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Foreword

Dear reader,

what you are now reading is the foreword to the transcription of the s given by
prof. Dr. Boris Tomá²ik, Ph.D. in academic year 2020/2021. The lectures closely
follow the book General Relativity: An Introduction for Physicists, written by M. P.
Hobson, G. Efthathiou and A. N. Lansby. As you might know, this was one of those
academic years a�ected by the coronavirus, and thus the lectures were prerecorded
and prepared for us in an online form. This was also the �rst year, in which this
subject was lectured, and so it might vary a little from what you are learning in
your year.
You might be wondering why are these notes written in the English language. The
simple answer is, that in the academic year 2020/2021, the lectures were given in
English and it would take much, much more time to rewrite them in Czech. However,
I consider this an advantage, because from now on, most of your study materials
will be in English as well.
Since most of this script was written without any corrections, you might �nd here
many grammatical mistakes and typing errors. If some of these errors will be both-
ering you and waking you up at night, you can somewhow contact me and I will try
to correct them.
I wish you easy understanding and good luck with your studies!

Nikolas
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Chapter 1

Introduction

1.1 Mass and Einstein's equivalence principle

There are two kinds of mass: intertial mass and gravitational mass. Inertial mass
appears in second Newton's law

~F = mi · ~a→ mi (1.1)

and gravitational mass appears in gravity law

F = G · mg1 ·mg2

r2
→ mg. (1.2)

There is no reason why those two masses should be the same.

There is an assumption of proportionality: mi ∝ mg. This can be shown on a pen-
dulum.

mi · a = mg · g · sinϕ, (1.3)

a = l · ϕ̈, (1.4)

mi · l · ϕ̈ = mg · g · sinϕ, (1.5)

ϕ̈ =
mg

mi

· g
l
· sinϕ. (1.6)

Is the fraction mg
mi

equal to 1 or to k or does it depend on the material? That brings
us to the weak equivalence principle.

The weak equivalence principle says, that the inertial mass is proportional to grav-
itational mass universaly (always). The consequence is that all free bodies in gravi-
tational �eld move with the same acceleration g. This is known from Galileo times.
Galileo principle: The free motion in gravitational �eld is only determined by the
initial velocity of the body and by the gravitational �eld itself. It does not depend
on the mass!

In general relativity, the inertial mass and gravitational mass are the same quantity.
Consequence: A cab that falls freely in gravitational �eld is mechanically equivalent
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to an inertial reference frame. The equality also means that the inertial force is
equivalent to gravitational force.

Einstein's equivalence principle can be easily illustrated by elevator cab made of
bricks without mortar. The bricks are together only because they all move with
the same velocity. The cab is small enough so that the gravity �eld inside can be
considered homogeneous at all times. The cab is observed for only a small time, so
that the gravitational �eld does not change in that time. This cab illustrates what
is called a local inertial frame (LIF).

Einstein's equivalence principle: All local inertial frames are equivalent! That is like
saying that all the elevator cabs are equivalent (all processes that happen inside one,
happen in the same way in the others).

Comments: 1) free falling cabs are equivalent to cabs which just stay somewhere at
a distant place in the universe with no gravity; 2) the equivalence principle is valid
for all processes (not only mechanical); 3) the processes must be enclosed within the
cabs (e.g. bremsstrahlung goes out of the cab, so the equivalence principle does not
apply on that).

1.1.1 Coordinates

In LIF: "normal" coordinates t, ~x - Minkowski coordinates. Globaly in space-time:
some set of global coordinates connecting di�erent LIFs.

General relativity theory: prescription about the transformation between the global
coordinates and the di�erent sets of the local inertial frames and the local coordinates
there.

Motion in LIF: all bodies move on straight lines with constant velocities (if no other
forces act on them). Global motion: all bodies move "as straight as possible" in a
curved space-time→ motion along geodesics. Geodesics are the shortest connections
between two points in curved space-time. Geodesics can be illustrated on a �ight
between Prague and New York. In this case, the shortest distance is not a straight
line, it's the shortest distance on the globe.

With the help of geodesics, we reformulate the Galilei principle: Bodies with the
same initial position and velocity move along the same geodesics.

1.2 Gravitational redshift

Intuitive derivation with the help of QM - the photon (it is not exactly correct).
The energy of a photon is

E = h · ν. (1.7)

Mass equivalent of the energy is

mγ =
E

c2
=
h

c2
· ν. (1.8)
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The increase of photon energy, when it moves in gravitational �eld, is given by the
di�erence between the gravitational potentials (dφ)

dE = −m · dφ. (1.9)

h · dν = −m · dφ = −E
c2
· dφ = − h

c2
· ν · dφ (1.10)

therefore
dν

ν
= −dφ

c2
. (1.11)

Integrating the equation gives us

ln

(
νB
νA

)
= − 1

c2
· (φB − φA), (1.12)

νB
νA

= e−
1
c2
·(φB−φA). (1.13)

This means that the photon changes frequency if it moves to di�erent value of
gravitational potential. If φB > φA =⇒ νB < νA.

Kinematic derivation of gravitational redshift. Situation: elevator cab moving in a
shaft (free fall). There is a photon entering the cab from above under the angle θ,
size (height) of the cab is l. For the observer in the cab: ν does not change, photon
reaches the �oor in time t = l

c·cos θ
. The situation is viewed by an observer outside

of the cab. The cab was originally at rest, it starts accelerating with acceleration
g. This observer moves relatively to the cab with the opposite velocity (i.e. −v).
He moves against the light with the relative velocity v · cos θ. Because of this, he
observes the Doppler shift of the light frequency

dν

ν
=
v · cos θ

c
=
g · l
c2

= −dφ
c2
. (1.14)

The same equation for the redshift.

1.3 The pace of a clock

To summarize before working on the complicated argument: the clock at lower grav-
itational potential ticks slower, whereas the clock at higher gravitational potential
ticks faster.

Illustratory situation: two identical atomic clocks A and B (at gravitational poten-
tials φA < φB), they tick with same internal frequency ν. Clock A sends light to
clock B. The crest (the front part) of the lightwave represents ticks. Light from A
arrives to B with frequency:

νB = νAe
− 1
c2

(φB−φA) < νA. (1.15)

To clock B, clock A appears as ticking at lower frequency (ticking slower). That is,
because it really ticks at lower frequency at lower potential φA!
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Gedanken experiment: place two clocks (1 and 2) at place B (φB), move clock 1 to
place A and stay there for a long time (time of staying at A � travel time), clock
1 always sends light to place B, clock 2 also emits (same) light of place B. We will
count crests from clock 1 and clock 2 at place B. When we move clock 1 to place
A, the frequency is redshifted (ν1 < ν2), less crests arrive from clock 1 (clock 1 ticks
slower). Then, clock 1 is returned to place B. In the end, both clocks are at the same
place, but clock 1 delivered less ticks. It was running slower! Time goes slower at
the place with lower gravitational potential!

This e�ect has been measured by a pair of atomic clock at di�erent sea levels. The
di�erence between those clocks was about 5 µs per year.

1.4 Light bending in gravitational �eld

Let's consider a light wave that enters the gravitational �eld. We put a LIF at the
entry point of light into gravitational �eld (e.g. elevator cab). LIF falls freely with
acceleration g. Light propagates on a straight line in LIF. That means, that the
trajectory of the light outside of the LIF will be curved. We introduce coordinates
in LIF x, y and on the outside x′, y′. In LIF, we have the expression of motion

x = c · t · cos θ, (1.16)

y = c · t · sin θ. (1.17)

Outside of LIF we have

x′ = x, (1.18)

y′ = y − 1

2
· g · t2. (1.19)

We can express time with the help of x

t =
x

c · cos θ
=

x′

c · cos θ
. (1.20)

Then

y′ = c · t · sin θ − 1

2
· g · t2 = c · sin θ · x′

c · cos θ
− 1

2
· g · (x′)2

c2 · cos2 θ
, (1.21)

y′ = x′ tan θ − 1

2
· g

c2 · cos2 θ
· (x′)2. (1.22)

We want to calculate the curvature of the trajectory. But what is a curvature?

Curvature of a curve can be de�ned with the help of a circle of radius r. The
de�nition of curvature is κ = −1

r
. Equation for the circle is the following

(y − y0)2 + (x− x0)2 = r2. (1.23)

First, we want the equation for y

y = y0 +
√
r2 − (x− x0)2. (1.24)
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We will be using derivatives of (1.24) to get to the curvature

dy

dx
= − (x− x0)√

r2 − (x− x0)2
= A, (1.25)

d2y

dx2
= − 1√

r2 − (x− x0)2
− (x− x0)2

(r2 − (x− x0)2)
3
2

= B. (1.26)

Example: evaluation for x = x0. In this case, A = 0 and B = −1
r

= κ. This means,
that we can obtain the curvature from the derivatives.

Let's obtain the curvature generally. For that we take

B = − 1√
r2 − (x− x0)2

·
(

1 +
(x− x0)2

r2 − (x− x0)2

)
, (1.27)

B = − 1√
r2 − (x− x0)2

·
(
1 + A2

)
. (1.28)

We want to get −1
r
, so we need to somehow take the r2 out of the square root. We

continue with √
r2 − (x− x0)2 = −(1 + A2)

B
. (1.29)

From the �rst derivative we see

(x− x0)2 = A2 · (r2 − (x− x0)2), (1.30)

(x− x0)2 = A2 · r2 − A2 · (x− x0)2, (1.31)

(x− x0)2 + A2 · (x− x0)2 = A2 · r2 (1.32)

(x− x0)2 · (1 + A2) = A2 · r2, (1.33)

(x− x0)2 = r2 · A2

1 + A2
. (1.34)

Now we can use the expression (1.34) in equation (1.29). This gives us√
r2 − r2 · A2

1 + A2
= −(1 + A2)

B
, (1.35)

r

√
1− A2

1 + A2
= −(1 + A2)

B
, (1.36)

r
1√

1 + A2
= −(1 + A2)

B
, (1.37)

r = −(1 + A2)
3
2

B
. (1.38)

From the de�nition of curvature, we get

κ = −1

r
=

B

(1 + A2)
3
2

. (1.39)
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Now let's get back to the light trajectory from the outside of the cab.

y′ = x′ tan θ − 1

2
· g

c2 · cos2 θ
· (x′)2, (1.40)

dy′

dx′
= tan θ − g

c2 · cos2 θ
· x′ = A, (1.41)

d2y′

dx′2
= − g

c2 · cos2 θ
= B. (1.42)

We want to evaluate curvature from equation (1.39) in x′ = 0 using these derivatives.
That gives us

κ =
B

(1 + A2)
3
2

=
− g
c2·cos2 θ

(1 + tan2 θ)
3
2

, (1.43)

κ = − g

c2 · cos2 θ
·
(

cos2 θ

sin2 θ + cos2 θ

) 3
2

, (1.44)

κ = −g · cos θ

c2
. (1.45)

This is the result for the curvature of the light trajectory.
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Chapter 2

Mathematical basis of general

relativity

2.1 Manifolds

Manifold is a set of points on which you de�ne coordinates. Coordinates may not be
unique. Simple example is the surface of the Earth, which is not Euklidean space.
You can introduce coordinates on the surface. Coordinates on the North and the
South pole are not determined uniquely.

We will be interested in continuous and di�erentiable manifolds. Di�erentiable - you
can de�ne a scalar function on this manifold, this function will be di�erentiable.

Dimension of the manifold gives us the minimal number of coordinates needed to
specify each point on the manifold.

Within the manifolds we can de�ne: curve - we can parametrize it with 1 parameter;
surface - we can parametrize it with M parameters (M < N , N is the dimension of
the manifold) (submanifold); hypersurface - M = N − 1 (e.g. freeze-out hypersur-
face).

Di�erent sets of coordinates can be transformed between each other. To calculate
the di�erential, Jacobi matrix is used.

Another thing that should be de�ned is geometry. The distance between two points
that are in�nitesimally close to each other: metric-function of the position. In general
relativity, Riemannian geometry is used.

2.1.1 Riemannian geometry

Distance is quadratic in di�erentials of coordinates

ds2 = gab(x)dxadxb. (2.1)

Riemannian manifold: ds2>0. Pseudo-Riemannian manifold: ds2 > 0 or ds2 = 0 or
ds2 < 0.
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Formula (2.1) de�nes a metric tensor gab(x). This matrix can always be constructed
in such a way, that it is symmetric. Its dimension is N×N. Metric tensor depends
on the choice of coordinates.

Another thing that should be discussed is curvature. There are two kinds of curva-
tures, intrinsic and extrinsic. Examples: We have sheet of paper (which is �at). We
can draw a triangle on this sheet of paper. Sum of all the angles of the triangle will
give us 180◦. We can roll this sheet of paper into a cylinder. Is this now a curved
manifold or a �at manifold? Mathematically we can say, that it is a 2D manifold
embedded into a 3D space. In 3D we can see, that the 2D manifold seems curved.
If we imagine a creature that lives only at the 2D surface of the paper, there is no
way for him to realize there is a 3rd dimension. He can draw a triangle and see
whether the sum of its angles gives 180◦ and it will. There was nothing done to the
paper. Intrinsically, the creature will not realize, that something had happened to
the paper. The paper is intrinsically �at, but it is extrinsically curved.

If we imagine a sphere, there is no way how to make it �at. We can again look at the
sphere as a 2D surface embedded in 3D space. But if a creature living on the sphere
will draw a triangle on its surface, the sum of its angles will be >180◦. Intrinsically,
this creature can determine, that the space is curved. That means, that the surface
of the sphere is intrinsically curved.

For higher-dimensional manifolds, their embedding is hard to imagine. We will not
consider extrinsic curvature, the only relevant curvature for us will be the intrinsic.

2.1.2 Local Euclidean coordinates

One can show mathematically that it is always possible to specify Euclidean coordi-
nates in close neighbourhood of any given point p on a manifold. We can illustrate
this on the globe. If we have the globe, we cannot describe all of the points around
the globe with Euclidean coordinates. However, if we are not interested in the whole
globe, but in e.g. Prague, we can de�ne Euclidean coordinate system within the city,
because it is small enough in comparison with the globe.

Tangent space

If I have a Euclidean coordinate system, it de�nes a tangent space. This space would
be a �at space. If I have a globe, then the tangent space around our faculty in Prague
would be a �at board which would touch the globe at the place of our faculty.

2.1.3 Pseudo-Riemannian manifolds

Generalization of Riemannian manifolds. The distance may be positive, negative or
zero. Coordinate transformation to local pseudo-Euclidean coordinates (we cannot
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always arrive to local Euclidean coordinate system)

g′ab(x) = ηab + o[(x′ − x′p)2], (2.2)

[ηab] = diag(±1,±1,±1, ...± 1). (2.3)

Example: Minkowski space-time.

Signature of the space is de�ned as the number of positive 1 (in ηab) minus the
number of negative 1. For example in Minkowski space-time, we have

ηab = diag(1,−1,−1,−1) =⇒ signature = −2. (2.4)

Nota bene: This is the so-called West-coast metric. There exists also East-coast
metric. The di�erence between them is that in the East-coast metric, the metric
tensor is de�ned the opposite way (i.e. ηab = diag(−1, 1, 1, 1)). East-coast metric
was used by Weinberg and Schwinger, it is more frequent in relativity books. One of
the advantages might be, that the spatial part of 4-vectors would turn out "normal"
(spatial part comes with positive sign).

For this course, West-coast metric was deliberately chosen. The reason is that it is
more elegant in particle physics

pµp
µ = m2. (2.5)

If we chose the East-coast metric, this would give us -m2, which just doesn't look
right.

2.1.4 Integration over (sub)manifolds

The distance in direction of dxa is

ds =
√
|gaa| dxa (no summation over a). (2.6)

Volume element in pseudo-Euclidean coords is

dNV =
√
|g11| dx1

√
|g22| dx2

√
|g33| dx3 ...

√
|gNN | dxN , (2.7)

dNV =
√
|g11 g22 g33 ... gNN | dx1 dx2 dx3 ... dxN . (2.8)

The part under the square root is actually a determinant of the metric tensor. This
formula is also valid for general coordinates

dNV =
√
|g| dx1 dx2 ... dxN , (2.9)

where g = det(G), G = [gab].

Integration over submanifolds - parametrized by set of parameters u1, ...uM ,M < N .
All points across that surface can be parametrized by M parameters, that can serve
as coordinates on that submanifold

xa = xa(u1, u2, ..., uM). (2.10)
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Within that surface, we can express di�erentials in x coordinates with help of u
coordinates

dxa =
∂xa

∂ui
dui. (2.11)

If we express the di�erentials, we can calculate the distance as

ds2 = gab dx
a dxb = gab

∂xa

∂ui
∂xb

∂uj
dui duj, (2.12)

where gab
∂xa

∂ui
∂xb

∂uj
= hij is an induced metric tensor on the submanifold.

Using the induced metric tensor, we can rewrite the formula for the distance on the
submanifold as

ds2 = hij du
i duj, (2.13)

and the formula for the in�nitesimal volume on the submanifold is therefore

dMV =
√
|h| du1 du2 ... duM . (2.14)

2.1.5 Topology vs. geometry

When we talk about geometry, we talk about the local property of the manifold
(usually curvature). Whereas topology is a global property. Example: topology tells
us that on a globe (surface of the Earth) if you walk straight in any direction, you
will eventually arrive to the starting point. Another example might be a cylinder: If
you walk straight in one speci�c direction, you will come to the starting point, but if
you walk in a di�erent direction, you will end up somewhere else. The last example
is a (in�nite) plane: If you walk straight, you will never come to the starting point.

General relativity does not care about the topology of the space, general relativity
is local. In these lectures, we will care only about the geometry (curvature of the
space). Speci�cally about intrinsic curvature, which you can determine by sitting
within the manifold (you don't have to look at it from the outside).

