,\ldots,1). \end{array}$$

Martin Štefaňák

・ロト ・ 四ト ・ ヨト ・ ヨト

Konečná dimenze $N, \mathscr{H} \simeq \mathbb{C}^{N}$

Obecný ket

$$|\psi
angle \equiv egin{pmatrix} a_1\ a_2\ dots\ a_N \end{pmatrix} \longleftrightarrow \langle\psi| = (|\psi
angle)^\dagger \equiv (\overline{a}_1, \overline{a}_2, \dots, \overline{a}_N)$$

Fourierův rozvoj

$$\begin{split} |\psi\rangle &= \sum_{j=1}^{N} \langle j |\psi\rangle \; |j\rangle, \quad \langle j |\psi\rangle = a_j \\ \langle \psi| &= \sum_{j=1}^{N} \langle \psi |j\rangle \; \langle j |, \quad \langle \psi |j\rangle = \overline{\langle j |\psi\rangle} = \overline{a}_j \end{split}$$

Martin Štefaňák

ヘロアス 留 アメ 回 アメ 回 ア

Ortogonální projektory

Skalární součin

$$\langle 1|1\rangle = (1,0,\ldots,0) \begin{pmatrix} 1\\0\\ \vdots\\0 \end{pmatrix} = 1$$

V opačném pořadí - operátor

$$|1\rangle\langle 1| = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} (1,0,\ldots,0) = \begin{pmatrix} 1 & 0 & \ldots & 0\\0 & 0 & \ldots & 0\\\vdots\\0 & 0 & \ldots & 0 \end{pmatrix}$$

Martin Štefaňák

Ortogonální projektory

• $|j\rangle\langle j|$ je ortogonální projektor na ket $|j\rangle$

$$|j\rangle\langle j|(|\phi\rangle) = \langle j|\phi\rangle |j\rangle, \quad (|j\rangle\langle j|)^2 = |j\rangle \underbrace{\langle j|j\rangle}_{1}\langle j| = |j\rangle\langle j|$$

• Obecně $|\psi\rangle\langle\psi|$ je ortogonální projektor na ket $|\psi\rangle$

Ortonormální báze

$$\{|j\rangle|j=1,\ldots N\}$$
 je ONB \iff

Relace ortogonality

$$\langle i|j\rangle = \delta_{ij}$$

Relace úplnosti

$$\sum_{j=1}^{N} |j\rangle\langle j| = \hat{l}$$

Martin Štefaňák

6. října 2020 17 / 39

Vždy existuje nejvýše spočetná ortonormální báze

Ortonormální báze

 $\{|j\rangle|j\in\mathbb{N}\}$ je ONB \Longleftrightarrow

Relace ortogonality

$$\langle i|j
angle=\delta_{ij}$$

Relace úplnosti

$$\sum_{j=1}^{\infty} |j\rangle\langle j| = \hat{I}$$

	ă	×
Martin	Stat	anak
ivia un	JUEL	anan

- 3 >

Popis stavů kvantové částice

Pozorovatelné veličiny v kvantové mechanice

3 Energie harmonického oscilátoru

4 Moment hybnosti

4 A N

Klasická mechanika

- Stavový prostor fázový prostor Γ
- Stav poloha a hybnost $(q, p) \in \Gamma$
- Pozorovatelné reálné funkce na fázovém prostoru f(q, p)
- Možné hodnoty pozorovatelné obor hodnot funkce f

Kvantová mechanika

- Stavový prostor Hilbertův prostor *H*
- Stav nenulový vektor $\psi \in \mathscr{H}$
- Pozorovatelné samosdružené operátory na H
- Možné hodnoty pozorovatelné spektrum operátoru $\sigma(\hat{A})$

Přiřazení operátorů pozorovatelným pro částici v \mathbb{R}^3

Poloha a hybnost

$$(\hat{Q}_{j}\psi)(\vec{x}) = x_{j}\psi(\vec{x}), \quad (\hat{P}_{j}\psi)(\vec{x}) = -i\hbar\frac{\partial\psi}{\partial x_{j}}(\vec{x})$$

Princip korespondence

$$f(q_j, p_j) \longrightarrow f(\hat{Q}_j, \hat{P}_j)$$

Celková energie

$$H(x_j, p_j) = \frac{p^2}{2M} + V(\vec{x}) \longrightarrow \hat{H} = \frac{\hat{P}^2}{2M} + V(\hat{\vec{Q}})$$
$$(\hat{H}\psi)(\vec{x}) = -\frac{\hbar^2}{2M}\Delta\psi(\vec{x}) + V(\vec{x})\psi(\vec{x})$$

Martin Štefaňák

। • ৰ≣ • ≣ • ⊃ ৭ ৫ 6. října 2020 21 / 39

Samosdružené operátory

- Zobecnění pojmu hermitovský operátor pro dim $\mathscr{H} = \infty$
- Pro dim $\mathscr{H} = \infty$ existují operátory, které nejsou omezené
- Neomezené operátory nelze spojitě rozšířit na celý ${\mathscr H}$

Sdružený operátor k neomezenému operátoru Â

$$(\psi, \hat{A}\chi) = (\phi, \chi), \quad \hat{A}^{\dagger}\psi = \phi, \quad D(\hat{A}^{\dagger}) = \{\psi | \exists \phi\}$$

Samosdružený operátor

$$\hat{A} = \hat{A}^{\dagger} \quad (D(\hat{A}) = D(\hat{A}^{\dagger}))$$

Operátory polohy Â_j a hybnosti Â_j jsou samosdružené

Definice spektra pro dim $\mathscr{H} = \infty$

$$\lambda \in \sigma(\hat{A}) \subset \mathbb{C} \iff \hat{A} - \lambda \text{ není bijekce } D(\hat{A}) \longrightarrow \mathscr{H}$$

Bodové spektrum σ_p

•
$$\hat{A} - \lambda$$
 není prostý $\Longrightarrow \exists \psi \neq \mathbf{0}, \quad \hat{A}\psi = \lambda \psi$

• λ je vlastní číslo, ψ je vlastní vektor

Spojité spektrum σ_c

- $\hat{A} \lambda$ není na (surjektivní)
- λ ∉ σ_p(Â), a zároveň ∃ posloupnost jednotkových vektorů {ψ_n}, která nemá konvergentní podposloupnost, taková, že

$$\lim_{n\to\infty}(\hat{A}-\lambda)\psi_n=0$$

Martin Štefaňák

Bodům ze spojitého spektra nelze přiřadit vlastní vektory

Hybnost částice na přímce $\hat{P} = -i\hbar \frac{d}{dx}$

Formální řešení rovnice na vlastní čísla

$$\hat{P}\psi=oldsymbol{p}\psi\Longrightarrow-i\hbar\psi^{\prime}=oldsymbol{p}\psi\Longrightarrow\psi_{oldsymbol{
ho}}(x)=oldsymbol{A}oldsymbol{e}^{i}_{\hbar}{}^{
ho x}$$

- $\psi_p(x)$ není kvadraticky integrabilní $|\psi_p(x)|^2 = A^2$
- P
 nemá žádná vlastní čísla ani vlastní vektory
- Hybnost má pouze spojité spektrum $\sigma(\hat{P}) = \sigma_c(\hat{P}) = \mathbb{R}$
- $\psi_p(x)$ lze interpretovat jako zobecněný vlastní vektor

Podobně, poloha má pouze spojité spektrum — $\sigma(\hat{Q}) = \sigma_c(\hat{Q}) = \mathbb{R}$

Martin Štefaňák

イロン イ団と イヨン 一

Postulát 2

 Pozorovatelným veličinám odpovídají lineární samosdružené operátory na stavovém prostoru *H*

$$\hat{A} = \hat{A}^{\dagger}$$

Možné výsledky měření odpovídají spektru operátoru σ(Â)

Spektrum samosdruženého operátoru je reálné

 $\sigma(\hat{A}) \subseteq \mathbb{R}$

	ä.	e ¥ e .
Martin	Sto	tanák
IVICU UIII	Ole	anan

Abstraktní zápis pomocí braketů

Operátory lze reprezentovat pomocí matic
ON báze {|j>}

$$\langle i|j\rangle = \delta_{ij}, \quad \sum_{i} |i\rangle\langle i| = \hat{I}$$

Maticové elementy Â

$$A_{ij} = \langle i | \hat{A} | j \rangle$$

Abstraktní zápis operátoru

$$\hat{A} = \sum_{i,j} A_{ij} |i
angle \langle j|$$

Martin Štefaňák

4 A N

Operátor s čistě bodovým spektrem

Má pouze vlastní čísla

$$\hat{A}|n
angle = a_n|n
angle$$

Vlastní vektory tvoří ON bázi

$$\langle n|m\rangle = \delta_{nm}, \quad \sum_{n} |n\rangle \langle n| = \hat{I}$$

Spektrální rozklad operátoru Â

$$\hat{A} = \sum_{n} a_{n} |n\rangle \langle n|$$

• V bázi vlastních vektorů je matice operátoru diagonální

$$A_{nm} = \langle n | \hat{A} | m \rangle = a_n \delta_{nm}$$

Martin Štefaňák

Operátor se spojitým spektrem

Formální řešení rovnice

 $\hat{B}|b
angle = b|b
angle, \quad b \in \sigma_c(\hat{B})$

• Zobecněné vlastní vektory — $|b\rangle \notin \mathcal{H}$

Spojitá báze

$$\langle b|b'
angle = \delta(b-b'), \quad \int\limits_{\sigma_c(\hat{B})} db|b
angle \langle b| = \hat{I}$$

Spektrální rozklad operátoru Â

$$\hat{B}=\int\limits_{\sigma_{c}(\hat{B})}dbb|b
angle\langle b|$$

Martin Štefaňák

▶ ৰ ≣ ▶ ≣ ৩ ৭ ৫
6. října 2020 28 / 39

イロト イ団ト イヨト イヨト

Popis stavů kvantové částice

2) Pozorovatelné veličiny v kvantové mechanice

Energie harmonického oscilátoru

4 Moment hybnosti

Hamiltonián lineárního harmonického oscilátoru

• Princip korespondence

$$\hat{H}=\frac{1}{2M}\hat{P}^2+\frac{1}{2}M\omega^2\hat{Q}^2$$

Rovnice na vlastní čísla a vlastní funkce

$$\hat{H}\psi = E\psi \Longrightarrow -rac{\hbar^2}{2M}\psi'' + rac{1}{2}M\omega^2 x^2\psi = E\psi$$

Přechod k bezrozměrné proměnné

$$\xi = \sqrt{\frac{M\omega}{\hbar}}, \psi(\mathbf{x}) \equiv \phi(\xi) \Longrightarrow \phi'' - \xi^2 \phi + \Lambda \phi = \mathbf{0}, \Lambda = \frac{2E}{\hbar\omega}$$

Vlastní funkce Hamiltoniánu LHO

- Kvadratická integrabilita $\phi(\xi) \rightarrow 0$ pro $|\xi| \rightarrow \infty$
- Přibližné řešení pro $|\xi| \to \infty$

$$\phi'' \approx \xi^2 \phi \Longrightarrow \phi(\xi) \approx e^{-\frac{\xi^2}{2}}$$

Ansatz

$$\phi(\xi) = u(\xi) e^{-\frac{\xi^2}{2}}$$

• Rovnice pro u

$$u''=2\xi u'+(1-\Lambda)u$$

• Kvadratická integrabilita — $u(\xi)$ roste pomaleji než $e^{\frac{\xi^2}{2}}$

		ă	· · ·	
Mai	rtin	Sta	tanà	6
Ivia		Ole	iaiia	•

Vlastní funkce Hamiltoniánu LHO

• *u* ve tvaru mocninné řady

$$u(\xi) = \xi^s \sum_{m=0}^{\infty} a_m \xi^m, \quad a_0 \neq 0, \quad s \geq 0$$

Podmínky na členy rozvoje

$$\xi^{s-2}: \quad s = 0 \lor s = 1$$

$$\xi^{s-1}: \quad a_1 s(s+1) = 0$$

$$\xi^{m+s}: \quad a_{m+2} = \frac{2(m+s) + 1 - \Lambda}{(m+2+s)(m+1+s)} a_m$$

Martin Štefaňák

6. října 2020 32 / 39

4 A N

Spektrum Hamiltoniánu LHO

- Pokud je ∞ -mnoho $a_m \neq 0 \Longrightarrow u(\xi) \sim e^{\xi^2}$ pro $|\xi| \to \infty$
- Kvadratická integrabilita $\implies u$ je polynom

$$\exists N \; sud\acute{e}, \; 2(N+s)+1-\Lambda=0 \implies a_{N+2l}=0$$

 $a_1=0 \implies a_{2l+1}=0$

• Vlastní čísla hamiltoniánu LHO

$$\Lambda = \frac{2E}{\hbar\omega}, \ N + s = n \Longrightarrow E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n \in \mathbb{Z}_+$$

Martin Štefaňák

Vlastní funkce hamiltoniánu LHO

Vlastní funkce

$$\psi_n(\xi) = \left(\frac{M\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{n!2^n}} H_n(\xi) \ e^{-\frac{\xi^2}{2}}, \quad \hat{H}\psi_n = E_n\psi_n$$

Hermitovy polynomy

$$H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}$$

• Množina vlastních funkcí tvoří ON bázi v $\mathcal{H} = L^2(\mathbb{R}, dx)$

$$(\psi_n,\psi_m)=\delta_{n,m}$$

• Hamiltonián LHO má čistě bodové prosté spektrum

$$\sigma(\hat{H}) = \sigma_p(\hat{H}) = \left\{ E_n = \left(n + \frac{1}{2} \right) \hbar \omega | n \in \mathbb{Z}_+ \right\}$$

Martin Štefaňák

Izotropní oscilátor

Rozložení hamiltoniánu — tři nezávislé LHO

$$\hat{H}_{3D} = \hat{H}_1 + \hat{H}_2 + \hat{H}_3, \quad \hat{H}_j = -\frac{\hbar^2}{2M}\frac{\partial^2}{\partial x_j^2} + \frac{1}{2}M\omega^2 x_j^2$$

• Vlastní funkce \hat{H}_{3D} pomocí vlastních funkcí \hat{H}

$$\hat{\psi}_{n_1,n_2,n_3}(x_1,x_2,x_3) = \psi_{n_1}(x_1)\psi_{n_2}(x_2)\psi_{n_3}(x_3) \hat{H}_{3D}\psi_{n_1,n_2,n_3} = \left(n_1 + n_2 + n_3 + \frac{3}{2}\right)\hbar\omega\psi_{n_1,n_2,n_3}$$

• Množina vlastních funkcí tvoří ON bázi v $\mathcal{H} = L^2(\mathbb{R}^3, d^3x)$

$$(\psi_{n_1,n_2,n_3},\psi_{m_1,m_2,m_3})=\delta_{n_1,m_1}\delta_{n_2,m_2}\delta_{n_3,m_3}$$

Martin Štefaňák

Spektrum hamiltoniánu izotropního oscilátoru

Hamiltonián má čistě bodové spektrum

$$\sigma(\hat{H}_{3D}) = \sigma_{p}(\hat{H}_{3D}) = \left\{ E_{N} = \left(N + \frac{3}{2} \right) \hbar \omega | N \in \mathbb{Z}_{+} \right\}$$

• Energie závisí na hlavním kvantovém čísle

$$N = n_1 + n_2 + n_3$$

• Vlastní hodnoty nejsou prosté (kromě $E_0 = \frac{3}{2}\hbar\omega$)

$$D_N=\frac{(N+1)(N+2)}{2}$$

A discussion	Ot - 4 - × 41 -	
Martin	Stefanak	

Popis stavů kvantové částice

2 Pozorovatelné veličiny v kvantové mechanice

3 Energie harmonického oscilátoru

4 Moment hybnosti

A .

∃ ▶ ∢

Složky momentu hybnosti

• Princip korespondence

$$\hat{L}_i = \varepsilon_{ijk} \hat{Q}_j \hat{P}_k$$

Rovnice na vlastní čísla a vlastní funkce

$$\hat{L}_{j}\psi = \mu\psi$$

• Zjednoduší se přechodem do sférických souřadnic

$$\hat{L}_3 = -i\hbarrac{\partial}{\partial arphi}$$

		5. /		
Mari	in S	stat	ana	<i>L</i> .
IVICIII			ana	Δ.

6. října 2020 38 / 39

4 A N

Složky momentu hybnosti

Řešení rovnice

$$\hat{L}_{3}\psi = -i\hbar \frac{\partial \psi}{\partial \varphi} = \mu \psi \Longrightarrow \psi(\mathbf{r}, \theta, \varphi) = \chi(\mathbf{r}, \theta) \mathbf{e}^{\frac{i}{\hbar}\mu\varphi}$$

Řešení musí být spojitá funkce - 2π-periodická ve φ

$$\mu = m\hbar, \quad m \in \mathbb{Z}$$

• Spektra všech složek momentu hybnosti jsou stejná

$$\sigma(\hat{L}_j) = \sigma_p(\hat{L}_j) = \{ m\hbar | m \in \mathbb{Z} \}$$

Vlastní funkce L₃

$$\psi(\mathbf{r},\theta,\varphi) = \chi(\mathbf{r},\theta)\mathbf{e}^{im\varphi}$$

Martin Štefaňák

6. října 2020 39 / 39

Měření, kompatibilita pozorovatelných, částice ve sféricky symetrickém potenciálu

Martin Štefaňák

13. října 2020

Martin Štefaňák

Kvantová mechanika

13. října 2020 1 / 29

Částice ve sféricky symetrickém potenciálu

Měření v kvantové částice

2) Kompatibilita pozorovatelných

Částice ve sféricky symetrickém potenciálu

< 6 b

Klasická mechanika

- Stav poloha a hybnost $(q, p) \in \Gamma$
- Pozorovatelné reálné funkce na fázovém prostoru f(q, p)
- Stav je pozorovatelná

Kvantová mechanika

- Stav nenulový vektor $\psi \in \mathscr{H}$
- Pozorovatelné samosdružené operátory na *H*
- Stav není pozorovatelná

Kvantové částici musíme stav přiřadit na základě výsledků měření pozorovatelných

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Měření v kvantové mechanice

LHO

- Měříme energii vyjde hodnota $E_n = (n + \frac{1}{2})\hbar\omega$
- \hat{H} má prosté spektrum vlastní funkce ψ_n určena jednoznačně
- Po měření je stav popsán vlastní funkcí ψ_n

Postulát 3

- Stav před měřením ψ
- Měřím pozorovatelnou Â, naměřím vlastní hodnotu a_j
- Stav po měření je popsán vektorem $\phi = \frac{\hat{P}_{j\psi}}{\|\hat{P}_{i\psi}\|}$
- \hat{P}_j je OG projektor na vlastní podprostor
- Pravděpodobnost výsledku měření a_j je rovna

$$W_{\psi,A=a_j} = \|\hat{P}_j\psi\|^2$$

LHO

Stav před měřením

$$\psi = \frac{1}{\sqrt{2}}(\psi_0 + \psi_1)$$

- Můžeme naměřit energie $E_0 = \frac{1}{2}\hbar\omega$ nebo $E_1 = \frac{3}{2}\hbar\omega$
- Oba možné výsledky mají pravděpodobnost ¹/₂
- Po měření popíšeme stav LHO vlastním vektorem ψ_0 nebo ψ_1

Po měření musíme aktualizovat popis stavu

Klasická mechanika

- Stav určuje jednoznačně hodnotu všech pozorovatelných
- Měření pouze odhalí hodnotu
- Stav se nezmění

Kvantová mechanika

- Stav určuje možné hodnoty pozorovatelných
- Měření náhodně vybere jednu z možností
- Stav se obecně změní
Měření v kvantové mechanice — prosté spektrum

Â má prosté spektrum

$$\hat{A}|j
angle=a_{j}|j
angle$$

OG projektor na vlastní podprostor

$$\hat{P}_{j} = |j
angle \langle j|, \quad \hat{P}_{j}|\psi
angle = \langle j|\psi
angle |j
angle$$

Pr. výsledku měření pr. přechodu do vlastního stavu

$$W_{\psi,A=a_j} = \|\hat{P}_j\psi\|^2 = |\langle j|\psi\rangle|^2 = W_{\psi\to j}$$

Stav LHO po měření energie je určen jednoznačně bez ohledu na stav před měřením

Martin Štefaňák

13. října 2020 8 / 29

イロト イヨト イヨト イヨト

Izotropní oscilátor — degenerované spektrum

• Ĥ má degenerované spektrum

$$\hat{H}|n_1, n_2, n_3\rangle = E_N|n_1, n_2, n_3\rangle, \quad N = n_1 + n_2 + n_3$$

OG projektor na vlastní podprostor

$$\hat{P}_{N} = \sum_{\substack{n_{1}, n_{2}, n_{3} \\ n_{1} + n_{2} + n_{3} = N}} |n_{1}, n_{2}, n_{3}\rangle \langle n_{1}, n_{2}, n_{3}|$$

Stav po měření stále závisí na stavu před měřením

$$\hat{P}_{N}|\psi\rangle = \sum_{\substack{n_{1}, n_{2}, n_{3} \\ n_{1} + n_{2} + n_{3} = N}} \langle n_{1}, n_{2}, n_{3}|\psi\rangle |n_{1}, n_{2}, n_{3}\rangle$$

Martin Štefaňák

- Stav izotropního oscilátoru není po měření energie určen jednoznačně
- Musíme měřit nějaké další pozorovatelné

Kompatibilní pozorovatelné

Měření nové pozorovatelné nesmí znehodnotit předchozí výsledky

Měření v kvantové částice

Částice ve sféricky symetrickém potenciálu

< 6 b

• Pozorovatelné Â a Ê mají společné vlastní vektory

$$\hat{A}\psi_{i,j} = a_i\psi_{i,j}, \quad \hat{B}\psi_{i,j} = b_j\psi_{i,j}$$

- Vlastní vektory tvoří ON bázi
- $\forall a_i, b_j$ je vlastní vektor $\psi_{i,j}$ určen jednoznačně
- Po měření $\hat{A}(a_i)$ a $\hat{B}(b_j)$ je stav popsán $\psi_{i,j}$
- Opakování měření už stav nezmění
- \hat{A} a \hat{B} mají společné vlastní vektory \Longrightarrow jsou kompatibilní
- Můžeme je měřit současně ⇐⇒ ve stavu ψ_{i,j} mají obě přesné hodnoty

a mají společné vlastní vektory — operátory komutují

$$\left[\hat{A},\hat{B}
ight]=\hat{A}\hat{B}-\hat{B}\hat{A}=0$$

 Obecnější podmínka, lze použít i pro operátory se spojitým spektrem

•
$$\hat{A} \ a \ \hat{B} \ jsou \ kompatibilni \iff \left[\hat{A}, \hat{B}\right] = 0$$

• $\left\{ \hat{A}^{(j)} \middle| j = 1, \dots, k \right\}$ jsou kompatibilni $\iff \left[\hat{A}^{(i)}, \hat{A}^{(j)}\right] = 0$
 $\forall i, j = 1, \dots, k$

Kompatibilita pozorovatelných

- Složky polohy jsou kompatibilní $\left[\hat{Q}_{i}, \hat{Q}_{j}\right] = 0$
- Složky hybnosti jsou kompatibilní $\left[\hat{P}_{i}, \hat{P}_{j}\right] = 0$
- Složky polohy a hybnosti ve stejném směru kompatibilní nejsou

$$\left[\hat{\boldsymbol{Q}}_{i},\hat{\boldsymbol{P}}_{j}\right]=i\hbar\delta_{ij}$$
 \implies relace neurčitosti

Složky momentu hybnosti nejsou kompatibilní

$$\left[\hat{L}_{i},\hat{L}_{j}\right]=i\hbar\varepsilon_{ijk}\hat{L}_{k}$$

- \hat{L}_j nemají společné vlastní vektory
- Moment hybnosti kvantové částice není vektor

Spin- $\frac{1}{2}$

Spin — vlastní moment hybnosti

$$\left[\hat{S}_{i},\hat{S}_{j}
ight]=i\hbararepsilon_{ijk}\hat{S}_{k}$$

• Spin- $\frac{1}{2}$ — projekce do libovolného směru je $\pm \frac{\hbar}{2}$

$$\mathscr{H} = \mathbb{C}^2 = [|z,+\rangle, |z,-\rangle]_{\lambda}$$

Operátor projekce spinu do osy z

$$\hat{\mathcal{S}}_{z}|z,\pm
angle=\pmrac{\hbar}{2}|z,\pm
angle$$

$$S_{z} = egin{pmatrix} \langle z, + | \hat{S}_{z} | z, +
angle & \langle z, + | \hat{S}_{z} | z, -
angle \ \langle z, - | \hat{S}_{z} | z, +
angle & \langle z, - | \hat{S}_{z} | z, -
angle \end{pmatrix} = rac{\hbar}{2} egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

Martin Štefaňák

• Operátor projekce spinu do osy x

$$\hat{\mathcal{S}}_{x}|x,\pm
angle=\pmrac{\hbar}{2}|x,\pm
angle$$

$$S_x = egin{pmatrix} \langle z,+|\hat{S}_x|z,+
angle & \langle z,+|\hat{S}_x|z,-
angle \ \langle z,-|\hat{S}_x|z,+
angle & \langle z,-|\hat{S}_x|z,-
angle \end{pmatrix} = rac{\hbar}{2} egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$

• Operátor projekce spinu do osy y

$$\hat{\mathcal{S}}_{m{y}}|m{y},\pm
angle=\pmrac{\hbar}{2}|m{y},\pm
angle$$

$$S_y = egin{pmatrix} \langle z,+|\hat{S}_y|z,+
angle & \langle z,+|\hat{S}_y|z,-
angle \ \langle z,-|\hat{S}_y|z,+
angle & \langle z,-|\hat{S}_y|z,-
angle \end{pmatrix} = rac{\hbar}{2} egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}$$

Martin Štefaňák

13. října 2020 16 / 29

Spin- $\frac{1}{2}$

Ŝ_j nejsou kompatibilní — nemají společné vlastní vektory
Vlastní vektory *Ŝ_x*

$$|x,+\rangle = \frac{1}{\sqrt{2}}(|z,+\rangle+|z,-\rangle)$$

$$|x,-\rangle = \frac{1}{\sqrt{2}}(|z,+\rangle-|z,-\rangle)$$

Částice ve stavu |z, +>, měřím projekci spinu do osy x
Mohu naměřit obě hodnoty se stejnou pravděpodobností

$$W_{x,+} = |\langle x,+|z,+\rangle|^2 = \frac{1}{2}, \quad W_{x,-} = |\langle x,-|z,+
angle|^2 = \frac{1}{2}$$

- Částice ve stavu $|z, +\rangle$, měřím projekci spinu do osy *x*
- Naměřím kladnou projekci stav částice je popsán ketem |x,+
 angle
- Měřím projekci spinu do osy z
- Mohu naměřit obě hodnoty se stejnou pravděpodobností

$$W_{z,+} = |\langle z,+|x,+
angle|^2 = rac{1}{2}, \quad W_{z,-} = |\langle z,-|x,+
angle|^2 = rac{1}{2}$$

Měření \hat{S}_x smazalo informaci o předchozím měření \hat{S}_z

Úplná množina pozorovatelných

- $\left\{ \hat{A}^{(j)} \middle| j = 1, \dots k \right\}$ kompatibilní pozorovatelné
- Mají čistě bodová spektra
- Společné vlastní vektory

$$\hat{A}^{(j)}\psi_{n_1,\ldots,n_k}=\alpha_{n_j}^{(j)}\psi_{n_1,\ldots,n_k}, \quad j=1,\ldots,k$$

- ÚMP $\iff \forall \left\{ \alpha_{n_1}^{(1)}, \dots \alpha_{n_k}^{(k)} \right\}$ má vlastní podprostor dimenzi 1
- Po měření ÚMP je stav částice určen jednoznačně $\left\{ \alpha_{n_1}^{(1)}, \dots \alpha_{n_k}^{(k)} \right\}$, resp. kvantovými čísly $n_1, \dots n_k$
- Stav po měření je popsán společným vlastním vektorem ψ_{n1},...n_k bez ohledu na stav před měřením
- Měření ÚMP lze použít k jednoznačné přípravě stavu
- Volba ÚMP hamiltonián Ĥ + další kompatibilní pozorovatelné

Měření v kvantové částice

2) Kompatibilita pozorovatelných

Částice ve sféricky symetrickém potenciálu

4 A N

Částice ve sféricky symetrickém potenciálu

• Hamiltonián tvaru
$$\hat{H} = \frac{\hat{P}^2}{2M} + V(r)$$
.