2.2 Vectors on manifolds

2.2.1 Scalar and vector �elds

Scalar �elds are values de�ned on every point of the manifold. They do not depend on
the chosen set of coordinates - they must transform under coordinate transformation

φ′(x′a) = φ(xa). (2.15)

Concerning the vector �elds, vectors at a given point p belong to the tangent space
of that point Tp. The consequence of this is that we cannot directly compare two
vectors which belong to di�erent points, because they belong to di�erent tangent
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spaces and you cannot compare two vectors from di�erent spaces. Example: Wind
direction around the globe. Compare the direction of wind in Prague and in Rio de
Janeiro. Wind from the north at the two places does not blow in the same direction
and we cannot compare them directly (better seen on a drawing).

2.2.2 The basis

Vectors are independent of any basis. However, it is convenient to represent them in
a basis. We will de�ne coordinate basis, which uses the coordinates on the manifold
to parametrize the tangent space.

Tangent vector to a curve: curve C de�ned as xa(u) (it is parametrized by u), ~δs will
be the in�nitesimal separation between two points along the curve. Tangent vector
~t is de�ned as

~t = lim
δu→0

~δs

δu
. (2.16)

Once we have a basis, we can express vectors in this basis (decompose vectors into
components) as

~v(x) = va(x) · ~ea(x), (2.17)

where va(x) is the contravariant component in the basis ~ea.

With this basis, we can also de�ne dual vector basis ~ea(x) by requiring ~ea · ~eb = δab .
Any vector can be expressed in the dual basis as

~v(x) = va(x) · ~ea(x), (2.18)

where va(x) is the covariant component of the vector.

Dual basis can be used to project out contravariant components of the vector by

~v · ~ea = vb · ~eb · ~ea = vb · δab = va. (2.19)

Coordinate basis

We will just take the tangent vectors to coordinate lines. Coordinate lines are those
curves, which are given by constant values of all the coordinates except of xa. Coor-
dinate basis is de�ned as the derivatives along the coordinate lines on the manifold

~ea = lim
δxa→0

~δs

δxa
. (2.20)

Once we have the coordinate basis, we can express all vectors in that coordinate
basis.

Let's express the displacement between two in�nitesimally close points

~ds = ~ea(x) · dxa. (2.21)
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Once we have the displacement, we can also express ds2

ds2 = (~ea(x) · dxa) · (~eb(x) · dxb) = ~ea · ~eb · dxa · dxb. (2.22)

If we recall equation (2.1), we identify that gab = ~ea · ~eb.

The scalar product of any vectors can be described in coordinate basis as

~v · ~w = (va · ~ea) · (wb · ~eb) = va · wb · ~ea · ~eb = va · wb · gab. (2.23)

One can also de�ne with dual basis

gab(x) = ~ea(x) · ~eb(x). (2.24)

A special case would be the orthonormal basis, de�ned as

~ea · ~eb = ηab = diag(±1,±1, ...,±1). (2.25)

2.2.3 Raising and lowering the indices

From now on, we will be using the coordinate basis (vectors with contravariant
components) and dual coordinate basis (vectors with covariant components).

Scalar product in coordinate basis is given by expression (2.23). We can also write
the scalar product in a combined way

~v · ~w = (va · ~ea) · (wb · ~eb) = va · wb · ~ea · ~eb = va · wb · δab = va · wa. (2.26)

By comparing both scalar products, we observe that va · gab = vb. In a similar way,
we can derive that va · gab = va. We can also show that gab · gbc = δac by

δac · vc = va = gab · vb = gab · gbc · vc. (2.27)

2.2.4 Vectors under coordinate transformations

Let's have a coordinate transformation

xa → x′a, (2.28)

~ea → ~ea
′. (2.29)

To �nd out how the basis vectors transform, let's consider the distance

~ds = dxa · ~ea = dx′a · ~e′a. (2.30)

However

dxa =
∂xa

∂x′b
· dx′b. (2.31)
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Inserting this into the distance gives us

~ds = ~ea ·
∂xa

∂x′b
· dx′b = ~eb ·

∂xb

∂x′a
· dx′a. (2.32)

Now if we compare the terms which multiply the dx′a in equations (2.30) and (2.32),
we will arrive at the transformation relation for the primed basis vector

~e′a =
∂xb

∂x′a
· ~eb. (2.33)

Similarly we can show this for the dual basis

~e′a =
∂x′a

∂xb
· ~eb. (2.34)

To see how the components transform, we use the projection with the help of the
scalar product

v′a = ~e′a · ~v =
∂x′a

∂xb
· ~eb · ~v =

∂x′a

∂xb
· vb. (2.35)

We can see that the contravariant components transform like vectors from the dual
basis.

In a similar way, we can look at the transformation of the covariant components

v′a = ~e′a · ~v =
∂xb

∂x′a
· ~eb · ~v =

∂xb

∂x′a
· vb, (2.36)

which is analogous to trasformation of the vectors from the coordinate basis.

2.2.5 Derivatives of vectors

Vectors at di�erent points belong to di�erent tangent spaces and so it is not straight-
forward to compare them 1. The tangent spaces, however, are very close if the two
points are in�nitesimally close to each other. We will help ourselves by embeding
the manifold into a higher-dimensional pseudo-Euclidean space. In that space, we
can compare the vectors at di�erent points. Then, we can write for the coordinate
vectors relation

~ea(Q) = ~ea(P ) + ~δea, (2.37)

where ~δea may not belong to either of the two tangent spaces TQ or TP .

The derivative in point P will now be de�ned in the tangent space TP by projecting
into that tangent space

∂ ~ea
∂xc

:=

(
lim
δxc→0

δ ~ea
δxc

)
||TP

. (2.38)

1We can easily compare vectors at di�erent points in the Euclidean space, because that space

is not curved, and so the tangent spaces belonging to di�erent points are equivalent.
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This is a vector, so we must be able to express it as a linear combination of the basis
vectors

∂ ~ea
∂xc

= Γbac · ~eb, (2.39)

where Γbac are connection coe�cients. This is a more general term from di�erential
geometry, which does not need metric to be introduced. We will call the ones in
equation (2.39) Christo�el symbols of the second kind (they are a special case of
connection coe�cients). Christo�el symbols will be expressed through the metric.

We can multiply this relation with basis vector ~ed

~ed · ∂ ~ea
∂xc

= ~ed · ∂c ~ea = ~ed · Γbac · ~eb = Γbac · ~ed · ~eb = Γbac · δdb = Γdac, (2.40)

and obtain for the Christo�el symbol

Γbac = ~eb · ∂c ~ea. (2.41)

Next we will derive, how the dual basis vectors are di�erentiated. Since

~ea · ~eb = δab = const., (2.42)

we know that its derivative must be zero

0 = ∂c(~ea · ~eb) = (∂c ~ea) · ~eb + ~ea · (∂c~eb) = (∂c ~ea) · ~eb + Γabc. (2.43)

Using this relation, we obtain

(∂c ~ea) · ~eb = −Γabc. (2.44)

On the left-hand side (LHS), we actually have b-component of the vector, which is
the derivative, i.e. (∂c ~ea)b. This is because multiplying with basis vector ~eb projects
out that component.

The whole resulting vector is then obtained by

∂c ~ea = (∂c ~ea)b · ~eb = −Γabc · ~eb. (2.45)

And so we arrive to the prescription for the derivatives of the dual basis vectors

∂c ~ea = −Γabc · ~eb. (2.46)

Transformation of Christo�el symbol

Previously, we had relation

Γbac = ~eb · ∂ ~ea
∂xc

. (2.47)

In the new coordinate system, we will have the same relation with prime symbols

Γ′bac = ~e′b · ∂
~e′a

∂x′c
. (2.48)
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Now we will express the primed vectors on the right-hand side (RHS) using equations
(2.33) and (2.34)

Γ′bac =
∂x′b

∂xd
· ~ed · ∂

∂x′c

(
∂xf

∂x′a
· ~ef
)
, (2.49)

Γ′bac =
∂x′b

∂xd
· ~ed · ∂x

f

∂x′a
· ∂ ~ef
∂x′c

+
∂x′b

∂xd
· ~ed · ∂2xf

∂x′c∂x′a
· ~ef . (2.50)

Then we will express the derivative of basis vector in non-primed coordinates

∂ ~ef
∂x′c

=
∂xg

∂x′c
· ∂ ~ef
∂xg

. (2.51)

By using non-primed derivative and reorganizing some of the terms in equation
(2.50), we will get

Γ′bac =
∂x′b

∂xd
· ∂x

f

∂x′a
· ∂x

g

∂x′c
· ~ed · ∂ ~ef

∂xg︸ ︷︷ ︸
Γdfg

+
∂x′b

∂xd
· ∂2xf

∂x′c∂x′a
· ~ed · ~ef︸ ︷︷ ︸

δdf

. (2.52)

And �nally, by applying the symbols below underbraces and swapping indices a and
b, we arrive to the transformation relation for the Christo�el symbol

Γ′abc =
∂x′a

∂xd
· ∂x

f

∂x′b
· ∂x

g

∂x′c
· Γdfg +

∂x′a

∂xd
· ∂2xd

∂x′c∂x′b
. (2.53)

The �rst term is actually the standard term for the transformation of tensors. But
the second term spoils this property, from which we conclude that Γ is not a tensor!

Christo�el symbols through the metric tensor

For the whole course, we will assume that the manifold is torsionless. This applies
to following relation

∂c ~ea − ∂a~ec = 0. (2.54)

In that case, the Christo�el symbols are symetric in the two lower indices

Γbac = Γbca. (2.55)

To derive the relation that we want, we �rst di�erentiate the metric

∂cgab = ∂c(~ea · ~eb) = (∂c ~ea) · ~eb + ~ea · (∂c~eb) = Γdac · ~ed · ~eb + ~ea · Γdbc ~ed
=⇒ ∂cgab = Γdac · gdb + Γdbc · gad.

(2.56)

Now we do cyclic permutation of indices a, b and c and by these cylic permutations,
we derive similar relations

∂bgca = Γdcb · gda + Γdab · gcd, (2.57)

∂agbc = Γdba · gdc + Γdca · gbd. (2.58)
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Then we put the last three relations together in the following way (this is a kind of
gymnastics)

∂cgab + ∂bgca − ∂agbc =

= Γdac · gdb + Γdbc · gad + Γdcb · gda + Γdab · gcd − Γdba · gdc − Γdca · gbd, (2.59)

∂cgab + ∂bgca − ∂agbc = 2 · Γdbc · gad, (2.60)

1

2
· gfa · 2 · Γdbc · gad = Γdbcδ

f
d = Γfbc. (2.61)

And now by using (2.60) in (2.61), we obtain

Γfbc =
1

2
· gfa · (∂cgab + ∂bgca − ∂agbc), (2.62)

where if we swap the index f with a and a with d, we will derive the �nal expression

Γabc =
1

2
· gad · (∂cgdb + ∂bgcd − ∂dgbc). (2.63)

The RHS here is called the metric connection. In manifolds which are not torsionless,
this may be di�erent from the Christo�el symbols.

We can then also de�ne Christo�el symbols of the �rst kind by formally lowering
the upper index

Γabc := gad · Γdbc. (2.64)

And when we apply this in equation (2.63), we will get the expression for Christo�el
symbols of the �rst kind

Γabc =
1

2
· (∂cgab + ∂bgca − ∂agbc). (2.65)

2.2.6 Local pseudo-Cartesian coordinates

We will denote these coordinates with a prime. We require

g′ab(p) = ηab, [ηab] = diag(±1,±1, ...,±1). (2.66)

This is constant, so the �rst derivatives vanish

∂g′ab
∂x′c

∣∣∣∣
p

= 0. (2.67)

This relation is actually equivalent to the statemenet that the connection coe�cients
vanish

Γ′abc(p) = 0. (2.68)

This relation de�nes geodesic coordinates . We introduce them by this prescription
(ansatz)

x′a = xa − xap +
1

2
· Γabc · (xb − xbp) · (xc − xcp). (2.69)
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It is an interesting exercise to show that the primed Christo�el symbols really van-
ish. We shall use the transformation relation for Christo�el symbols from previous
chapter

Γ′abc =
∂x′a

∂xd
· ∂x

f

∂x′b
· ∂x

g

∂x′c
· Γdfg +

∂x′a

∂xd
· ∂2xd

∂x′c∂x′b
. (2.70)

We need the derivatives of the primed coordinates with respect to the non-primed.
This is straightforward, we just insert the prescription for primed coordinates

∂x′a

∂xd
=

∂

∂xd

[
xa − xap +

1

2
· Γabc · (xb − xbp) · (xc − xcp)

]
=

= δad +
1

2
· Γabc(p) · δbd · (xc − xcp) +

1

2
· Γabc · (xb − xbp) · δcd =

/symmetry in lower indices/ = δad + Γadc(p) · (xc − xcp).

(2.71)

At the point p, this equation gives

∂x′a

∂xd

∣∣∣∣
p

= δad . (2.72)

We further need the second derivative

∂2x′a

∂xe∂xd
= Γadc(p) · δce = Γade(p). (2.73)

Now this is put into the transformation relation and we obtain

Γ′abc = δad · δ
f
b · δ

g
c · Γdfg(p)− δad · Γdbc(p) = Γabc(p)− Γabc(p) = 0. (2.74)

We ful�lled the second condition for the local pseudo-Cartesian coordinates. Now
we have to ful�ll the �rst condition. However, that can certainly be constructed just
by the linear transformation of the coordinates

x′′a = Xa
b · x′b, (2.75)

where Xa
b are constant. This can make the metric diagonal, but it does not introduce

its non-vanishing derivatives, so the task can now be ful�lled.

2.2.7 Covariant derivative of a vector

Reminder: Vector is an object, which does not depend on coordinates. It is only its
representative with the help of the components (which depend on set of coordinates
used).

We evaluate the derivative

∂b~v = ∂b(v
a · ~ea) = (∂bv

a) · ~ea + va · (∂b ~ea) = (∂bv
a) · ~ea + va · (Γcab · ~ec). (2.76)

Now since c and a are dummy indices2, we can swap them in the second term and
obtain

∂b~v = (∂bv
a) · ~ea + vc · Γacb · ~ea = (∂bv

a + Γacb · vc)︸ ︷︷ ︸
covariant derivative

·~ea. (2.77)

2Alternative name for summation index.
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We introduce a notation
∇bv

a := ∂bv
a + Γacb · vc. (2.78)

We can similarly conclude what is the derivative of the covariant component

∇bva := ∂bva − Γcab · vc. (2.79)

If we would take the covariant derivative of a scalar, we would not obtain any con-
nection coe�cients. Then the covariant derivative is identical to its partial derivative

∇bφ = ∂bφ. (2.80)

2.2.8 Vector operators in general curved coordinates

Gradient:
∇φ = (∇aφ) · ~ea = (∂aφ) · ~ea. (2.81)

Divergence:
∇ · ~v = ∇av

a = ∂av
a + Γaca · vc. (2.82)

Here we have the connection coe�cient with contracted indices. For such connection
coe�cient, it can be shown that

Γaab = ∂b ln
√
|g| = 1√

|g|
∂
√
|g|, (2.83)

where g = det[gab]. Using this relation in equation (2.82) gives us

∇ · ~v = ∇av
a =

1√
|g|
· ∂a(

√
|g| · va). (2.84)

Laplacian (divergence applied on a gradient):

∇2φ = ∇a∇aφ = ∇a(g
ab · ∇bφ) = ∇a(g

ab · ∂bφ), (2.85)

∇2φ =
1√
|g|
· ∂a(

√
|g| · gab · ∂bφ). (2.86)

This is the way how to calculate Laplacian in curvilinear coordinates (e.g. spher-
ical coordinates). In 4D, this operator is sometimes written as � and it is called
d'Alembertian operator.

Curl: This is tricky in a way. From 3D, we are used that this is a vector. Generally,
it will de�ne n− 1-dimensional object. For example in 4D, this will be a tensor (e.g.
vorticity tensor in relativistic hydrodynamics). We write

(curl ~v)ab = ∇avb −∇bva = ∂avb − Γcba · vc − ∂bva + Γcab · vc, (2.87)

(curl ~v)ab = ∂avb − ∂bva. (2.88)
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2.2.9 Intrinsic derivative of a vector along a curve

Such a situation may describe for example a spin of a particle, which might change
along its worldline3.

The curve can be parametrized with a parameter u as C: xa = xa(u). The derivative
of a vector goes like this

d~v

du
=

dva

du
· ~ea + va · d~ea

du
=

dva

du
· ~ea + va · ∂ ~ea

∂xc
· dx

c

du
=

dva

du
· ~ea + va · Γbac ·

dxc

du
· ~eb,

(2.89)

d~v

du
=

(
dva

du
+ vb · Γabc ·

dxc

du

)
· ~ea :=

Dva

Du
· ~ea.

(2.90)

For the covariant component, we can obtain

Dva
Du

=

(
dva
du
− vb · Γbac ·

dxc

du

)
. (2.91)

2.2.10 Parallel transport

It is impossible to compare two vectors at two di�erent places on the manifold, but
there are ways to overcome this. We have overcome this already on in�nitesimal
distance, when we de�ned the derivative of a vector.

We can go further and de�ne a procedure, by which a vector can be transported to
any point on the manifold in such a way, that you always try to keep its direction
as much the same as possible.

We specify the curve along which we will be transporting C: xa = xa(u). Here we
require that the transported vector does not change along this curve

d~v

du
!

= 0. (2.92)

This is called parallel transport. De�ning vectors along the curve so that they ful�ll
this equation

dva

du
+ vb · Γabc ·

dxc

du
= 0, (2.93)

dva

du
= −vb · Γabc ·

dxc

du
. (2.94)

If the manifold is pseudo-Euclidedan space and the coordinates are pseudo-Cartesian,
then the connection coe�cients vanish and RHS is 0. So the parallel transport tells
us that we do not change the components of the vector at all when going from one
point to the other.

3The path that object traces in 4-dimensional space-time.
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If we do the parallel transport from point p to point q, then the result depends on
the path we choose. It can be illustrated on a globe. Let's de�ne a vector pointing
to the north and placed in Prague. We are going to transport it to the North Pole.
First, we transport it along the parallel (from left to right) to the other side of the
globe (the vector always points to the north). Then we take it to the North Pole and
keep its direction. Other possibility is to take it from Prague directly to the North
Pole. It's clear (clearer from illustration) that we arrive with a vector pointing in
the opposite direction. So the result really depends on the path.

This mismatch would not happen if we were on a plane (in �at space). It only
happens in curved manifolds.

2.3 Geodesics

We had a curve and transported a vector along that curve so that it sort of stays
in the same direction. In a way, we are going to de�ne an opposite procedure. We
de�ne a direction and then start drawing curve in that direction. While we draw that
curve, we also parallel transport vector along the part of the curve, which we have
already drawn. In the end, we have a curve with a vector �eld, which is everywhere
tangential to that curve. In a way, this is the most straight curve that you can draw
on that manifold. This is called geodesics.

It is as if you would walk on the Earth and you keep walking or swimming straight
ahead. Your path appears straight unless you realise that the Earth is a sphere and
therefore the path must be curved. But there is no way how you could walk "more
straight".

We want a curve, along which the parallel transported tangential vector always stays
tangential. It may change the length, but it must always stay tangential. That means
that its derivative must also stay tangential

d~t

du
= λ(u) · ~t, (2.95)

where u is parameter of the curve, λ(u) is some function of u and ~t is tangential
vector.

We can use the de�nition of vector derivative on the LHS

dta

du
+ Γabc · tb ·

dxc

du
= λ(u) · ta. (2.96)

Since ~t is tangential vector, it ful�lls

ta =
dxa

du
. (2.97)

If we insert this into equation (2.96), we obtain

d2xa

du2
+ Γabc ·

dxb

du
· dx

c

du
= λ(u) · dx

a

du
. (2.98)
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The function λ(u) measures how the length of the tangential vector changes along
the curve. It is possible to choose such a parametrization of the curve that the length
of the tangential vector does not change. This implies

|~t| = const. =⇒ λ(u) = 0 =⇒ u is a�ne parameter. (2.99)

A�nely parametrized geodesics is given by

d2xa

du2
+ Γabc ·

dxb

du
· dx

c

du
= 0. (2.100)

This is the geodesic equation.

We can also go back to non-a�ne parameter u′. We can express u as a function of
u′ and derive the geodesics with the non-a�ne parametrization

d2xa

du′2
+ Γabc ·

dxb

du′
· dx

c

du′
=

(
d2u
du′2

du
du′

)
︸ ︷︷ ︸

λ(u)

·dx
a

du′
. (2.101)

2.3.1 Null curves and non-null curves

When talking about the curves in general, we can de�ne null curves and non-null
curves. We can have null curves in pseudo-Euclidean space. We take the tangential
vector

~t =
dxa

du
· ~ea, (2.102)

and calculate its length

|t| = |gab · ta · tb|
1
2 = |gab ·

dxa

du
· dx

b

du
|
1
2 =
|gab · dxa · dxb|

1
2

du
=

∣∣∣∣dsdu
∣∣∣∣ . (2.103)

If this is non-zero (|t| 6= 0) at every point of the curve, then we have non-null curve.
If this is zero (|t| = 0) at every point of the curve, we have a null curve.

It should be said, that those geodesics, which are non-null, are also the extremal
connecting lines between two points. So this is a generalization of a straight line in
Euclidean space, which is the shortest connection between two points.

2.3.2 Notes on calculation of the geodesics

It is not easy to solve the geodesics equation, but we can get some help. First
of all, let's realise that it can be formulated as Euler-Lagrange equation with an
appropriate Lagrangian, which would be the following

L =
1

2
· gab · ẋa · ẋb. (2.104)
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The dot symbol here is the derivative with respect to the a�ne parameter of the
curve

ẋa =
dxa

du
. (2.105)

Formally, we require that the action is stationary if we change the curve, but keep
its initial and �nal point

S =

∫ uf

ui

Ldu, δS = 0. (2.106)

The Euler-Lagrange equations are standard

d

du

∂L

∂ẋa
− ∂L

∂xa
= 0, (2.107)

d

du
(gab · ẋb)−

1

2
· (∂agbc) · ẋb · ẋc = 0, (2.108)

and both these terms give a contribution.

We write out the derivative with respect to u

dgab
du
· ẋb + gab · ẍb −

1

2
· (∂agbc) · ẋb · ẋc = 0, (2.109)

∂gab
∂xc
· ẋc · ẋb + gab · ẍb −

1

2
· (∂agbc) · ẋb · ẋc = 0. (2.110)

And now we look closer at the �rst term

∂gab
∂xc
· ẋc · ẋb = ∂cgab · ẋc · ẋb = ∂bgac · ẋb · ẋc, (2.111)

∂cgab · ẋc · ẋb =
1

2
· ∂cgab · ẋc · ẋb +

1

2
· ∂bgac · ẋb · ẋc. (2.112)

Then, we can write the Euler-Lagrange equation like this

1

2
· ∂cgab · ẋc · ẋb +

1

2
· ∂bgac · ẋb · ẋc + gab · ẍb −

1

2
· (∂agbc) · ẋb · ẋc = 0. (2.113)

We can rewrite this as

1

2
· (∂cgab + ∂bgac − ∂agbc)︸ ︷︷ ︸

Γabc

·ẋb · ẋc + gab · ẍb = 0. (2.114)

So the Euler-Lagrange equation then becomes

Γabc · ẋb · ẋc + gab · ẍb = 0. (2.115)

Here we can raise the a index

gadΓdbc · ẋb · ẋc + gad · gdb︸ ︷︷ ︸
δab

·ẍb = 0. (2.116)

And then we recognize that we have obtained the equation for the geodesics

ẍa + Γabc · ẋb · ẋc = 0. (2.117)
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This means that the formalism works. The advantage of it is that it allows to see
if there are any integrals of motion (conserved quantities). And if there are some,
then we can use them.

For null geodesics, we have
gab · ẋa · ẋb = 0. (2.118)

For non-null geodesics, we can choose the parameter u so that this would be the
equation

|gab · ẋa · ẋb| = 1. (2.119)

We also observe that if the metric tensor does not depend on a speci�c coordinate
xd (∂dgab = 0), then the Euler-Lagrange equation gives just this

d

du
(gdb · ẋb) = 0, (2.120)

and so
gdb · ẋb = td = const. (2.121)

2.4 Tensors on manifolds

Tensors (t) can be understood as prescriptions which take some number of vectors
(ui) and based on those vectors produce scalar (S)

t : t(u1, u2, ..., ur) = S, (2.122)

The number of vectors that is accepted (r) is called the rank of the tensor.
Note that there is no need for any coordinates for this de�nition. Scalars and vectors
have been de�ned without coordinates and so can be the tensors. We will just
represent them by their components within a speci�c coordinate system.
Also note, that vector ~v can actually be understood as a tensor of rank 1. You can
take any other vector and by calculating the scalar product with the vector ~v, you
will get a scalar.
The prescription for a tensor must be linear. E.g. for rank 2 tensor we would have

t(α · ~u+ β · ~v, γ · ~w + ε · ~z) = α · t(~u, γ · ~w + ε · ~z) + β · t(~v, γ · ~w + ε · ~z) =

= α · γ · t(~u, ~w) + α · ε · t(~u, ~z) + β · γ · t(~v, ~w) + β · ε · t(~v, ~z).

(2.123)

Any vector can be written as a linear combination of the basis vectors

~u = ua · ~ea. (2.124)

Because of this, the rank 1 tensor can be rewritten by following relation

t(u) = t(ua · ~ea) =
N∑
a=1

ua · t(~ea). (2.125)
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It is reasonable to introduce covariant and contravariant components of the tensor

ta = t(~ea), (2.126)

ta = t(~ea). (2.127)

For tensors of higher ranks, we can have contravariant and covariant indices like for
example here

t(~ea, ~eb, ~ec, ~ed) = tab dc . (2.128)

And the value of the result with speci�c vectors is then the following

t(~u,~v, ~w, ~z) = tab dc · ua · vb · wc · zd. (2.129)

2.4.1 Symmetries

There can be some symmetries among the indices of the tensor. First of all, tensor
can be symmetric

t(~u,~v) = t(~v, ~u), ∀~u,~v, (2.130)

and antisymmetric
t(~u,~v) = −t(~u,~v), ∀~u,~v. (2.131)

This is then seen in the components of the tensor

symmetric: tab = tba, (2.132)

antisymmetric: tab = −tba. (2.133)

Rank 2 tensors can be split into symmetric and antisymmetric part

tab =
1

2
· (tab + tba)︸ ︷︷ ︸
t(a,b)

+
1

2
· (tab − tba)︸ ︷︷ ︸
t[a,b]

. (2.134)

Actually, for higher rank tensors we can do it in a similar way (we will come to
that).
Here, we introduced a notation with round brackets for the symmetric part and
square brackets for the antisymmetric rank. This can be generalized to higher rank
tensors

t(ab...c) =
1

N !
· (sum over all permutations of indices) (2.135)

t[ab...c] =
1

N !
· (alternating sum over all permutations of indices) (2.136)

The symmetrization and antisymmetrization can also be combined. Here are some
examples

t(ab)cd =
1

2
· (tabcd + tbacd), (2.137)

t[ab](cd) =
1

2
· (tab(cd) − tba(cd)) =

1

4
· (tabcd + tabdc − tbacd − tbadc). (2.138)
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An index can be left out of the symmetrization or antisymmetrization procedure

t(a|b|c) =
1

2
· (tabc + tcba). (2.139)

2.4.2 Raising and lowering indices

All indices of the tensor components can be raised or lowered by multiplying with
the metric tensor

tabc · gbd = t da c, (2.140)

tabcd · gbf = tafcd. (2.141)

2.4.3 Tensors→tensors

Tensors are generally prescriptions how to make scalars out of some number of
vectors. However, if we insert less vectors then is the rank of the tensor, we still
have an object that expects some vectors to make a scalar, so it is a lower ranked
tensor. Example with a rank 4 tensor

t(., ., ~u,~v) = s(., .). (2.142)

In coordinates, we would have it like this

tabcd · uc · vd = sab. (2.143)

2.4.4 Elementary operations with tensors

Tensors can be added

t(., .) + r(., .) : tab + rab = t(~ea, ~eb) + r(~ea, ~eb) = s(~ea, ~eb) = sab, (2.144)

and subtracted

tab − rab = t(~ea, ~eb)− r(~ea, ~eb) = d(~ea, ~eb) = dab. (2.145)

They can be multiplied by a scalar

t→ α · t, (2.146)

tab → α · tab. (2.147)

The outer product is easy to understand if you remember that a tensor is a speci�c
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procedure which makes a scalar out of a bunch of vectors. You take two tensors,
evaluate them on a bunch of vectors, take the results, which are scalars, and multiply
them together to obtain another scalar

t(~u,~v)︸ ︷︷ ︸
τ

, s(~w, ~z, ~y)︸ ︷︷ ︸
σ

=⇒ τ · σ. (2.148)

It is written in this way

t⊗ s(~u,~v, ~w, ~z, ~y) := t(~u,~v) · s(~w, ~z, ~y). (2.149)

Note that generally, this is not commutative

(s⊗ t)(~u,~v, ~w, ~z, ~y) = s(~u,~v, ~w) · t(~z, ~y) 6= (t⊗ s)(~u,~v, ~w, ~z, ~y). (2.150)

In rank 2 tensors, which can be written down as N×N matrices, contraction is
simply the trace of the matrix

taa = Tr[taa]. (2.151)

Generally, this is an operation which gives you a tensor with rank that is smaller by
2.
E.g. for rank 4 tensor, the contraction may look like this

tabac = t(~ea, ~eb, ~ea, ~ec) =
N∑
a=1

t(~ea, ~eb, ~ea, ~ec) = s(~eb, ~ec) = sbc. (2.152)

With the help of contraction, we can also de�ne the inner product as outer product
and then contraction over indices from two originally di�erent tensors

1) outer product: t⊗ s→ r′adbec = tad · sbec,
2) contraction: rabc = gde · r′adbec = gde · tad · sbec = t da · sbdc,

=⇒ rabc = t da · sbdc.
(2.153)

2.4.5 Tensor basis

Note that tensors can be expressed similarly to vectors as linear combination of basis
vectors. The basis tensors are obtained as outer product of basis vectors

(~ea ⊗ ~eb ⊗ ...⊗ ~ed︸ ︷︷ ︸
r vectors

). (2.154)

These would be for example the covariant components of the tensor

t = tab...d(~ea ⊗ ~eb ⊗ ...⊗ ~ed︸ ︷︷ ︸
r vectors

). (2.155)
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2.4.6 Coordinate transformations

The components of a tensor transform analogically to the components of a vector.
Let's recall that contravariant components are transformed as the dual vector basis

u′a =
∂x′a

∂xb
· ub. (2.156)

Since vectors can actually be understood as a rank 1 tensor, we can also see it as a
transformation of the inserted dual basis vector and take out the multiplying factor,
because tensor must be linear

u′a = u( ~e′a) = u

(
∂x′a

∂xb
· ~eb
)

=
∂x′a

∂xb
· u(~eb). (2.157)

The covariant components transform as the coordinate vector basis

u′a =
∂xb

∂x′a
· ub. (2.158)

This procedure can be generalized for higher rank tensors. We �nd out, that con-
travariant (upper) indices transform like the dual basis vectors with derivative of
x′ by x. Covariant (lower) indices transform like the coordinate basis vector with
derivative of x by x′.
For example the transformation relation for rank 3 tensors would be like this

t′abc =
∂x′a

∂xd
· ∂x

′b

∂xe
· ∂x

f

∂x′c
· tdef . (2.159)

Note that the transformation is linear in t and without the absolute term. This
means, that if tensor vanishes in one coordinate system, it must be zero in all
coordinate systems

tab...d = 0 =⇒ t′ab...d = 0. (2.160)

On the other hand, if there is a quantity that vanishes in one coordinate system,
but it is non-zero in another coordinate system, then this cannot be a tensor

qab...d = 0, but q′ab...d 6= 0 =⇒ q is not a tensor! (2.161)

This was the case with Christo�el symbols.

2.4.7 Covariant derivative of a tensor

With vectors, we had to introduce the covariant derivative. It can be shown that
the covariant derivative produces a tensor. We can write it out completely as

∇ · ~v = ~ea · ∂a ⊗ vb · ~eb =

= ~ea ⊗ ∂a(vb · ~eb) = ~ea ⊗
(
(∂av

b) · ~eb + Γcba · vb · ~ec
)

=

= ~ea ⊗
(
(∂av

b) · ~eb + Γbca · vc · ~eb
)

= ~ea ⊗ (∇av
b) · ~eb = (∇av

b) · ~ea ⊗ ~eb.

(2.162)
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We have obtained the tensor explicitly written out in tensor basis given by the outer
product ~ea ⊗ ~eb.
For tensors, this procedure can be generalized. Let's do it now for rank 2 tensor,
which we write out in the combined basis

∂ct = ∂c(t
a
b · ~ea ⊗ ~eb) = ∂ct

a
b · ~ea ⊗ ~eb + tab · (∂c ~ea)⊗ ~eb + tab · ~ea ⊗ (∂c~eb) =

= ∂ct
a
b · ~ea ⊗ ~eb + tdb · Γadc · ~ea ⊗ ~eb − tad · Γdbc · ~ea ⊗ ~eb =

=
(
∂ct

a
b + tdb · Γadc − tad · Γdbc

)︸ ︷︷ ︸
∇ct

a
b

·~ea ⊗ ~eb.
(2.163)

Generally, the rule is that for each upper index, you get

∇ct
..a..

.. = ∂ct
..a..

.. + ...+ t..d.... · Γadc + ..., (2.164)

and for each lower index

∇ct
..
..b.. = ∂ct

..
..b.. + ...− t....d.. · Γdbc + .... (2.165)

It is important that the covariant derivative of the metric tensor vanishes

∇ · g = 0, (2.166)

or
∇cgab = 0, ∇cg

ab = 0. (2.167)

A consequence is, that we can switch the order of raising indices and performing
covarient derivatives

∇c(g
ab · tb) = gab · (∇ctb). (2.168)

2.4.8 Intrinsic derivative of a tensor along a curve

This is done along similar lines. The curve is parametrized with a parameter u,
C : xa = xa(u). Let's write out for the rank 2 tensors (higher ranks are analogical)

t(u) = tab(u) · ~ea(u)⊗ ~eb(u). (2.169)

We work out the derivatives of the basis vectors
dt

du
=

dtab

du
· ~ea ⊗ ~eb + tab · d~ea

du
⊗ ~eb + tab · ~ea ⊗

d~eb
du

=

=
dtab

du
· ~ea ⊗ ~eb + tab · dx

c

du
· ∂ ~ea
∂xc
⊗ ~eb + tab · ~ea ⊗

∂~eb
∂xc
· dx

c

du
=

=
dtab

du
· ~ea ⊗ ~eb + tab · dx

c

du
· Γdac · ~ed ⊗ ~eb + tab · ~ea ⊗ ~ed · Γdbc ·

dxc

du
=

=

(
dtab

du
+ Γadc · tdb ·

dxc

du
+ Γbdc · tad ·

dxc

du

)
︸ ︷︷ ︸

Dtab

Du

·~ea ⊗ ~eb.