• \hat{H} , \hat{L}^2 a \hat{L}_3 jsou kompatibilní — společné vlastní funkce

$$\hat{L}_{3}\psi = \mu\psi, \quad \hat{L}^{2}\psi = \lambda\psi, \quad \hat{H}\psi = E\psi$$

- V kartézských souřadnicích soustava PDR
- Ve sférických souřadnicích separace proměnných ODR

$$\hat{L}_{3} = -i\hbar \frac{\partial}{\partial \varphi}$$

$$\hat{L}^{2} = -\hbar^{2} \left(\frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right)$$

$$\hat{H} = -\frac{\hbar^{2}}{2M} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\hat{L}^{2}}{2Mr^{2}} + V(r) \cdot$$

Martin Štefaňák

Částice ve sféricky symetrickém potenciálu

Společná vlastní funkce v separovaném tvaru

$$\psi(\mathbf{r},\theta,\varphi) = \mathbf{g}(\mathbf{r})\mathbf{f}(\theta)\mathbf{h}(\varphi)$$

Postupně řešíme ODR

$$\hat{L}_{3}\psi = \mu\psi \implies \text{ODR pro } h(\varphi)$$

$$\hat{L}^{2}\psi = \lambda\psi \implies \text{ODR pro } f(\theta)$$

$$\hat{H}\psi = E\psi \implies \text{ODR pro } g(r)$$

Martin Štefaňák

Společné vlastní funkce \hat{L}_3 a \hat{L}^2

Vlastní funkce L₃ známe

$$h(\varphi) = e^{im\varphi}, \quad \mu = m\hbar, \quad m \in \mathbb{Z}$$

• Společná vlastní funkce s \hat{L}^2 , substituce $t = \cos \theta$, $F(t) = f(\theta)$

$$\left((1-t^2)F'\right)' + \left(\frac{\lambda}{\hbar^2} - \frac{m^2}{1-t^2}\right)F = 0$$

- *F*(*t*) musí být omezená na intervalu (−1, 1)
- Řešení lze hledat ve tvaru řady
- F je omezená \iff řada je konečná \implies podmínka na vlastní čísla

Společné vlastní funkce \hat{L}_3 a \hat{L}^2

Vlastní čísla L² — určená orbitálním kvantovým číslem I

$$\lambda = \hbar^2 I(I+1), \quad I \in \mathbb{Z}_+$$

Omezení na magnetická kvantová čísla m

$$m = I, I - 1, \ldots - I$$

• Společné vlastní funkce \hat{L}_3 a \hat{L}^2 — kulové funkce $Y_{l,m}$

$$Y_{lm}(heta,arphi)=C_{lm}P_l^m(\cos heta)e^{imarphi}$$

Přidružené Legendreovy polynomy

$$P_l^m(t) = rac{(1-t^2)^{rac{m}{2}}}{2^l l!} rac{d^{l+m}}{dt^{l+m}} (t^2-1)^l$$

Martin Štefaňák

Vlastnosti kulových funkcí

Normalizace

$$C_{lm} = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}}$$

Kulové funkce tvoří ONB v prostoru L²((0, π) × (0, 2π), sin θdθdφ)
L² má čistě bodové spektrum

$$\sigma(\hat{L}^2) = \left\{ \hbar^2 l(l+1) | l \in \mathbb{Z}_+ \right\}$$

Pro kulové funkce platí

$$\hat{L}_{3}Y_{lm} = m\hbar Y_{lm}, \quad m = l, l - 1, \dots - l, \hat{L}^{2}Y_{lm} = \hbar^{2}l(l+1)Y_{lm}, \quad l \in \mathbb{Z}_{+}$$

Martin Štefaňák

13. října 2020 25 / 29

Úhlové rozdělení hustoty pravděpodobnosti

$$W(heta,arphi) = |Y_{lm}(heta,arphi)|^2 \sim |\mathcal{P}_l^m(\cos heta)|^2$$

s-stav — *l* = 0

Kulová funkce je konstantní

$$Y_{00}(heta,arphi)=rac{1}{\sqrt{4\pi}}$$

 Rozdělení je sféricky symetrické

Úhlové rozdělení hustoty pravděpodobnosti — p-stavy

l = 1, m = 0

$$Y_{1,0}(heta,arphi) = \sqrt{rac{3}{4\pi}}\cos heta$$

Martin Štefaňák

Kvantová mechanika

13. října 2020 27 / 29

Úhlové rozdělení hustoty pravděpodobnosti — d-stavy

$$Y_{2,\pm 2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\varphi}, \quad Y_{2,\pm 1} = \mp \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\varphi}$$
$$Y_{2,0} = \sqrt{\frac{5}{16\pi}} (3\cos^2 \theta - 1)$$

28/29

Rovnice pro radiální funkci

• Společná vlastní funkce
$$\hat{H}$$
, \hat{L}^2 a \hat{L}_3

$$\psi_{E,l,m}(r,\theta,\varphi) = g(r)Y_{l,m}(\theta,\varphi), \quad \hat{H}\psi_{E,l,m} = E\psi_{E,l,m}$$

• Substituce — $g(r) = \frac{\chi(r)}{r}$

$$\hat{H}_{ef}\chi=E\chi,\quad \hat{H}_{ef}=-\frac{\hbar^2}{2M}\frac{d^2}{dr^2}+V_{ef}(r)\cdot$$

Částice na polopřímce v efektivním potenciálu

$$V_{ef}(r) = V(r) + \frac{\hbar^2 l(l+1)}{2Mr^2}$$

Kvadratická integrabilita + okrajová podmínka

$$\int_0^\infty |\chi(r)|^2 dr < \infty, \quad \chi(0) = 0$$

Martin Štefaňák

13. října 2020 29 / 29

Izotropní oscilátor, částice v coulombickém poli, zobecněné vlastní funkce

Martin Štefaňák

20. října 2020

Martin Štefaňák

Kvantová mechanika

20. října 2020 1 / 26

3 Zobecněné vlastní funkce hybnosti a polohy

▲ 同 ▶ → 三 ▶

Částice ve sféricky symetrickém potenciálu

• Společné vlastní funkce
$$\hat{H}$$
, \hat{L}^2 a \hat{L}_3

$$\begin{split} \psi_{E,I,m}(r,\theta,\varphi) &= g(r)Y_{Im}(\theta,\varphi) \\ \hat{L}_{3}\psi_{E,I,m} &= m\hbar\psi_{E,I,m}, \quad \hat{L}^{2}\psi_{E,I,m} = \hbar^{2}I(I+1)\psi_{E,I,m} \end{split}$$

Zbývá určit radiální funkci g(r)

$$\hat{H}\psi_{E,l,m} = E\psi_{E,l,m}, \quad \hat{H} = -\frac{\hbar^2}{2M}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{\hat{L}^2}{2Mr^2} + V(r)$$

• $g(r) = \frac{\chi(r)}{r}$ — částice na polopřímce v efektivním potenciálu

$$\hat{H}_{ef}\chi = E\chi, \quad \hat{H}_{ef} = -\frac{\hbar^2}{2M}\frac{d^2}{dr^2} + V(r) + \frac{\hbar^2 l(l+1)}{2Mr^2}$$

Martin Štefaňák

• Potenciál tvaru
$$V(r) = \frac{1}{2}M\omega^2 r^2$$

• Substituce $\xi = \sqrt{\frac{M\omega}{\hbar}}r, \, \chi(r) = \Phi(\xi)$

$$\Phi'' - \left(\xi^2 + \frac{l(l+1)}{\xi^2}\right)\Phi + \frac{2E}{\hbar\omega}\Phi = 0, \quad \Phi(0) = 0, \quad \int_0^\infty |\Phi(\xi)|^2 d\xi < \infty$$

Chování řešení v nekonečnu

$$\Phi'' \approx \xi^2 \Phi \implies \Phi(\xi) \sim e^{-\frac{\xi^2}{2}}$$

Chování řešení v nule

$$\Phi'' \approx rac{l(l+1)}{\xi^2} \Phi \implies \Phi(\xi) \sim \xi^{l+1}$$

Martin Štefaňák

▶ < ≣ > ≣
> २०.
20. října 2020 5 / 26

・ロト ・ 四ト ・ ヨト ・ ヨト

Ansatz

$$\Phi(\xi) = \xi^{l+1} e^{-\frac{\xi^2}{2}} w(\xi^2)$$

• Rovnice pro $w(z), z = \xi^2$

$$zw'' + (\gamma - z)w' - \alpha w = 0, \quad \gamma = I + \frac{3}{2}, \quad \alpha = \frac{I}{2} + \frac{3}{4} - \frac{E}{2\hbar\omega}$$

Řešení pomocí degenerovaných hypergeometrických funkcí

$$F(\alpha, \gamma, z) = 1 + \frac{\alpha}{\gamma} \frac{z^1}{1!} + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)} \frac{z^2}{2!} + \dots$$

$$\alpha \neq -n, n \in \mathbb{Z}_+ \implies F(\alpha, \gamma, z) \sim e^z$$

• Řešení rovnice konečné v $\xi = 0$

$$W(\xi^2) = A F(\alpha, \gamma, \xi^2)$$

• $\Phi(\xi)$ je kvadraticky integrabilní $\iff F(\alpha, \gamma, \xi^2)$ je polynom

$$\alpha = \frac{l}{2} + \frac{3}{4} - \frac{E}{2\hbar\omega} = -n, \quad n \in \mathbb{Z}_+$$

Vlastní hodnoty energie

$$E_{n,l} = \left(2n+l+rac{3}{2}
ight)\hbar\omega, \quad n,l\in\mathbb{Z}_+$$

• Hlavní kvantové číslo N = 2n + I, degenerace hladiny D_N

$$D_N=\frac{(N+1)(N+2)}{2}$$

Martin Štefaňák

• F přejde v zobecněný Lagguerův polynom

$$F(-n,\gamma,z)\sim L_n^{\gamma-1}(z), \quad L_n^{\beta}(z)=rac{1}{n!}\ e^z z^{-\beta}\ rac{d^n}{dz^n}\ (e^{-z} z^{n+\beta})$$

Společné vlastní funkce Ĥ, L², L₃

$$\begin{split} \psi_{n,l,m}(r,\theta,\varphi) &= K_{nl} \,\xi^l \, e^{-\frac{\xi^2}{2}} \, L_n^{l+\frac{1}{2}}(\xi^2) \, Y_{lm}(\theta,\varphi), \quad \xi = r \sqrt{\frac{M\omega}{\hbar}} \\ \hat{L}_3 \psi_{n,l,m} &= m \hbar \psi_{n,l,m}, \quad \hat{L}^2 \psi_{n,l,m} = \hbar^2 I(I+1) \psi_{n,l,m} \\ \hat{H} \psi_{n,l,m} &= E_{n,l} \psi_{n,l,m}, \quad n, l \in \mathbb{Z}_+, \quad m = I, I-1, \ldots -I \end{split}$$

- Množina vlastních funkcí $\{\psi_{n,l,m}\}$ tvoří ON bázi
- Jiná ON báze než $\{\psi_{n_1,n_2,n_3}\}$
- Kvantová čísla n, l, m odpovídají měření pozorovatelných

3 Zobecněné vlastní funkce hybnosti a polohy

< 17 ▶

Částice v coulombickém poli

• Potenciál tvaru
$$V(r) = -\frac{Q}{r}, Q > 0$$

Rovnice pro radiální funkci

$$-\frac{\hbar^2}{2M}\chi'' + \left(-\frac{Q}{r} + \frac{\hbar^2 l(l+1)}{2Mr^2}\right)\chi = E\chi$$

Chování řešení v nekonečnu

$$\chi'' \approx \underbrace{-\frac{2ME}{\hbar^2}}_{\kappa^2 > 0} \chi \implies \chi(r) \sim e^{\kappa r}, \quad \kappa < 0, \quad E < 0$$

Chování řešení v nule

$$\chi'' \approx \frac{l(l+1)}{r^2} \chi \implies \chi(r) \sim r^{l+1}$$

Martin Štefaňák

≣ ▶ ∢ ≣ ▶ ा≣ √ ९ ० 20. října 2020 10 / 26

・ロト ・ 四ト ・ ヨト ・ ヨト

Ansatz

$$\chi(r) = r^{l+1} e^{\kappa r} w(r)$$

• Rovnice pro w(r)

$$rw'' + (ar + b)w' + cw = 0$$

$$a = 2\kappa, \quad b = 2l + 2 \quad , \quad c = 2\left[(l+1)\kappa + \frac{MQ}{\hbar^2}\right]$$

Řešení konečné v nule

$$w(r) = AF\left(rac{c}{a}, b, -ar
ight) = AF\left(l+1+rac{MQ}{\hbar^{2}\kappa}, 2l+2, -2\kappa r
ight)$$

Martin Štefaňák

・ロト ・ 四ト ・ ヨト ・ ヨト

• $\chi(r)$ je kvadraticky integrabilní \iff *F* je polynom

$$l+1+rac{MQ}{\hbar^2\kappa}=-n,\quad n\in\mathbb{Z}_+$$

Vlastní hodnoty energie

$$\Xi_{n,l} = -\frac{MQ^2}{2\hbar^2(n+l+1)^2}$$

• Hlavní kvantové číslo N = n + l + 1

$$E_N = -rac{R}{N^2}, \quad N \in \mathbb{N}, \quad R = rac{MQ^2}{2\hbar^2}$$

Martin Štefaňák

-∢ ∃ >

Částice v coulombickém poli

$$\begin{split} \psi_{N,l,m}(r,\theta,\varphi) &= K_{Nl} \left(\frac{2r}{Na}\right)^{l} e^{-\frac{r}{Na}} L_{N-l-1}^{2l+1} \left(\frac{2r}{Na}\right) Y_{lm}(\theta,\varphi), \quad a = \frac{\hbar^{2}}{MQ} \\ \hat{L}_{3}\psi_{N,l,m} &= m\hbar\psi_{N,l,m}, \quad \hat{L}^{2}\psi_{N,l,m} = \hbar^{2}l(l+1)\psi_{N,l,m} \\ \hat{H}\psi_{N,l,m} &= E_{N}\psi_{N,l,m}, \quad N \in \mathbb{N}, \quad l < N, \quad |m| \le l \end{split}$$

Degenerace podprostoru s energií E_N

$$D_N = N^2$$

- Množina vlastních funkcí $\{\psi_{N,l,m}\}$ netvoří ON bázi
- Hamiltonián má i spojité spektrum $\sigma_c(\hat{H}) = \langle 0, +\infty \rangle$

Model odpovídá e[−] v atomu vodíku s ∞-těžkým jádrem

$$Q = \frac{e^2}{4\pi\varepsilon_0}, \quad R \doteq 13.6 \text{ eV}$$

Stabilita elektronového obalu vodíku — existuje základní stav

$$E_1 = -R \doteq -13.6 \text{ eV}$$

Čárové spektrum vodíku — Rydberg-Ritzův kombinační princip

$$\nu = \frac{\Delta E}{h} = \frac{E_{N_2} - E_{N_1}}{h} = \nu_R \left(\frac{1}{N_1^2} - \frac{1}{N_2^2}\right)$$
Čárové spektrum vodíku

Elektronové orbitaly ve vodíku

N, *I*, *m* = 3, 0, 0

N, *I*, *m* = 3, 1, 0

Martin Štefaňák

N, *I*, *m* = 3, 2, 1

N, *I*, *m* = 3, 2, 2

Kvantová mechanika

Izotropní harmonický oscilátor

3 Zobecněné vlastní funkce hybnosti a polohy

< 6 b

э.

Zobecněné vlastní funkce hybnosti

- Složky hybnosti mají spojité spektrum $\sigma_c(\hat{P}_j) = \mathbb{R}$
- Formální řešení r-ce na vlastní funkce není kvadraticky integrabilní

$$\hat{\mathcal{P}}_{j}\psi = \mathcal{p}_{j}\psi \implies \psi_{\vec{p}}(\vec{x}) = \mathcal{A}e^{rac{i}{\hbar}ec{p}\cdot\vec{x}}, \quad |\psi_{ec{p}}(ec{x})|^{2} = |\mathcal{A}|^{2}$$

- Přesto lze dobře definovat $(\psi_{\vec{p}}, \phi)$ pro ϕ ze Schwartzova prostoru
- Pro volbu $A = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}}$ Fourierova transformace

$$(\psi_{\vec{p}},\phi) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int_{\mathbb{R}^3} e^{-\frac{i}{\hbar}\vec{p}\cdot\vec{x}} \phi(\vec{x}) d^3x = (F\phi)(\vec{p}) = \tilde{\phi}(\vec{p})$$

• F je bijekce na $\mathscr{S}(\mathbb{R}^3)$

Zobecněné vlastní funkce hybnosti

• $\psi_{\vec{p}}$ lze chápat jako temperovanou distribuci — $\psi_{\vec{p}} \in \mathscr{S}^*(\mathbb{R}^3)$

$$(\psi_{ec p}, \hat{P}_j \phi) = p_j(\psi_{ec p}, \phi), \quad orall \phi \in \mathscr{S}(\mathbb{R}^3) \implies \psi_{ec p}(ec x) = rac{1}{(2\pi\hbar)^{rac{3}{2}}} e^{rac{i}{\hbar}ec p\cdot ec x}$$

Inverzní Fourierova transformace

$$(F^{-1}\tilde{\phi})(\vec{x}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int_{\mathbb{R}^3} e^{\frac{i}{\hbar}\vec{p}\cdot\vec{x}}\tilde{\phi}(\vec{p})d^3p = \phi(\vec{x})$$

Integrální vyjádření Diracovy δ-funkce

$$\frac{1}{(2\pi\hbar)^3}\int_{\mathbb{R}^3} \boldsymbol{e}^{\frac{i}{\hbar}\vec{p}\cdot(\vec{x}-\vec{y})} \boldsymbol{d}^3\boldsymbol{p} = \delta(\vec{x}-\vec{y}) = \delta_{\vec{y}}(\vec{x}), \quad (\delta_{\vec{y}},\phi) = \phi(\vec{y})$$

Martin Štefaňák

≣ ▶ < ≣ ▶ ≡ ∽ २.⊂ 20. října 2020 19 / 26

< ロ > < 同 > < 回 > < 回 >

• $\psi_{\vec{p}}$ lze normalizovat k δ -funkci — analogie relací ortogonality

$$(\psi_{\vec{p}'},\psi_{\vec{p}})=\delta(\vec{p}-\vec{p}')$$

• Rozvoj ϕ pomocí $\psi_{\vec{p}}$ — analogie Fourierova rozvoje

$$\phi(ec{x}) = \int_{\mathbb{R}^3} (\psi_{ec{
ho}}, \phi) \psi_{ec{
ho}}(ec{x}) d^3
ho$$

Zobecněné vlastní funkce hybnosti lze chápat jako spojitou bázi

• $\psi_{\vec{p}}$ jsou i zobecněné vlastní funkce hamiltoniánu volné částice

$$\hat{H} = \frac{\hat{P}^2}{2M} \implies \left[\hat{H}, \hat{P}_j\right] = 0$$

$$\hat{H}\psi_{\vec{p}} = \frac{p^2}{2M}\psi_{\vec{p}}, \quad \sigma_c(\hat{H}) = \langle 0, +\infty \rangle$$

Martin Štefaňák

Kvantová mechanika

20. října 2020 21 / 26

• $\psi_{\vec{p}}$ lze libovolně přesně aproximovat kvadraticky integrabilní funkcí

$$\begin{split} \psi_{p,\varepsilon}(x) &= \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}px} \frac{\hbar}{\varepsilon x} \sin\left(\frac{\varepsilon x}{\hbar}\right) \\ \forall \varepsilon > 0 \quad , \quad \psi_{p,\varepsilon} \in L^2(\mathbb{R}, dx), \quad \lim_{\varepsilon \to 0} (\hat{P} - p) \psi_{p,\varepsilon} = 0 \end{split}$$

Čím menší ε, tím přesněji je určená hybnost částice

$$\langle \hat{P}
angle_{\psi_{p,\varepsilon}} = p, \quad \Delta_{\psi_{p,\varepsilon}} \hat{P} \sim \varepsilon$$

Rovnice na vlastní funkce nemá řešení

$$\hat{Q}_{j}\psi = y_{j}\psi \Longrightarrow (x_{j} - y_{j})\psi(\vec{x}) = 0 \Longrightarrow \psi \sim 0$$

• Ve smyslu distribucí rovnice má řešení — Diracova δ -funkce

$$\begin{aligned} &(\delta_{\vec{y}}, \hat{Q}_{j}\phi) &= y_{j}(\delta_{\vec{y}}, \phi), \quad \forall \phi \in \mathscr{S}(\mathbb{R}^{3}) \\ &\delta_{\vec{y}}(\vec{x}) &= \delta(\vec{x} - \vec{y}), \quad (\delta_{\vec{y}}, \psi) = \int_{\mathbb{R}^{3}} \delta(\vec{x} - \vec{y})\psi(\vec{x})d^{3}x = \psi(\vec{y}) \end{aligned}$$

Zobecněné vlastní funkce polohy

• $\delta_{\vec{v}}$ lze libovolně přesně aproximovat kvadraticky integrabilní funkcí

$$\begin{split} \delta_{y,\varepsilon}(x) &= \begin{cases} 0 &, \ |x-y| > \varepsilon \\ \\ \frac{1}{2\varepsilon} &, \ |x-y| \le \varepsilon \end{cases} \\ \forall \varepsilon > 0 &, \quad \delta_{y,\varepsilon} \in L^2(\mathbb{R}, dx), \quad \lim_{\varepsilon \to 0} (\hat{Q} - y) \delta_{y,\varepsilon} = 0 \end{split}$$

• Čím menší ε , tím přesněji je určená poloha částice

$$\langle \hat{\boldsymbol{Q}} \rangle_{\delta_{\boldsymbol{y},\varepsilon}} = \boldsymbol{y}, \quad \Delta_{\delta_{\boldsymbol{y},\varepsilon}} \hat{\boldsymbol{Q}} \sim \varepsilon$$

	- Ö.	e * / i
Martin	n Sta	tanak.
iviai ui		anar

Zápis pomocí bra-ketů

Poloha

• Kety $|\vec{x}\rangle$ určené rovnicemi

$$\langle \vec{x} | \hat{Q}_j | \psi
angle = x_j \langle \vec{x} | \psi
angle$$

Normalizace k δ-funkci

 $\langle \vec{x}' | \vec{x} \rangle = \delta(\vec{x} - \vec{x}')$

Rozklad jednotky

$$\int_{\mathbb{R}^3} d^3x |\vec{x}\rangle \langle \vec{x}| = \hat{l}$$

Hybnost

Kety |\$\vec{p}\$\) určené rovnicemi
\$\langle \vec{p}\$|\$\vec{P}\$_j|\$\psi \rangle = \$\vec{p}\$_j\$\langle \vec{p}\$|\$\psi \rangle \rangle\$
Normalizace k δ-funkci
\$\langle \vec{p}\$'|\$\vec{p}\$\rangle = δ(\$\vec{p}\$-\$\vec{p}\$')\$
Rozklad jednotky

$$\int\limits_{\mathbb{R}^3} d^3
ho |ec{
ho}
angle \langle ec{
ho}| = \hat{I}$$

< 🗇 🕨 < 🖃 🕨

-∢ ∃ >

Zápis pomocí bra-ketů

Poloha

• Rozvoj $|\psi
angle$ do spojité báze

$$\begin{aligned} |\psi\rangle &= \int\limits_{\mathbb{R}^3} d^3 x |\vec{x}\rangle \underbrace{\langle \vec{x} |\psi\rangle}_{\psi(\vec{x})} \\ &= \int\limits_{\mathbb{R}^3} d^3 x \; \psi(\vec{x}) |\vec{x}\rangle \end{aligned}$$