(2.170)

We can also de�ne a parallel transport of a tensor now just by requiring

Dtab

Du
= 0. (2.171)
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Chapter 3

The equivalence principle and

space-time curvature

There are two issues in classical Newtonian gravity that motivate the formulation
of gravitational theory with the help of curved space-time. The �rst is that it acts
instantaneously on any distance. This clearly violates the requirement that no signal
propagates faster than the speed of light. The second was discussed in the �rst
chapter. It is the intriguing equivalence of the gravitational mass and inertial mass.
Remember that this led to the formulation of the equivalence principle from which
it follows, that inertial forces are equivalent to gravitational forces. At any spot in
the gravitational �eld, we can de�ne inertial coordinate system. This was expressed
as the elevator cab. In this inertial coordinate system, the laws of special relativity
in absence of gravitational �eld are perfectly valid.

3.1 Free particle

If we turned o� all forces and there is no gravity, then the free particle does not
change its momentum

d~p

dτ
= 0, (3.1)

where τ is the proper time measured along the world line of the particle. We want
that this relation also holds in the process of gravity. Formally, it will be valid, but
the world line will be a geodesic in a curved space-time.

3.2 Special relativity reminder

We will be using greek indices: µ, ν, ... = 0, 1, 2, 3. This is to express that from now
on, we work in 4-dimensional manifold, which will be pseudo-Riemannian. We de�ne
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pseudo-Euclidean metric tensor (Minkowski metric)

ηµν = diag(+,−,−,−)1. (3.2)

To get rid of signs, one de�nes timelike vectors

~u : uµ · uµ > 0 like ~e0 · ~e0 > 0. (3.3)

They have positive square length in this metric, just like the zeroth coordinate basis
vector.
Other kind of vectors are spacelike vectors

~v : vµ · vµ < 0 like ~ei · ~ei < 0. (3.4)

They have negative square length in this metric, just like the spatial coordinate
vectors. Latin indices (i) are use to denote spatial components.
Note that with zeroth component coordinate, we understand x0 = c · t.
Proper time of a particle is measured always in its rest plane and it can be used
as an a�ne parameter to parametrize the world line. It is then proportional to the
interval along the world line. Then it is used in the de�nition of the 4-velocity so
that 4-velocity is always tangential to the world line

uµ =
dxµ

dτ
. (3.5)

The 4-acceleration is then obtained from the derivation of the 4-velocity

aµ =
duµ

dτ
. (3.6)

This leads to the fact that 4-acceleration is always perpendicular to 4-velocity. We
can easily show that. On one side, we know that

uµ · uµ = c2. (3.7)

By di�erentiating the LHS, we get

d(uµ · uµ)

dτ
= 0. (3.8)

We can work it out and see

duµ

dτ
· uµ + uµ · duµ

dτ
= 2 · aµ · uµ = 0. (3.9)

3.3 Return to general relativity

The equivalence principle tells us, that in a close enough vicinity of any space-time
point p, which is actually an event, since it has speci�ed position and time, we can
de�ne local pseudo-Euclidean (or Minkowski) space-time. The line element obeys

ds2 ≈ ηµν · dXµ · dXν , (3.10)

1Many books use the opposite metric and some quantities may then come with an opposite

sign. One should alway pay attention to the used metric.
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X denote coordinates in Minkowski space. The approximate sign indicates, that this
is only valid in p. The metric in any other coordinates must be given by standard
transformation relation

ds2 = ησρ ·
∂Xσ

∂x′µ
· ∂X

ρ

∂x′ν︸ ︷︷ ︸
gµν

·dx′µ · dx′ν , (3.11)

where gµν is pseudo-Riemannian metric. We shall deal with pseudo-Riemannian
manifolds only.
The inverse problem may be actually interesting to solve in particular situation,
namely how to �nd the local inertial coordinate system at any given point in space-
time. We did this in previous chapter, because this is the local tangential �at space
with pseudo-Euclidean metric. At the point p, the metric of the local inertial frame
is given by

gµν(p) = ηµν , (∂pgµν)p = 0. (3.12)

From a physics point of view you can realize, that if you �nd one local inertial frame,
then you have in�nitely many of them, because all frames which move with constant
velocity one with respect to another are local inertial frames.
If we stretched the local inertial coordinate system a little further behind the in-
�nitesimal surrounding of the point p, then the metric would include second deriva-
tives

gµν = ηµν +
1

2
· (∂σ∂ρgµν)p ·Xσ ·Xρ. (3.13)

As long as the second term is negligible, the pseudo-Euclidean approximation is ok.

3.3.1 Observer frames

Let's look at the frames in which the measurements are performed. These are not
necessarily local inertial frames. If you work in a lab, the lab is usually within
gravitational �eld and you feel the gravity, so it is not inertial.
First of all, we shall represent the lab with an observer at a speci�c point. The point
is a timelike world line in a space-time de�ned as xµ(τ). At any point along the
world line, we can de�ne coordinate frame with orthogonal basis vectors, which we
denote with a hat and call a tetrad

~̂eα(τ) · ~̂eβ(τ) = ηαβ. (3.14)

We choose the frame in such a way that the zeroth vector is tangential to the world
line. This means, that it is parallel with the lab's 4-velocity

~̂e0(τ) ∝ ~u. (3.15)

Since the vector has unit length, we obtain it as

~̂e0 =
~u

c
. (3.16)

The three spatial basis vectors must be perpendicular to this one. The point is that
quantities measured in this lab are projections of the relevant 4-vectors and 4-tensors
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onto the basis vectors in this frame.
What does this mean? For example, if you measure energy of a particle, you will
measure the zeroth component of the 4-momentum in the lab frame. It is important
to remember that this frame is de�ned always at a single point on the world line. So
if you are interested in measurement at a di�erent time, which means di�erent point
along the world line, it must be transported there. How does the frame change, if it
is transported? Let's �rst look at the frame which does not accelerate, except due
gravity.

Free falling frame

We speci�ed the curved space-time so that in such a case, 4-velocity is constant

duµ

dτ
= 0. (3.17)

Since the zeroth local basis vector is proportional to velocity, we conclude that it
also does not change along the world line. In other words, it is parallel transported

d ~̂e0

dτ
= ~0. (3.18)

The same will be true for spatial basis vectors. They are also parallel transported

d~̂ei
dτ

= ~0. (3.19)

This can be uni�ed into one equation for the components of the lab frame basis
vectors

( ~̂eα)µ = ~̂eα(τ) · ~e µ. (3.20)

We write out the equation for parallel transport

D( ~̂eα)µ

Dτ
=

d( ~̂eα)µ

dτ
+ Γµνσ · ( ~̂eα)ν · uσ = 0, (3.21)

where uσ = dxσ

dτ
.

It is more complicated to see how the lab frame vectors are transported if the lab,
actually the observer, accelerates because of other forces than gravity.

Accelerated frame

We will look for a prescription for the derivative of basis vectors such that these
conditions are still valid

d ~̂eµ
dτ
6= 0. (3.22)

The zeroth vector is determined uniquely

~̂e0(τ) =
~u(τ)

c
(3.23)
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But the spacelike vectors are not, because this equation

~̂eµ · ~̂eν = ηµν (3.24)

still allows for any spatial rotation of the frame and we want non-rotating ones.
For the timelike vector, we should have

d ~̂e0

dτ
=

1

c
· d~u
dτ

=
~a

c
. (3.25)

The spacelike vectors perpendicular to the acceleration do not change

d ~̂eµ
dτ

= 0, for ~̂e · ~a = ~̂e · ~u = 0. (3.26)

The spacelike vectors in the direction of the acceleration must be proportional to
the velocity in order to stay normalized and be perpendicular to ~̂e0

d ~̂eµ
dτ

= − 1

c2
· (~a · ~̂eµ) · ~u, for ~̂e · ~a 6= 0 and ~̂e · ~u = 0. (3.27)

All of these conditions are satis�ed by the following prescription, which is called the
Fermi-Walker transport

d ~̂eµ
dτ

=
1

c2
·
[
(~u · ~̂eµ) · ~a− (~a · ~̂eµ) · ~u

]
. (3.28)

3.3.2 Newtionian limit

If previous description is right, then it must collapse to Newtonian gravity for weak
�elds. Weak �elds will manifest themselves by space which is only a little curved.
Because of that, there is a metric, which is very close to Minkowski metric with only
a small perturbation hµν

gµν = ηµν + hµν , |hµν | � 1. (3.29)

The next assumption to stay within Newtonian theory is that the velocity of every
particle is much smaller than the speed of light

dxi
dτ
� c. (3.30)

Finally, let us assume that the �eld is stationary, so the metric has vanishing time
derivative

∂0gµν = 0. (3.31)

A free particle in a curved space-time moves along a geodesic, which is parametrized
by proper time and given by equation

d2xµ

dτ 2
+ Γµνσ ·

dxν

dτ
· dx

σ

dτ
= 0. (3.32)
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Because of the slow motion, the spatial components of the velocity in the second
term can be neglected and we are onyl left with the zero-zero component

dxi

dτ
� dx0

dτ
= c · dt

dτ
, (3.33)

d2xµ

dτ 2
+ Γµ00 · c2 ·

(
dt

dτ

)2

= 0. (3.34)

We write out the Christo�el symbol

Γµ00 =
1

2
· gµκ · ( ∂0g0κ + ∂0g0κ︸ ︷︷ ︸

=0 because of (3.31)

−∂κg00) = −1

2
· gµκ · ∂κg00 = −1

2
· ηµκ · ∂κh00. (3.35)

From this, we get the gammas for stationary metric

Γ0
00 = 0, Γi00 =

1

2
· δij · ∂jh00. (3.36)

From the geodesic equation, we obtained two equations

d2x0

dτ 2
= c · d

2t

dτ 2
= 0, (3.37)

d2~x

dτ 2
+

1

2
· c2 · ~∇h00 = 0. (3.38)

We use the �rst one to rewrite the second derivative in the second equation and
obtain this

d2~x

dt2
= −1

2
· c2 · ~∇h00 = −~∇φ. (3.39)

The RHS (actually the center) must be indenti�ed with the Newtonian term with
the gravitational potential φ. And so we see

h00 =
2φ

c2
, (3.40)

so the term of the metric becomes

g00 = 1 +
2φ

c2
. (3.41)

Note �rst that this correction is really small on the surface of the Earth for example,
but it was already told that it is actually measurable. Secondly, we also got a formula
for the time dilation. If a clock is at rest so that its spatial coordinates do not change,
then we have

ds2 = c2 · dτ 2 = gµν · dxµ · dxν = g00 · c2 · dt2. (3.42)

The relation between proper time and the coordinate time is

dτ =

(
1 +

2φ

c2

) 1
2

· dt. (3.43)

Since φ is negative, proper time interval is always shorter than the interval in lo-
cal coordinates. This means, that at deeper gravitational potential, the clock ticks
slower.
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3.3.3 Intrinsic curvature and the curvature tensor

We see that the curvature is a crucial concept for general relativity, and so it has to
be de�ned in some sensible way. We could say, that if we can globally de�ne pseudo-
Euclidean metric, then the space is �at. However, we can have a �at space and not
have the pseudo-Euclidean metric. Just think about, for example, polar coordinates
in the �at plane. Polar coordinates would not lead to the Euclidean metric and so
we have to �nd some way how we can infer the intrinsic curvature of the manifold
from the metric that we have.
The idea can be worked out in the following way: Let's have a manifold, at least
2-dimensional, a vector v in point p and let's take the network of coordinate lines of
two of the coordinates. From the vector v, we now construct the vector �eld in all
points of the 2-dimensional submanifold. First, we parallel transport v to all points
along the xb coordinate line, on which it sits. We adjust the coordinate so that this
is the line given by xc = 0. Second, we take the vectors sitting on that line (xc = 0)
and parallel transport them along the xc coordinate lines. So we obtain a vector
�eld, on which the covariant derivative with respect to c coordinate always vanishes.
However, by the construction, we only made sure that the covariant derivative with
respect to the b coordinate only vanishes for xc = 0.
In pseudo-Euclidean coordinates, the covariant derivative with respect to b coordi-
nate would vanish everywhere. In a curved space, that may no longer be true. The
covariant derivative with respect to b coordinate vanishes along the xc = 0 line and
so it would vanish everywhere, if the second covariant derivative vanishes

∇c∇bva
?
= 0. (3.44)

We know, however, that the second derivative in the opposite order does vanish

∇b∇cva
!

= 0, (3.45)

because the �rst covariant derivative with respect to c vanishes. So in the end, we
want to look at expression ∇c∇bva −∇b∇cva.
Since covariant derivatives produce tensors, this produces a rank 3 tensor. The tensor
must be proportional to the vector ~v and so we write the result as

∇c∇bva −∇b∇cva = Rd
abc · vd, (3.46)

where Rd
abc is the Riemann curvature tensor.

We would have to show that it transformes as tensors should, but there is a shortcut
to this. It is guaranteed, thanks to the Quotient theorem, which states, that if a
quantity produces tensor when it is contracted with any vectors, then it must be
tensor itself.
It would be usefull to derive more explicit expression for the Riemann curvature ten-
sor. We work out the covariant derivatives. Note, that the second covariant derivative
actually acts on a tensor

∇c∇bva = ∇c(∇bva) = ∂c(∇bva)− Γeac · ∇bve − Γebc · ∇eva =

= ∂c
(
∂bva − Γdab · vd

)
− Γeac ·

[
∂bve − Γdeb · vd

]
− Γebc ·

[
∂eva − Γdaevd

]
=

= ∂c∂bva − (∂cΓ
d
ab) · vd − Γdab · (∂cvd)− Γeac · (∂bve) + Γeac · Γdeb · vd−

−Γebc · (∂eva) + Γebc · Γdae · vd.

(3.47)
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The term with inverted orders of the derivatives is obtained by exchanging the
indices b and c

∇b∇cva = ∂b∂cva − (∂bΓ
d
ac) · vd − Γdac · (∂bvd)− Γeab · (∂cve)+

+Γeab · Γdec · vd − Γecb · (∂eva) + Γecb · Γdae · vd.
(3.48)

When we subtract those two terms, some of the terms in them cancel and we are
left with this prescription

∇c∇bva −∇b∇cva =
(
∂bΓ

d
ac − ∂cΓdab + Γeac · Γdeb − Γeab · Γdec

)︸ ︷︷ ︸
Rd

abc

·vd. (3.49)

Now, some algebra can be done. First of all, we can de�ne all covariant components
of the Riemann tensor

Rabcd = gae ·Re
bcd, (3.50)

and derive the expression for them

Rabcd =
1

2
· (∂d∂agbc − ∂d∂bgac + ∂c∂bgad − ∂c∂agbd)−

−gef · (Γeac · Γfbd − Γead · Γfbc) .
(3.51)

There are some symmetry properties of this tensor. It is antisymmetric in the �rst
two indices

Rabcd = −Rbacd, (3.52)

antisymmetric in the last two indices

Rabcd = −Rabdc, (3.53)

and it is symmetric with respect to swaping the �rst and the second pair of indices

Rabcd = Rcdab. (3.54)

There is a cyclic identity

Rabcd +Racdb +Radbc = 0, Ra[bcd] = 0. (3.55)

Thanks to the symmetry, the number of independent components is N2·(N2−1)
12

.
And �nally, there is Bianchi identity

∇eRabcd +∇cRabde +∇dRabec = 0, (3.56)

which can be also written like this

∇[eRab]cd = 0. (3.57)

Because of the antisymmetry relation, some contractions will lead to zeros. But we
can contract the �rst and the last index and we will obtain the so called Ricci tensor

Rab := Rc
abc. (3.58)

41



This is a symmetric tensor. It's further contraction de�nes the scalar curvature or
Ricci scalar

R := Ra
a. (3.59)

Now we will do a little algebra, starting with Bianchi identity

∇eR
a
bca +∇cR

a
bae +∇aR

a
bec = 0, (3.60)

erase a (1st term) and contract with e (2nd term)

∇eRbc −∇cR
a
bea +∇aR

a
bec = 0, (3.61)

and erase a in 2nd term

∇eRbc −∇cRbe +∇aR
a
bec = 0. (3.62)

Now raise b and contract with e

∇bR
b
c −∇cR +∇aR

ab
bc = 0. (3.63)

Due to antisymmetry relation, we have

∇aR
ab
bc = −∇aR

ba
bc = ∇aR

ba
cb = ∇aR

a
c = ∇bR

b
c. (3.64)

And so we obtain this

2∇bR
b
c −∇cR = 0, (3.65)

∇b

(
Rb

c −
1

2
· δbc ·R

)
= 0, (3.66)

∇b

(
Rbc − 1

2
· gbc ·R

)
︸ ︷︷ ︸

Gbc

= 0, (3.67)

where Gbc is called Einstein tensor.

3.4 Tidal forces

Tidal forces act on bodies which have �nite size and try to deform their shape. They
are consequence of inhomogeneous gravitational �eld.
In Newtonian gravity, one part of the body wants to accelerate di�erently from the
other part. The consequence is that they want to change their distance. This can be
shown on the following example:
Imagine a massive planet with radial gravitational �eld. Now put a bunch of massive
particles above the surface of the planet. They are organized within a sphere, but
they are not interconnected, so if they want, they can change their distances. The
gravitational force on the lowest particle is stronger then the one on the highest
particle and also the forces acting on particles on the sides are pointed slightly
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inwards. So the lowest particle will accelerate the strongest, the highest particle will
accelerate the weakest and those on the sides will go slightly inwards. Overall, this
volume, which the particles occupy, will be stretched vertically and made narrower
horizontally. Now, if this was not just a group of particles, but a �nite volume rigid
body, then the tidal force would really try to change the shape of this body. If the
body would like to keep its shape, then the internal forces between the particles
within this body would have to counteract the tidal forces.
Before moving on, let's get back to the elevator cabin, which was used to introduce
the local inertial frames. We wanted to make the cabin out of bricks which would
not be glued together by any mortar. The reason were exactly the tidal forces. The
cabin should be so small and treated for such a short period of time, that the action
of tidal forces can safely be neglected.