• Amplituda pr. přechodu $|\psi
angle
ightarrow |ec{x}
angle$

 $\psi(\vec{x}) = \langle \vec{x} | \psi \rangle$

 Souhlas s Bornovou interpretací vlnové funkce

Hybnost

• Rozvoj
$$|\psi
angle$$
 do spojité báze

$$egin{aligned} \psi
angle &= \int \limits_{\mathbb{R}^3} d^3
ho |ec{
ho}
angle \underbrace{\langle ec{
ho} |\psi
angle}_{ ilde{\psi}(ec{
ho})} \ &= \int \limits_{\mathbb{R}^3} d^3
ho \ ilde{\psi}(ec{
ho}) |ec{
ho}
angle \end{aligned}$$

• Amplituda pr. přechodu $|\psi
angle
ightarrow |ec{
ho}
angle$

$$\tilde{\psi}(\vec{p}) = \langle \vec{p} | \psi \rangle$$

• $\tilde{\psi}$ je Fourierova transformace ψ

Posunovací operátory, předpovědi výsledků měření

Martin Štefaňák

27. října 2020

Martin Štefaňák

Kvantová mechanika

27. října 2020 1 / 30

Posunovací operátory pro harmonický oscilátor

Posunovací operátory pro moment hybnosti

A >

Posunovací operátory

 Užitečný nástroj pro práci s pozorovatelnými s ekvidistantním spektrem a jejich vlastními vektory

Definice je posunovací operátor k
$$\hat{B}$$
 s posunutím $\Delta \iff [\hat{B}, \hat{A}] = \Delta \hat{A}$ • zobrazuje vl. vektory \hat{B} na vl. vektory \hat{B} (nebo 0) $\hat{B}|\psi\rangle = \lambda|\psi\rangle, \quad \hat{A}|\psi\rangle \neq 0 \Rightarrow \hat{B}(\hat{A}|\psi\rangle) = (\lambda + \Delta)\hat{A}|\psi\rangle$ • je posunovací k \hat{B} s $\Delta \Rightarrow \hat{A}^{\dagger}$ je posunovací k \hat{B}^{\dagger} s $-\overline{\Delta}$ \hat{B} je posunovací k \hat{B} s $\Delta \Rightarrow \hat{A}^{\dagger}$ je posunovací k \hat{B}^{\dagger} s $-\overline{\Delta}$ $\hat{B} = \hat{B}^{\dagger} \Rightarrow \Delta \in \mathbb{R}, \hat{A}$ je posunovací s $\Delta, \hat{A}^{\dagger}$ je posunovací s $-\Delta$ Matin Štetálát

Posunovací operátory pro harmonický oscilátor

Posunovací operátory pro moment hybnosti

3 Předpovědi výsledků měření

4 A N

Posunovací operátory pro hamiltonián LHO

Hamiltonián LHO, spektrum a vlastní vektory

$$\hat{H} = rac{\hat{P}^2}{2M} + rac{1}{2}M\omega^2\hat{Q}^2, \quad \hat{H}|n
angle = \left(n+rac{1}{2}
ight)\hbar\omega|n
angle, \quad n\in\mathbb{Z}_+$$

- Má ekvidistantní spektrum $\Delta E = E_{n+1} E_n = \hbar \omega$
- Komutační relace pro polohu a hybnost $\left[\hat{Q},\hat{P}
 ight]=i\hbar$
- Posunovací operátory lze zvolit ve tvaru

$$\hat{a}_{\pm} = C\left(\hat{Q} \mp rac{i}{M\omega}\hat{P}
ight) \implies \left[\hat{H}, \hat{a}_{\pm}
ight] = \pm \hbar\omega\hat{a}_{\pm}$$

• Volba C — komutátor \hat{a}_{\pm}

$$[\hat{a}_{-},\hat{a}_{+}]\stackrel{!}{=}1\implies C=\sqrt{rac{M\omega}{2\hbar}}$$

$$\hat{a}_{\pm} = \sqrt{rac{M\omega}{2\hbar}} \left(\hat{Q} \mp rac{i}{M\omega} \hat{P}
ight), \quad \left[\hat{H}, \hat{a}_{\pm}
ight] = \pm \hbar \omega \hat{a}_{\pm}, \quad \left[\hat{a}_{-}, \hat{a}_{+}
ight] = 1$$

Působení na vlastní vektory hamiltoniánu

$$\hat{a}_{\pm}|n\rangle = \alpha_n^{\pm}|n\pm1\rangle, \quad \alpha_n^+ = \sqrt{n+1}, \quad \alpha_n^- = \sqrt{n}$$

• $\hat{a}_{-} \equiv \hat{a}$ — anihilační operátor — ubere jedno kvantum energie

- $\hat{a}_+ \equiv \hat{a}^{\dagger}$ kreační operátor přidá jedno kvantum energie
- $\hat{a}_{+}\hat{a}_{-}\equiv\hat{a}^{\dagger}\hat{a}$ operátor počtu kvant

$$\hat{a}_{+}\hat{a}_{-}|n
angle = \sqrt{n}\hat{a}_{+}|n-1
angle = n|n
angle$$

Maticová reprezentace posunovacích operátorů

• Maticové elementy \hat{a}_{\pm}

$$\langle n|\hat{a}_{\pm}|m
angle = lpha_m^{\pm} \,\delta_{n,m\pm 1}$$

• Maticová reprezentace \hat{a}_{-} v bázi $\{|n\rangle\}$

$$a_{-}=egin{pmatrix} 0&\sqrt{1}&0&0&\ldots\ 0&0&\sqrt{2}&0&\ldots\ dots&dots&\ddots&\ddots&dots\end{pmatrix}$$

• Maticová reprezentace \hat{a}_+ — hermitovské sdružení

$$a_+=a_-^\dagger=egin{pmatrix} 0&0&0&0&\ldots\ \sqrt{1}&0&0&0&\ldots\ 0&\sqrt{2}&0&0&\ldots\ dots&dots&\ddots&dots&dots\end{pmatrix}$$

Poloha pomocí posunovacích operátorů

$$\hat{Q}=\sqrt{rac{\hbar}{2M\omega}}\left(\hat{a}_{+}+\hat{a}_{-}
ight)$$

Maticové elementy

$$\langle n|\hat{Q}|m\rangle = \sqrt{\frac{\hbar}{2M\omega}} (\alpha_m^+ \,\delta_{n,m+1} + \alpha_m^- \,\delta_{n,m-1})$$

• Maticová reprezentace \hat{Q} v bázi $\{|n\rangle\}$

$$Q = \sqrt{\frac{\hbar}{2M\omega}} \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & 0 & \dots \\ \sqrt{1} & 0 & \sqrt{2} & 0 & 0 & \dots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \dots \end{pmatrix}$$

Hybnost pomocí posunovacích operátorů

$$\hat{P}=i\sqrt{rac{M\hbar\omega}{2}}\left(\hat{a}_{+}-\hat{a}_{-}
ight)$$

Maticové elementy

$$\langle n|\hat{P}|m\rangle = i\sqrt{\frac{M\hbar\omega}{2}}(\alpha_m^+ \,\delta_{n,m+1} - \alpha_m^- \,\delta_{n,m-1})$$

• Maticová reprezentace \hat{P} v bázi $\{|n\rangle\}$

$$P = i\sqrt{\frac{M\hbar\omega}{2}} \begin{pmatrix} 0 & -\sqrt{1} & 0 & 0 & 0 & \dots \\ \sqrt{1} & 0 & -\sqrt{2} & 0 & 0 & \dots \\ 0 & \sqrt{2} & 0 & -\sqrt{3} & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \dots \end{pmatrix}$$

Algebraické odvození spektra Ĥ

- Existence posunovacích operátorů \Longrightarrow spektrum je ekvidistantní
- \hat{H} je zdola omezený \implies vlastní hodnoty $E_n \ge 0$

$$\langle \psi | \hat{\mathcal{H}} | \psi \rangle \geq \mathbf{0} \implies \sigma_{\hat{\mathcal{H}}} \subset \langle \mathbf{0}, \infty)$$

• Existuje základní stav $|0\rangle$ — stav s nejnižší energií E_0

$$\hat{a}_{-}|0
angle=0$$

• Hodnota E₀

$$\hat{H}|0
angle = \hbar\omega\left(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2}
ight)|0
angle = \frac{1}{2}\hbar\omega|0
angle \implies E_{0} = \frac{1}{2}\hbar\omega$$

$$|n\rangle = \frac{1}{\sqrt{n!}} \hat{a}^n_+ |0\rangle \implies \hat{H}|n\rangle = \left(n + \frac{1}{2}\right) \hbar \omega |n\rangle$$

Tvar vlastních funkcí \hat{H}

Vlnová funkce základního stavu je určená rovnicí

$$\hat{a}_{-}\psi_{0}=0\implies \frac{1}{\sqrt{2}}\left(\xi+\frac{d}{d\xi}\right)\psi_{0}=0,\quad \xi=\sqrt{\frac{M\omega}{\hbar}x}$$

Řešení rovnice

$$\psi_0(\xi) = C_0 e^{-\frac{\xi^2}{2}}$$

Vlnové funkce excitovaných stavů

$$\hat{a}_{+} = \hat{a}_{-}^{\dagger} = \frac{1}{\sqrt{2}} \left(\xi - \frac{d}{d\xi} \right)$$
$$\psi_{n}(\xi) = C_{n} \left(\xi - \frac{d}{d\xi} \right)^{n} e^{-\frac{\xi^{2}}{2}}$$

Koherentní stavy LHO

Vlastní vektory anihilačního operátoru

$$\hat{a}_{-}\phi_{\alpha} = \alpha\phi_{\alpha} \implies \frac{1}{\sqrt{2}}\left(\xi + \frac{d}{d\xi}\right)\phi_{\alpha} = \alpha\phi_{\alpha}$$

• Řešení existuje pro každé $\alpha \in \mathbb{C}$

$$\phi_{\alpha}(\xi) = C_{\alpha} e^{-\frac{1}{2}(\xi - \sqrt{2}\alpha)^2}, \quad \forall \alpha \in \mathbb{C} \ \phi_{\alpha} \in L^2(\mathbb{R}, d\xi)$$

Anihilační operátor má nespočetně mnoho vlastních vektorů
 â₋ není samosdružený, jeho vlastní vektory netvoří ON bázi

$$(\phi_{\alpha}, \phi_{\beta}) \neq \mathbf{0} \ \forall \alpha, \beta \in \mathbb{C}$$

 Stavy blízké klasické fyzice — minimalizují relace neurčitosti, jednoduchý časový vývoj

Posunovací operátory pro harmonický oscilátor

Posunovací operátory pro moment hybnosti

3) Předpovědi výsledků měření

4 A N

.∃ **) (** 3

Posunovací operátory pro moment hybnosti

L̂₃ má ekvidistantní spektrum — σ(L̂₃) = {mħ|m ∈ ℤ}
Společné vlastní vektory L̂₃ a L̂² — |*I*, m⟩

$$\hat{L}_3|I,m
angle=m\hbar|I,m
angle, \ \ \ \hat{L}^2|I,m
angle=\hbar^2I(I+1)|I,m
angle$$

• Posunovací operátory \hat{L}_{\pm} — nemění *I*, změní *m* o ± 1

$$\left[\hat{L}^2,\hat{L}_{\pm}
ight]=0, \quad \left[\hat{L}_3,\hat{L}_{\pm}
ight]=\pm\hbar L_{\pm}$$

Komutační relace pro moment hybnosti

$$\left[\hat{L}_{i},\hat{L}_{j}
ight]=i\hbararepsilon_{ijk}\hat{L}_{k}$$

Posunovací operátory L_±

$$\hat{L}_{\pm}=\hat{L}_{1}\pm i\hat{L}_{2}$$

Martin Štefaňák

27. října 2020 14 / 30

Posunovací operátory pro moment hybnosti

Působení na vlastní vektory momentu hybnosti

$$\hat{L}_{\pm}|I,m\rangle = \alpha^{\pm}_{I,m}|I,m\pm1\rangle$$

• Zápis \hat{L}^2 pomocí \hat{L}_3 , \hat{L}_{\pm}

$$\hat{L}^2 = \hat{L}_3^2 + \hat{L}_+ \hat{L}_- - \hbar \hat{L}_3 = \hat{L}_3^2 + \hat{L}_- \hat{L}_+ + \hbar \hat{L}_3$$

• Velikost $|\alpha_{l,m}^{\pm}|$

$$|\alpha_{l,m}^{\pm}| = \hbar \sqrt{l(l+1) - m(m\pm 1)}$$

• Fázová konvence — $\alpha_{l,m}^{\pm} \ge 0$

< ∃ ►

Maticová reprezentace posunovacích operátorů

Maticové elementy L[±]

$$\langle l, m | \hat{L}_{\pm} | l', m' \rangle = \alpha_{l,m}^{\pm} \delta_{l,l'} \delta_{m,m'\pm 1}$$

• Matice operátoru \hat{L}_{-} v bázi $\{|l, m\rangle\}$ $(L_{+} = L_{-}^{\dagger})$

Maticová reprezentace $\hat{L}_{1,2}$

• Maticové elementy
$$\hat{L}_1 = \frac{1}{2}(\hat{L}_+ + \hat{L}_-)$$

$$\langle I, m | \hat{\mathcal{L}}_1 | I', m' \rangle = \frac{1}{2} \delta_{I,I'} \left(\alpha^+_{I,m} \delta_{m,m'+1} + \alpha^-_{I,m} \delta_{m,m'-1} \right)$$

• Maticové elementy $\hat{L}_2 = \frac{i}{2}(\hat{L}_- - \hat{L}_+)$

$$\langle I, m | \hat{L}_2 | I', m' \rangle = \frac{i}{2} \delta_{I,I'} \left(\alpha_{I,m}^- \delta_{m,m'-1} - \alpha_{I,m}^+ \delta_{m,m'+1} \right)$$

Matice L_{1,2} jsou blokově diagonální, bloky určené hodnotou I
Nenulové prvky jen v pásech nad a pod diagonálou

Matice \hat{L}_1

Martin Štefaňák

æ 27. října 2020 18/30

∢ ≣⇒

Matice \hat{L}_2

	(0									
		0	$-1/\sqrt{2}$	0						
		$1/\sqrt{2}$	0	$-1/\sqrt{2}$						
		0	$1/\sqrt{2}$	0						
					0	-1	0	0	0	
$L_2 = i\hbar$					1	0	$-\sqrt{\frac{3}{2}}$	0	0	
					0	$\sqrt{\frac{3}{2}}$	0	$-\sqrt{\frac{3}{2}}$	0	
					0	0	$\sqrt{\frac{3}{2}}$	0	-1	
					0	0	0	1	0	
										··

Posunovací operátory pro harmonický oscilátor

Posunovací operátory pro moment hybnosti

Předpovědi výsledků měření

4 A N

.∃ **) (** 3

Měření v kvantové mechanice

- Pokud ψ není vlastní vektor $\hat{A} \Longrightarrow$ hodnota \hat{A} není určená
- Hodnoty pozorovatelných jsou určené měřením
- Měření je náhodný proces, vybere se jedna z možností
- Pravděpodobnost výsledku měření \hat{A} na stavu ψ

$$W_{\psi,\mathcal{A}=\mathbf{a}_j} = \|\hat{P}_j\psi\|^2, \quad \mathbf{a}_j \in \sigma_{\mathcal{P}}(\hat{\mathcal{A}}).$$

- Po měření musíme aktualizovat popis stavu podle výsledku

$$\psi \longrightarrow \frac{\hat{P}_{j}\psi}{\|\hat{P}_{j}\psi\|}$$

Vlastní hodnota aj má násobnost 1

• Vlastní vektor je určený jednoznačně

$$\hat{A}|j
angle=a_{j}|j
angle$$

• Ortogonální projektor na vlastní podprostor

$$\hat{P}_{j} = |j\rangle\langle j|, \quad \hat{P}_{j}|\psi\rangle = \langle j|\psi\rangle|j\rangle$$

Pr. výsledku měření pr. přechodu do vlastního stavu

$$W_{\psi,A=a_j} = |\langle j|\psi \rangle|^2 = W_{|\psi \rangle \to |j \rangle}$$

Martin Štefaňák

27. října 2020 22 / 30

Konzistence s teorií pravděpodobnosti

- Pro jednoduchost Â má prosté čistě bodové spektrum
- Vlastní vektory $\hat{A} \{|j\rangle\}$ tvoří ON bázi
- Parsevalova rovnost

$$\|\psi\|^2 = \sum_j |\langle j|\psi\rangle|^2 = 1$$

- $\left\{ |\langle j|\psi\rangle|^2 \right\}$ tvoří pravděpodobnostní rozdělení
- Ve stavu $|j\rangle$ má pozorovatelná \hat{A} hodnotu a_j

Má smysl postulovat, že $|\langle j|\psi\rangle|^2$ je pravděpodobnost naměření hodnoty a_j na částici ve stavu $|\psi\rangle$

Vlastní hodnota *a* má násobnost $1 < n < \infty$

V degenerovaném podprostoru zvolíme nějakou ON bázi

$$\hat{A}|a,j\rangle = a|a,j\rangle, \quad \langle a,j|a,k\rangle = \delta_{j,k}, \quad j,k = 1,\ldots,n$$

Ortogonální projektor na vlastní podprostor

$$\hat{P}_{a} = \sum_{j=1}^{n} |a,j\rangle \langle a,j|, \quad \hat{P}_{a}|\psi\rangle = \sum_{j=1}^{n} \langle a,j|\psi\rangle |a,j\rangle$$

$$W_{\psi,A=a} = \sum_{j=1}^{n} |\langle a, j | \psi \rangle|^2 = \sum_{j=1}^{n} W_{|\psi\rangle \to |a,j\rangle}$$

• Pravděpodobnost nezávisí na volbě báze
Bodům ze spojitého spektra přiřadíme zobecněné vlastní vektory

$$\langle a|\hat{A}|\phi\rangle = a\langle a|\phi\rangle, \quad \langle a|a'\rangle = \delta(a-a')$$

• Hustota pravděpodobnosti naměření a ve stavu $|\psi\rangle$

$$w_{\psi}(a) = |\langle a | \psi \rangle|^2$$

Pravděpodobnost, že výsledek měření leží v intervalu (a1, a2)

$$W_{\psi,A\in(a_1,a_2)}=\int\limits_{a_1}^{a_2}|\langle a|\psi
angle|^2da$$

	ă v	
Martin	Statanak	
IVICU UIT	Oteranan	

Poloha

• Amplituda pravděpodobnosti —- vlnová funkce v x-reprezentaci

$$w_{\psi}(x) = |\langle x | \psi \rangle|^2 = |\psi(x)|^2$$

Odpovídá Bornově interpretaci vlnové funkce

Hybnost

• Amplituda pravděpodobnosti —- vlnová funkce v p-reprezentaci

$$w_{\psi}(p) = |\langle p | \psi \rangle|^2 = |\tilde{\psi}(p)|^2$$

• $\tilde{\psi}$ je Fourierova transformace ψ

Â má čistě bodové spektrum

$$\langle \hat{A}
angle_{\psi} = \sum_{j} a_{j} W_{\psi, \mathcal{A} = a_{j}} = \sum_{j} a_{j} |\langle j | \psi
angle|^{2}$$

• Â má spojité spektrum

$$\langle \hat{A} \rangle_{\psi} = \int_{\sigma(\hat{A})} a w_{\psi}(a) da = \int_{\sigma(\hat{A})} a |\langle a | \psi \rangle|^2 da$$

Oba vztahy lze přepsat kompaktně

$$\langle \hat{A} \rangle_{\psi} = \langle \psi | \hat{A} | \psi \rangle$$

Martin Štefaňák

• Definice střední kvadratické odchylky \hat{A} ve stavu ψ

$$\left(\Delta_{\psi}\hat{A}
ight)=\sqrt{\langle(\hat{A}-\langle\hat{A}
angle_{\psi})^{2}
angle_{\psi}}=\sqrt{\langle\hat{A}^{2}
angle_{\psi}-\langle\hat{A}
angle_{\psi}^{2}}\geq0$$

Indikuje přesnost určení hodnoty ve stavu ψ
 ψ je vlastní vektor ⇒ neurčitost je nulová

$$\hat{A}\psi = a\psi \implies \langle \hat{A}
angle_{\psi} = a, \quad \langle \hat{A}^2
angle_{\psi} = a^2 \implies \left(\Delta_{\psi} \hat{A}
ight) = 0$$

- \hat{A} má spojité spektrum \implies neurčitost nemůže být nulová
- Zobecněné vlastní funkce lze libovolně přesně aproximovat neurčitost kompatibilních pozorovatelných může být teoreticky libovolně malá

Poloha a hybnost

Polohu částice mohu určit libovolně přesně

$$egin{array}{rcl} \delta_{m{y},arepsilon}(m{x}) &=& \left\{ egin{array}{cc} 0 &, \ |m{x}-m{y}| > arepsilon \ rac{1}{2arepsilon} &, \ |m{x}-m{y}| \leq arepsilon \ \dot{m{Q}}
ight
angle_{\delta_{m{y},arepsilon}} &=& m{y}, \quad \left(\Delta_{\delta_{m{y},arepsilon}} \hat{m{Q}}
ight) = rac{arepsilon}{\sqrt{3}} \end{array}$$

Hybnost částice mohu určit libovolně přesně

$$\begin{split} \psi_{\boldsymbol{p},\varepsilon}(\boldsymbol{x}) &= \frac{1}{\sqrt{2\pi\hbar}} \boldsymbol{e}^{\frac{i}{\hbar}\boldsymbol{p}\boldsymbol{x}} \frac{\hbar}{\varepsilon \boldsymbol{x}} \sin\left(\frac{\varepsilon \boldsymbol{x}}{\hbar}\right) \\ \langle \hat{\boldsymbol{P}} \rangle_{\psi_{\boldsymbol{p},\varepsilon}} &= \boldsymbol{p}, \quad \left(\Delta_{\psi_{\boldsymbol{p},\varepsilon}} \hat{\boldsymbol{P}}\right) = \frac{\varepsilon}{\sqrt{3}} \end{split}$$

Poloha a hybnost nejsou kompatibilní \implies nemohu to udělat současně

Martin Štefaňák

Kvantová mechanika

 $\forall \hat{A} a \hat{B} samosdružené, \forall \psi \in D(\hat{A}\hat{B}) \cap D(\hat{B}\hat{A})$ platí nerovnost

$$\left(\Delta_{\psi} \hat{A}
ight) \left(\Delta_{\psi} \hat{B}
ight) \geq rac{1}{2} \left|\langle \left[\hat{A}, \hat{B}
ight]
angle_{\psi}
ight|$$

Rovnost nastává pro ψ , která jsou řešením rovnice

$$\left[\hat{oldsymbol{A}} - \langle \hat{oldsymbol{A}}
angle_\psi - ilpha (\hat{oldsymbol{B}} - \langle \hat{oldsymbol{B}}
angle_\psi)
ight] \psi = oldsymbol{0}, \quad lpha \in \mathbb{R},$$

Omezení stavů díky 3 nekompatibilních pozorovatelných

Heisenbergovy relace neurčitosti

$$\left[\hat{oldsymbol{Q}},\hat{oldsymbol{P}}
ight]=i\hbar\impliesorall\psi,\;\left(\Delta_{\psi}\hat{oldsymbol{Q}}
ight)\left(\Delta_{\psi}\hat{oldsymbol{P}}
ight)\geqrac{\hbar}{2}$$

Martin Štefaňák

Časový vývoj v kvantové mechanice

Martin Štefaňák

3. listopadu 2020

Martin Štefaňák

Kvantová mechanika

3. listopadu 2020 1 / 13

- Uzavřený systém částice neinteraguje s okolím
- Částice má hamiltonián Ĥ
- Stav částice v čase t_0 je $|\psi\rangle$

Postulát 4

Stav částice v čase $t > t_0$ je popsán řešením Schrödingerovy rovnice

$$\hat{\mathcal{H}}|\psi(t)
angle=i\hbarrac{\partial}{\partial t}|\psi(t)
angle$$

s počáteční podmínkou $|\psi(t_0)
angle = |\psi
angle$

Platí až do okamžiku měření

Zachování normy vektoru

Norma vektoru se časovým vývojem nemění

$$\frac{d}{dt}\langle\psi(t)|\psi(t)\rangle = \underbrace{\left(\frac{\partial}{\partial t}\langle\psi(t)|\right)}_{\frac{i}{\hbar}\langle\psi(t)|\hat{H}} |\psi(t)\rangle + \langle\psi(t)|\underbrace{\left(\frac{\partial}{\partial t}|\psi(t)\rangle\right)}_{-\frac{i}{\hbar}\hat{H}|\psi(t)\rangle} = \frac{i}{\hbar}\left(\langle\psi(t)|\hat{H}|\psi(t)\rangle - \langle\psi(t)|\hat{H}|\psi(t)\rangle\right) = 0$$

• Důležité pro pravděpodobnostní interpretaci kvantové mechaniky

$$\hat{A}|\phi_j\rangle = a_j|\phi_j\rangle, \quad |\psi(t)\rangle = \sum_j \langle \phi_j|\psi(t)\rangle|\phi_j\rangle$$
$$\|\psi(t)\|^2 = \sum_j |\langle \phi_j|\psi(t)\rangle|^2 = \sum_j W_{\psi(t),A=a_j} = 1$$

Martin Štefaňák

Zachování normy vlnové funkce

Hustota pravděpodobnosti

$$\rho(\vec{x},t) = |\psi(\vec{x},t)|^2 = \overline{\psi}(\vec{x},t)\psi(\vec{x},t)$$

Hustota toku pravděpodobnosti

$$\vec{j}(\vec{x},t) = \frac{i\hbar}{2M} \left(\psi(\vec{x},t) \vec{\nabla} \overline{\psi}(\vec{x},t) - \overline{\psi}(\vec{x},t) \vec{\nabla} \psi(\vec{x},t) \right)$$

Rovnice kontinuity

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = \mathbf{0}$$

Zachovávající se náboj — norma vlnové funkce

$$q = \int_{\mathbb{R}^3} \rho(\vec{x}, t) d^3 x = \|\psi(t)\|^2 \implies \frac{dq}{dt} = \frac{d}{dt} \|\psi(t)\|^2 = 0$$

Martin Štefaňák

• \hat{H} nezávisí na čase \implies vlastní funkce jsou stacionární stavy

$$i\hbar\frac{\partial}{\partial t}\psi_n = \hat{H}\psi_n = E_n\psi_n \implies \psi_n(\vec{x},t) = e^{-\frac{i}{\hbar}E_n(t-t_0)}\psi_n(\vec{x})$$

- Globální fáze $e^{-\frac{i}{\hbar}E_n(t-t_0)}$ nemá fyzikální význam
- Pravděpodobnosti výsledků všech měření nezávisí na čase

$$W_{\psi_n(t),A=a_j} = |(\phi_j,\psi_n(t))|^2 = |(\phi_j,\psi_n)|^2$$

Analogie rovnovážných stavů v klasické mechanice (x(t) = x₀)

Řešení Schrödingerovy rovnice — bodové spektrum

• Nechť Ĥ má čistě bodové spektrum

$$\hat{H}|n\rangle = E_n|n\rangle, \quad \langle n|m\rangle = \delta_{n,m}, \quad \sum_n |n\rangle\langle n| = \hat{I}$$

Počáteční podmínku v čase t₀ rozložím do báze

$$|\psi\rangle = \sum_{n} \langle n|\psi\rangle |n\rangle$$

Schrödingerova rovnice je lineární — stav v čase t > t₀

$$|\psi(t)\rangle = \sum_{n} \langle n|\psi\rangle e^{-\frac{i}{\hbar}E_n(t-t_0)}|n\rangle$$

Znám vlastní vektory $\hat{H} \Longrightarrow$ umím vyřešit Schrödingerovu rovnici

Martin Štefaňák

Kvantová mechanika

Superpozice stacionárních stavů

 Superpozice stacionárních stavů s různou energií není stacionární stav

$$\begin{aligned} |\psi\rangle &= a|1\rangle + b|2\rangle, \quad E_1 \neq E_2 \\ |\psi(t)\rangle &= a e^{-\frac{i}{\hbar}E_1(t-t_0)}|1\rangle + b e^{-\frac{i}{\hbar}E_2(t-t_0)}|2\rangle \\ &= e^{-\frac{i}{\hbar}E_1(t-t_0)} \left(a|1\rangle + b e^{-\frac{i}{\hbar}(E_2-E_1)(t-t_0)}|2\rangle\right) \neq |\psi\rangle \end{aligned}$$

 Pravděpodobnosti měření pozorovatelných nekompatibilních s Ĥ mohou záviset na čase

$$W_{\psi(t),A=a_j} = |\langle \phi_j | \psi(t) \rangle|^2$$

= $|a\langle \phi_j | 1 \rangle + b e^{-\frac{i}{\hbar}(E_2 - E_1)(t - t_0)} \langle \phi_j | 2 \rangle|^2$

Martin Štefaňák

Řešení Schrödingerovy rovnice — volná částice

• Ĥ má jen spojité spektrum

$$\hat{H}\psi_{\vec{p}} = \frac{p^2}{2M}\psi_{\vec{p}}, \quad \psi_{\vec{p}}(\vec{x}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}}e^{\frac{i}{\hbar}\vec{p}\cdot\vec{x}}, \quad (\psi_{\vec{p}},\psi_{\vec{p}'}) = \delta(\vec{p}-\vec{p}')$$

Počáteční podmínku v čase t₀ rozložím do spojité báze

$$\psi(ec{x}) = \int\limits_{\mathbb{R}^3} (\psi_{ec{p}}, \psi) \psi_{ec{p}}(ec{x}) \ d^3p$$

Stav v čase t > t₀

$$\psi(\vec{x},t) = \int_{\mathbb{R}^3} (\psi_{\vec{p}},\psi) e^{-\frac{i}{\hbar} \frac{p^2}{2M}(t-t_0)} \psi_{\vec{p}}(\vec{x}) \ d^3p$$

• Linearita Schrödingerovy rovnice $\implies \exists$ lineární operátor $\hat{U}(t, t_0)$

$$\hat{U}(t,t_0)|\psi
angle = |\psi(t)
angle, \quad \hat{U}(t_0,t_0) = \hat{I}$$

Časový vývoj nemění skalární součin vektorů

$$rac{d}{dt}\langle\psi(t)|\phi(t)
angle=\langle\psi|rac{d}{dt}\hat{U}^{\dagger}(t,t_{0})\hat{U}(t,t_{0})|\phi
angle=0$$

• Evoluční operátor $\hat{U}(t, t_0)$ je unitární

$$\hat{U}^{\dagger}(t,t_0)\hat{U}(t,t_0)=\hat{I}$$

	¥ . v
and the second second	Ot - I
Martin	Storanak
	Oteranan

Evoluční operátor

• Evoluční operátor je určený rovnicí

$$\hat{H}\hat{U}(t,t_0) = i\hbar \frac{\partial}{\partial t}\hat{U}(t,t_0), \quad \hat{U}(t_0,t_0) = \hat{I}$$

• Ĥ nezávisí na čase

$$\hat{U}(t, t_0) = \exp\left(-rac{i}{\hbar}\hat{H}(t-t_0)
ight)$$

Pokud Ĥ má čistě bodové spektrum

$$\hat{H} = \sum_{n} E_{n} |n\rangle \langle n| \implies \hat{U}(t, t_{0}) = \sum_{n} e^{-\frac{i}{\hbar} E_{n}(t-t_{0})} |n\rangle \langle n|$$

$$\hat{U}(t, t_{0}) |\psi\rangle = \sum_{n} e^{-\frac{i}{\hbar} E_{n}(t-t_{0})} \langle n|\psi\rangle |n\rangle$$

Integrály pohybu

Â je integrál pohybu ⇐⇒ střední hodnota nezávisí na čase

$$\langle \forall | \psi(t) \rangle, \quad \frac{d}{dt} \langle \hat{A} \rangle_{\psi(t)} = 0$$

Z definice střední hodnoty a Schrödingerovy rovnice lze odvodit

$$\frac{d}{dt}\langle \hat{A} \rangle_{\psi(t)} = \left\langle \frac{i}{\hbar} [\hat{H}, \hat{A}] + \frac{\partial \hat{A}}{\partial t} \right\rangle_{\psi(t)}$$

 \hat{A} je integrál pohybu $\iff \frac{i}{\hbar}[\hat{H},\hat{A}] + \frac{\partial \hat{A}}{\partial t} = 0$

• Pokud nezávisí parametricky na čase

je integrál pohybu \Longleftrightarrow je kompatibilní s hamiltoniánem

Martin Štefaňák

Kvantová mechanika

3. listopadu 2020 11 / 13

Ehrenfestovy teorémy

- Hamiltonián tvaru $\hat{H} = rac{\hat{P}^2}{2M} + V(\vec{x})$.
- Pohybové rovnice pro střední hodnoty složek polohy a hybnosti

$$\frac{d}{dt}\langle \hat{Q}_j \rangle_{\psi(t)} = \left\langle \frac{\hat{P}_j}{M} \right\rangle_{\psi(t)}, \quad \frac{d}{dt} \langle \hat{P}_j \rangle_{\psi(t)} = \left\langle -\frac{\partial V}{\partial x_j} \right\rangle_{\psi(t)} = \langle F_j \rangle_{\psi(t)}$$

Pokud V(x) je max. kvadratický v x_i (F_j je max. lineární)

$$\langle F_j \rangle_{\psi(t)} = F_j \left(\langle \hat{Q}_i \rangle_{\psi(t)} \right)$$

Střední hodnoty pak splňují klasické pohybové rovnice

$$\dot{\overline{q}}_j = \frac{\overline{p}_j}{M}, \quad \dot{\overline{p}}_j = F_j(\overline{q}_i)$$

Martin Štefaňák

э.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Koherentní stavy LHO

Vlastní vektory anihilačního operátoru

$$\hat{\boldsymbol{a}}_{-}|\alpha\rangle = \alpha|\alpha\rangle, \quad \alpha \in \mathbb{C}$$

Rozvoj do báze vlastních vektorů Ĥ

$$|\alpha\rangle = e^{-rac{|\alpha|^2}{2}} \sum_{n=0}^{+\infty} rac{lpha^n}{\sqrt{n!}} |n
angle$$

Časový vývoj koherentního stavu

$$\begin{aligned} |\alpha(t)\rangle &= e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^n}{\sqrt{n!}} e^{-i\omega(n+\frac{1}{2})t} |n\rangle &= e^{-\frac{i}{2}\omega t} e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{+\infty} \frac{(\alpha e^{-i\omega t})^n}{\sqrt{n!}} |n\rangle \\ &= e^{-\frac{i}{2}\omega t} |\alpha e^{-i\omega t}\rangle \end{aligned}$$

Martin Štefaňák

Částice v E-M poli, spin

Martin Štefaňák

9. listopadu 2020

Martin Štefaňák

Kvantová mechanika

9. listopadu 2020 1 / 22

Martin Štefaňák

Kvantová mechanika

9. listopadu 2020 2 / 22

2

Martin Štefaňák

Kvantová mechanika

9. listopadu 2020 3 / 22

2

Částice v E-M poli - klasický popis

Lorentzova síla - závisí na rychlosti

$$ec{F}(ec{x},ec{v},t)=q\left(ec{E}(ec{x},t)+ec{v} imesec{B}(ec{x},t)
ight)$$

Zobecněný potenciál

$$U(\vec{x}, \vec{v}, t) = q \left(\phi(\vec{x}, t) - \vec{v} \cdot \vec{A}(\vec{x}, t) \right)$$
$$\vec{B} = \vec{\nabla} \times \vec{A}, \quad \vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$$

Hamiltonova funkce

$$H = \frac{1}{2M} \left(\vec{p} - q\vec{A} \right)^2 + q\phi$$

Martin Štefaňák

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Částice v E-M poli - kvantový popis

Hamiltonián kvantové částice v E-M poli

$$\hat{H}=rac{1}{2M}\left(\hat{ec{P}}-qec{A}
ight)^2+q\phi$$

Hybnost a vektorový potenciál obecně nekomutují

$$\left[\hat{P}_{j}, A_{j}\right] = -i\hbar \frac{\partial A_{j}}{\partial x_{j}}$$

- Coloumbova kalibrace $\vec{\nabla} \cdot \vec{A} = 0$
- Rozepsaný hamiltonián

$$\hat{H}=rac{\hat{P}^2}{2M}-rac{q}{M}ec{A}\cdot\hat{ec{P}}+rac{q^2}{2M}A^2+q\phi$$

Martin Štefaňák

< ロ > < 同 > < 回 > < 回 >

Vektorový potenciál

$$\vec{A} = rac{1}{2}\vec{B} imes \vec{x}, \quad \vec{
abla}\cdot \vec{A} = 0$$

- Diamagnetický člen ($\sim A^2$) lze zanedbat
- Hamiltonián částice v homogenním magnetickém poli

$$\hat{H}=\hat{H}_0-\hat{ec{\mu}}_L\cdotec{B},\quad\hat{H}_0=rac{\hat{P}^2}{2M}+q\phi$$

Orbitální magnetický moment

$$\hat{\vec{\mu}}_L = \frac{q}{2M}\hat{\vec{L}}$$

Narušení sférické symetrie

- Sféricky symetrický potenciál $\phi(r)$
- \hat{H}_0 je kompatibilní s \hat{L}^2 a \hat{L}_3

$$\begin{aligned} \hat{H}_0 | n, l, m \rangle &= E_{n,l} | n, l, m \rangle, \quad \hat{L}^2 | n, l, m \rangle = \hbar^2 | n, l, m \rangle \\ \hat{L}_3 | n, l, m \rangle &= m \hbar | n, l, m \rangle \end{aligned}$$

- Sférická symetrie \hat{H}_0 zvolíme $\vec{B} = (0, 0, B)$
- Celkový hamiltonián

$$\hat{H} = \hat{H}_0 - \frac{q}{2M}B\hat{L}_3$$

• $|n, I, m\rangle$ je vlastní vektor \hat{H} , energie závisí na m

$$\hat{H}|n,l,m\rangle = E_{n,l,m}|n,l,m\rangle, \quad E_{n,l,m} = E_{n,l} - \frac{q\hbar}{2M}Bm$$

Zeemanův jev

• Pro elektron — q = -e

$$E_{n,l,m} = E_{n,l} + \mu_0 m B, \quad \mu_0 = \frac{e\hbar}{2m_e} \doteq 9.274 \cdot 10^{-24} \text{ JT}^{-1}$$

 Vlivem magnetického pole dojde k rozštěpení hladiny *E_{n,l}* na multiplet 2*l* + 1 vzdálených o Δ*E* = μ₀*B*

Martin Štefaňák

Zeemanův jev na vodíku

• Degenerace hladin je větší než plyne ze sférické symetrie

$$E_N = -rac{R}{N^2}, \quad N=n+l+1, \quad D_N=N^2$$

• Hladina E_N by se měla rozdělit na multiplet 2N - 1 hladin

Nesouhlas s experimentem

- Pro $N \ge 2$ je v multipletu 2N + 1 hladin
- Základní hladina se rozdělí na dvě

Martin Štefaňák

Kvantová mechanika

Sternův-Gerlachův experiment

- Svazek částic prochází nehomogenním mag. polem
- Síla působící na částice

$$ec{F} = ec{
abla} \left(ec{\mu} \cdot ec{B}(ec{x})
ight)$$

- Atom stříbra v základním stavu 1 valenční elektron v slupce 5s
- Orbitální magnetický moment je nulový nemělo by se stát nic
- Svazek se rozdělí na dva
- Elektron má vlastní magnetický moment velikosti Bohrova magnetonu μ₀
- Projekce vlastního magnetického momentu může nabývat hodnot ±µ0

æ

Vlastní moment hybnosti

- Vlastní magnetický moment elektronu je důsledek nenulového vlastního momentu hybnosti — spinu
- Operátory spinu splňují komutační relace pro moment hybnosti

$$\left[\hat{S}_{j},\hat{S}_{k}
ight]=i\hbararepsilon_{jkl}\hat{S}_{l}$$

- Projekce spinu do libovolného směru má hodnoty $\pm \frac{\hbar}{2}$
- Hilbertův prostor spinu elektronu má dva bazické stavy

$$\mathscr{H}_{\mathcal{S}} = \mathbb{C}^2$$

• Standardní báze $\mathbb{C}^2 \Longleftrightarrow$ vlastní vektory \hat{S}_3

$$|z,+
angle\equiv egin{pmatrix} 1\0\end{pmatrix}, \quad |z,-
angle\equiv egin{pmatrix} 0\1\end{pmatrix}$$

Martin Štefaňák

Matice operátorů spinu ve standardní bázi

$$S_j = \frac{\hbar}{2}\sigma_j, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Vlastnosti Pauliho matic

$$\sigma_{j}^{\dagger} = \sigma_{j}, \quad \text{Tr } \sigma_{j} = 0, \quad \det \sigma_{j} = -1 \implies \lambda = \pm 1$$

$$[\sigma_{j}, \sigma_{k}] = 2i\varepsilon_{jkl}\sigma_{l}, \quad \{\sigma_{j}, \sigma_{k}\} = \delta_{jk}\mathbb{I} \implies \sigma_{j}\sigma_{k} = \delta_{jk}\mathbb{I} + i\varepsilon_{jkl}\sigma_{l}$$

Projekce spinu do libovolného směru může nabývat hodnot ±^ħ/₂

$$\hat{S}_{\vec{n}} = \vec{n} \cdot \hat{\vec{S}} = n_j \hat{S}_j \implies \lambda = \pm \frac{\hbar}{2}$$

Martin Štefaňák

э

< ロ > < 同 > < 回 > < 回 >

• Velikost spinu elektronu je $s = \frac{1}{2}$

$$S^2 = \hbar^2 \frac{3}{4} \mathbb{I} = \hbar^2 s(s+1) \mathbb{I}$$

Obecný stav spinu — spinor

$$|\psi
angle=a|z,+
angle+b|z,-
angle\equivinom{a}{b},\quad |a|^2+|b|^2=1$$

Odpovídá kladné projekci spinu do nějakého směru n

$$\hat{S}_{\vec{n}}|\vec{n},+
angle = rac{\hbar}{2}|\vec{n},+
angle, \quad |\vec{n},+
angle \equiv \psi_{\vec{n},+} = \begin{pmatrix} \cosrac{ heta}{2} \\ e^{iarphi}\sinrac{ heta}{2} \end{pmatrix}$$

Martin Štefaňák

9. listopadu 2020 14 / 22

< ロ > < 同 > < 回 > < 回 >

Vlastní magnetický moment elektronu

Vztah mezi spinem a vlastním magnetickým momentem

$$\hat{ec{\mu}}_{S}=-g_{S}rac{\mu_{0}}{\hbar}\hat{ec{S}}, \quad g_{S}\doteq$$
 2.002319

• V přiblížení $g_{\mathcal{S}}=$ 2 má vlastní čísla $\pm \mu_0$

$$\vec{\mu}_{\mathcal{S}} = -\mu_0 \vec{\sigma}$$

Energie vlastního magnetického momentu v magnetickém poli

$$\hat{H}_{\mathcal{S}} = -\hat{\vec{\mu}}_{\mathcal{S}} \cdot \vec{B} = \mu_0 \vec{\sigma} \cdot \vec{B}$$

¥	
Martin Ct	باغذمهم
Martin St	егапак
	orariar

Popis stavu elektronu se spinem

Tenzorový součin Hilbertových prostorů

$$\mathscr{H} = \mathscr{H}_{orb} \otimes \mathscr{H}_{S} = L^{2}(\mathbb{R}^{3}, d^{3}x) \otimes \mathbb{C}^{2}$$

• Možné stavy — $|\psi_{\it orb}
angle\otimes|\psi_{\it S}
angle$ + lineární kombinace

 $|\Psi
angle = |\psi_1
angle \otimes |z, +
angle + |\psi_2
angle \otimes |z, angle$

Obecný stav v x-reprezentaci — popsaný dvojicí funkcí

$$\Psi(ec{x}) = egin{pmatrix} \psi_1(ec{x}) \ \psi_2(ec{x}) \end{pmatrix}, \quad \psi_j \in L^2(\mathbb{R}^3, d^3x)$$

Skalární součin — indukovaný z *H*orb a *H*S

$$\langle \Psi | \Phi
angle = \langle \psi_1 | \phi_1
angle + \langle \psi_2 | \phi_2
angle, \quad (\Psi, \Phi) = \int_{\mathbb{R}^3} \Psi^{\dagger}(\vec{x}) \Phi(\vec{x}) d^3x$$

Pozorovatelné v prostoru $\mathcal{H}_{orb}\otimes\mathcal{H}_S$

• Obecná pozorovatelná — 2 × 2 matice operátorů na $L^2(\mathbb{R}^3, d^3x)$

$$\hat{A} = \begin{pmatrix} \hat{A}_{11} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{22} \end{pmatrix}, \quad \hat{A}\Psi = \begin{pmatrix} \hat{A}_{11}\psi_1 + \hat{A}_{12}\psi_2 \\ \hat{A}_{21}\psi_1 + \hat{A}_{22}\psi_2 \end{pmatrix}$$

• Pozorovatelné nezávislé na spinu - poloha, hybnost, ...

$$\hat{C}\equiv\hat{C}\otimes\hat{I}_{\mathcal{S}}=egin{pmatrix}\hat{C}&0\0&\hat{C}\end{pmatrix}$$

Pozorovatelné nezávislé na prostorové části - složky spinu, ...

$$\hat{\mathcal{S}}_{j}\equiv\hat{\mathcal{I}}_{orb}\otimes\hat{\mathcal{S}}_{j}=rac{\hbar}{2}\sigma_{j}$$

∃ → < ∃ →</p>
Pauliho hamiltonián

$$\hat{H} = \underbrace{\frac{1}{2M} \left(\hat{\vec{P}} + e\vec{A} \right)^2 + e\phi}_{\hat{H}_1} \underbrace{-\vec{B} \cdot \hat{\vec{\mu}}_S}_{\hat{H}_S} = \begin{pmatrix} \hat{H}_1 & 0\\ 0 & \hat{H}_1 \end{pmatrix} - \hat{H}_S$$

Bezčasová Pauliho rovnice

$$\hat{H}\Psi = E\Psi$$

Časová Pauliho rovnice

$$\hat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

	¥	
Mantin	Chafanídic	
wariin	Sielanak	
in the case of the second seco	oronanan	

< ロ > < 同 > < 回 > < 回 >

Zeemanův jev se spinem

• Homogenní magnetické pole \vec{B}

$$\hat{H} = \hat{H}_0 + \hat{H}_Z, \quad \hat{H}_Z = -\hat{\vec{\mu}}_L \cdot \vec{B} - \hat{\vec{\mu}}_S \cdot \vec{B}$$

Speciálně pro elektron

$$\hat{\vec{\mu}}_L = -\frac{\mu_0}{\hbar}\hat{\vec{L}}, \quad \hat{\vec{\mu}}_S = -\frac{2\mu_0}{\hbar}\hat{\vec{S}} \implies \hat{H}_Z = \frac{\mu_0}{\hbar}\left(\hat{\vec{L}} + 2\hat{\vec{S}}\right)\cdot\vec{B}$$

• ϕ je sféricky symetrický — \hat{H}_0 , \hat{L}^2 a \hat{L}_3 jsou kompatibilní

$$\hat{H}_0|n, l, m\rangle = E_{n,l}|n, l, m\rangle, \quad \hat{L}_3|n, l, m\rangle = m\hbar|n, l, m\rangle, \dots$$

• Zvolíme $\vec{B} = (0, 0, B)$

$$\hat{H}_{Z}=rac{\mu_{0}B}{\hbar}\left(\hat{L}_{3}+2\hat{S}_{3}
ight)$$

Zeemanův jev se spinem

• Vlastní vektory $\hat{S}_3 - \ket{\pm}$

$$\hat{S}_{3}|\pm\rangle = \pm \frac{\hbar}{2}|\pm\rangle$$

• Kety $|n, l, m\rangle \otimes |\pm\rangle \equiv |n, l, m, \pm\rangle$ jsou vl. vektory \hat{H}

$$\hat{H}|n,l,m,\pm\rangle = \underbrace{\left(\underline{E}_{n,l} + \mu_0 B(m\pm 1)\right)}_{\underline{E}_{n,l,m,\pm}}|n,l,m,\pm\rangle$$

Pro *l* ≥ 1 se *E_{n,l}* rozštěpí na multiplet 2*l* + 3 hladin
Pro *l* = 0 se *E_{n,0}* rozdělí na dvě hladiny

Časová Pauliho rovnice v homogenním poli

• Časová Pauliho rovnice, pole nezávislá na čase, $\vec{B} = konst$.

$$\hat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}, \quad \hat{H} = \hat{H}_1 + \hat{H}_S, \quad \left[\hat{H}_1, \hat{H}_S\right] = 0$$

Řešení Pauliho rovnice

$$\Psi(t) = e^{-\frac{i}{\hbar}\hat{H}t}\Psi(0) = e^{-\frac{i}{\hbar}\hat{H}_{S}t}e^{-\frac{i}{\hbar}\hat{H}_{1}t}\Psi(0) = e^{-\frac{i}{\hbar}\hat{H}_{S}t}\begin{pmatrix}\psi_{1}(\vec{x},t)\\\psi_{2}(\vec{x},t)\end{pmatrix}$$

• Řešení Schrödingerovy rovnice s hamiltoniánem \hat{H}_1

$$\hat{H}_{1}\psi_{j}=i\hbar\frac{\partial\psi_{j}}{\partial t}\implies\psi_{j}(\vec{x},t)=e^{-\frac{i}{\hbar}\hat{H}_{1}t}\psi_{j}(\vec{x},0)$$

Časová Pauliho rovnice v homogenním poli

• Evoluční operátor spinu v homogenním poli

$$\hat{U}(t) = e^{-\frac{i}{\hbar}\hat{H}_{S}t} = e^{-\frac{i}{\hbar}\mu_{0}\vec{B}\cdot\vec{\sigma}t} = \cos\left(\frac{\mu_{0}}{\hbar}Bt\right)\mathbb{I} - \frac{i}{B}\sin\left(\frac{\mu_{0}}{\hbar}Bt\right)\vec{B}\cdot\vec{\sigma}$$

Speciálně - počáteční podmínka v separovaném tvaru

$$\Psi(\vec{x},0) = \psi_{orb}(\vec{x},0) \otimes \psi_{\mathcal{S}}(0) = \psi_{orb}(\vec{x},0) \begin{pmatrix} \psi_{\mathcal{S},1}(0) \\ \psi_{\mathcal{S},2}(0) \end{pmatrix}$$

Stav zůstane v separovaném tvaru i pro t > 0

$$\begin{split} \Psi(\vec{x},t) &= \psi_{orb}(\vec{x},t) \otimes \psi_{\mathcal{S}}(t) \\ \hat{H}_{1}\psi_{orb} &= i\hbar\frac{\partial\psi_{orb}}{\partial t}, \quad \hat{H}_{\mathcal{S}}\psi_{\mathcal{S}} = i\hbar\frac{\partial\psi_{\mathcal{S}}}{\partial t} \implies \psi_{\mathcal{S}}(t) = e^{-\frac{i}{\hbar}\hat{H}_{\mathcal{S}}t}\psi_{\mathcal{S}}(0) \end{split}$$

Algebraická teorie momentu hybnosti, systémy rozlišitelných částic

Martin Štefaňák

18. listopadu 2020

Martin Štefaňák

Kvantová mechanika

18. listopadu 2020 1 / 1

Přehled

Martin Štefaňák

æ

イロト イヨト イヨト イヨト

Přehled

Martin Štefaňák

æ

イロト イヨト イヨト イヨト

Spin a orbitální moment hybnosti

• Splňují stejné komutační relace

$$\left[\hat{L}_{k},\hat{L}_{l}\right]=i\hbar\varepsilon_{klm}\hat{L}_{m},\quad\left[\hat{S}_{k},\hat{S}_{l}\right]=i\hbar\varepsilon_{klm}\hat{S}_{m},$$

Působí na jiných prostorech

$$\begin{split} \hat{L}_{k} &\in \mathcal{L}\left(L^{2}(\mathbb{R}^{3}, d^{3}x)\right), \qquad \hat{L}_{k} = \varepsilon_{klm} \hat{Q}_{l} \hat{P}_{m} = -i\hbar \varepsilon_{klm} x_{l} \frac{\partial}{\partial x_{m}} \\ \hat{S}_{k} &\in \mathcal{L}(\mathbb{C}^{2}), \qquad \mathbb{S}_{k} = \frac{\hbar}{2} \sigma_{k} \end{split}$$

Jde o různé reprezentace Lieovy algebry su(2)

Reprezentace Lievy algebry su(2)

Jaká je možná velikost spinu kvantové částice?