3.4.1 Geodesic deviation and curvature

Let's describe this situation in general relativity. All these particles move along their
geodesics and so now we want to look at the rate at which they deviate from each
other. The rate will change in curved spaces and so it will somehow depend on the
curvature tensor.
Let's have two geodesics, both parametrized with a�ne parameter u

C : xa = xa(u), C ′ : xa = xa(u). (3.68)

We denote the di�erence between the two points with the same u by

ξa(u) = xa(u)− xa(u). (3.69)

We want to see how the di�erent ξ evolves with u. Suppose that for some u, ξ
connects the point p on geodesic C with the point q on geodesic C ′. To simplify
the math, we choose geodesic coordinates at point p. Recall, that these are the
coordinates, at which Christo�el symbols at point p vanish

Γabc(p) = 0. (3.70)

At those two points, we have geodesic equation for the two geodesics(
d2xa

du2

)
p

= 0, (3.71)(
d2xa

du2
+ Γabc ·

dxb

du
· dx

c

du

)
q

= 0. (3.72)

Assume that p and q are very close, so that the di�erence ξ is small. Then, we
express the Christo�el symbol at the point q up to �rst order in ξ

Γabc(q) = Γabc(p) + ∂dΓ
a
bc · ξd = ∂dΓ

a
bc · ξd. (3.73)

Now we take the di�erence between the two equations for the two geodesics

0 =

(
d2xa

du2
+ Γabc ·

dxb

du
· dx

c

du

)
q

−
(
d2xa

du2

)
p

=
d2ξa

du2
+ (∂dΓ

a
bc) · ξd ·

dxb

du
· dx

c

du
, (3.74)

43



denote ż = dz
du

ξ̈a + (∂dΓ
a
bc) · ẋb · ẋc · ξd = 0. (3.75)

Let's compare this with the second order intrinsic derivative of ξ with respect to u
along the curve C. The �rst order intrinsic derivative is

Dξa

Du
=

dξa

du
+ Γabc · ξb ·

dxc

du
. (3.76)

Then, we apply it for the second time

D2ξa

Du2
=

d

du

(
dξa

du
+ Γabc · ξb · ẋc

)
+ Γabc ·

(
dξb

du
+ Γbde · ξd · ẋe

)
· ẋc. (3.77)

Before the next step, let's remind that we calculate the derivative at the point p. In
geodesic coordinates, all the Γ vanish and we are only left withe the �rst term. We
work it out

D2ξa

Du2
=

d2ξa

du2
+
dΓabc
du
· ξb · ẋc + Γabc ·

dξb

du
· ẋc + Γabc · ξb · ẍc, (3.78)

and again, the terms proportional to Γ vanish. What remains is the following

D2ξa

Du2
= ξ̈a + ∂dΓ

a
bc · ξb · ẋc · ẋd. (3.79)

Now we take equation (3.75) and subtract it from what we obtained here for the
second derivative

D2ξa

Du2
= − (∂bΓ

a
cd − ∂dΓabc) · ξb · ẋc · ẋd. (3.80)

This is �nally cast on one side of the equation

D2ξa

Du2
+ (∂bΓ

a
cd − ∂dΓabc)︸ ︷︷ ︸
Ra

cbd

·ξb · ẋc · ẋd = 0, (3.81)

where Ra
cbd is the Riemann curvature tensor written down in geodesic coordinates.

Note, that if an equation between tensors holds in one coordinate system, it will
also hold in another coordinate system. So we have �nally derived the equation of
geodesic deviation

D2ξa

Du2
+Ra

cbd · ξb · ẋc · ẋd = 0. (3.82)

We can see that in �at region, the Riemann tensor vanishes and the second intrinsic
derivative of ξ is 0, so ξ depends linearly on u

Ra
cbd = 0 =⇒ D2ξa

Du2
= 0 =⇒ ξa = Aa + u ·Ba. (3.83)

In curved space, however, this is no longer the case. The geodesics may either con-
verge, like on a surface of a sphere, or they may also diverge, like on a surface of a
saddle.
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3.4.2 Return to tidal forces

Two particles move along their world lines, which are geodesics in space-time, and
they can be parametrized by the proper time τ . This means, that ẋ becomes the
4-velocity

ẋµ =
dxµ

dτ
= uµ. (3.84)

The equation of geodesic deviation for the two geodesics is then the following

D2ξµ

Du2
+Rµ

σνρ · ξν · uσ · uρ = 0. (3.85)

We put the second term on the RHS and use the asymmetry of the Riemann tensor
in the last two indices

D2ξµ

Du2
= Rµ

σρν · uσ · uρ︸ ︷︷ ︸
Sµν

·ξν . (3.86)

Here we de�ned the tidal stress tensor

Sµν := Rµ
σρν · uσ · uρ. (3.87)

The resulting equation is
D2ξµ

Du2
= Sµν · ξν . (3.88)

Let's try to understand it. On the LHS, there is a second time derivative of some
distance, so this is like a force per unit mass. But we have time components of ξ
and space components of ξ, so we need to be a bit careful to build this argument.
Suppose that the observer sits at the center of mass of the rigid body. Other parts of
the rigid body would like to move along their geodesics, but they are forced to move
parallel to the center of mass, because the body is rigid. The principle directions,
along which the tidal forces act, can be obtained as eigenvectors of the tidal stress
tensor

Sµν · vν(i) = λ(i) · vν(i), (3.89)

where i numbers the di�erent eigenvectors.
One of the eigenvectors is the 4-velocity of the reference point uµ. We can verify this
by insertion

Sµν · uν = Rµ
σρν · uσ · uρ · uν = 0. (3.90)

The corresponding eigenvalue is 0, because the Riemann tensor is antisymmetric in
ρ and ν, but it is multiplied with a symmetric product uρ · uν . So in this direction,
there is no force.
The remaining three eigenvectors are the three principal spacelike directions along
which the tidal forces act.
To simplify the interpretation, we can choose the instantaneous rest frame (IRF) of
the center of mass, so that its zeroth basis vector is parallel to the 4-velocity of the
center of mass

êα : ~̂e0 =
~u

c
. (3.91)
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The remaining three basis vectors are best chosen along the eigenvectors of the tidal
stress tensor, so that we obtain pseudo-Euclidean coordinate system, because the
eigenvectors are perpendicular

~̂eα · ~̂eβ = ηαβ. (3.92)

In this frame, the 4-velocity has only time component

uµ̂ = (c, 0, 0, 0), (3.93)

and so the tidal stress tensor is given by a simpler expression

Sµ̂ν̂ = c2 ·Rµ̂
00ν̂ . (3.94)

Also, in this frame the distance ξ is most practically chosen with ξ0 = 0. For the
remaining spatial directions, we then obtain

D2ξi

Dτ 2
= Sii · ξi, (3.95)

where there is no summation over index i!
Since we have pseudo-Euclidean metric, the connection coe�cients are zero and the
intrinsic derivative is the same as the normal derivative. Or over, in this frame, the
proper is the same as the time coordinate and so the �nal equation is (no summation
over i again)

1

c2
· d

2ξi

dt2
= λ(i) · ξi, (3.96)

where we use the eigenvalues of the tidal stress tensor.
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Chapter 4

The gravitational �eld equations

4.1 The energy-momentum tensor

Let's start to think about how to include the mass in a covariant way. Let's do this
on a simple model where we imagine the matter as a collection of particles which
are exactly comoving, so there is no random component in their motion.
We will call this dust. Let's say that each particle has a mass m and let's consider
this dust now in its instantaneous rest frame (~u = ~0). The proper mass density is
then this

ρ = m · n0, (4.1)

where n0 is the number of particles per unit volume. In this situation, the particles
are at rest.
In the next step, we will boost the system. Some people would say that the mass
of the particles then increases, but this interpretation is disliked in particle physics,
because particle mass is an invariant quantity there. Instead, it is prefered to talk
about the energy. We know that mass is equivalent to the energy of the particles
with zero momentum. Energy of one particle E1 is given by

E1 =
√
m2c4 + p2c2. (4.2)

So now, in the instantaneous rest frame, we will have energy density

ε = m · n0 · c2. (4.3)

When we boost the system, two things happen. First, the energy of each particle
increases, because it is multiplied by a gamma factor

E1 → E ′1 = γ ·m · c2, γ =
1√

1− v2

c2

. (4.4)

Second, the volume which contained the particles and at which we looked originally
gets Lorentz contracted by the same gamma factor. So the number of particles per
unit volume is multiplied by the gamma factor

n0 → n′0 = γ · n0. (4.5)
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Altogether, the energy density grows by the gamma factor squared

ε→ ε′ = γ2 ·m · n0 · c2. (4.6)

This is the way how a zero-zero component of a rank 2 tensor would transform.
Let's now write down the tensor and see that it really describes the situation

T (x) = m · n0 · ~u(x)⊗ ~u(x) = ρ · ~u(x)⊗ ~u(x), (4.7)

T µν = ρ · uµ · uν . (4.8)

In the instantaneous rest frame, it only has the zero-zero component

uµ = (c, 0, 0, 0) =⇒ T µν =


c2 · ρ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 =


ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (4.9)

This is called the energy-momentum tensor (or stress-energy tensor).
The apperance of momentum is rather clear. After the boost, we get the momentum
density multiplied by c

T i0 = γ · ui ·m · γ · n0︸ ︷︷ ︸
momentum density

·c. (4.10)

But the same combination actually gives the enery �ux divided by c

T 0i = γ2 ·m · n0 · c2︸ ︷︷ ︸
energy density

·u
i

c
. (4.11)

And �nally, we also have the momentum �ux, or more precisely the �ux of i-th
component of the momentum in j-th direction

T ij = γ · ui ·m · γ · n0︸ ︷︷ ︸
momentum density

·uj. (4.12)

4.1.1 The energy-momentum tensor for perfect �uid

The di�erence to the previous case is that the microscopic particles from which
the �uid consists move also chaotically. We will again consider the �uid �rst in the
instantaneous rest frame (IRF). But here, we have to specify what is the velocity
that vanishes in that frame. This is the collective velocity

uµ = γ · (c, ~u), (4.13)

where ~u is the mean velocity calculated over a volume that is small enough so that
the velocity distribution does not change across it considerably and large enough
such that we still have macroscopic number of particles there within the volume

~u =

∫
d3vd3x · ρv(~v, ~x) · ~v. (4.14)
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This means that the mean velocity vanishes in the instantaneous rest frame.
The de�nition of the perfect �uid is that there is no transport of energy other than
that connected with microscopic �ow, and there is no viscosity which is actually the
transport of momentum in direction perpendicular to the momentum.
However, there is pressure. Pressure is a force divided by area, but the force is the
change of momentum over some time. The momentum must be transferred further
and the force is perpendicular to the surface. So we have momentum transfer in the
direction of the momentum and Pascal law tells us that it is the same in all spatial
directions. So pressure should sit in the energy-momentum tensor on all diagonal
spacelike components

T ∗µν =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (4.15)

We know that we get the term with energy density in covariant form as

T µν =
ε

c2
· uµ · uν . (4.16)

And now we need the pressure with spatial components, which are actually perpen-
dicular to uµ. So we de�ne a perpendicular projector to uµ (in IRF)

∆µν =
uµ · uν

c2
− gµν =

uµ · uν

c2
− ηµν . (4.17)

So the energy momentum tensor then takes the following form

T µν =
ε

c2
· uµ · uν + p ·∆µν =

ε

c2
· uµ · uν + p ·

(
uµ · uν

c2
− gµν

)
=

=
1

c2
· (ε+ p) · uµ · uν − p · gµν .

(4.18)

This is the covariant form for the energy-momentum tensor for a perfect �uid.
You can see, that the previous case with the dust is actually a special case of the
perfect �uid when the pressure goes to 0. The pressure is actually determined by
the equation of state as a function of the energy density and possibly some other
quantities like baryon density for example

p = p(ε, ...). (4.19)

The dust would appear in a limit where the mass of the particles is much higher
than the scale of their kinetic energy (in IRF)

m · c2 � Ek ∝ kB · T. (4.20)

The other extreme would be the ultra-relativistic gas, where the mass is negligible
with respect to the kinetic energy

m · c2 � Ek ∝ kB · T. (4.21)

A typical example is a gas of photons in black body radiation, where the pressure
is 1

3
of the energy density. When you consider the normal matter of the universe, it
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will be somewhere between these two limits.
Side remark: This is the tensor that is also used in the simplest form of relativistic
hydrodynamic modeling of heavy ion collisions.
Energy and momentum are usually conserved quantities and so there should be an
equation that expresses this. We will write it down as

∂µT
µν = 0. (4.22)

Note that this is now written in �at space-time and we will generalize that to curved
coordinates later.
Let's insert for the energy and momentum tensor this

0 = ∂µ

[
(ε+ p) · u

µ · uν

c2
− p · ηµν

]
= (∂µ(ε+ p)) · u

µ · uν

c2
+

+(ε+ p) · (∂µu
µ) · uν

c2
+ (ε+ p) · u

µ · (∂µuν)
c2

− ∂µp · ηµν .
(4.23)

Now let's work on this equation. First, we multiply it with uν and contract over ν

∂µ(ε+ p) · uµ + (ε+ p) · (∂µuµ) + (ε+ p) · u
µ · (∂µuν) · uν

c2
− ∂µp · uµ = 0. (4.24)

Here, the last term cancels with the part of the �rst one. The third term will also
vanish

∂µ(uν · uν) = ∂µc
2 = 0, (4.25)

(∂µu
ν) · uν + uν · (∂µuν) = 2 · (∂µuν) · uν = 0 =⇒ (∂µu

ν) = 0. (4.26)

So �nally, we arrive at this equation

∂µ(ε · uµ) + p · ∂µuµ = 0. (4.27)

Now we reorganize equation (4.23) by splitting ε and p in the �rst two terms

(∂µε) · uµ ·
uν

c2
+ ε · (∂µuµ) · u

ν

c2
+ (∂µp) · uµ ·

uν

c2
+ p · (∂µuµ) · u

ν

c2
+

+(ε+ p) · u
µ · (∂µuν)

c2
− ∂µp · ηµν = 0,

(4.28)

and we will use equation (4.27) to rewrite the �rst two terms

− p · (∂µuµ) · u
ν

c2
+ (∂µp) · uµ ·

uν

c2
+ p · (∂µuµ) · u

ν

c2
+

+(ε+ p) · u
µ · (∂µuν)

c2
− ∂µp · ηµν = 0,

(4.29)

What remains is

(ε+ p) · u
µ · (∂µuν)

c2
= −

(
uµ · uν

c2
− ηµν

)
︸ ︷︷ ︸

∆µν

·∂µp. (4.30)
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We see that on the RHS we obtained the perpendicular projector to the spacelike
coordinates perpendicular to velocity.
Now we take the two equations to the nonrelativistic limit. This means that the
collective velocity is small. That is called a slowly moving limit

uµ = γ(c, ~u)→ (c, ~u), |~u| � c. (4.31)

And the mass contribution to the energy density ε dominates

ε→ ρ · c2 = m · n0 · c2, (4.32)

and the pressure is then small
p� ρ · c2. (4.33)

Because of the small pressure, the second term in equation (4.27) can be dropped
and it becomes this

∂µ(ρ · c2 · uµ) = 0, (4.34)

c2 ·
(

∂ρ

∂(c · t)
· c+ ~∇(ρ · ~u)

)
= 0, (4.35)

∂ρ

∂t
+ ~∇(ρ · ~u) = 0. (4.36)

This is the classical continuity equation.
Now let's work on equation (4.30). We neglect the pressure with respect to the
energy density

ρ · uµ · (∂µuν) = −
(
uµ · uν

c2
− ηµν

)
· ∂µp. (4.37)

0-th component of the velocity is constant

∂µu
0 = 0. (4.38)

So this component vanishes on the LHS. On the RHS, the zero-zero component of
the projector is exactly 0 and what remains for ν = 0 is this

−
(
uµ · u0

c2
− ηµ0

)
· ∂µp =

ui

c
· ∂ip→ 0. (4.39)

This goes to 0 because u
c
is much smaller than 1.

So we are left with only the spatial components of the equation

ρ · uµ · (∂µui) = −δij · ∂jp. (4.40)

We split the terms into temporal component and spatial component

ρ ·
(
c · ∂ui

∂(c · t)
+ ~u · ~∇ui

)
= −δij∂jp. (4.41)
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And derive this

ρ ·
(
d

dt
+ ~u · ~∇

)
· ~u = −~∇p, (4.42)

which is the Euler equation for perfect �uid.
We have derived this equation in pseudo-Euclidean coordinates. The transition to
general curvilinear coordinates is actually simple, at least formally. We just replace
the derivative with the covariant derivative

∇µT
µν = 0. (4.43)

In �at space-time, this equation was energy-momentum conservation. If the space-
time is curved because of gravity, the energy and momentum of the matter alone
are not conserved quantities. So we will come to this point later, after we have
introduced the Einstein equation.

4.2 The Einstein Equations

These equations connect locally the curvature with the energy and momentum at
that place.
Summary of what we know already from this and the previous chapters:

1. We have the �eld equation for Newtonian gravity

~∇2φ = 4π ·G · ρ, (4.44)

2. We have the metric tensor in static weak �eld limit

g00 = 1 +
2φ

c2
. (4.45)

3. We know the zero-zero component of the energy-momentum tensor in the
instantaneous rest frame

T00 = ε = ρ · c2. (4.46)

where ρ is the matter density equivalent to the energy density ε.