Jaký tvar mají matice operátorů složek spinu?

Ireducibilní reprezentace su(2)

- Lieova algebra g vektorový prostor s Lieovou závorkou
- Definice Lieovy závorky v su(2) (má dimenzi 3)

 $[j_k, j_l] = i\hbar\varepsilon_{klm}j_m$

• Reprezentace Lieovy algebry g na H

$$\rho : \mathbf{X} \in \mathbf{g} \longmapsto \hat{\rho}_{\mathbf{X}} \in \mathcal{L}(\mathscr{H}), \quad \hat{\rho}_{[\mathbf{X},\mathbf{y}]} = [\hat{\rho}_{\mathbf{X}}, \hat{\rho}_{\mathbf{y}}]$$

Ireducibilní reprezentace

- Operátory nemají společný netriviální invariantní podprostor
- Matice operátorů nelze současně blokově diagonalizovat
- \hat{S}_k je ireducibilní reprezentace na \mathbb{C}^2
- \hat{L}_k je reducibilní reprezentace na $L^2(\mathbb{R}^3, d^3x)$

Operátory obecného momentu hybnosti jsou reprezentace su(2)
Splňují komutační relace

$$\left[\hat{J}_{k},\hat{J}_{l}
ight]=i\hbararepsilon_{klm}\hat{J}_{m}$$

Moment hybnosti je generátor rotací

$$\hat{R}_{\vec{n}}(lpha) = \exp\left(-rac{i}{\hbar}lphaec{n}\cdot\hat{ec{J}}
ight)$$

 Operátory Â_n(α) představují reprezentaci Lieovy grupy SO(3) grupa rotací R³

Algebraická teorie momentu hybnosti

)
$$\hat{J}_k$$
 — reprezentace $su(2)$ na \mathscr{H} konečné dimenze

$$\left[\hat{J}_{k},\hat{J}_{l}
ight]=i\hbararepsilon_{klm}\hat{J}_{m},\quad\hat{J}_{k}=\hat{J}_{k}^{\dagger}$$

• Komutační relace $\Longrightarrow \hat{J}_3$ a $\hat{J}^2 = \hat{J}_1^2 + \hat{J}_2^2 + \hat{J}_3^2$ jsou kompatibilní

$$\hat{J}^{2}|\lambda,\mu\rangle = \lambda|\lambda,\mu\rangle, \quad \hat{J}_{3}|\lambda,\mu\rangle = \mu|\lambda,\mu\rangle, \quad \lambda,\mu = ?$$

• Posunovací operátory $\hat{J}_{\pm} = \hat{J}_1 \pm i \hat{J}_2$

$$\left[\hat{J}_{3},\hat{J}_{\pm}
ight]=\pm\hbar\hat{J}_{\pm},\quad\left[\hat{J}^{2},\hat{J}_{\pm}
ight]=0$$

• \hat{J}_3 má ekvidistantní spektrum, $\Delta \mu = \hbar$ (stejně pro \hat{J}_k)

$$\hat{J}_{\pm}|\lambda,\mu\rangle = \alpha_{\lambda,\mu}^{\pm}|\lambda,\mu\pm\hbar\rangle$$

Vztah mezi λ a μ

$$\begin{aligned} \forall |\psi\rangle \in \mathscr{H}, \quad \langle \psi | \hat{J}_1^2 + \hat{J}_2^2 |\psi\rangle &= \| \hat{J}_1 \psi \|^2 + \| \hat{J}_2 \psi \|^2 \ge 0\\ 0 \le \langle \lambda, \mu | \underbrace{\hat{J}_1^2 + \hat{J}_2^2}_{\mathcal{J}^2 - \hat{J}_3^2} |\lambda, \mu\rangle &= \langle \lambda, \mu | \hat{J}^2 | \lambda, \mu\rangle - \langle \lambda, \mu | \hat{J}_3^2 | \lambda, \mu\rangle = \lambda - \mu^2 \end{aligned}$$

- Pro dané λ jsou hodnoty μ omezené $\mu^2 \leq \lambda$
- Existují maximální a minimální hodnoty $\mu \mu_{max}$ a μ_{min}

$$egin{array}{lll} |\lambda,\mu_{max}
angle
eq 0, & |\lambda,\mu_{min}
angle
eq 0 \ \hat{J}_{+}|\lambda,\mu_{max}
angle &= 0, & \hat{J}_{-}|\lambda,\mu_{min}
angle = 0 \end{array}$$

Algebraická teorie momentu hybnosti

$$\hat{J}_{-}\hat{J}_{+}=\hat{J}^{2}-\hat{J}_{3}^{2}-\hbar\hat{J}_{3}, \quad \hat{J}_{+}\hat{J}_{-}=\hat{J}^{2}-\hat{J}_{3}^{2}+\hbar\hat{J}_{3}$$

Hodnota μ_{max}

$$0 = \hat{J}_{+}|\lambda,\mu_{max}\rangle = \hat{J}_{-}\hat{J}_{+}|\lambda,\mu_{max}\rangle = \left(\hat{J}^{2} - \hat{J}_{3}^{2} - \hbar\hat{J}_{3}\right)|\lambda,\mu_{max}\rangle$$
$$= (\lambda - \mu_{max}^{2} - \hbar\mu_{max})|\lambda,\mu_{max}\rangle \implies \lambda = \mu_{max}^{2} + \hbar\mu_{max}$$

Hodnota μ_{min}

$$0 = \hat{J}_{-}|\lambda, \mu_{min}\rangle = \hat{J}_{+}\hat{J}_{-}|\lambda, \mu_{min}\rangle = \left(\hat{J}^{2} - \hat{J}_{3}^{2} + \hbar\hat{J}_{3}\right)|\lambda, \mu_{min}\rangle$$
$$= (\lambda - \mu_{min}^{2} + \hbar\mu_{min})|\lambda, \mu_{min}\rangle \implies \lambda = \mu_{min}^{2} - \hbar\mu_{min}$$

$$\mu_{min} = -\mu_{max}$$

Algebraická teorie momentu hybnosti

• Existuje celé nezáporné k takové, že platí

$$\hat{J}_{+}^{k}|\lambda,\mu_{min}
angle\sim|\lambda,\mu_{min}+k\hbar
angle=|\lambda,\mu_{max}
angle$$

$$\mu_{max} = \mu_{min} + k\hbar = -\mu_{max} + k\hbar \implies \mu_{max} = \frac{\kappa}{2}\hbar$$

• Zavedeme $j = \frac{k}{2}$ — nezáporné polocelé číslo

$$\mu_{max} = -\mu_{min} = j\hbar, \quad \lambda = \hbar^2 j(j+1)$$

Přeznačíme vlastní vektory pomocí kvantových čísel j, m

$$\hat{J}^2|j,m\rangle = \hbar^2 j(j+1)|j,m\rangle, \quad \hat{J}_3|j,m\rangle = m\hbar|j,m\rangle \langle j,m|j,m'\rangle = \delta mm', \quad m = j, j-1, \dots - j$$

Martin Štefaňák

۱.

Ireducibilní reprezentace su(2)

$$\mathscr{H}^{(j)} = [|j,m\rangle|m = j, j-1, \ldots, -j]_{\lambda} \simeq \mathbb{C}^{2j+1}$$

• Matice operátorů \hat{J}_3 a \hat{J}^2 jsou v této bázi diagonální

$$\mathbb{J}_{3} = \left(\underbrace{\langle j, m | \hat{J}_{3} | j, n \rangle}_{m\hbar\delta_{mn}}\right) = \begin{pmatrix} j\hbar & 0 & \dots & 0\\ 0 & (j-1)\hbar & 0 & 0\\ \vdots & \ddots & \ddots & \vdots\\ 0 & 0 & \dots & -j\hbar \end{pmatrix}$$

$$\mathbb{J}^2 = \left(\underbrace{\langle j,m|\hat{J}^2|j,n
angle}_{\hbar^2 j(j+1)\delta_{mn}}
ight) = \hbar^2 j(j+1)\mathbb{I}$$

Martin Štefaňák

(I) < (II) <

Matice operátorů \hat{J}_1 a \hat{J}_2

Zkonstruujeme pomocí posunovacích operátorů

$$\hat{J}_1=rac{1}{2}\left(\hat{J}_++\hat{J}_-
ight),\quad \hat{J}_2=rac{i}{2}\left(\hat{J}_--\hat{J}_+
ight),\quad \hat{J}_-=\hat{J}_+^\dagger$$

• Působení \hat{J}_{\pm} na kety |j,m
angle známe

$$\hat{J}_{\pm}|j,m
angle = lpha_{j,m}^{\pm}|j,m\pm1
angle, \quad lpha_{j,m}^{\pm} = \hbar\sqrt{j(j+1) - m(m\pm1)}$$

• Matice operátorů \hat{J}_{\pm}

$$\mathbb{J}_{\pm} = \left(\langle j, m | \hat{J}_{\pm} | j, n \rangle \right) = \left(\alpha_{j,n}^{\pm} \delta_{m,n\pm 1} \right)$$

J₊ má nenulové prvky v pásu nad diagonálou, J₋ pod diagonálou
Matice J_k tvoří ireducibilní reprezentaci *su*(2) na *H*^(j)

$j = \frac{1}{2}$ — odvození Pauliho matic

• Spin- $\frac{1}{2}$ — reprezentace su(2) na $\mathscr{H}^{(\frac{1}{2})} = \left[|\frac{1}{2}, \frac{1}{2}\rangle, |\frac{1}{2}, -\frac{1}{2}\rangle \right]_{\lambda} \simeq \mathbb{C}^2$ • Matice \hat{S}_3 je diagonální

$$\mathbb{S}_3 = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{\hbar}{2} \sigma_3$$

• Matice posunovacích operátorů \hat{S}_{\pm}

$$\mathbb{S}_{+} = \begin{pmatrix} 0 & \alpha_{\frac{1}{2}, -\frac{1}{2}}^{+} \\ 0 & 0 \end{pmatrix} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \hbar \sigma_{+}, \quad \mathbb{S}_{-} = \mathbb{S}_{+}^{\dagger} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \hbar \sigma_{-}$$

• Matice $\hat{S}_1 = \frac{1}{2}(\hat{S}_+ + \hat{S}_-)$ a $\hat{S}_2 = \frac{i}{2}(\hat{S}_- - \hat{S}_+)$

$$\mathbb{S}_1 = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\hbar}{2} \sigma_1, \quad \mathbb{S}_2 = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \frac{\hbar}{2} \sigma_2$$

Přehled

Martin Štefaňák

æ

イロト イヨト イヨト イヨト

V kvantové mechanice neznáme trajektorie částice

Rozlišitelné částice

- Částice různého typu liší se v nějakém parametru nezávislém na dynamickém stavu (hmotnost, náboj, velikost spinu, ...)
- Částice mohu očíslovat jako 1., 2. atd.

Nerozlišitelné částice

- Identické částice
- Označení částic ztrácí význam
- Předpovědi teorie na očíslování nesmí záviset

Složený systém N rozlišitelných částic

- Rozlišitelné částice s Hilbertovými prostory *H*^(k), k = 1,...N
- Hilbertův prostor složeného systému *H* tenzorový součin Hilbertových prostorů jednotlivých částic *H*^(k)

$$\mathscr{H} = \mathscr{H}^{(1)} \otimes \mathscr{H}^{(2)} \otimes \ldots \otimes \mathscr{H}^{(N)}$$

 Nemusí nutně jít o různé částice, ale obecněji o různé stupně volnosti

Elektron se spinem

- Orbitální prostor $\mathcal{H}_{orb} = L^2(\mathbb{R}^3, d^3x)$
- Spinový prostor $\mathscr{H}_{s} = \mathbb{C}^{2}$
- Popisujeme oba stupně volnosti současně $\mathcal{H} = \mathcal{H}_{orb} \otimes \mathcal{H}_s$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tenzorový součin dvou Hilbertových prostorů

2 rozlišitelné částice s Hilbertovými prostory *H*^(k), k = 1,2
ON báze v Hilbertových prostorech

$$\left\{|\psi_i^{(k)}\rangle\right\}, \quad \langle\psi_i^{(k)}|\psi_j^{(k)}\rangle = \delta_{ij}, \quad \sum_i |\psi_i^{(k)}\rangle\langle\psi_i^{(k)}| = \hat{I}$$

• Hilbertův prostor složeného systému - tenzorový součin

$$\mathscr{H}=\mathscr{H}^{(1)}\otimes \mathscr{H}^{(2)}$$

• Množina $\left\{ |\psi_{i}^{(1)}
angle \otimes |\psi_{j}^{(2)}
angle
ight\}$ tvoří ON bázi \mathscr{H}

$$\left(\langle \psi_i^{(1)}| \otimes \langle \psi_j^{(2)}| \right) \left(|\psi_m^{(1)}\rangle \otimes |\psi_n^{(2)}\rangle\right) = \langle \psi_i^{(1)}|\psi_m^{(1)}\rangle \langle \psi_j^{(2)}|\psi_n^{(2)}\rangle = \delta_{im}\delta_{jn}$$

• Pokud dim $\mathscr{H}^{(k)} = d_k < \infty \Longrightarrow \dim \mathscr{H} = d_1 \cdot d_2$

Separované stavy

• Částice jsou nezávisle na sobě ve stavech $|\phi^{(k)}\rangle$

$$|\Phi
angle = |\phi^{(1)}
angle \otimes |\phi^{(2)}
angle$$

• Rozpis stavů $|\phi^{(k)}\rangle$ do bazí

$$|\phi^{(1)}
angle = \sum_{i} a_{i} |\psi^{(1)}_{i}
angle, \quad |\phi^{(2)}
angle = \sum_{j} b_{j} |\psi^{(2)}_{j}
angle$$

Separovaný stav složeného systému má tvar

$$|\Phi
angle = \sum_{i,j} a_i b_j |\psi_i^{(1)}
angle \otimes |\psi_j^{(2)}
angle$$

Výsledky měření na 1. částici nezávisí na měření na 2. částici

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Příklad — tenzorový součin prostorů dimenze 2 a 3

$$\mathscr{H} = \mathbb{C}^2 \otimes \mathbb{C}^3 \simeq \mathbb{C}^6$$

Stavy 1. a 2. částice

$$\phi^{(1)} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \quad \phi^{(2)} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Separovaný stav složeného systému

$$\Phi = \phi^{(1)} \otimes \phi^{(2)} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \\ a_1 b_3 \\ a_2 b_1 \\ a_2 b_2 \\ a_2 b_3 \end{pmatrix}$$

Obecný stav složeného systému

Obecné vektory z *H* lze zapsat ve tvaru

$$|\Psi
angle = \sum_{i,j} c_{ij} |\psi_i^{(1)}
angle \otimes |\psi_j^{(2)}
angle, \quad |\Phi
angle = \sum_{m,n} d_{mn} |\psi_m^{(1)}
angle \otimes |\psi_n^{(2)}
angle$$

Skalární součin vektorů

$$\langle \Psi | \Phi
angle = \sum_{i,j} \overline{c}_{ij} d_{ij}$$

Obecný stav $|\Phi\rangle$ nemusí být separovaný — provázaný stav

$$|\Phi
angle
eq |\phi^{(1)}
angle \otimes |\phi^{(2)}
angle$$

- Výsledky měření na jednotlivých částicích mohou být korelovány
- Korelace mohou být silnější než je možné v klasické fyzice

Pozorovatelné složeného systému

Jednočásticové pozorovatelné — rozšíříme jednotkou

$$\hat{A}^{(1)} = \hat{A} \otimes \hat{l}, \quad \hat{B}^{(2)} = \hat{l} \otimes \hat{B}$$

• Spektra \hat{A} a $\hat{A}^{(1)}$ jsou stejná

$$\hat{A}|\alpha_{i}^{(1)}\rangle = a_{i}|\alpha_{i}^{(1)}\rangle \implies \hat{A}^{(1)}|\alpha_{i}^{(1)}\rangle \otimes |\phi^{(2)}\rangle = a_{i}|\alpha_{i}^{(1)}\rangle \otimes |\phi^{(2)}\rangle$$

• $\hat{A}^{(1)}$ a $\hat{B}^{(2)}$ jsou kompatibilní, spol. vl. vektory $|\alpha_i^{(1)}\rangle \otimes |\beta_i^{(2)}\rangle$

$$\hat{A}^{(1)}|\alpha_i^{(1)}\rangle \otimes |\beta_j^{(2)}\rangle = a_i|\alpha_i^{(1)}\rangle \otimes |\beta_j^{(2)}\rangle, \quad \hat{B}^{(1)}|\alpha_i^{(1)}\rangle \otimes |\beta_j^{(2)}\rangle = b_j|\alpha_i^{(1)}\rangle \otimes |\beta_j^{(2)}\rangle$$

Interakce částic — působí netriviálně v obou prostorech

Martin Štefaňák

Úloha dvou těles

• Dvě rozlišitelné kvantové částice bez spinu v \mathbb{R}^3

$$\mathscr{H}=\mathscr{H}^{(1)}\otimes \mathscr{H}^{(2)}=L^2(\mathbb{R}^3,d^3x)\otimes L^2(\mathbb{R}^3,d^3x)\simeq L^2(\mathbb{R}^6,d^6x)$$

- Obecný stav složeného systému vlnová funkce $\psi(\vec{x}^{(1)}, \vec{x}^{(2)})$
- Interpretace stavu amplituda pravděpodobnosti nalezení 1. částice v bodě x⁽¹⁾ a 2. částice v bodě x⁽²⁾
- Interakce potenciál závisející jen na rozdílu poloh

$$V(\vec{x}^{(1)}, \vec{x}^{(2)}) = V(\vec{x}^{(1)} - \vec{x}^{(2)})$$

Hamiltonián složeného systému

$$\hat{H} = \frac{\hat{P}^{(1)2}}{2M_1} + \frac{\hat{P}^{(2)2}}{2M_2} + \hat{V} = -\frac{\hbar^2}{2M_1}\Delta_1 - \frac{\hbar^2}{2M_1}\Delta_2 + V(\vec{x}^{(1)} - \vec{x}^{(2)})$$

Úloha dvou těles

Stejně jako v klasické mechanice lze odseparovat pohyb těžiště

Souřadnice těžiště a relativního pohybu

$$\vec{x}^{(t)} = rac{M_1 \vec{x}^{(1)} + M_2 \vec{x}^{(2)}}{M_1 + M_2}, \quad \vec{x}^{(r)} = \vec{x}^{(1)} - \vec{x}^{(2)}$$

Přechod k novým proměnným

$$\Psi(\vec{x}^{(t)}, \vec{x}^{(r)}) \equiv \psi(\vec{x}^{(1)}(\vec{x}^{(t)}, \vec{x}^{(r)}), \vec{x}^{(2)}(\vec{x}^{(t)}, \vec{x}^{(r)}))$$

Transformace parciálních derivací

$$\frac{\partial}{\partial x_j^{(t)}} = \frac{\partial}{\partial x_j^{(1)}} + \frac{\partial}{\partial x_j^{(2)}}, \quad \frac{\partial}{\partial x_j^{(r)}} = \frac{1}{M_1 + M_2} \left(M_1 \frac{\partial}{\partial x_j^{(2)}} - M_2 \frac{\partial}{\partial x_j^{(1)}} \right)$$

Úloha dvou těles

• Hamiltonián v nových proměnných

$$\hat{H} = -\frac{\hbar^2}{2(M_1 + M_2)} \Delta_t - \hbar^2 \frac{M_1 + M_2}{2M_1 M_2} \Delta_r + V(\vec{x}^{(r)})$$

= $\hat{H}_t + \hat{H}_r$

Hamiltonián těžiště

$$\hat{H}_t = rac{\hat{P}^{(t)2}}{2M}, \quad M = M_1 + M_2$$

• Hamiltonián relativního pohybu

$$\hat{H}_r = \frac{\hat{P}^{(r)2}}{2\mu} + V(\vec{x}^{(r)}), \quad \mu = \frac{M_1 M_2}{M_1 + M_2}$$
Martin Štefaňák Kvantová mechanika 18. listopadu 2020 24 / 1

Atom vodíku jako systém dvou těles

- Nekonečně těžké jádro $E_N = -\frac{R}{N^2}$, $R = \frac{m_e e^4}{2\hbar^2 (4\pi \varepsilon_0)^2}$
- Jádro vodíku proton s hmotností $m_p = 1,67 \cdot 10^{-27}$ kg $\doteq 1837 m_e$
- Úloha dvou těles v R nahradit me redukovanou hmotností

$$\mu = \frac{m_e m_p}{m_e + m_p} = m_e \frac{1}{1 + \frac{m_e}{m_p}} \approx m_e (1 - \frac{m_e}{m_p}) \doteq (1 - 5 \cdot 10^{-4}) m_e$$

Izotopický jev

- Spektrum závisí na hmotnosti jádra
- Deuterium v jádře je proton a neutron, $m_n \doteq m_p$

$$\mu = rac{m_e 2m_p}{m_e + 2m_p} pprox m_e (1 - rac{m_e}{2m_p}) \doteq (1 - 2, 5 \cdot 10^{-4}) m_e$$

Spektrální line deuteria jsou o malinko kratší než pro lehký vodík

Hyperjemná struktura vodíku, skládání spinů, singletní stav

Martin Štefaňák

24. listopadu 2020

Martin Štefaňák

Kvantová mechanika

24. listopadu 2020 1 / 23

Hyperjemná struktura vodíku

< 🗇 🕨

2) Skládání spinů

э

(3)

Hyperjemná struktura vodíku

- Energetické hladiny vodíku $E_N = -\frac{R}{N^2}, \quad N \in \mathbb{N}$
- Základní hladina E₁ je nedegenerovaná
- Při započítání spinu elektronu a spinu protonu má degeneraci 4
- Ve skutečnosti jde o multiplet dvou velmi blízkých hladin

$$\Delta E = E_1^+ - E_1^- \sim 10^{-6} \text{ eV}$$

• Důsledek interakce spinu elektronu a spinu protonu

• Hilbertovy prostory spinu elektronu a protonu

$$\mathscr{H}^{(e)} = [|+_e\rangle, |-_e\rangle]_{\lambda}, \quad \mathscr{H}^{(p)} = [|+_p\rangle, |-_p\rangle]_{\lambda}$$

• Hilbertův prostor složeného systému

$$\mathscr{H} = \mathscr{H}^{(e)} \otimes \mathscr{H}^{(p)} = [|+_{e},+_{p}\rangle,|+_{e},-_{p}\rangle,|-_{e},+_{p}\rangle,|-_{e},-_{p}\rangle]_{\lambda}$$

Standardní báze

$$\begin{array}{ll} |+_{e},+_{p}\rangle & \equiv & (1,0,0,0)^{T}, & |+_{e},-_{p}\rangle \equiv & (0,1,0,0)^{T}, \\ |-_{e},+_{p}\rangle & \equiv & (0,0,1,0)^{T}, & |-_{e},-_{p}\rangle \equiv & (0,0,0,1)^{T}. \end{array}$$

Martin Štefaňák

24. listopadu 2020 5 / 23

3 > 4 3

Image: A matrix and a matrix

Operátory spinu elektronu

$$\hat{S}^{(e)}_{j} = \hat{S}_{j} \otimes \hat{I} \implies S^{(e)}_{j} = rac{\hbar}{2} \sigma_{j} \otimes I$$

Matice složek spinu elektronu

$$S_{1}^{(e)} = \frac{\hbar}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad S_{2}^{(e)} = \frac{\hbar}{2} \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}$$
$$S_{3}^{(e)} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Martin Štefaňák
Operátory spinu protonu

$$\hat{S}^{(p)}_j = \hat{I} \otimes \hat{S}_j \implies S^{(p)}_j = rac{\hbar}{2} I \otimes \sigma_j$$

Matice složek spinu protonu

$$S_{1}^{(p)} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad S_{2}^{(p)} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}$$
$$S_{3}^{(p)} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Martin Štefaňák

Interakce spinu protonu a elektronu

Hamiltonián interakce spinů (resp. magnetických momentů)

$$\hat{H} = \tilde{A}\hat{\vec{\mu}}^{(e)} \cdot \hat{\vec{\mu}}^{(p)} = \frac{4}{\hbar^2} A \hat{\vec{S}}^{(e)} \cdot \hat{\vec{S}}^{(p)}, \quad A = \mu_e \mu_p \tilde{A}$$

Matice hamiltoniánu ve standardní bázi

$$H = A \sigma_j \otimes \sigma_j = \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & -A & 2A & 0 \\ 0 & 2A & -A & 0 \\ 0 & 0 & 0 & A \end{pmatrix}$$

< 同 > < ∃ >

Hyperjemná struktura vodíku

- Vlastní čísla matice jsou $E_+ = A$ a $E_- = -3A$
- Základní hladina vodíku E_1 multiplet blízkých hladin E_1^{\pm}

$$E_1^+ = E_1 + E_+ = -R + A$$
, $E_1^- = E_1 + E_- = -R - 3A$

• Přechod mezi hladinami - vyzáření mikrovlnného fotonu

 $h\nu = \Delta E = 4A$

Z experimentálních dat plyne

 $\nu \doteq$ 1420 MHz, $\lambda \doteq$ 21 cm, $\Delta E \doteq 5.9 \cdot 10^{-6} \text{ eV}$

Vlastní vektory hamiltoniánu

Podprostor *E*_

$$|\psi^{-}\rangle = rac{1}{\sqrt{2}}\left(|+_{e},-_{p}
angle - |-_{e},+_{p}
angle
ight) \equiv rac{1}{\sqrt{2}}(0,1,-1,0)^{T}$$

Podprostor E_+

$$\begin{aligned} |\psi_{1}^{+}\rangle &= |+_{e},+_{p}\rangle = (1,0,0,0)^{T} \\ |\psi_{2}^{+}\rangle &= \frac{1}{\sqrt{2}}(|+_{e},-_{p}\rangle + |-_{e},+_{p}\rangle) \equiv \frac{1}{\sqrt{2}}(0,1,1,0)^{T} \\ |\psi_{3}^{+}\rangle &= |-_{e},-_{p}\rangle = (0,0,0,1)^{T} \end{aligned}$$

Jsou to současně vlastní vektory celkového spinu

	¥.	
A description	C1-	باغشما
Marin	210	апак
i vica tirri		i ai i ai v

< ロ > < 同 > < 回 > < 回 >

Hyperjemná struktura vodíku

Martin Štefaňák

э

3 1 4 3

Celkový spin atomu vodíku

Operátory celkového spinu atomu vodíku

$$\hat{J}_k = \hat{S}_k^{(e)} + \hat{S}_k^{(p)}$$

Matice operátorů ve standardní bázi

Martin Štefaňák

э

< ロ > < 同 > < 回 > < 回 >

Celkový spin atomu vodíku

Splňují komutační relace pro moment hybnosti

$$\left[\hat{J}_{k},\hat{J}_{l}
ight]=i\hbararepsilon_{klm}\hat{J}_{m}$$

- \hat{J}_3 a \hat{J}^2 jsou kompatibilní
- Navíc jsou kompatibilní s $\hat{S}^{(e)2}$ a $\hat{S}^{(p)2}$ (oba operátory jsou $\frac{3}{4}\hbar^2 \hat{I}$)
- Společné vlastní vektory $|\frac{1}{2}, \frac{1}{2}, j, m \rangle$

$$\begin{split} \hat{S}^{(\alpha)2} |\frac{1}{2}, \frac{1}{2}, j, m\rangle &= \frac{3}{4}\hbar^2 |\frac{1}{2}, \frac{1}{2}, j, m\rangle, \quad \alpha = e, \ p \\ \hat{J}_3 |\frac{1}{2}, \frac{1}{2}, j, m\rangle &= m\hbar |\frac{1}{2}, \frac{1}{2}, j, m\rangle \\ \hat{J}^2 |\frac{1}{2}, \frac{1}{2}, j, m\rangle &= \hbar^2 j(j+1) |\frac{1}{2}, \frac{1}{2}, j, m\rangle \end{split}$$

Martin Štefaňák

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kvadrát velikosti celkového spinu

• \hat{J}^2 není kompatibilní s $\hat{S}_3^{(e)}$ a $\hat{S}_3^{(p)}$, pouze s jejich součtem \hat{J}_3

$$\hat{J}^2 = \hat{S}^{(e)2} + 2\hat{\vec{S}}^{(e)} \cdot \hat{\vec{S}}^{(p)} + \hat{S}^{(p)2}, \\ \left[\hat{J}^2, \hat{S}_3^{(e)}\right] = 2\left[\hat{S}_j^{(e)}, \hat{S}_3^{(e)}\right] \hat{S}_j^{(p)} = 2i\hbar\varepsilon_{j3k}\hat{S}_k^{(e)}\hat{S}_j^{(p)} \\ = 2i\hbar\left(\hat{S}_1^{(e)}\hat{S}_2^{(p)} - \hat{S}_2^{(e)}\hat{S}_1^{(p)}\right)$$

Ĵ² není ve standardní bázi diagonální

$$J^2 = \hbar^2 egin{pmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & -2 \end{pmatrix}$$

Martin Štefaňák

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vlastní vektory celkového spinu

Vlastní čísla matice $J^2 - 0$ (prosté) a $2\hbar^2$ (násobnost 3)

Podprostor
$$j = 0$$
 — singlet $|\frac{1}{2}, \frac{1}{2}, 0, 0\rangle = \frac{1}{\sqrt{2}} (|+_e, -_p\rangle - |-_e, +_p\rangle) = |\psi^-\rangle$

Podprostor j = 1 — triplet

$$\begin{aligned} |\frac{1}{2}, \frac{1}{2}, 1, 1\rangle &= |+_{e}, +_{p}\rangle = |\psi_{1}^{+}\rangle \\ |\frac{1}{2}, \frac{1}{2}, 1, 0\rangle &= \frac{1}{\sqrt{2}} \left(|+_{e}, -_{p}\rangle + |-_{e}, +_{p}\rangle \right) = |\psi_{2}^{+}\rangle \\ \frac{1}{2}, \frac{1}{2}, 1, -1\rangle &= |-_{e}, -_{p}\rangle = |\psi_{3}^{+}\rangle \end{aligned}$$

Martin Štefaňák

э

ヘロン 人間 とくほ とくほう

Hyperjemná struktura vodíku

Interakce spinů pomocí operátorů kvadrátů velikosti spinů

$$\hat{\vec{S}}^{(e)} \cdot \hat{\vec{S}}^{(p)} = rac{1}{2} \left(\hat{J}^2 - \hat{S}^{(e)2} - \hat{S}^{(p)2}
ight)$$

• Kety $|\frac{1}{2}, \frac{1}{2}, j, m\rangle$ jsou vlastní vektory interakce spinů

$$\hat{\vec{S}}^{(e)} \cdot \hat{\vec{S}}^{(p)} | \frac{1}{2}, \frac{1}{2}, 0, 0 \rangle = -\frac{3}{4} \hbar^2 | \frac{1}{2}, \frac{1}{2}, 0, 0 \rangle$$

$$\hat{\vec{S}}^{(e)} \cdot \hat{\vec{S}}^{(p)} | \frac{1}{2}, \frac{1}{2}, 1, m \rangle = \frac{\hbar^2}{4} | \frac{1}{2}, \frac{1}{2}, 1, m \rangle$$

Jsou to i vlastní vektory hamiltoniánu hyperjemné struktury

$$\hat{H}|rac{1}{2},rac{1}{2},0,0
angle=-3A|rac{1}{2},rac{1}{2},0,0
angle,\quad \hat{H}|rac{1}{2},rac{1}{2},1,m
angle=A|rac{1}{2},rac{1}{2},1,m
angle$$

Martin Štefaňák

Hyperjemná struktura vodíku

2 Skládání spinů

э

3 1 4 3

Singletní stav

$$|\psi^{-}
angle = rac{1}{\sqrt{2}} \left(|+_{m{ heta}}
angle \otimes |-_{m{ heta}}
angle - |-_{m{ heta}}
angle \otimes |+_{m{ heta}}
angle
ight)$$

Provázaný stav — nelze faktorizovat

 $|\psi^{-}\rangle \neq |\psi_{\mathbf{e}}\rangle \otimes |\psi_{\mathbf{p}}\rangle$

Měření spinu jedné částice

Projekce spinu e i p do libovolného směru jsou zcela náhodné

Pravděpodobnost kladné i záporné projekce je ¹/₂

Současné měření spinu obou částic

- Projekce spinu e a p do stejného směru jsou perfektně antikorelované
- Naměříme kladnou projekci spinu e do směru n p má zápornou

Martin Štefaňák

Kvantová mechanika

Projekce spinu elektronu v singletním stavu

Projekce spinu je zcela náhodná ⇔ střední hodnota je nulová
Operátor projekce spinu elektronu do směru n(θ, φ)

$$\hat{S}_{\vec{n}}^{(e)} = \vec{n} \cdot \hat{\vec{S}} \otimes \hat{l}, \quad \vec{n} \cdot \vec{S} = \frac{\hbar}{2} \vec{n} \cdot \vec{\sigma} = \frac{\hbar}{2} \begin{pmatrix} \cos \theta & \sin \theta e^{-i\varphi} \\ \sin \theta e^{i\varphi} & -\cos \theta \end{pmatrix}$$

Střední hodnota projekce spinu elektronu do směru n

$$\begin{split} \langle \hat{S}_{\vec{n}}^{(e)} \rangle_{\psi^{-}} &= \langle \psi^{-} | \hat{S}_{\vec{n}}^{(e)} | \psi^{-} \rangle = \frac{1}{2} \left(\langle +_{e} | \vec{n} \cdot \hat{\vec{S}} | +_{e} \rangle + \langle -_{e} | \vec{n} \cdot \hat{\vec{S}} | -_{e} \rangle \right) \\ &= \frac{1}{2} \left(\frac{\hbar}{2} \cos \theta - \frac{\hbar}{2} \cos \theta \right) = 0 \end{split}$$

Stejný výsledek platí i pro projekci spinu protonu

Projekce spinu jedné samotné částice

Pro jednu částici ve stavu $|\psi
angle$ toto nastat nemůže

• Pro každý spinor $|\psi\rangle$ mohu najít směr \vec{p} , tak, že $|\psi\rangle = |\vec{p}+\rangle$

$$\hat{\vec{S}}_{\vec{p}} | \vec{p} + \rangle = \frac{\hbar}{2} | \vec{p} + \rangle, \quad \vec{p} = (\sin \alpha \cos \beta, \sin \alpha \sin \beta, \cos \alpha)$$

$$| \vec{p} + \rangle = \cos \frac{\alpha}{2} | + \rangle + \sin \frac{\alpha}{2} e^{i\beta} | - \rangle$$

• Střední hodnota projekce spinu do směru \vec{n} ve stavu $|\vec{p}+\rangle$

$$\langle \hat{S}_{\vec{n}} \rangle_{\vec{p}+} = \frac{\hbar}{2} \vec{n} \cdot \vec{p}$$

< 🗇 🕨 🔸

Měření projekce spinu *e* a *p* do osy *z*

$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|+_{e}\rangle \otimes |-_{p}\rangle - |-_{e}\rangle \otimes |+_{p}\rangle \right)$$

Měřím projekci spinu elektronu do osy z, naměřím kladnou
Stav po měření je popsán ketem

$$|\psi\rangle = |+_{e}\rangle \otimes |-_{p}\rangle$$

- Proton má s jistotou zápornou projekci spinu do osy z
- Analogicky pro naměření záporné projekce spinu elektronu má proton s jistotou kladnou projekci spinu do osy z

Projekce spinu do osy z jsou perfektně antikorelovány

Měření projekce spinu e a p do libovolného směru \vec{n}

Vlastní vektory s kladnou a zápornou projekcí spinu do směru n

$$ert ec{n} +
angle = \cos rac{ heta}{2} ert +
angle + \sin rac{ heta}{2} e^{iarphi} ert -
angle$$

 $ec{n} -
angle = \sin rac{ heta}{2} ert +
angle - \cos rac{ heta}{2} e^{iarphi} ert -
angle$

Singletní stav lze zapsat ve tvaru

$$\begin{aligned} |\psi^{-}\rangle &= \frac{1}{\sqrt{2}} \left(|+_{e}\rangle \otimes |-_{p}\rangle - |-_{e}\rangle \otimes |+_{p}\rangle \right) \\ &= -e^{-i\varphi} \frac{1}{\sqrt{2}} \left(|\vec{n}+_{e}\rangle \otimes |\vec{n}-_{p}\rangle - |\vec{n}-_{e}\rangle \otimes |\vec{n}+_{p}\rangle \right) \end{aligned}$$

Perfektní antikorelace platí pro projekce do libovolného směru \vec{n}

Martin Štefaňák

Kvantová mechanika

24. listopadu 2020 22 / 23

- Singletní stav je příklad maximálně provázaného stavu
- Kvantový stav soubor informací o možných výsledcích měření
- V singletním stavu e a p nenesou žádné informace
- Jejich individuální stavy nelze popsat vektorem, musí se použít obecnější popis pomocí matice hustoty
- Veškeré informace v singletním stavu jsou v antikorelacích výsledků měření na e a p

Skládání momentů hybnosti, nerozlišitelné částice

Martin Štefaňák

1. prosince 2020

Martin Štefaňák

Kvantová mechanika

1. prosince 2020 1 / 1

Přehled

Martin Štefaňák

æ

<ロ> (日) (日) (日) (日) (日)

Přehled

Martin Štefaňák

æ

<ロ> (日) (日) (日) (日) (日)

• Dva momenty hybnosti velikosti j_1 a j_2

$$\mathscr{H}^{(j_{\alpha})} = [|j_{\alpha}, m_{\alpha}\rangle|m_{\alpha} = j_{\alpha}, j_{\alpha} - 1, \dots, -j_{\alpha}]_{\lambda}, \quad \dim \mathscr{H}^{(j_{\alpha})} = 2j_{\alpha} + 1$$

• Popisujeme oba momenty hybnosti dohromady

$$\mathscr{H}^{(j_1,j_2)} = \mathscr{H}^{(j_1)} \otimes \mathscr{H}^{(j_2)} = [|j_1,m_1\rangle \otimes |j_2,m_2\rangle | m_{\alpha} = j_{\alpha},\ldots,-j_{\alpha}]_{\lambda}$$

 Vektory standardní báze jsou společné vlastní vektory 1. a 2. momentu hybnosti

$$\hat{J}^{(\alpha)2}_{3}|j_{1},m_{1}\rangle\otimes|j_{2},m_{2}\rangle = \hbar^{2}j_{\alpha}(j_{\alpha}+1)|j_{1},m_{1}\rangle\otimes|j_{2},m_{2}\rangle \hat{J}^{(\alpha)}_{3}|j_{1},m_{1}\rangle\otimes|j_{2},m_{2}\rangle = \hbar m_{\alpha}|j_{1},m_{1}\rangle\otimes|j_{2},m_{2}\rangle, \quad \alpha = 1,2$$

ć

Celkový moment hybnosti

Operátor celkového momentu hybnosti

$$\hat{J}_k = \hat{J}_k^{(1)} + \hat{J}_k^{(2)}, \quad \left[\hat{J}_k, \hat{J}_l\right] = i\hbar\varepsilon_{klm}\hat{J}_m$$

• \hat{J}^2 není kompatibilní s $\hat{J}_3^{(1)}$ a $\hat{J}_3^{(2)}$, pouze s jejich součtem

$$\left[\hat{J}^{2},\hat{J}_{3}^{(1)}\right]=2i\hbar\left(\hat{J}_{1}^{(1)}\hat{J}_{2}^{(2)}-\hat{J}_{2}^{(1)}\hat{J}_{1}^{(2)}\right)=-\left[\hat{J}^{2},\hat{J}_{3}^{(2)}\right]$$

• \hat{J}^2 , \hat{J}_3 jsou kompatibilní s $\hat{J}^{(1)2}$ a $\hat{J}^{(2)2}$ — společné vlastní vektory

Martin Štefaňák

э

イロン イ理 とく ヨン イヨン

Vlastní vektory celkového momentu hybnosti

Jak rozepsat kety $|j_1, j_2, j, m\rangle$ do standardní báze?

Vektor s maximální hodnotou $j = m = j_1 + j_2$

$$|j_1, j_2, j_1 + j_2, j_1 + j_2 \rangle = |j_1, j_1 \rangle \otimes |j_2, j_2 \rangle$$

• Obecně platí pro všechna m_1, m_2 $\hat{J}_3|j_1, m_1\rangle \otimes |j_2, m_2\rangle = (m_1 + m_2)\hbar|j_1, m_1\rangle \otimes |j_2, m_2\rangle$ • Pro ověření, že vektor odpovídá $j = j_1 + j_2$, použijeme $\hat{J}^2 = \hat{J}^{(1)2} + \hat{J}^{(2)2} + 2\hat{J}^{(1)}_3\hat{J}^{(2)}_3 + \hat{J}^{(1)}_+\hat{J}^{(2)}_- + \hat{J}^{(1)}_-\hat{J}^{(2)}_+$

Vektory s $j = j_1 + j_2$ a nižší hodnotou m

Použijeme posunovací operátory pro celkový moment hybnosti

$$\hat{J}_{\pm} = \hat{J}^{(1)}_{\pm} + \hat{J}^{(2)}_{\pm}$$

• Např. vektor s $m = j_1 + j_2 - 1$

$$|j_1, j_2, j_1 + j_2, j_1 + j_2 - 1\rangle = \frac{1}{\alpha_{j_1 + j_2, j_1 + j_2}^-} \left(\alpha_{j_1, j_1}^- |j_1, j_1 - 1\rangle \otimes |j_2, j_2\rangle + \alpha_{j_2, j_2}^- |j_1, j_1\rangle \otimes |j_2, j_2 - 1\rangle \right)$$

• Vytvoříme 2 $(j_1 + j_2)$ + 1 vektorů $|j_1, j_2, j_1 + j_2, m\rangle$

	ă.	· · · ·
Martin	Ste	tanàk
IVICU UIT	Ole	anan

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Snížení hodnoty j o jedna

Najdeme vektor
$$|j_1, j_2, j_1 + j_2 - 1, j_1 + j_2 - 1\rangle$$

• Musí být lineární kombinací vektorů s $m_1 + m_2 = j_1 + j_2 - 1$

$$\mathscr{H}^{(m=j_1+j_2-1)} = [|j_1, j_1-1\rangle \otimes |j_2, j_2\rangle, |j_1, j_1\rangle \otimes |j_2, j_2-1\rangle]_{\lambda}$$

• $|j_1, j_2, j_1 + j_2, j_1 + j_2 - 1\rangle \in \mathscr{H}^{(m=j_1+j_2-1)}$, je k němu OG

$$|j_1, j_2, j_1 + j_2 - 1, j_1 + j_2 - 1\rangle = \frac{1}{\alpha_{j_1 + j_2, j_1 + j_2}^-} \quad \left(\alpha_{j_2, j_2}^- |j_1, j_1 - 1\rangle \otimes |j_2, j_2\rangle - \right. \\ \left. -\alpha_{j_1, j_1}^- |j_1, j_1\rangle \otimes |j_2, j_2 - 1\rangle \right)$$

• Použitím \hat{J}_- vytvoříme 2 $(j_1 + j_2) - 1$ vektorů $|j_1, j_2, j_1 + j_2 - 1, m \rangle$

< ロ > < 同 > < 回 > < 回 >

Minimální hodnota j

Rozklad Hilbertova prostoru na direktní součet

$$\mathscr{H}^{(j_1,j_2)} = \mathscr{H}^{(j_1)} \otimes \mathscr{H}^{(j_2)} = \bigoplus_{j=j_{min}}^{j_{max}} \mathscr{H}^{(j)}$$

Porovnání dimenzí prostorů

dim
$$\mathscr{H}^{(j_1,j_2)}$$
 = $(2j_1 + 1)(2j_2 + 1)$
= $\sum_{j=j_{min}}^{j_{max}} (2j + 1) = (j_1 + j_2 + 1)^2 - j_{min}^2$

$$j_{min} = |j_1 - j_2|$$

Martin Štefaňák

1. prosince 2020 9 / 1

э

イロト 不得 トイヨト イヨト

Rozklad na ireducibilní reprezentace

• $\mathscr{H}^{(j_1,j_2)} = \mathscr{H}^{(j_1)} \otimes \mathscr{H}^{(j_2)}$ je reducibilní reprezentace su(2)

• Lze ji rozložit na direktní součet ireducibilních reprezentací

$$\mathscr{H}^{(j_1,j_2)} = \bigoplus_{j=|j_1-j_2|}^{j_1+j_2} \mathscr{H}^{(j)}$$

Operátory Ĵ_k a Ĵ² jsou v bázi {|j₁, j₂, j, m⟩} blokově diagonální
Kety celkového momentu hybnosti jsou vlastní vektory interakce

$$\hat{\vec{J}}^{(1)} \cdot \hat{\vec{J}}^{(2)} = \frac{1}{2} \left(\hat{J}^2 - \hat{J}^{(1)2} - \hat{J}^{(2)2} \right)$$

$$\hat{\vec{J}}^{(1)} \cdot \hat{\vec{J}}^{(2)} |j_1, j_2, j, m\rangle = \hbar^2 (j(j+1) - j_1(j_1+1) - j_2(j_2+1)) |j_1, j_2, j, m\rangle$$

Skládání dvou spinů $\frac{1}{2} - \mathscr{H}^{(\frac{1}{2})} \otimes \mathscr{H}^{(\frac{1}{2})} = \mathscr{H}^{(0)} \oplus \mathscr{H}^{(1)}$

• Vektor s maximální hodnotou j = m = 1

$$|\frac{1}{2},\frac{1}{2},1,1\rangle=|\frac{1}{2},\frac{1}{2}\rangle\otimes|\frac{1}{2},\frac{1}{2}\rangle$$

• Použijeme $\hat{J}_{-} = \hat{J}_{-}^{(1)} + \hat{J}_{-}^{(2)}$ — triplet

$$\begin{aligned} |\frac{1}{2}, \frac{1}{2}, 1, 0\rangle &= \frac{1}{\sqrt{2}} \left(|\frac{1}{2}, -\frac{1}{2}\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle + |\frac{1}{2}, \frac{1}{2}\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle \right) \\ |\frac{1}{2}, \frac{1}{2}, 1, -1\rangle &= |\frac{1}{2}, -\frac{1}{2}\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle \end{aligned}$$

Snížení hodnoty j — singlet

$$|\frac{1}{2},\frac{1}{2},0,0\rangle = \frac{1}{\sqrt{2}} \left(|\frac{1}{2},-\frac{1}{2}\rangle \otimes |\frac{1}{2},\frac{1}{2}\rangle - |\frac{1}{2},\frac{1}{2}\rangle \otimes |\frac{1}{2},-\frac{1}{2}\rangle \right)$$

Martin Štefaňák

Clebschovy-Gordanovy koeficienty

• V prostoru $\mathscr{H}^{(j_1)}\otimes \mathscr{H}^{(j_2)}$ máme dvě ON báze

$$\mathcal{B}_1 = \{|j_1, m_1\rangle \otimes |j_2, m_2\rangle | m_\alpha = j_\alpha, j_\alpha - 1, \ldots, -j_\alpha\}$$

 $\mathcal{B}_2 = \{ |j_1, j_2, j, m\rangle | j = |j_1 - j_2|, \dots, j_1 + j_2, m = j, \dots - j \}$

- Přechod mezi bazemi unitární transformace
- Prvky matice Clebschovy-Gordanovy (CG) koeficienty

 $(j_1, j_2, m_1, m_2 | j, m) = (\langle j_1, m_1 | \otimes \langle j_2, m_2 |) | j_1, j_2, j, m \rangle$

Výběrová pravidla

CG je nenulový $\implies m = m_1 + m_2$ a $|j_1 - j_2| \le j \le j_1 + j_2$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Condon-Shortleyova konvence — CG jsou reálné

$$|j_1, j_2, j, m\rangle = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} (j_1, j_2, m_1, m_2 | j, m) | j_1, m_1 \rangle \otimes | j_2, m_2 \rangle$$

$$|j_1, m_1 \rangle \otimes | j_2, m_2 \rangle = \sum_{j=|j_1-j_2|}^{j_1+j_2} \sum_{m=-j}^{j} (j_1, j_2, m_1, m_2 | j, m) | j_1, j_2, j, m \rangle$$

Systém ve stavu |j₁, m₁⟩ ⊗ |j₂, m₂⟩ — pravděpodobnost naměření hodnot celkového momentu hybnosti j a m je rovna (j₁, j₂, m₁, m₂|j, m)²

CG koeficienty pro dva spiny $\frac{1}{2}$

Nenulové CG koeficienty

$$\begin{pmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} | 1, 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} | 1, -1 \end{pmatrix} = 1 \begin{pmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} | 1, 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} | 1, 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \\ \begin{pmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} | 0, 0 \end{pmatrix} = -\begin{pmatrix} \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} | 0, 0 \end{pmatrix} = \frac{1}{\sqrt{2}}$$

Systém ve stavu $|\frac{1}{2}, \frac{1}{2}\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle$

$$|rac{1}{2},rac{1}{2}
angle\otimes|rac{1}{2},-rac{1}{2}
angle=rac{1}{\sqrt{2}}\left(|rac{1}{2},rac{1}{2},1,0
angle+|rac{1}{2},rac{1}{2},0,0
angle
ight)$$

 Projekce celkového spinu do osy z je nulová, j = 1 a j = 0 s pravděpodobností 0.5