The �rst with the second combine into this

c2

2
· ~∇2g00 = 4π ·G · ρ. (4.47)

And when we add the last relation, then we �nd this

~∇2g00 =
8π ·G
c4

· T00. (4.48)

To save the writing, we summarize the prefactor into κ

~∇2g00 = κ · T00. (4.49)
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On the RHS, we have the zero-zero component of a rank 2 tensor. We would like to
express the response of the space-time also by a rank 2 tensor. In other words, we
need a rank 2 tensor to express the curvature. Let's denote that with Kµν

Kµν = κ · Tµν . (4.50)

It must have the Newtonian limit that we just derived. But there, we have a term
with second order derivative of the metric. So Kµν should only contain terms at

most linear in the second order derivatives of the metric (~∇2g). And because Tµν
is symmetric, Kµν should also be symmetric. If it describes curvature, it should be
constructed from the Riemann tensor Rµνσρ. This brings into the game the Ricci
tensor and scalar curvature in combination with the metric tensor

Kµν = a ·Rµν + b ·R · gµν + Λ · gµν , (4.51)

where the coe�cients a, b and Λ are unknown yet. They should be determined and
we're going to look at this.
It was stated for energy-momentum conservation

∇µT
µν = 0, (4.52)

and the same must be valid for the tensor Kµν

∇µK
µν = 0, (4.53)

=⇒ ∇µ(a ·Rµν + b ·R · gµν + Λ · gµν) = 0. (4.54)

The covariant derivatives of the metric tensor are 0 and so the equation simpli�es

∇µ(a ·Rµν + b ·R · gµν) = 0. (4.55)

In chapter 3, it was shown for the Einstein tensor that its covariant derivatives
vanish

∇µ

(
Rµν − 1

2
· gµν ·R

)
= 0, (4.56)

∇µR
µν =

1

2
· gµν · ∇µR. (4.57)

And so we have this

a · 1

2
· gµν · ∇µR + b · gµν · ∇µR = 0, (4.58)

gµν ·
(a

2
+ b
)
· ∇µR = 0. (4.59)

And so the expression in the bracket must vanish

a

2
+ b = 0 =⇒ b = −a

2
. (4.60)

We cannot say anything about Λ yet, but for a while, we will put it equal to 0.
So we derived this

Kµν = a ·
(
Rµν −

1

2
· gµν ·R

)
= a ·Gµν , (4.61)
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where Gµν is the Einstein tensor.
We do not have a yet, but it can be determined from the Newtonian limit. If we
work it out, then we obtain that a = −1. We will verify this a bit later.
Putting everything together, we have derived the Einstein's gravitational �eld equa-
tions

Rµν −
1

2
· gµν ·R = −κ · Tµν . (4.62)

With a little gymnastics, we can rewrite this equation. We use the mixed tensors

Rµ
ν −

1

2
· δµν ·R = −κ · T µν , (4.63)

and by contracting there, we obtain

R− 1

2
· 4 ·R = −κ · T, T = T µµ, (4.64)

R = κ · T. (4.65)

And so we can write the equation for Rµν in terms of T

Rµν −
1

2
· gµν · κ · T = −κ · Tµν . (4.66)

From which we get

Rµν = −κ ·
(
Tµν −

1

2
· gµν · T

)
. (4.67)

These are symmetric tensors. In 4 dimensions they have 10 components, so we have
10 �eld equations. This is interesting, because the Riemann tensor in 4 dimensions
has 20 independent components.
There are two consequences from this. First, there is some freedom to choose the
Riemann tensor. And second, in empty space

Tµν = 0 =⇒ Rµν = 0, (4.68)

but the Riemann tensor Rµνσρ may be non-zero. So there may be non-zero curvature
even in empty space. This will have consequences later.

4.2.1 The weak �eld limit

Let's show that the weak limit comes out correctly.
Let's look at the zero-zero component of the last equation

R00 = −κ ·
(
T00 −

1

2
· g00 · T

)
. (4.69)

And recall the slightly perturbed metric

gµν = ηµν + hµν , |hµν | � 1 =⇒ g00 ≈ 1. (4.70)
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The component of the Ricci tensor is then this

R00 = ∂0Γµ0µ − ∂µΓµ00 + Γν0µ · Γ
µ
ν0 − Γν00 · Γµνµ, |Γµνσ| � 1. (4.71)

Since the Christo�el symbols are small, we neglect the last two terms up to �rst
order in hµν . Stationary metric means that the �rst term vanishes, and so we are
only left with the second term

R00 ≈ −∂iΓi00. (4.72)

We derived in previous chapter for Christo�el symbols this relation

Γi00 ≈ −
1

2
· δij · ∂jh00. (4.73)

Using that, we get the Ricci tensor components like this

R00 ≈ −
1

2
· δij · ∂i∂jh00. (4.74)

We put everything together

1

2
· δij · ∂i∂jh00 = κ ·

(
T00 −

1

2
· T
)
. (4.75)

And now we use the dust model for the energy-momentum tensor

Tµν = ρ · uµ · uν . (4.76)

So in nonrelativistic limit, we have this

T00 = T = ρ · c2. (4.77)

Inserting this into equation (4.75), we obtain

1

2
· δij · ∂i∂jh00 =

1

2
· κ · ρ · c2. (4.78)

For h00, we know the relation

h00 =
2φ

c2
. (4.79)

And so we get

δij · ∂i∂jφ =
c4 · κ

2
· ρ, (4.80)

which can be rewritten like this

~∇2φ = 4π ·G · ρ, (4.81)

and this is the Poisson equation of the Newtonian gravity.
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4.2.2 The cosmological constant

Let's consider the possible term Λ · gµν in Einstein's equation. It ful�lls the require-
ment that the covariant derivative is 0, so we cannot kill it on that ground. Let's
try to put it in

Rµν −
1

2
· gµν ·R + Λ · gµν = −κ · Tµν . (4.82)

If it is there, then Λ would be some constant of nature, that is called the cosmological
constant.
We can also derive the alternative form of the equation and it will be there

Rµν = −κ ·
(
Tµν −

1

2
· T · gµν

)
+ Λ · gµν . (4.83)

So what would be its interpretation? First, the weak �eld limit of the Newtonian
gravity will be modi�ed to a di�erent equation

~∇2φ = 4π ·G · ρ− Λ · c2. (4.84)

We can look at the usual situation with spherical mass M , which normally leads to
the usual radial attractive gravitational �eld

~g = −~∇φ. (4.85)

This becomes modi�ed to form

−~∇φ = −G ·M
r2

· ~̂r +
c2 · Λ · r

3
· ~̂r, (4.86)

so we get another repulsive force that grows with r and this is de�nitely strange.
How to realize its shocking nature even better, let's still live with it for a while and
see how it would show up. Recall that the energy-momentum tensor for a �uid is

T µν =
1

c2
· (ε+ p) · uµ · uν − p · gµν . (4.87)

And now imagine a very strange pressure, which would be the negative of the energy
density

p = −ε. (4.88)

It's really hard to imagine because it's negative, but let's do it. This is exactly the
case where you get with the cosmological constant term and if you want to put the
cosmological constant term as a contribution to the energy-momentum tensor

Tµν = −p · gµν = ε · gµν . (4.89)

So we can "eat it" into the energy-momentum tensor and call it the energy-momentum
tensor of the vacuum

T vacµν =
Λ · c4

8π ·G
· gµν . (4.90)

So the Einstein equation then becomes the following

Rµν −
1

2
· gµν ·R = −κ(Tµν + T vacµν ). (4.91)
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This term has a very interesting history, and it is even more interesting today. You
see, that it corresponds to a negative pressure, whatever that means, and it leads to
a repulsive gravitational force.
Einstein �rst derived his equations without this term. Then he realized that when
he solves his equations, he doesn't have a stationary solution and he wanted to have
a stationary solutions for the universe. So he has put in the cosmological constant
term to get a stationary universe. But then, the discoveries came of Hubble and
collaborators that actually showed that the universe is not stationary, but it ex-
pands. Einstein then exclaimed that this was his greatest blunder in his life, that he
introduced this cosmological constant, and he abandoned this.
People wanted to see how this expansion of the universe evolves through time. Sur-
prisingly, the measurements actually showed that the expansion of the universe
accelerates. That is hardly imaginable as a result of gravity, because gravity force is
attractive. It can accelerate, if you add a repulsive force. And this is exactly where
the cosmological constant term kicks in. The cosmological constant term is necessary
to make the universe expand and expand faster and faster.
This is consistent with current observations. So we don't really know what the mech-
anism behind this is, but we know that the cosmological constant term is there, but
it's small. This is one of the biggest open questions in today's physics. What is the
cosmological constant?

4.3 Geodetic motion

Let's �nally look at what these equations tell us about the behaviour of particles on
energy-momentum distributions.
In classical mechanics, if we have an integral of motion, for example energy or
momentum conservation, this can be used to at least partially predict the motion.
Now we do have a similar equation for the energy-momentum tensor

∇µT
µν = 0. (4.92)

So what does it tell us? We will write it out

∇µT
µν = ∂µT

µν + Γµσµ · T σν + Γνσµ · T µσ. (4.93)

The �rst two terms can be rewritten as

∂µT
µν + Γµσµ · T σν + Γνσµ · T µσ =

1√
−g
· ∂µ

(√
−g · T µν

)
+ Γνσµ · T µσ, (4.94)

where g = det[gµν ].
The energy-momentum tensor for one moving particle would be

T µν(x) = m ·
∫

dzµ

dτ︸︷︷︸
uµ

· dz
ν

dτ︸︷︷︸
uν

·δ
(4)(x− z(τ))√

−g
· dτ. (4.95)

The term with determinant of the metric must be there to ensure that this object
properly behaves like a tensor.
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Now we apply the covariant derivative

0 = ∇µT
µν =

m√
−g
·
∫

dzµ

dτ
· dz

ν

dτ
· ∂δ

(4)(x− z(τ))

∂xµ
· dτ+ (4.96)

+Γνσµ ·
m√
−g
·
∫

dzµ

dτ
· dz

ν

dτ
· δ(4)(x− z(τ)) · dτ. (4.97)

We can switch the derivative in the �rst integrant as

dzµ

dτ
· ∂

∂xµ
δ(4)(x− z(τ)) = −dz

µ

dτ
· ∂

∂zµ
δ(4)(x− z(τ)) = − d

dτ
δ(4)(x− z(τ)). (4.98)

Then, we can do the integration by parts in the �rst integrant and obtain this

−
∫

dzν

dτ
· d
dτ
δ(4)(x− z(τ)) · dτ =

∫
d2zν

dτ 2
· δ(4)(x− z(τ)) · dτ. (4.99)

We represent the time derivatives by dots and we see that we have derived this
expression ∫ (

z̈ν + Γνσµ · żµ · żσ
)︸ ︷︷ ︸

= 0

·δ(4)(x− z(τ)) · dτ = 0, (4.100)

where the term in the brackets is a geodesic equation.
This is an example that the energy-momentum "conservation" predicts that parti-
cles move along the geodesics. This is in philosophy similar to classical mechanics.

Summary: We have derived the �eld equation for the gravity, we have shown what
is the role of the mass as a generator of Newtonian gravity and that it's played by
a rank 2 energy-momentum tensor. That is put into equation with another rank 2
tensor, the Einstein tensor, which describes the curvature of the space-time.
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Chapter 5

The Schwarzschild geometry

It is not easy to solve Einstein's equations because they are very non-linear. The
problem can be simpli�ed in case that there are some symmetries. This lecture is
going to discuss such a case. Geomerty of a spherically symmetric matter distribu-
tion.
This was the �rst solution to Einstein equation and it was found in 1916 by Carl
Schwarzschild. We deal with a situation that is spherically symmetric in space coor-
dinates. This means, that there is a coordinate system with a center in the center of
the gravitating mass and the spatial part of this coordinate system must be isotropic.
We are going to �nd general prescription for the metric. Since it must be spatially
isotropic, its components may only depend on rotational invariance. These are ~x ·~x,
~dx · ~dx and ~x · ~dx. Because of the symmetry of this problem, it is reasonable to use
spherical coordinates1

x = (x1, x2, x3)

x1 = r′ · sin θ · cosϕ,

x2 = r′ · sin θ · sinϕ,
x3 = r′ · cos θ.

(5.1)

The transformation relations from spherical to Euclidean coordinates are standard
and we also have to rewrite the invariance

~x · ~x = r′2, (5.2)

~x · ~dx = r′ · dr′, (5.3)

~dx · ~dx = dr′2 + r′2 · dθ2 + r′2 · sin2 θ · dϕ2. (5.4)

Let's write down the metric, which is isotropic. In a Riemannian metric, there can
be only the di�erentials that appear in these expressions or they may be multiplied
with dt′ and the coe�cients only depend on time. So the most general form is the

1Radial coordinate is denoted with r′, because r will be used in a later reparametrization. The

same reason holds for t′.
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following

ds2 = A′(t′, r′) · dt′2 −B′(t′, r′) · r′ · dt′ · dr′ − C ′(t′, r′) · r′2 · dr′2−
−D′(t′, r′) · (dr′2 + r′2 · dθ2 + r′2 · sin2 θ · dϕ2).

(5.5)

We can reorganize this a little bit. First, we collect the last two terms and rede�ne
the radial coordinate as

D′(t′, r′) · r′2 · (dθ2 + sin2 θ · dϕ2) = r2 · (dθ2 + sin2 θ · dϕ2). (5.6)

Then, we collect all terms with dr′2 into one term

C ′(t′, r′) · r′2 · dr′2 +D′(t′, r′) · dr′2 = C ′′(t′, r) · dr2. (5.7)

Now we have ds2 with double primed coe�cients (dependant on r, not r′!)

ds2 = A′′(t′, r) ·dt′2−B′′(t′, r) ·dt′ ·dr−C ′′(t′, r) ·dr2−r2 · (dθ2 +sin2 θ ·dϕ2). (5.8)

Finally, we want to rede�ne the time coordinate so that we get rid of the mixed term
with B′′. Time coordinate t must be some function of t′ and r so that its di�erential
includes A′′ and B′′. Ansatz:

dt = Φ(t′, r) ·
(
A′′(t′, r) · dt′ − 1

2
·B′′(t′, r) · dr

)
. (5.9)

The funcition Φ(t′, r) is necesarry to make this total di�erential. We calculate dt2

dt2 = Φ2(t′, r) ·
(
A′′2(t′, r) · dt′2 − A′′(t′, r) ·B′′(t′, r) · dt′ · dr+

+
B′′2(t′, r)

4
· dr2

)
.

(5.10)

From this, we can express A′′ · dt′2 as

A′′ · dt′2 =
1

Φ2 · A′′
· dt2 +B′′ · dt′ · dr − B′′2

4 · A′′
· dr2. (5.11)

We put this into equation (5.8)

ds2 =
1

Φ2 · A′′
· dt2 +B′′ · dt′ · dr − B′′2

4 · A′′
· dr2 −B′′ · dt′ · dr−

−C ′′ · dr2 − r2 · (dθ2 + sin2 θ · dϕ2).
(5.12)

Now we can group together the terms, which are multiplied by dr2, and rename the
functions multiplying dt2 and dr2. Altogether, we obtained

ds2 = A(t, r) · dt2 −B(t, r) · dr2 − r2 · (dθ2 + sin2 θ · dϕ2). (5.13)

This is the general spatially isotropic time dependant metric. It is fully speci�ed
by two functions A and B. It looks almost like normal spherical coordinate system
spatial part, but this is not true, because B does not have to be equal to 1 and so
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there is some modi�cation of the radial coordinate.
It is easy to set the metric stationary, because we just have to require that the
functions A and B do not depend on time and only depend on r

ds2 = A(r) · dt2 −B(r) · dr2 − r2 · (dθ2 + sin2 θ · dϕ2). (5.14)

Functions A and B must be obtained from the Einstein equation. For that, the Ricci
tensor is needed. And for the Ricci tensor, the Christo�el coe�cients are needed.
To start with, let's write out the nonzero components of the metric tensor

g00 = A(r), g11 = −B(r), g22 = −r2, g33 = −r2 sin2 θ, (5.15)

g00 =
1

A(r)
, g11 = − 1

B(r)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
. (5.16)

We are looking for a solution in an empty space outside of spherically symmetric
mass distibution, so the Ricci tensor must vanish

Rµν = 0. (5.17)

Reminder:

Rµν = ∂νΓ
σ
µσ − ∂σΓσµν + Γρµσ · Γσρν − Γρµν · Γσρσ, (5.18)

Γσµν =
1

2
· gσρ · (∂νgρµ + ∂µgρν − ∂ρgµν). (5.19)

Now we have everything we need and we can put it all together. After a tedious
work, the only non-zero Christo�el coe�cients are

Γ0
00 =

A′

2A
, Γ1

00 =
A′

2B
, Γ1

11 =
B′

2B,

Γ1
22 = − r

B
, Γ1

33 = −r sin2 θ

B
, Γ2

12 =
1

r
,

Γ2
33 = − sin θ cos θ, Γ3

13 = −1

r
, Γ3

33 = cot θ,

(5.20)

where the prime denotes derivative with respect to r.
After calculating the Ricci tensor components it turns out, that the only non-zero
ones are

R00 = −A
′′

2B
+
A′

4B
·
(
A′

A
+
B′

B

)
− A′

rB
, (5.21)

R11 =
A′′

2A
− A′

4A
·
(
A′

A
+
B′

B

)
− B′

rB
, (5.22)

R22 =
1

B
− 1 +

r

2B
·
(
A′

A
− B′

B

)
, (5.23)

R33 = R22 · sin2 θ. (5.24)

We require that all these components vanish (all of them are equal to 0).
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We multiply the �rst equation by B
A

−B
A
· A
′′

2B
+
B

A
· A

′

4B
·
(
A′

A
+
B′

B

)
− B

A
· A

′

rB
= 0, (5.25)

and add the �rst and the second one together. Some terms cancel and we get

−A
′

rA
− B′

rB
= 0. (5.26)

Since r is always bigger than 0, we can get rid of it without a guilty conscience. We
can also multiply the equation with −A ·B, which leaves us with

A′ ·B +B′ · A = 0. (5.27)

This means, that A · B must be a constant, which we denote by α. We can then
express B as

B =
α

A
. (5.28)

And the derivative with respect to r is

B′ = −αA
′

A2
. (5.29)

We insert this into equation for R22 = 0

A

α
− 1 +

rA

2α
·
(
A′

A
+
A

α
· αA

′

A2

)
= 0, (5.30)

and work on it

A

α
− 1 +

rA′

2α
+
rA′

2α
= 0,

A

α
+
rA′

α
= 1,

A+ rA′ = α.