Martin Štefaňák

Přehled

Martin Štefaňák

2

イロト イヨト イヨト イヨト

- Stav kvantové částice je popsaný vlnovou funkcí $\psi(\vec{x}, t)$
- $|\psi(\vec{x},t)|^2$ je pravděpodobnost nalezení částice v bodě \vec{x}
- K určení polohy částice musíme provést měření
- V kvantové mechanice neznáme trajektorie částic
- Popisujeme systém více částic, jejich vlnové funkce se překrývají
 pokud jsou identické, tak je nemohu rozlišit
- Identické částice jsou v kvantové mechanice nerozlišitelné
- Předpovědi teorie nesmí na očíslování částic záviset

Pružný rozptyl částic

- Pružný rozptyl dvou částic, popis v těžišťové soustavě
- Detektor D_1 pod úhlem θ
- Detektor D₁ zaznamená dopad částice P₁

Pravděpodobnost detekce bude záviset na typu částic

	ă v	
Martin	Statanak	
ivica titi	Oterarian	

Pružný rozptyl rozlišitelných částic

- Pro rozlišitelné částice jsem schopen odlišit, zda došlo k rozptylu o úhel θ, nebo π - θ
- Sčítají se pravděpodobnosti těchto dvou jevů
- Amplituda pravděpodobnosti rozptylu do úhlu $\alpha f(\alpha)$
- Pravděpodobnost detekce pod úhlem θ

$$P_1^{(R)} = |f(\theta)|^2 + |f(\pi - \theta)|^2$$

• Speciálně pro $\theta = \frac{\pi}{2}$

$$P_1^{(R)} = 2|f(\frac{\pi}{2})|^2$$

	ă v	
Martin	Statanak	
IVICU UIT	Oteranak	

Pružný rozptyl nerozlišitelných částic

- Nejsme schopni rozlišit rozptyl o úhel θ a $\pi \theta$
- Musí se skládat amplitudy rozptylu

Bosony

- Amplitudy rozptylu se sčítají $P_1^{(B)} = |f(\theta) + f(\pi \theta)|^2$
- Pro $\theta = \frac{\pi}{2}$ je dvojnásobná pr. detekce $P_1^{(B)} = |2f(\frac{\pi}{2})|^2 = 2P_1^{(R)}$

Fermiony

Amplitudy rozptylu se odečítají — P₁^(F) = |f(θ) - f(π - θ)|²
Rozptyl o θ = π/2 nelze — P₁^(F) = 0
Vlnové funkce dvojice identických částic

- Stav dvou částic je popsaný vlnovou funkcí $\psi(\vec{x}_1, \vec{x}_2)$
- Identické částice změna očíslování nezmění fyzikální stav
- $\tilde{\psi}(\vec{x}_1, \vec{x}_2) = \psi(\vec{x}_2, \vec{x}_1)$ a $\psi(\vec{x}_1, \vec{x}_2)$ popisují stejný stav

$$\psi(\vec{x}_1, \vec{x}_2) = C_{\psi} \tilde{\psi}(\vec{x}_1, \vec{x}_2) = C_{\psi}^2 \psi(\vec{x}_1, \vec{x}_2) \implies C_{\psi} = \pm 1$$

- Vlnová funkce dvou nerozlišitelných částic musí být symetrická, nebo antisymetrická vůči záměně argumentů
- Princip superpozice C_{ψ} nezávisí na ψ , jen na typu částic
- Symetrické vlnové funkce bosony (celočíselný spin)
- Antisymetrické vlnové funkce fermiony (polocelý spin)

Vlnové funkce n identických částic

 Vlnové funkce musí být úplně symetrické (bosony), nebo úplně antisymetrické (fermiony) vůči záměně libovolné dvojice x_i, x_j

$$\psi(\vec{x}_1,\ldots,\vec{x}_i,\ldots,\vec{x}_j,\ldots,\vec{x}_n)=C_{ij}\psi(\vec{x}_1,\ldots,\vec{x}_j,\ldots,\vec{x}_i,\ldots,\vec{x}_n)$$

- Všechny $C_{ij} = 1$, nebo $C_{ij} = -1$ $(i \neq j)$
- C_{ij} 1-dim reprezentaci grupy permutací n prvků S_n
- Jsou buď symetrické ($C_{ij} = 1$), nebo antisymetrické ($C_{ij} = -1$)
- Hilbertův prostor n bosonů podprostor symetrických vektorů
- n fermionů podprostor antisymetrických vektorů

$$\mathscr{H}^{(B)}, \ \mathscr{H}^{(F)} \subset \mathscr{H}_1^{\otimes n}$$

< ロ > < 同 > < 回 > < 回 >

Stavy dvou identických částic

- Zápis pomocí jednočásticových stavů $\psi_a \in \mathscr{H}_1$
- Dva bosony v různých jednočásticových stavech a1, a2

$$\psi_{a_1,a_2}^{(B)}(\vec{x}_1,\vec{x}_2) = \frac{1}{\sqrt{2}} \left(\psi_{a_1}(\vec{x}_1)\psi_{a_2}(\vec{x}_2) + \psi_{a_1}(\vec{x}_2)\psi_{a_2}(\vec{x}_1) \right)$$

• Bosony mohou být ve stejném jednočásticovém stavu $a_1 = a_2 = a$

$$\psi_{a,a}^{(B)}(\vec{x}_1, \vec{x}_2) = \psi_a(\vec{x}_1)\psi_a(\vec{x}_2)$$

Dva fermiony v různých jednočásticových stavech a1, a2

$$\psi_{a_1,a_2}^{(F)}(\vec{x}_1,\vec{x}_2) = \frac{1}{\sqrt{2}} \left(\psi_{a_1}(\vec{x}_1)\psi_{a_2}(\vec{x}_2) - \psi_{a_1}(\vec{x}_2)\psi_{a_2}(\vec{x}_1) \right)$$

Fermiony nemohou být ve stejném jednočásticovém stavu

π — permutace *n* prvků

$$\pi: \{1, 2, \ldots, n\} \to \{\pi_1, \pi_2, \ldots, \pi_n\}$$

n bosonů v jednočásticových stavech a₁, a₂,..., a_n

$$\psi_{a_1,a_2,...,a_n}^{(B)}(\vec{x}_1,\vec{x}_2,...,\vec{x}_n) = \mathcal{N}\sum_{\pi\in\mathcal{S}_n}\psi_{a_1}(\vec{x}_{\pi_1})\psi_{a_2}(\vec{x}_{\pi_2})\ldots\psi_{a_n}(\vec{x}_{\pi_n})$$

V jednočásticovém stavu a může být libovolný počet bosonů

	¥ .	w
Mortin	Ctof	nódz
warm	SIEL	anan

4 A N

Stavy n fermionů — Slaterův determinant

n fermionů v různých jednočásticových stavech a₁, a₂,..., a_n

$$\psi_{a_{1},a_{2},...,a_{n}}^{(F)}(\vec{x}_{1},\vec{x}_{2},...,\vec{x}_{n}) = \frac{1}{\sqrt{n!}} \sum_{\pi \in S_{n}} \operatorname{sgn} \pi \psi_{a_{1}}(\vec{x}_{\pi_{1}})\psi_{a_{2}}(\vec{x}_{\pi_{2}})\psi_{a_{n}}(\vec{x}_{\pi_{n}})$$
$$= \frac{1}{\sqrt{n!}} \det \begin{pmatrix} \psi_{a_{1}}(\vec{x}_{1}) & \psi_{a_{2}}(\vec{x}_{1}) & \dots & \psi_{a_{n}}(\vec{x}_{1}) \\ \psi_{a_{1}}(\vec{x}_{2}) & \psi_{a_{2}}(\vec{x}_{2}) & \dots & \psi_{a_{n}}(\vec{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{a_{1}}(\vec{x}_{n}) & \psi_{a_{2}}(\vec{x}_{n}) & \dots & \psi_{a_{n}}(\vec{x}_{n}) \end{pmatrix}$$

Dva jednočásticové stavy jsou stejné — dostaneme nulu

Pauliho princip

V souboru nerozlišitelných fermionů nemohou existovat dvě částice ve stejném kvantovém stavu

Stacionární poruchová teorie

Martin Štefaňák

8. prosince 2020

Martin Štefaňák

Kvantová mechanika

8. prosince 2020 1 / 36

- 2 Oscilátor v homogenním poli
- 3 Základní stav elektronového obalu helia
- 4 Degenerovaná vlastní hodnota
- 5 Lineární Starkův jev na vodíku

Nedegenerovaná vlastní hodnota

- 2 Oscilátor v homogenním poli
- 3 Základní stav elektronového obalu helia
- 4 Degenerovaná vlastní hodnota
- 5 Lineární Starkův jev na vodíku

Stacionární poruchová teorie

- Najít přesné řešení bezčasové Schrödingerovy rovnice je často nemožné (nedostatek symetrií)
- Předpokládáme hamiltonián ve tvaru součtu

$$\hat{H}=\hat{H}_{0}+\varepsilon\hat{H}'$$

Známe vlastní čísla a vlastní vektory Ĥ₀, má prosté spektrum

$$\hat{H}_{0}|\psi_{k}^{(0)}\rangle = E_{k}^{(0)}|\psi_{k}^{(0)}\rangle$$
 (1)

- \hat{H}' představuje poruchu
- Chceme určit vlastní čísla a vlastní vektory Ĥ

$$\hat{H}|\psi_{k}(arepsilon)
angle={\sf E}_{k}(arepsilon)|\psi_{k}(arepsilon)
angle$$

(2)

Stacionární poruchová teorie

• Odečtením rovnic (2) a (1) dostaneme

$$\left(\hat{H}_{0}-E_{k}^{(0)}\right)\left|\Delta\psi_{k}\right\rangle=\left(\Delta E_{k}-\varepsilon\hat{H}'\right)\left|\psi_{k}(\varepsilon)\right\rangle$$
(3)

Oprava vlastního čísla a vlastního vektoru

$$\Delta E_k = E_k(\varepsilon) - E_k^{(0)}, \quad |\Delta \psi_k\rangle = |\psi_k(\varepsilon)\rangle - |\psi_k^{(0)}\rangle$$

• Skalární součin (3) s $\langle \psi_j^{(0)} |$

$$\left(E_{j}^{(0)}-E_{k}^{(0)}\right)\langle\psi_{j}^{(0)}|\Delta\psi_{k}\rangle=\Delta E_{k}\langle\psi_{j}^{(0)}|\psi_{k}(\varepsilon)\rangle-\varepsilon\langle\psi_{j}^{(0)}|\hat{H}'|\psi_{k}(\varepsilon)\rangle \quad (4)$$

• Speciálně pro j = k dostaneme

$$\Delta E_{k} \langle \psi_{k}^{(0)} | \psi_{k}(\varepsilon) \rangle = \varepsilon \langle \psi_{k}^{(0)} | \hat{\mathcal{H}}' | \psi_{k}(\varepsilon) \rangle$$
(5)

Dodatečná normalizační podmínka

$$\langle \psi_k^{(0)} | \psi_k(\varepsilon) \rangle = 1 \implies \langle \psi_k^{(0)} | \Delta \psi_k \rangle = 0$$

• Opravu vlastního vektoru hledáme v OG doplňku

- $|\psi_k(\varepsilon)\rangle$ nemusí mít normu 1, ale to nevadí
- Rovnice (5) se zjednoduší do tvaru

$$\Delta E_{k} = \varepsilon \langle \psi_{k}^{(0)} | \hat{H}' | \psi_{k}(\varepsilon) \rangle$$
(6)

• Rozvoj vlastních čísel a vektorů do mocninné řady

$$E_{k}(\varepsilon) = E_{k}^{(0)} + \underbrace{\varepsilon E_{k}^{(1)} + \varepsilon^{2} E_{k}^{(2)} + \dots}_{\Delta E_{k}}$$
$$|\psi_{k}(\varepsilon)\rangle = |\psi_{k}^{(0)}\rangle + \underbrace{\varepsilon |\psi_{k}^{(1)}\rangle + \varepsilon^{2} |\psi_{k}^{(2)}\rangle + \dots}_{|\Delta \psi_{k}\rangle}$$

• Dosadíme do (6), člen u ε^s — oprava vlastního čísla řádu s

$$E_k^{(s)} = \langle \psi_k^{(0)} | \hat{\mathcal{H}}' | \psi_k^{(s-1)} \rangle$$

Střední hodnota poruchy v původním vlastním stavu

$$m{E}_k^{(1)} = \langle \psi_k^{(0)} | \hat{H}' | \psi_k^{(0)}
angle = \langle \hat{H}'
angle_{\psi_k^{(0)}}$$

- Stačí, že E_k⁽⁰⁾ má násobnost 1
- Ostatní vlastní hodnoty mohou být degenerované
- \hat{H}_0 může mít i spojité spektrum

$$E_k^{(2)} = \langle \psi_k^{(0)} | \hat{H}' | \psi_k^{(1)}
angle$$

- Potřebujeme opravu 1. řádu vlastního vektoru $|\psi_k^{(1)}\rangle$
- Předpokládáme, že Ĥ₀ má čistě bodové spektrum
 |ψ⁽¹⁾_k⟩ lze rozložit do báze {|ψ⁽⁰⁾_i⟩}

$$|\psi_k^{(1)}\rangle = \sum_j \langle \psi_j^{(0)} | \psi_k^{(1)} \rangle | \psi_j^{(0)} \rangle$$

• Z podmínky $\langle \psi_k^{(0)} | \Delta \psi_k \rangle = 0 \Longrightarrow \langle \psi_k^{(0)} | \psi_k^{(s)} \rangle = 0, \, s \ge 1$

Oprava vlastního vektoru 1. řádu

- Fourierovy koeficienty $\langle \psi_j^{(0)} | \psi_k^{(1)} \rangle$ pro $j \neq k$ určíme z rovnice (4)
- Dosadíme do (4) mocninné rozvoje, členy u ε

$$\langle \psi_j^{(0)} | \psi_k^{(1)}
angle = rac{\langle \psi_j^{(0)} | \hat{H}' | \psi_k^{(0)}
angle}{E_k^{(0)} - E_j^{(0)}}$$

Oprava vlastního vektoru 1. řádu

$$|\psi_{k}^{(1)}
angle = \sum_{j
eq k} rac{\langle \psi_{j}^{(0)} | \hat{\mathcal{H}}' | \psi_{k}^{(0)}
angle}{\mathcal{E}_{k}^{(0)} - \mathcal{E}_{j}^{(0)}} | \psi_{j}^{(0)}
angle$$

Dosazením rozvoje dostaneme opravu 2. řádu vlastního čísla

$${m E}_k^{(2)} = \sum_{j
eq k} rac{|\langle \psi_j^{(0)} | \hat{H}' | \psi_k^{(0)}
angle |^2}{{m E}_k^{(0)} - {m E}_j^{(0)}}$$

- Platí, pokud $E_k^{(0)}$ má násobnost 1, \hat{H}_0 má čistě bodové spektrum
- Ostatní vlastní hodnoty mohou být degenerované
- Pokud Ĥ₀ má nedegenerovaný základní stav oprava 2. řádu energie základního stavu je nekladná

2 Oscilátor v homogenním poli

3) Základní stav elektronového obalu helia

4 Degenerovaná vlastní hodnota

Oscilátor v homogenním poli

• Lineární harmonický oscilátor v homogenním poli

$$\hat{H}_0 = rac{\hat{P}^2}{2M} + rac{1}{2}M\omega^2\hat{Q}^2, \quad \hat{H}' = F\hat{Q}, \quad \varepsilon = 1$$

Vlastní čísla a vektory Ĥ₀

$$\hat{H}_{0}|n\rangle = \left(n + \frac{1}{2}\right)\hbar\omega|n\rangle, \ n \in \mathbb{Z}_{+}, \ \langle n|m\rangle = \delta_{nm}, \ \sum_{n=0}^{\infty}|n\rangle\langle n| = \hat{I}$$

• Poruchu zapíšeme pomocí posunovacích operátorů

$$\hat{H}' = F \sqrt{\frac{\hbar}{2M\omega}} \left(\hat{a}_{+} + \hat{a}_{-} \right), \ \hat{a}_{\pm} |n\rangle = \alpha_{n}^{\pm} |n \pm 1\rangle, \ \alpha_{n}^{+} = \sqrt{n+1}, \ \alpha_{n}^{-} = \sqrt{n}$$

< ロ > < 同 > < 回 > < 回 >

• Maticové elementy operátoru poruchy v energetické bázi

$$\langle m|\hat{H}'|n\rangle = F\sqrt{\frac{\hbar}{2M\omega}}\langle m|\hat{a}_{+}+\hat{a}_{-}|n\rangle = F\sqrt{\frac{\hbar}{2M\omega}}\left(\alpha_{n}^{+}\delta_{m,n+1}+\alpha_{n}^{-}\delta_{m,n-1}\right)$$

• Diagonální maticové elementy Ĥ' jsou nulové

• Oprava 1. řádu je nulová pro všechny vlastní hodnoty

$$E_n^{(1)} = \langle \hat{H}'
angle_n = 0$$

Opravu 2. řádu určují nediagonální maticové elementy Ĥ'

$$E_n^{(2)} = \sum_{m \neq n} \frac{|\langle m | \hat{H}' | n \rangle|^2}{E_n^{(0)} - E_m^{(0)}} = \frac{F^2 \hbar}{2M\omega} \left(\frac{|\alpha_n^+|^2}{E_n^{(0)} - E_{n+1}^{(0)}} + \frac{|\alpha_n^-|^2}{E_n^{(0)} - E_{n-1}^{(0)}} \right)$$
$$= -\frac{F^2}{2M\omega^2}$$

• Do 2. řádu poruchového rozvoje platí

$$E_n=E_n^{(0)}+E_n^{(2)}=\left(n+rac{1}{2}
ight)\hbar\omega-rac{F^2}{2M\omega^2}$$

A (10) > A (10) > A (10)

Celkový potenciál lze upravit na čtverec

$$\frac{1}{2}M\omega^2 x^2 + Fx = \frac{1}{2}M\omega^2 \left(x + \frac{F}{M\omega^2}\right)^2 - \frac{F^2}{2M\omega^2}$$

- Změnou proměnné $y = x + \frac{F}{M\omega^2}$ dostaneme hamiltonián LHO posunutý o konstantu
- Přesné hodnoty energie jsou

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{F^2}{2M\omega^2}$$

- Poruchová teorie dá přesný výsledek
- Opravy vyšších řádů (s > 2) budou nulové

- 2 Oscilátor v homogenním poli
- 3 Základní stav elektronového obalu helia
- 4 Degenerovaná vlastní hodnota
- 5 Lineární Starkův jev na vodíku

Hamiltonián elektronového obalu helia

Celkový hamiltonián

$$\hat{H} = \hat{H}_0 + \hat{H}'$$

• \hat{H}_0 — 2 neinteragující elektrony v poli jádra

$$\hat{H}_0 = \hat{H}_1 + \hat{H}_2, \quad \hat{H}_i = rac{\hat{P}_i^2}{2m_e} - rac{Q}{r_i}, \quad Q = rac{2e^2}{4\pi\varepsilon_0}$$

• Porucha \hat{H}' — interakce elektronů

$$\hat{H}'=rac{e^2}{4\piarepsilon_0}rac{1}{|ec{x}_1-ec{x}_2|}$$

A discussion	Ot - 4 - × 41 -	
Martin	Stefanak	

3 N K 3 N

< 47 ▶

Základní stav \hat{H}_0

Vlastní vektory Ĥ_i — určené kvantovými čísly N, I, m

$$\hat{H}_i|N,I,m\rangle_i = -\frac{R}{N^2}|N,I,m\rangle_i, \quad R = \frac{Q}{2a} \doteq 54.4 \text{ eV}, \quad a = \frac{\hbar^2}{m_e Q}$$

- Dva nerozlišitelné fermiony stav musí být antisymetrický
- Musíme uvažovat i spiny elektronů, energie na nich nezávisí
- Základní stav neporušeného hamiltoniánu Ĥ₀

$$|\psi_1^{(0)}
angle = |1,0,0
angle_1\otimes|1,0,0
angle_2\otimesrac{1}{\sqrt{2}}\left(|+
angle_1\otimes|-
angle_2-|-
angle_1\otimes|+
angle_2
ight)$$

- Odpovídá energii $E_1^{(0)} = -2R = -\frac{Q}{a} \doteq -108.8 \text{ eV}$
- Experimentální hodnota $E_1 \doteq -78.9 \text{ eV}$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Oprava 1. řádu energie základního stavu

• Základní hladina je nedegenerovaná

$$E_{1}^{(1)} = \langle \psi_{1}^{(0)} | \hat{H}' | \psi_{1}^{(0)} \rangle = \left(\psi_{1}^{(0)}, \hat{H}' \psi_{1}^{(0)} \right)$$

Vlnová funkce základního stavu v x-reprezentaci

$$\psi_1^{(0)}(\vec{x}_1, \vec{x}_2) = \psi_{100}(\vec{x}_1)\psi_{100}(\vec{x}_2), \quad \psi_{100}(\vec{x}) = \frac{1}{\sqrt{\pi a^3}}e^{-\frac{r}{a}}$$

Oprava 1. řádu energie základního stavu je určená integrálem

$$E_{1}^{(1)} = C \int_{\mathbb{R}^{3}} d^{3}x_{1} \int_{\mathbb{R}^{3}} d^{3}x_{2} e^{-\frac{2(r_{1}+r_{2})}{a}} \frac{1}{|\vec{x}_{1}-\vec{x}_{2}|}, \quad C = \frac{1}{\pi^{2}a^{6}} \frac{e^{2}}{4\pi\varepsilon_{0}}$$

Martin Štefaňák

• • • • • • • • • • • • •

• Ĥ' lze rozepsat pomocí Legendreových polynomů

$$\frac{1}{|\vec{x_1} - \vec{x_2}|} = \frac{1}{r_2} \sum_{l=0}^{\infty} \left(\frac{r_1}{r_2}\right)^l P_l^0(\cos\theta), \quad r_1 < r_2, \quad \vec{x}_1 \cdot \vec{x}_2 = r_1 r_2 \cos\theta$$

Legendreův polynom lze rozepsat pomocí kulových funkcí

$$\mathsf{P}_{l}^{0}(\cos\theta) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} \overline{Y}_{lm}(\theta_{1},\varphi_{1}) Y_{lm}(\theta_{2},\varphi_{2}), \quad \theta_{i},\varphi_{i} \leftrightarrow \vec{x}_{i}$$

- Integrály převedeme do sférických souřadnic
- Integrál přes r_2 rozdělíme na intervaly $(0, r_1)$ a (r_1, ∞)

3 + 4 = +

< 🗇 🕨

Výpočet integrálu

• Integrál přes prostorové úhly θ_1 , φ_1 ($Y_{00} = \frac{1}{\sqrt{4\pi}}$)

$$\int_{0}^{2\pi} d\varphi_{1} \int_{0}^{\pi} \sin \theta_{1} d\theta_{1} \overline{Y}_{lm}(\theta_{1},\varphi_{1}) = \sqrt{4\pi} (Y_{lm},Y_{00}) = \sqrt{4\pi} \delta_{l0} \delta_{m0}$$

- Analogicky pro integrál přes prostorové úhly θ_2, φ_2
- Ze sumy zbude pouze člen I = m = 0
- Zbývá spočítat integrály přes r₁ a r₂

$$E_{1}^{(1)} = C (4\pi)^{2} \int_{0}^{\infty} dr_{1} r_{1}^{2} e^{-\frac{2r_{1}}{a}} \left(\frac{1}{r_{1}} \int_{0}^{r_{1}} dr_{2} r_{2}^{2} e^{-\frac{2r_{2}}{a}} + \int_{r_{1}}^{\infty} dr_{2} r_{2} e^{-\frac{2r_{2}}{a}} \right)$$

э

イロト イポト イヨト イヨト

Výpočet integrálu

• Integrály přes r₂ pomocí per partes

$$\int_{0}^{r_{1}} dr_{2}r_{2}^{2}e^{-\frac{2r_{2}}{a}} = \frac{a^{3}}{4}\left(1-e^{-\frac{2r_{1}}{a}}\left(1+\frac{2r_{1}}{a}+\frac{2r_{1}^{2}}{a^{2}}\right)\right)$$
$$\int_{r_{1}}^{\infty} dr_{2}r_{2}e^{-\frac{2r_{2}}{a}} = \frac{a}{2}e^{-\frac{2r_{1}}{a}}\left(r_{1}+\frac{a}{2}\right)$$

Integrál přes r₁ pomocí Γ-funkce

$$\mathcal{I} = \frac{a^3}{4} \left(\int_0^\infty dr_1 r_1 e^{-\frac{2r_1}{a}} - \int_0^\infty dr_1 \left(r_1 + \frac{r_1^2}{a} \right) e^{-\frac{4r_1}{a}} \right) = \frac{5}{128} a^5$$

• Celkem pro opravu 1. řádu nalezneme

$$E_1^{(1)} = C (4\pi)^2 \frac{5}{128} a^5 = \frac{5}{16} \frac{Q}{a} = -\frac{5}{16} E_1^{(0)}$$

Do 1. řádu poruchového rozvoje je energie základního stavu rovna

$$E_1 = E_1^{(0)} + E_1^{(1)} = \frac{11}{16}E_1^{(0)} \doteq -74.8 \text{ eV}$$

Martin Štefaňák

8. prosince 2020 24 / 36

A .