(5.31)

This can be rewritten as
d(r · A)

dr
= α. (5.32)

We integrate this di�erential equation and �nd out

r · A = α(r + k), (5.33)

where k is an integration constant.
From this, we get the prescription for A and B as functions of r

A(r) = α ·
(

1 +
k

r

)
, (5.34)

B(r) =

(
1 +

k

r

)−1

. (5.35)
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Now we are left with two constants α and k, which need to be determined. This is
done from the weak �eld limit, which must go to Newtonian gravity

g00 = c2 ·
(

1 +
2φ

c2

)
, (5.36)

where φ is gravitational potential.
We know that

φ = −GM
r
, (5.37)

so k must be

k = −2GM

c2
, (5.38)

and α
α = c2. (5.39)

We insert this into equations for A(r) and B(r) and we get

A(r) = c2 ·
(

1− 2GM

c2r

)
, (5.40)

B(r) =

(
1− 2GM

c2r

)−1

. (5.41)

Using these results in equation (5.14) gives us the Schwarzschild metric

ds2 = c2 ·
(

1− 2GM

c2r

)
· dt2−

(
1− 2GM

c2r

)−1

· dr2− r2 · (dθ2 + sin2 θ · dϕ2). (5.42)

This is the metric in empty space around spherically distributed mass. This metric
has singularity for

r =
2GM

c2
= 2 · µ. (5.43)

If the mass is constrained below this radius, the object becomes Schwarzschild black
hole. This will be discussed later.
We formulated the Schwarzschild metric for static situation. We could have done
it more generally and allow time dependence. This would have made the equations
more complicated, but surprisingly the results would be again the Schwarzschild
metric. This is summarized in the Birkho� theorem.
Birkho� theorem says, that space-time geometry outside spherically symmetric mat-
ter disitribution is Schwarzschild geometry. This will mean, for example, that radially
pulsating sources can not generate gravitational waves, because such waves are not
a part of Schwarzschild geometry.
The opposite implication of the Birkho� theorem does not hold. So Schwarzschild
geometry can be generated also by non-symmetric sources.

5.1 Gravitational redshift

Let's look at two di�erent points in space and send light from one to the other. We
call it from emitter to receiver. Light propagates along a null geodesics. We know
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that ds2 = 0, so we write out the Schwarzschild metric as

c2 ·
(

1− 2µ

r

)
· dt2 =

(
1− 2µ

r

)−1

· dr2 + r2 · (dθ2 + sin2 θ · dϕ2), (5.44)

where µ = GM
c2
.

We can take square root of the equation and rewrite the RHS with the metric tensor
as

c ·
(

1− 2µ

r

) 1
2

· dt =
(
gij · dxi · dxj

) 1
2 . (5.45)

When we parametrize the geodesic with some a�ne parameter σ, we can obtain

c ·
(

1− 2µ

r

) 1
2

· dt
dσ

=

(
gij ·

dxi

dσ
· dx

j

σ

) 1
2

, (5.46)

which we �nally write as a di�erential equation for the time coordinate

dt

dσ
=

1

c
·
(

1− 2µ

r

)− 1
2

·
(
gij ·

dxi

dσ
· dx

j

dσ

) 1
2

. (5.47)

This allows us to calculate the di�erence in the time coordinate between the emission
event and the receiving event by integrating the equation

tR − tE =
1

c

∫ σR

σE

(
1− 2µ

r

)− 1
2

·
(
gij ·

dxi

dσ
· dx

j

σ

) 1
2

· dσ. (5.48)

Important point here is, that the RHS only depends on the spatial coordinates. So
it does not matter at what time this time di�erence is measured. It is invariant in
time coordinate.
This has a consequence. We consider two events at the place of the emitter with the
time di�erence ∆tE. On both events, we send light to the receiver. We just derived
that it always takes the same time for the light to travel from the emitter to the
receiver. So the time di�erence between the two arrivals at the receiver point (∆tR)
must be the same as ∆tE.
The redshift shows itself as di�erent pace at which the time proceeds at di�erent
places. So what we actually want to compare are the intervals starting at two spa-
tially di�erent points and measured along the world lines with no change in spatial
coordinates like this

ds2 = c2 ·
(

1− 2µ

r

)
· dt2 = c · dτ 2. (5.49)

Here, the proper time is introduced. It is the a�ne interval for such a world line.
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We compare the proper time intervals at the place of the emitter and of the receiver

∆τR
∆τE

=

(
1− 2µ

rR

) 1
2

(
1− 2µ

rE

) 1
2

· ∆tR
∆tE

. (5.50)

The fraction of the time di�erences on the RHS is equal to 1 (the reason is few
paragraphs above). And so for the ratio of the proper times, we get

∆τR
∆τE

=

(
1− 2µ

rR

1− 2µ
rE

) 1
2

. (5.51)

If we take ∆τ as a period of a light wave, then the ratio of frequencies is the inverse
of this ratio

νR
νE

=

(
1− 2GM

c2rE

1− 2GM
c2rR

) 1
2

. (5.52)

Note, that the redshift z is a de�ned quantitiy

1 + z =

(
νR
νE

)−1

=⇒ z =

(
νR
νE

)−1

− 1. (5.53)

To �nish this discussion, let's note two points. This derivation was done for spatially
�xed (not moving) emitter and receiver. It would have to be generalized in case that
they move. The second point is, that this can be generalized to any geometry that is
stationary (∂0gµν = 0) and has a vanishing space-time mixed components (g0i = 0).
In this case, the ratio of the frequencies would also be given by the ratio of the
zero-zero component of the metric tensor

νR
νE

=

(
g00(xE)

g00(xR)

) 1
2

. (5.54)

5.2 Geodesics in the Schwarzschild geometry

In this part, di�erent kinds of motion in the Schwarzschild geometry will be dis-
cussed. Formally, it is straightforward, we would write down the geodesic equation
and try to solve it. It is simpler to derive this equation as Euler-Lagrange equation
from this Lagrangian

L = gµν · ẋµ · ẋν , ẋµ =
dxµ

dσ
, (5.55)

L = c2 ·
(

1− 2µ

r

)
· ṫ2 −

(
1− 2µ

r

)−1

· ṙ2 − r2 · θ̇2 − r2 · sin2 θ · ϕ̇2, (5.56)

where σ is either proper time for non-null geodesics or some other a�ne parameter
for null geodesics.
These are the Euler-Lagrange equations

d

dσ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0. (5.57)
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Note, that the Lagrangian does not depend on t, and so we have one conserved
quantity

d

dσ

(
∂L

∂ṫ

)
= 0 =⇒

(
1− 2µ

r

)
· ṫ = k = const. (5.58)

And it also does not depend on ϕ, and so there is another conserved quantity

d

dσ

(
∂L

∂ϕ̇

)
= 0 =⇒ r2 · sin2 θ · ϕ̇ = h = const. (5.59)

We will see, that the �rst will be energy and the second will be related to angular
momentum.
The other two Euler-Lagrange equations are not so simple. For µ = 1 (r), we receive
this result(

1− 2µ

r

)−1

· r̈ +
µc2

r2
· ṫ2 −

(
1− 2µ

r

)−2

· µ
r2
· ṙ2 − r · (θ̇2 + sin2 θ · ϕ̇) = 0, (5.60)

and for µ = 2 (θ) we get

θ̈ +
2

r
· ṙ · θ̇ − sin θ · cos θ · ϕ̇2 = 0. (5.61)

The second equation can be solved by setting θ = π
2
. This may seem like a par-

ticular special case, but it is actually general. That is, because we have spherically
symmetric situation. But then, we can choose our coordinate system at any time so
that θ = π

2
and so that its �rst derivative vanishes also. Then the second derivative

must also vanish and the equation here is always ful�lled.
With this simpli�cation, we are left with only the equation for r and two conserved
quantities (

1− 2µ

r

)
· ṫ = k, (5.62)

r2 · ϕ̇ = h. (5.63)

We immediately see that the second conserved quantity is the angular momentum.
What about the �rst one? Remember, that the 4-momentum is proportional to the
tangent vector to the geodesics

pµ ∝ ẋµ. (5.64)

The equation is valid this way for both massive and massless particles.
We can actually always choose the a�ne parameters so that these two quantities
are equal

pµ = ẋµ. (5.65)

For massive particles, this is in fact rescaling the mass.
Then, the zeroth covariant component of the 4-momentum is

p0 = g00 · p0 = g00 · ṫ = c2 ·
(

1− 2µ

r

)
· ṫ = k · c2. (5.66)

We are getting close to the interpretation of k.
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If an observer with velocity uµ measures the energy of the particle, he would obtain

E = uµ · pµ. (5.67)

Let's consider an observer at rest in�nitely far away from the gravitating mass, so
that his 4-velocity is

uµ = (1, 0, 0, 0). (5.68)

The zeroth component is 1, because we have chosen time as a coordinate and not
c · time. For the energy we then get

E = uµ · pµ = uµ · pµ = k · c2 =⇒ k =
E

c2
. (5.69)

For massive particles with no unit mass, this would be modi�ed to

k =
E

mc2
. (5.70)

Now we come back to the equation for r. For the solving, we employ the integral of
the geodesics. For non-null geodesics it is

gµν · ẋµ · ẋν = c2. (5.71)

And for null geodesics, it is
gµν · ẋν · ẋµ = 0. (5.72)

5.2.1 Trajectories of massive particles

When we want to describe massive particles, we use the integral of non-null geodesics
with proper time as a�ne parametr and we write it out

gµν · ẋµ · ẋν = c2 ·
(

1− 2µ

r

)
· ṫ2 −

(
1− 2µ

r

)−1

· ṙ2 − r2 · ϕ̇2 = c2. (5.73)

We express ṫ from the energy conservation

ṫ =
k

1− 2µ
r

, (5.74)

and similarly ϕ̇ as

ϕ̇ =
h

r2
. (5.75)

The equation changes to

c2k2

1− 2µ
r

−
(

1− 2µ

r

)−1

· ṙ2 − r2 · h
2

r4
= c2, (5.76)

c2 · k2 − ṙ2 −
(

1− 2µ

r

)
· h

2

r2
=

(
1− 2µ

r

)
· c2, (5.77)

ṙ2 +
h2

r2
·
(

1− 2µ

r

)
− 2µc2

r
= c2 · (k2 − 1), (5.78)

ṙ2 +
h2

r2
·
(

1− 2GM

c2r

)
− 2GM

r
= c2 · (k2 − 1), (5.79)

where k = E
mc2

.
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Radial motion of massive particles

We will now investigate the radial motion of the particle and then we will go to
more general case when also the azimuthal angle of the position can change.
If the motion is radial, the angular momentum is zero and so h vanishes. The equa-
tion for r simpli�es to some extent

ṙ2 = c2 · (k2 − 1) +
2GM

r
. (5.80)

To solve this, we di�erentiate it one more time

2 · ṙ · r̈ = −2GM

r2
· ṙ. (5.81)

And divide by ṙ

r̈ = −GM
r2

. (5.82)

This formally looks like the same equation as we had in Newtonian gravity. However,
the quantities here are di�erent, r is not the radial distance and the di�erentiation
is with respect to proper time instead of the time.
Let's consider a particle which falls in from in�nity. Then, its energy is

E = m · c2 =⇒ k = 1. (5.83)

This gives simple geodesic equation for ṫ from(
1− 2µ

r

)
· ṫ = k =⇒ ṫ =

dt

dτ
=

(
1− 2µ

r

)−1

. (5.84)

And for ṙ we get

ṙ2 = c2 · (k2 − 1) +
2GM

r
=⇒ ṙ =

dr

dτ
= −

√
2µc2

r
. (5.85)

We take the negative of the square root, because the radius decreases when the
particle moves.
Note, that these are the direct components of the 4-velocity

[uµ] = (ṫ, ṙ, θ̇, ϕ̇) =

((
1− 2µ

r

)−1

,−
√

2µ

r
, 0, 0

)
. (5.86)

Let's �rst solve the equation for the trajectory r as a function of proper time τ .
Actually, we do the opposite dependance

−
√

r

2µc2
· dr = dτ, (5.87)

2

3
· 1√

2µc2
·
(
r

3
2
0 − r

3
2

)
= τ. (5.88)
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For τ = 0, the position was r0. It takes �nite proper time to reach any position. Of
course, the solution is valid only above the Schwarzschild singularity.
It is interesting to solve for r as a function of the coordinate time instead of the
proper time

dr

dt
=

dr

dτ
· dτ
dt

= −
√

r

2µc2
·
(

1− 2µ

r

)
(5.89)

− dr√
2µc2

r
·
(
1− 2µ

r

) = dt. (5.90)

This equation can be integrated

−
∫ r

r0

dr√
2µc2

r
·
(
1− 2µ

r

) =

∫ t

0

dt. (5.91)

The integration gives us

2

3
· 1√

2µc2
·
(
r

3
2
0 − r

3
2

)
+

4
√
µ

c
·
(√

r0 −
√
r
)
+

2µ

c
·ln

∣∣∣∣∣∣
√

r
2µ

+ 1√
r

2µ
− 1
·

√
r0
2µ
− 1√

r0
2µ

+ 1

∣∣∣∣∣∣ = t. (5.92)

And now the situation is much more interesting. When r approaches the singularity,
this time diverges. Global time never comes to the point, at which the particle falls
into a black hole.
To close this investigation, let's express the velocity of the in-falling particle as it
would be measured by a stationary observer at the point r. The point is here, that he
must refer with his measurement to his local intertial frame. So his time di�erence
dt′ will be given by the coe�cient of the metric

dt′ =

(
1− 2µ

r

) 1
2

· dt. (5.93)

The same is for the radial distance. It is also given by the coe�cient of the metric

dr′ =

(
1− 2µ

r

)− 1
2

· dr. (5.94)

Then the velocity is
dr′

dt′
=

(
1− 2µ

r

)−1

· dr
dt
. (5.95)

We can use here equation (5.89) and we obtain

dr′

dt′
= −

√
2µc2

r
. (5.96)

This velocity goes to c as r approaches the Schwarzschild singularity. It also seems
to surpass c for smaller r, but that is not a problem, because we will see that no
static observer can exist below this horizon.
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Non-radial motion

Now we go back to equation

ṙ2 +
h2

r2
·
(

1− 2GM

c2r

)
− 2GM

r
= c2 · (k2 − 1). (5.97)

And write the proper time derivative for the case that ϕ̇ 6= 0

ṙ =
dr

dτ
=

dr

dϕ
· dϕ
dτ

=
dr

dϕ
· h
r2
. (5.98)

We rewrite the equation(
dr

dϕ
· h
r2

)2

+
h2

r2
= c2 · (k2 − 1) +

2GM

r
+

2GMh2

c2r3
, (5.99)

divide by h2 and use a transformation of r

r =
1

u
=⇒ 1

r2
· dr
dϕ

= u2 ·
d
(

1
u

)
dϕ

= −du
dϕ

. (5.100)

This gives us (
du

dϕ

)2

+ u2 =
c2

h2
· (k2 − 1) +

2GMu

h2
+

2GMu3

c2
. (5.101)

We di�erentiate this with respect to ϕ

2 · du
dϕ
· d

2u

dϕ2
+ 2 · u · du

dϕ
=

2GM

h2
· du
dϕ

+
6GM

c2
· u2 · du

dϕ
. (5.102)

We can get rid of the �rst derivative of u with respect to ϕ and the result is

d2u

dϕ2
+ u =

GM

h2
+

3GM

c2
· u2. (5.103)

Circular motion

A special case is the circular motion, when r or u does not change with the angle
ϕ. So the derivative term drops out and we have a simpler relation

u =
GM

h2
+

3GM

c2
· u2. (5.104)

We can solve for the angular momentum h

GM

h2
= u− 3GM

c2
· u2,

h2

GM
=

1

u
· 1

1− 3GM
c2
· u
,

h2 =
GMr

1− 3GM
c2
· 1
r

=
GMr2

r − 3GM
c2

=
µc2r2

r − 3µ
.

(5.105)
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We can also determine the energy constant. We take equation (5.97) and insert the
relation for h2 that was just derived

µc2r2

r − 3µ
· 1

r2
·
(

1− 2GM

c2r

)
− 2GM

r
= c2 · (k2 − 1). (5.106)

We express the k by dividing the equation by c2

µ

r − 3µ
·
(

1− 2GM

c2r

)
− 2GM

c2r
= k2 − 1, (5.107)

then we do a few algebraical operations

µ

r − 3µ
·
(

1− 2µ

r

)
− 2µ

r
+ 1 = k2,

k2 =

(
1− 2µ

r

)
·
(

1 +
µ

r − 3µ

)
,

k2 =

(
1− 2µ

r

)
·
(
r − 3µ+ µ

r − 3µ

)
,

k2 =

(
1− 2µ

r

)
·

(
1− 2µ

r

1− 3µ
r

)
.