- 2 Oscilátor v homogenním poli
- 3) Základní stav elektronového obalu helia
- 4 Degenerovaná vlastní hodnota
- 5 Lineární Starkův jev na vodíku

- $E^{(0)}$ je vlastní hodnota \hat{H}_0 s konečnou násobností N > 1
- Celkový hamiltonián tvaru $\hat{H} = \hat{H}_0 + \varepsilon \hat{H}'$
- Porucha může snížit degeneraci vlastní hodnoty

$$\mathsf{E}_{j}(arepsilon), \quad \mathsf{E}_{j}(arepsilon o \mathsf{0}) = \mathsf{E}^{(\mathsf{0})}$$

Hledáme vlastní čísla a vlastní vektory Ĥ ve tvaru řady

$$\begin{aligned} \hat{\mathcal{H}} |\psi_j(\varepsilon)\rangle &= E_j(\varepsilon) |\psi_j(\varepsilon)\rangle & (7) \\ |\psi_j(\varepsilon)\rangle &= |\psi_j^{(0)}\rangle + \varepsilon |\psi_j^{(1)}\rangle + \dots \\ E_j(\varepsilon) &= E^{(0)} + \varepsilon E_i^{(1)} + \dots \end{aligned}$$

• $|\psi_j^{(0)}
angle$ nejsou rovnicí $\hat{H}_0|\psi_j^{(0)}
angle={\cal E}^{(0)}|\psi_j^{(0)}
angle$ určeny jednoznačně

• Dosadíme rozvoje do (7), člen u ε

$$\hat{H}_{0}|\psi_{j}^{(1)}\rangle + \hat{H}'|\psi_{j}^{(0)}\rangle = E^{(0)}|\psi_{j}^{(1)}\rangle + E_{j}^{(1)}|\psi_{j}^{(0)}\rangle$$
(8)

• Zvolíme si nějakou bázi v podprostoru s energií E⁽⁰⁾

$$\hat{H}_{0}|\phi_{j}
angle = E^{(0)}|\phi_{j}
angle, \quad \langle\phi_{j}|\phi_{k}
angle = \delta_{jk}$$

• Rovnici (8) skalárně vynásobíme s $|\phi_k
angle$ - zbavíme se $|\psi_i^{(1)}
angle$

$$\langle \phi_k | \hat{H}' | \psi_j^{(0)} \rangle = E_j^{(1)} \langle \phi_k | \psi_j^{(0)} \rangle \tag{9}$$

• Rozepíšeme neznámé $|\psi_{i}^{(0)}\rangle$ do báze $\{|\phi_{k}\rangle\}$

$$|\psi_j^{(0)}\rangle = \sum_{k=1}^N a_{j,k} |\phi_k\rangle, \quad a_{j,k} = \langle \phi_k |\psi_j^{(0)}\rangle$$
(10)

• Dosazením rozvoje (10) do rovnice (9) dostaneme

$$\sum_{l=1}^{N} \langle \phi_k | \hat{H}' | \phi_l \rangle \boldsymbol{a}_{j,l} = \boldsymbol{E}_j^{(1)} \boldsymbol{a}_{j,k}, \quad k = 1, \dots N$$

Lze přepsat v maticovém tvaru

$$\mathbb{H}'\psi_j^{(0)}=\textit{E}_j^{(1)}\psi_j^{(0)}$$

• Matice poruchy zúženého na podprostor $E^{(0)}$ v bázi $\{|\phi_k\rangle\}$

$$\mathbb{H}'_{k,l} = \langle \phi_k | \hat{H}' | \phi_l \rangle$$

• $\psi_i^{(0)}$ - vektor $|\psi_i^{(0)}\rangle$ vyjádřený v bázi $\{|\phi_k\rangle\}$

$$\psi_j^{(0)} = (a_{j,1},\ldots,a_{j,N})^T$$

Opravy 1. řádu degenerované vlastní hodnoty $E^{(0)}$ jsou rovny vlastním číslům matice operátoru poruchy zúženého na příslušný podprostor

Postup řešení

- Zvolíme si nějakou bázi $\{|\phi_k\rangle\}$ v podprostoru s energií $E^{(0)}$
- Určíme matici zúžení operátoru poruchy $\mathbb{H}'_{k,l} = \langle \phi_k | \hat{H}' | \phi_l \rangle$
- Vlastní čísla matice \mathbb{H}' opravy 1. řádu $E_i^{(1)}$
- Vlastní vektory matice II' koeficienty správných vlastních vektorů Â₀ vzhledem k poruše Â'

$$|\psi_{j}^{(0)}
angle = \sum_{k=1}^{N} a_{j,k} |\phi_{k}
angle$$

• Na volbě báze $\{|\phi_k\rangle\}$ nezávisí

- Oscilátor v homogenním poli
- 3 Základní stav elektronového obalu helia
- 4 Degenerovaná vlastní hodnota

Lineární Starkův jev na vodíku

- Rozštěpení hladin vodíku vlivem homogenního elektrického pole
- Dipólový moment atomu vodíku $\vec{d} = -e(\vec{x}_e \vec{x}_p) = -e\vec{x}$
- Energie dipólu v elektrickém poli $\vec{E} U = -\vec{d} \cdot \vec{E}$
- Hamiltonián po odečtení pohybu těžiště

$$\hat{H} = \hat{H}_0 + e\hat{\vec{Q}} \cdot \vec{E}, \quad \hat{H}_0 = \frac{\hat{P}^2}{2M} - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}$$

• Sférická symetrie \hat{H}_0 — zvolím osu z ve směru \vec{E} — \vec{E} = (0, 0, ε)

$$\hat{H} = \hat{H}_0 + \varepsilon \hat{H}', \quad \hat{H}' = e\hat{Q}_3 = er\cos\theta$$

Intenzita elektrického pole — parametr poruchového rozvoje ε
Oprava 1. řádu základní hladiny \hat{H}_0

Vlastní vektory Ĥ₀

$$\hat{H}_0|N, I, m\rangle = E_N^{(0)}|N, I, m\rangle, \quad E_N^{(0)} = -\frac{R}{N^2}, \quad R \doteq 13.6 \text{ eV}$$

 Základní stav $|1,0,0\rangle$ je nedegenerovaný

$$E_{1}^{(1)} = \langle 1, 0, 0 | \hat{H}' | 1, 0, 0 \rangle = (\psi_{100}, \hat{H}' \psi_{100})$$

Jeho vlnová funkce je sféricky symetrická

$$\psi_{100}(\mathbf{r},\theta,\varphi) = \frac{1}{\sqrt{\pi a^3}} e^{-\frac{r}{a}}, \quad a = \frac{4\pi\varepsilon_0\hbar^2}{Me^2}$$

• Energie základního stavu \hat{H}_0 se do 1. řádu nezmění

$$E_1^{(1)} = (\psi_{100}, \hat{H}'\psi_{100}) = \dots \int_0^\pi \sin\theta\cos\theta d\theta = 0$$

Opravy 1. řádu pro excitované hladiny \hat{H}_0

• Vlnové funkce vlastních stavů \hat{H}_0

$$\psi_{\textit{NIm}}(r,\theta,\varphi) = R_{\textit{NI}}(r)Y_{\textit{Im}}(\theta,\varphi)$$

- Degenerace hladiny $E_N^{(0)}$ je $D_N = N^2$
- Matice zúžení operátoru poruchy $\hat{H}' N^2 \times N^2$ matice

$$\begin{split} \mathbb{H}'_{(l,m),(l',m')} &= \langle N, l, m | \hat{H}' | N, l', m' \rangle \\ &= e \left(\int_{0}^{\infty} r^{3} \overline{R_{Nl}}(r) R_{Nl'}(r) dr \right) \times \\ &\times \left(\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \overline{Y_{lm}} Y_{l'm'} \sin \theta \cos \theta d\theta \right) \end{split}$$

Opravy 1. řádu pro excitované hladiny \hat{H}_0

Integrál přes úhly lze vyjádřit obecně

$$\int d\theta d\varphi \ldots = \delta_{m,m'} \left(\delta_{l,l'+1} \sqrt{\frac{l^2 - m^2}{4l^2 - 1}} + \delta_{l+1,l'} \sqrt{\frac{l'^2 - m^2}{4l'^2 - 1}} \right)$$

- Nenulové maticové elementy jen pro m = m' a $l = l' \pm 1$
- Radiální integrál je komplikované spočítat obecně
- Dále se omezíme na 1. excitovanou hladinu (N = 2)
- Nenulové maticové elementy operátoru poruchy v podprostoru

$$\langle 2,1,0|\hat{\mathcal{H}}'|2,0,0\rangle=\langle 2,0,0|\hat{\mathcal{H}}'|2,1,0\rangle=-3\textit{ea}$$

Opravy 1. řádu pro $E_2^{(0)}$

Matice operátoru poruchy zúženého na podprostor s energií E₂⁽⁰⁾

$$\mathrm{I'}=egin{pmatrix} 0&0&-3ea&0\0&0&0&0\-3ea&0&0&0\0&0&0&0\end{pmatrix}$$

Vlastní čísla matice — opravy 1. řádu energie E₂⁽⁰⁾

$$E_{2,1}^{(1)}=-3ea, \quad E_{2,2}^{(0)}=0, \quad E_{2,3}^{(1)}=3ea$$

Vlastní vektory — koeficienty správných vlastních vektorů Ĥ₀

$$\psi_{2,1}^{(0)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \quad \psi_{2,2a}^{(0)} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \psi_{2,2b}^{(0)} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \quad \psi_{2,3}^{(0)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$$

Lineární Starkův jev pro 1. excitovanou hladinu vodíku

 $\varepsilon = 0$ $\varepsilon \neq 0$

Hladina N = 2 se rozštěpí na multiplet 3 hladin

	•	
	Ot - 1	e 1 -
N/100	510	i n n v
IVIAL	STR.	

Kvantová mechanika

Rozptyl na přímce na potenciálu konečného dosahu

Martin Štefaňák

15. prosince 2020

Martin Štefaňák

Kvantová mechanika

15. prosince 2020 1 / 28

Rozptyl na potenciálu konečného dosahu

< 47 ▶

2 Rozptyl na pravoúhlé potenciálové bariéře

(4) (5) (4) (5)

Rozptyl na přímce na potenciálu konečného dosahu

- Potenciál V(x) nenulový jen pro |x| < a
- Částice připravená daleko před potenciálem s energií E
- Koeficienty průniku T a odrazu R v závislosti na E

Koeficienty průniku T a odrazu R

Stav částice v čase t - řešení časové Schrödingerovy rovnice

$$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t}, \quad \hat{H} = -\frac{\hbar^2}{2M} \frac{d^2}{dx^2} + V(x)$$

Koeficienty průniku T a odrazu R

$$T = \lim_{t \to \infty} \int_{a}^{\infty} |\psi(x, t)|^2 dx, \quad R = \lim_{t \to \infty} \int_{-\infty}^{-a} |\psi(x, t)|^2 dx$$

- Nebude nutné řešit časovou Schrödingerovu rovnici
- Stačí vyřešit bezčasovou Schrödingerovu rovnici s okrajovými podmínkami, tj. najít zobecněnou vlastní funkci celkového hamiltoniánu se správným tvarem pro |x| > a

Počáteční podmínka

- Částice v čase $t_0 = 0$ dobře lokalizovaná v $x_0 \ll -a$
- Střední hodnota hybnosti p₀, malá neurčitost v hybnosti Δp
- Gaussovský vlnový balík, minimalizuje relace neurčitosti

$$\psi_0(x) = C \exp\left(-rac{(x-x_0)^2}{4(\Delta x)^2} + rac{i}{\hbar}p_0x
ight), \quad \Delta x \Delta p = rac{\hbar}{2}$$

- Daleko od potenciálu volná částice, $\hat{H}_0 = -\frac{\hbar^2}{2M} \frac{d^2}{dx^2}$
- Po nějakou dobu se časový vývoj neliší od volné částice

$$\psi_0(x,t) = \int\limits_{\mathbb{R}} e^{rac{i}{\hbar}px} e^{-rac{i}{\hbar} rac{p^2}{2M}t} \, ilde{\psi}(p) \; dp$$

$$x_0(t) = x_0 + \frac{p_0}{M}t, \quad (\Delta x(t))^2 = (\Delta x)^2 + \frac{(\Delta p)^2}{M^2}t^2$$

Martin Štefaňák

< ロ > < 同 > < 回 > < 回 >

- Částice s přiblíží k bariéře vliv potenciálu nelze zanedbat
- Musíme v integrálu nahradit $e^{\frac{i}{\hbar}px}$ zobecněnými vlastními funkcemi celkového hamiltoniánu ϕ_k , $k = \frac{p}{\hbar}$

$$\hat{H}\phi_k = \frac{k^2\hbar^2}{2M}\phi_k \iff \left(\frac{d^2}{dx^2} + k^2\right)\phi_k = U(x)\phi_k, \quad U(x) = \frac{2M}{\hbar^2}V(x)$$

Časový vývoj vlnové funkce je pak daný vztahem

$$\psi(\mathbf{x},t) = \int\limits_{\mathbb{R}} \phi_{rac{p}{\hbar}}(\mathbf{x}) e^{-rac{i}{\hbar} rac{p^2}{2M}t} \, ilde{\psi}(\mathbf{p}) \; d\mathbf{p}$$

Lippmann-Schwingerova rovnice

 Převedeme bezčasovou Schrödingerovu rovnici pro celkový hamiltonián na integrální rovnici

$$\phi_k(x) = e^{ikx} + \int_{\mathbb{R}} G_k(x - x') U(x') \phi_k(x') dx'$$

 G_k(x) je Greenova funkce (fundamentální řešení) bezčasové Schrödingeorvy rovnice pro volnou částici

$$\left(\frac{d^2}{dx^2}+k^2\right)G_k(x)=\delta(x)$$

Greenova funkce je rovna

$$G_k(x) = rac{e^{ik|x|}}{2ik} = \Theta(x)rac{e^{ikx}}{2ik} + \Theta(-x)rac{e^{-ikx}}{2ik}$$

Zobecněná vlastní funkce celkového hamiltoniánu

• Dosadíme $G_k(x)$ do L-S rovnice, U(x) = 0 pro |x| > a

$$\phi_k(x) = e^{ikx}(1 + C(k, x)) + A(k, x)e^{-ikx}$$

• Funkce A(k, x) a C(k, x)

$$A(k,x) = \int_{x}^{a} \frac{e^{ikx'}}{2ik} U(x') \Phi_{k}(x') dx'$$
$$C(k,x) = \int_{-a}^{x} \frac{e^{-ikx'}}{2ik} U(x') \Phi_{k}(x') dx'$$

< 47 ▶

V oblasti za potenciálem — x > a

$$A(k, x) = 0, \quad C(k, x) = C(k, a)$$

■ V oblasti před potenciálem — x < -a</p>

$$A(k,x) = A(k,-a) \equiv A(k), \quad C(k,x) = 0$$

 Mimo potenciál je \(\phi_k(x)\) superpozicí zobecněných vlastních funkcí hamiltoniánu volné částice

$$egin{array}{rcl} x>a & \Longrightarrow & \phi_k(x)=B(k)e^{ikx}, & B(k)=1+C(k,a)\ x<-a & \Longrightarrow & \phi_k(x)=e^{ikx}+A(k)e^{-ikx} \end{array}$$

< ロ > < 同 > < 回 > < 回 >

Časový vývoj vlnové funkce

• Vlnová funkce v čase t je rovna součtu tří funkcí

$$\psi(\mathbf{x},t) = \psi_0(\mathbf{x},t) + \psi_A(\mathbf{x},t) + \psi_C(\mathbf{x},t)$$

- ψ₀(x, t) vlnová funkce volné částice, nezanedbatelná jen v okolí x₀(t) = x₀ + ^{p₀}/_Mt
- Funkce $\psi_A(x, t)$ je nulová pro x > a

$$\psi_{A}(x,t) = \int_{\mathbb{R}} A\left(\frac{p}{\hbar}, x\right) e^{-\frac{i}{\hbar}px} e^{-\frac{i}{\hbar}\frac{p^{2}}{2M}t} \tilde{\psi}(p) dp$$

• Funkce $\psi_{C}(x, t)$ je nulová pro x < -a

$$\psi_{C}(x,t) = \int_{\mathbb{R}} C\left(\frac{p}{\hbar}, x\right) e^{\frac{i}{\hbar}px} e^{-\frac{i}{\hbar}\frac{p^{2}}{2M}t} \tilde{\psi}(p) dp$$

Asymptotické chování vlnové funkce

- Riemann-Lebesgueova věty ⇒ ψ_A a ψ_C vymizí v oblasti potenciálu v limitě t → ∞
- Pro velká t lze napsat vlnovou funkci jako superpozici dvou vln

 $\psi(\mathbf{x},t) = \psi_T(\mathbf{x},t) + \psi_R(\mathbf{x},t)$

• Před bariérou — odražená vlna $\psi_R(x, t)$

$$x < -a \longrightarrow \psi(x,t) = \psi_R(x,t) = \int_{\mathbb{R}} A\left(rac{p}{\hbar}
ight) e^{-rac{i}{\hbar}px} e^{-rac{i}{\hbar}rac{p^2}{2M}t} \tilde{\psi}(p) dp$$

• Za bariérou — transmitovaná vlna $\psi_T(x, t)$

$$x > a \longrightarrow \psi(x,t) = \psi_T(x,t) = \int_{\mathbb{R}} B\left(\frac{p}{\hbar}\right) e^{\frac{i}{\hbar}\rho x} e^{-\frac{i}{\hbar}\frac{p^2}{2M}t} \tilde{\psi}(p) dp$$

Koeficienty průniku a odrazu

Koeficient průniku a odrazu

$$T = \lim_{t \to \infty} \int_{a}^{\infty} |\psi_{T}(x,t)|^{2} dx, \quad R = \lim_{t \to \infty} \int_{-\infty}^{-a} |\psi_{R}(x,t)|^{2} dx$$

• V limitě $t \to \infty$ vlnová funkce vymizí v oblasti potenciálu

$$T + R = 1$$

Transmitovaná a odražená vlna

- Dopadající částice má dobře určenou hybnost Δp je malé
- $\tilde{\psi}(p)$ je nezanedbatelná jen v Δp okolí p_0
- $A(\frac{p}{\hbar})$ a $B(\frac{p}{\hbar})$ se mění pomalu nahradíme hodnotami v p_0
- Transmitovaná vlna

$$\psi_{\mathcal{T}}(x,t) = B\left(\frac{p_{0}}{\hbar}\right) \int_{\mathbb{R}} e^{\frac{i}{\hbar}px} e^{-\frac{i}{\hbar}\frac{p^{2}}{2M}t} \tilde{\psi}(p) dp = B\left(\frac{p_{0}}{\hbar}\right) \psi_{0}(x,t)$$

Odražená vlna

$$\psi_{R}(x,t) = A\left(\frac{p_{0}}{\hbar}\right) \int_{\mathbb{R}} e^{-\frac{i}{\hbar}px} e^{-\frac{i}{\hbar}\frac{p^{2}}{2M}t} \tilde{\psi}(p) dp = A\left(\frac{p_{0}}{\hbar}\right) \psi_{0}(-x,t)$$

Koeficient průniku

$$T = \left| B\left(\frac{p_0}{\hbar}\right) \right|^2 \lim_{t \to \infty} \int_a^\infty |\psi_0(x,t)|^2 dx$$
$$= \left| B\left(\frac{p_0}{\hbar}\right) \right|^2 \lim_{t \to \infty} \int_{-\infty}^\infty |\psi_0(x,t)|^2 dx = \left| B\left(\frac{p_0}{\hbar}\right) \right|^2$$

Koeficient průniku

$$R = \left|A\left(\frac{p_0}{\hbar}\right)\right|^2$$

Martin Štefaňák

< ロ > < 同 > < 回 > < 回 >

Rozptyl na potenciálu konečného dosahu

- Koeficienty průniku a odrazu jsou dané funkcemi A(k) a B(k)
- Tyto funkce lze určit řešením bezčasové Schrödingerovy rovnice pro celkový hamiltonián s okrajovými podmínkami

$$\hat{H}\phi_{k} = E\phi_{k} \iff \frac{d^{2}\phi_{k}}{dx^{2}} + k^{2}\phi_{k} = \frac{2M}{\hbar^{2}}V(x)\phi_{k}$$
(1)

$$x > a \longrightarrow \phi_{k}(x) = B(k)e^{ikx}$$

$$x < -a \longrightarrow \phi_{k}(x) = e^{ikx} + A(k)e^{-ikx}$$

 Rovnici (1) vyřešíme pro |x| < a, a spojitě do 1. derivace navážeme na řešení mimo bariéru — podmínky na A(k) a B(k)

∃ ► < ∃ ►</p>

Zjednodušené odvození koeficientů průniku a odrazu

- Místo gaussovského vlnového balíku budeme uvažovat dopadající částici s přesně určenou energií a hybností

$$egin{array}{rcl} x>a&\longrightarrow&\phi_k(x)=B(k)e^{ikx}\ x<-a&\longrightarrow&\phi_k(x)=e^{ikx}+A(k)e^{-ikx} \end{array}$$

- A(k) amplituda odražené vlny
- B(k) amplituda transmitované vlny
- Amplituda dopadající vlny je zvolena rovna jedné
- R = | amplituda odražené / dopadající vlny $|^2 = |A(k)|^2$
- T = | amplituda transmitované / dopadající vlny $|^2 = |B(k)|^2$

< ロ > < 同 > < 回 > < 回 >

э

Rozptyl na pravoúhlé potenciálové bariéře

- Potenciál tvaru $V(x) = V_0$, |x| < a
- Hledáme stacionární rozptylový stav $\hat{H}\phi_k = E\phi_k$, $E = \frac{k^2\hbar^2}{2M}$

$$x > a \longrightarrow \phi_k(x) = B(k)e^{ikx}$$

$$x < -a \longrightarrow \phi_k(x) = e^{ikx} + A(k)e^{-ikx}$$

$$|x| < a \longrightarrow \frac{d^2\phi_k}{dx^2} + \underbrace{\left(k^2 - \frac{2M}{\hbar^2}V_0\right)}_{k'^2}\phi_k = 0$$

• ϕ_k musí být spojitá do 1. derivace

	A
Martin	Statanak
ivia un	Stelallar

Energie částice je větší než bariéra

$$E=rac{k^2\hbar^2}{2M}>V_0\implies k'^2>0$$

Řešení uvnitř bariéry

$$|x| < a \longrightarrow \phi_k(x) = C(k)e^{ik'x} + D(k)e^{-ik'x}$$

• Spojitost funkce a 1. derivace v bodech $x = \pm a$

$$\begin{aligned} x &= a: \quad \phi_k(a) \quad = Be^{ika} = Ce^{ik'a} + De^{-ik'a} \\ \phi'_k(a) \quad &= ikBe^{ika} = ik'Ce^{ik'a} - ik'De^{-ik'a} \\ x &= -a: \quad \phi_k(-a) \quad &= e^{-ika} + Ae^{ika} = Ce^{-ik'a} + De^{ik'a} \\ \phi'_k(-a) \quad &= ike^{-ika} - ikAe^{ika} = ik'Ce^{ik'a} - ik'De^{-ik'a} \end{aligned}$$

• Soustava 4 rovnic pro A, B, C, D

Martin Štefaňák

15. prosince 2020 20 / 28

Energie částice je větší než bariéra

• Vyloučením C a D dostaneme

$$B(k) = e^{2ik'a} \left(e^{-2ika} + \frac{k'-k}{k'+k} A(k) \right)$$

$$A(k) = V_0 e^{-2ika} \left(2E - V_0 + 2i\sqrt{E(E-V_0)} \cot(2k'a) \right)^{-1}$$

Koeficient odrazu

$$R = |A(k)|^2 = \left(1 + \frac{4E(E - V_0)}{V_0^2 \sin^2(2k'a)}\right)^{-1}$$

Koeficient průniku

$$T = 1 - R = \left(1 + \frac{V_0^2 \sin^2(2k'a)}{4E(E - V_0)}\right)^{-1}$$

Martin Štefaňák

Kvantová mechanika

15. prosince 2020 21 / 28

Rezonanční energie

Koeficient průniku

$$T = \left(1 + rac{V_0^2 \sin^2(2k'a)}{4E(E-V_0)}
ight)^{-1}$$

• Částice projde bariérou s jistotou $\iff 2k'a = n\pi$

$$2k'a = 2\sqrt{\frac{2M(E-V_0)}{\hbar^2}} = n\pi$$

Částice projde s jistotou jen pro rezonanční energie E_n

$$E_n = V_0 + rac{n^2 \pi^2 \hbar^2}{8Ma^2}, \quad n \in \mathbb{N}$$

Odpovídají energiím částice v ∞ jámě posunutým o V_0

	~	
Mantin	C+-	6
warun	SIE	апак.
	0.0	- can i can i

Energie částice je menší než bariéra

$$E = \frac{k^2 \hbar^2}{2M} < V_0 \implies k'^2 < 0$$

Řešení uvnitř bariéry

$$|x| < a \longrightarrow \phi_k(x) = C(k)e^{|k'|x} + D(k)e^{-|k'|x}$$

Další postup stejný jako pro E > V₀

• Ve výsledku nahradíme sin(2k'a) za i sinh(2|k'|a)

Koeficient průniku

$$T = \left(1 - rac{V_0^2 \sinh^2(2|k'|a)}{4E(E-V_0)}
ight)^{-1}$$

Martin Štefaňák

15. prosince 2020 23 / 28

э

Koeficient průniku $T = \left(1 - \frac{V_0^2 \sinh^2(2|k'|a)}{4E(E - V_0)}\right)^{-1}$

Částice může projít bariérou i pokud má energii menší než V₀
Pro V₀ ≫ E pravděpodobnost průniku klesá exponenciálně

$$T\sim rac{16E(V_0-E)}{V_0^2}\exp\left(-rac{4a}{\hbar}\sqrt{2M(V_0-E)}
ight)$$

Martin Štefaňák

15. prosince 2020 24 / 28

Pravděpodobnost průniku bariérou

Energie menší než bariéra $E = 0.9 V_0 \Longrightarrow T \approx 0.04$

Energie větší než bariéra, $E \approx 1.6 V_0 \Longrightarrow T \approx 0.81$

Rezonanční energie $E_n = V_0 + \frac{\hbar^2 \pi^2 n^2}{8Ma^2} \Longrightarrow T = 1$