(5.108)

And we �nally get

k =
1− 2µ

r√
1− 3µ

r

. (5.109)

The energy is k times the rest energy

E = k ·m · c2. (5.110)

If this is smaller than the rest energy, then the trajectory is bound. In other words,
k must be smaller than 1

1− 2µ

r
<

√
1− 3µ

r
, (5.111)

Limiting cases when k = 1 are r = 4µ and r → ∞. Between these two limits, the
inequality holds and we have found circular orbits which are bound.
Let's look at the angular momentum conservation. We have derived this relation for
h

h2 =
µc2r2

r − 3µ
. (5.112)

We also know
r2ϕ̇ = h. (5.113)

And so we can rewrite the relation for h as

ϕ̇2 =

(
dϕ

dτ

)2

=
µc2

r2 · (r − 3µ)
. (5.114)

There is no solution for r < 3µ. So a massive particle cannot maintain a stable orbit
for r < 3µ. Before we would conclude that this is the lowest limit for r, let's analyze
the stability of the orbits.
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Stability of massive particle orbits

Let's recall the Newtonian gravity for a while. The classical equation of motion could
be written like this

1

2
·
(
dr

dt

)2

+ Veff (r) = 0, (5.115)

where Veff is the e�ective potential

Veff = −GM
r

+
h2

2r2
, (5.116)

with the angular momentum term, which prevents r to be too small for a given
energy.
In general relativity we had this equation

ṙ2 +
h2

r2
·
(

1− 2GM

c2r

)
− 2GM

r
= c2 · (k2 − 1). (5.117)

And this can be rewritten as

1

2
·
(
dr

dτ

)2

−µc
2

r
+

h2

2r2
− µh2

r3︸ ︷︷ ︸
Veff (r)

=
c2

2
· (k2 − 1). (5.118)

In comparison with the Newtonian case, this has another term which goes like 1/r3

and so we lose the default stability against r becoming too small.
The stable orbit is found by �nding the minimum of the e�ective potential

dVeff
dr

=
µc2

r2
− h2

r3
+

3µh2

r4
= 0, (5.119)

µ · c2 · r2 − h2 · r + 3 · µ · h2 = 0, (5.120)

r =
h

2µc2
·
(
h±

√
h2 − 12 · µ2 · c2

)
. (5.121)

Limiting case is for h = 2
√

3µc. There is only one extreme. This gives the innermost
stable orbit with

rmin = 6 · µ =
6GM

c2
. (5.122)

This has consequences in astrophysics. For example, the existence of accretion disks
around the massive objects.

5.2.2 Trajectories of photons

In this subchapter, we deal with null geodesics and so we have to change the equation
for r to 0 at the RHS

c2 ·
(

1− 2µ

r

)
· ṫ2 −

(
1− 2µ

r

)−1

· ṙ2 − r2 · ϕ̇2 = 0. (5.123)
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But the conservation equations remain(
1− 2µ

r

)
· ṫ = k, (5.124)

r2 · ϕ̇ = h. (5.125)

So we can express ṫ and ϕ̇ from the conservation equations

ṫ =
k

1− 2µ
r

, (5.126)

ϕ̇ =
h

r2
, (5.127)

and insert into the �rst geodesic equation

c2k2

1− 2µ
r

− 1

1− 2µ
r

· ṙ2 − h2

r2
= 0. (5.128)

We rewrite this di�erently

ṙ2 +
h2

r2
·
(

1− 2µ

r

)
= c2 · k2. (5.129)

Again, the radial and non-radial motion is treated di�erently.

Radial motion of photons

For radial motion, ϕ̇ vanishes and the geodesic equation simpli�es to

c2 ·
(

1− 2µ

r

)
· ṫ2 −

(
1− 2µ

r

)−1

· ṙ2 = 0. (5.130)

From this we obtain
dr

dt
= ± ṙ

ṫ
= ±c ·

(
1− 2µ

r

)
. (5.131)

Now this is interesting. First of all, the sign depends on whether the photon goes
outwards (+) or inwards (-). For in�nite r, the slope is c as usual for light cones
in special relativity. But as r decreases, the slope is smaller and smaller and so the
light cone gets narrower and narrower. Finally, as r approaches 2µ, which is the
Schwarzschild radius, the slope vanishes and the light cone gets in�nitely narrow.
This can be illustrated on a �gure.
We put t on the y-axis and r on the x-axis. On the r axis, we have the Schwarzschild
radius 2µ and we have a static observer at the distance R. The static observer
drops a massive particle, which falls towards the Schwarzschild radius. We know
that it always has to move within the light cones and so the light cones along its
trajectory are always wider than the slope of the particle. But as it gets closer to
the Schwarzschild radius, the light cones become narrower and narrower and so the
particle goes with higher and higher slope and never really reaches the Schwarzschild
radius in these coordinates.
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Now when this falling particle emits light towards the observer, then the photon
moves along the trajectories that follow the light cone. It takes longer and longer for
this light to reach the observer, until it would take in�nite time until it reaches the
observer when it is released close to the Schwarzschild radius. Note, that we have
seen that the proper time which it takes the particle to fall into the black hole is
�nite and so the problem with the singularity and with the in�nite coordinate times
is caused only by our use of coordinates, which are not suitable for this situation.
Finally, to complete this topic, we can integrate the equation for r as a function of t

±c · dt =
dr

1− 2µ
r

, (5.132)

c · t = r + 2 · µ · ln
∣∣∣∣ r2µ − 1

∣∣∣∣+ const. (outgoing), (5.133)

c · t = −r − 2 · µ · ln
∣∣∣∣ r2µ − 1

∣∣∣∣+ const. (incoming). (5.134)

Non-radial motion of photons

Now let's return to the trajectories with changing azimuthal length. We pick the
previous equation for r

ṙ2 +
h2

r2
·
(

1− 2µ

r

)
= c2 · k2, (5.135)

and rewrite the derivative for r

ṙ =
dr

dσ
=

dr

dϕ
· dϕ
dσ

=
dr

dϕ
· ϕ̇ =

h

r2
· dr
dϕ

. (5.136)

From this we get the shape equation

h2

r4
·
(
dr

dϕ

)2

+
h2

r2
·
(

1− 2µ

r

)
= c2 · k2. (5.137)

Again, we transform to the u coordinate

u =
1

r
, r =

1

u
,

dr

dϕ
=

d 1
u

dϕ
= − 1

u2
· du
dϕ

. (5.138)

And we rewrite the equation

h2 · u4 · 1

u4
·
(
du

dϕ

)2

+ h2 · u2 · (1− 2 · µ · u) = c2 · k2, (5.139)

h2 ·
(
du

dϕ

)2

+ h2 · u2 − 2 · h2 · µ · u3 = c2 · k2. (5.140)

This we di�erentiate with respect to ϕ

h2 · 2 · du
dϕ
· d

2u

dϕ2
+ 2 · h2 · u · du

dϕ
− 6 · h2 · µ · u2 · du

dϕ
= 0, (5.141)
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divide it by 2h2 · du
dϕ

d2u

dϕ2
+ u− 3 · µ · u2 = 0. (5.142)

And we obtain �nally

d2u

dϕ2
+ u = 3 · µ · u2 = 3 · GM

c2
· u2. (5.143)

There can be only one circular orbit for photon, for which the derivative vanishes

u =
3GM

c2
· u2. (5.144)

And so the radius would be

r =
3GM

c2
. (5.145)

Now we are going to look into the stability of such orbits.

Stability of photon orbits

We take again the equation for ṙ

ṙ2 +
h2

r2
·
(

1− 2µ

r

)
︸ ︷︷ ︸

Veff (r)

= c2 · k2, (5.146)

and look at this as equation for the energy of radial motion. When the �rst term
stands for the kinetic energy, the second term is e�ective potential energy and their
sum is constant.
This potential energy has no minimum. Let's look for its extreme

dVeff
dr

= −2 · h
2

r3
+ 6 · h

2µ

r4
= 0. (5.147)

We can see, that it has a stationary point at r = 3µ. Let's inspect the second
derivative

d2Veff
dr2

= 6 · h
2

r4
− 24 · h

2µ

r5
, (5.148)

d2Veff
dr2

∣∣∣∣
r=3µ

= 6 · h2

81µ4
− 24 · h2µ

243µ5
= ... = − 6

243
· h

2

µ4
< 0. (5.149)

From that we see that the potential has maximum in

Veff (r = 3µ) =
h2

9µ2
− 2h2

27µ2
=

h2

27µ2
. (5.150)

If we plot this, we see that the circular orbit that we have derived previously is
actually unstable. If the constant on the RHS of the equation is higher than the
height of the bump in the graph, then the photon will pass from one side of the hill
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to the other. Otherwise, it will turn back.
What is the meaning of this constant? To �nd out, let's consider the derivative

dϕ

dr
=
ϕ̇

ṙ
. (5.151)

We know these derivatives from the geodesic equation and so we obtain

dϕ

dr
=

h

r2
· 1√

c2k2 − h2

r2
·
(
1− 2µ

r2

) =
1

r2
· 1√

c2k2

h2
− 1

r2
·
(
1− 2µ

r2

) . (5.152)

Now consider the situation that the photon is at in�nite distance and we choose the
angle so that it is zero (the primary condition). We get

r2 · dϕ
dr

=
h

ck
, (5.153)

and we solve it

ck

h

∫ ϕ

0

dϕ =

∫ r

∞

dr

r2
, (5.154)

ck

h
· ϕ =

1

r
. (5.155)

For very large r, ϕ is very small and so we can identify it with sinϕ and we get

r · sinϕ =
h

ck
= b. (5.156)

This has geometrical interpretation. b is the impact parameter at very large distance,
as the photon moves towards the gravitating mass.
Let's go back to the radial energy equation. The RHS may be written like this

c2 · k2 =
h2

b2
. (5.157)

If this is smaller than the maximum of the e�ective potential, then the photon will
approach the mass and again go away from it. The condition is

h2

b2
<

h2

27µ2
=⇒ b > 3

√
3 · µ. (5.158)

For smaller impact parameters, the photon will spiral into the mass

h2

b2
>

h2

27µ2
=⇒ b < 3

√
3 · µ. (5.159)

Note that b has the interpretation that it is the impact parameter at the very large
distance, but it can be determined at any distance as h/ck. So if the photon starts
below the circular orbit with large b, it will turn back towards the mass

r < 3 · µ b > 3
√

3 · µ. (5.160)
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But if the b is small then it will come out

r < 3 · µ b < 3
√

3 · µ. (5.161)

Summary: In this chapter, we have investigated a radially symmetric situation with
the gravitating mass that is enclosed in some �nite volume in the center. We have
derived the Schwarzschild metric and we have investigated the motion within the
Schwarzschild metric. We have seen that there is a Schwarzschild radius which ac-
tually forms a black hole and we have investigated also the motion of photons or
the motion of light within the Schwarzschild metric.
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Chapter 6

Experimental tests of general

relativity

Einstein worked out the �rst prediction of general relativity, that was proven by
experiments in the future. He calculated the precession of the perihelion of Mercury
in 1915. In addition to this, this chapter will discuss the bending of light, the extra
delay of radar echos due to space-time curvature, accretion disks around compact
objects and the geodetic precession of gyroscopes.

6.1 Precession of planetary orbits

6.1.1 Newtonian description

First, let's quickly recall how planetary motion is formulated in Newtonian theory.
The equation of motion will be formulated in the reciprocal coordinate u = 1

r
and

h, which is the angular momentum. The Newtonian equation of motion is then the
following

d2u

dϕ2
+ u =

GM

h2
. (6.1)

For bound orbit, the solution is

u =
GM

h2
(1 + e · cosϕ), (6.2)

and you can easily check it just by insertion.
To see what kind of trajectory this is, we go back to the radial coordinate r

r =
h2

GM

1

1 + e · cosϕ
, (6.3)

where e is the parameter of this solution. If e = 0, then we have constant r, which
is the motion along a circular trajectory. If e 6= 0 and we will assume that it is
positive, then r has a minimum for ϕ = 0 and it is maximal for ϕ = π. If we draw
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this trajectory, then we would see that the trajectory is eliptic. The parameter e
measures the elipticity. The position with ϕ = 0 is called the perihelion and the one
with ϕ = π, when r is maximal, is the aphelion. The length of the semi-major axis
is the avarage of the perihelion and aphelion distance

a =
1

2

(
h2

GM
· 1

1 + e
+

h2

GM
· 1

1− e

)
=

h2

2GM

1− e+ 1 + e

1− e2
=

h2

GM(1− e2)
. (6.4)

From this, the perihelion distance can be expressed simply as

r1 = a · (1− e), (6.5)

and the aphelion analogically

r2 = a · (1 + e). (6.6)

6.1.2 Planetary orbits in general relativity

In previous chapter, general relativistic equation of motion for massive particle in
spherically symmetric �eld was derived as

d2u

dϕ2
+ u =

GM

h2
+

3GM

c2
· u2. (6.7)

We see, that in comparison with the Newtonian theory, there is an additional non-
linear term on the RHS, which will make the solution more complicated. Neverthe-
less, we are going to talk about planetary orbits, so the gravitational �eld will be
weak and therefore, Newtonian solution must be a very good approximation to the
exact solution. Afterall, this is what we see. Newtonian theory describes the motion
of the planets in the solar system very well, except for some tiny details, which will
be discussed now.
We are going to look for small corrections to the Newtonian solution. We write it
out explicitly

u = u(ϕ) = uN(ϕ) + ∆u(ϕ) =
GM

h2
(1 + e · cosϕ) + ∆u(ϕ), (6.8)

where ∆u(ϕ) is the small general relativistic correction and we denote as uN(ϕ) the
Newtonian solution. This is inserted into the equation of motion

d2uN
dϕ2

+
d2∆u

dϕ2
+ uN + ∆u =

GM

h2
+

3GM

c2
· (u2

N + 2 · uN ·∆u+ ∆u2). (6.9)

The Newtonian terms on the LHS cancel with the �rst term on the RHS. In the
brackets on the RHS, we neglect all terms with ∆u, because they are small. Then
we obtain the equation for ∆u

d2∆u

dϕ2
+ ∆u =

3GM

c2
· u2

N =
3GM

c2
· (GM)2

h4
(1 + e · cosϕ)2. (6.10)
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We collect all the terms multiplying the bracket on the RHS into the constant A

A =
3(GM)3

c2h4
, (6.11)

and the equation simply becomes this

d2∆u

dϕ2
+ ∆u = A · (1 + 2 · e · cosϕ+ e2 · cos2 ϕ). (6.12)

The solution of this equation is

∆u = A ·
[
1 + e2

(
1

2
− 1

6
cos(2ϕ)

)
+ e · ϕ · sinϕ

]
. (6.13)

Again, it can be checked that this indeed is the solution by inserting it into the
equation.
Now, A is very small, but there is the last term in ∆u, which is proportional to ϕ.
Since ϕ grows with time, this term eventually becomes important and it is the only
term that we have to keep. Thus, the whole solution of u(ϕ) is summarized like this

u(ϕ) =
GM

h2
(1 + e · cosϕ) +

3(GM)3

c2h4
· e · ϕ · sinϕ =

=
GM

h2

1 + e

cosϕ+
3(GM)2

c2h2︸ ︷︷ ︸
α

ϕ · sinϕ


 (6.14)

=⇒ u(ϕ) =
GM

h2
[1 + e (cosϕ+ α · ϕ · sinϕ)] . (6.15)

The parameter α is very small. For such a small α · ϕ, we can make these two
approximations

αϕ ≈ sin(αϕ), cos(αϕ) ≈ 1. (6.16)

This is valid up to �rst order in α. Then we can rewrite the inner bracket as

cosϕ+ α · ϕ · sinϕ = cosϕ cos(αϕ) + sin(αϕ) sinϕ = cos(ϕ− αϕ), (6.17)

and the whole solution becomes

u(ϕ) =
GM

h2
[1 + e · cos(ϕ(1− α))] . (6.18)

This is periodic motion, but the period is not 2π. The period is 2π
1−α , which is larger

than 2π. This means that the ellipse does not close, but instead it will precess. For
example, in one revolution, the perihelion will shift by ∆ϕ, which is given as

∆ϕ =
2π

1− α
− 2π =

2π(1− 1 + α)

1− α
≈ 2πα =

6π(GM)2

c2h2
. (6.19)

We can express h2 from equation (6.4) as

1

h2
=

1

aGM(1− e2)
, (6.20)
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and obtain the shift per revolution

∆ϕ =
6πGM

a(1− e2)c2
. (6.21)

This is something that can be directly compared to data. Let's start with Mercury.
The period is 88 days, the semi-major is a = 5, 8·1010 m, the eccentricity e = 0, 2 and
the mass of the Sun is M� = 2 · 1030 kg. This gives the shift per century ∆ϕ = 43′′.
However, the measured result is 574,1′′±0,4′′. There is a huge di�erence, but this is
connected with the in�uence of other planets. If this infuence is subtracted then the
experimental result matches the calculation very well. This is actually the case also
for the other planets.

6.2 The bending of light

In this case, we also go back to the previous chapter and use the shape equation for
the photon trajectory in the equatorial plane

d2u

dϕ2
+ u =

3GM

c2
u2. (6.22)

Also, here we will �rst assume that the e�ect of gravity is just a small perturbation.
The major part of the solution is as in absence of gravity, which is without the RHS
of this equation. With the initial condition that the photon comes from in�nity with
some impact parameter b, we can infer the solution

r0(ϕ) =
b

sinϕ
=⇒ u0(ϕ) =

sinϕ

b
. (6.23)

This really solves the homogeneous shape equation with only the LHS. Now, we add
the perturbation and the correction to the solution

u(ϕ) = u0(ϕ) + ∆u(ϕ). (6.24)

We insert this into the shape equation

d2u0

dϕ2
+
d2∆u

dϕ2
+ u0 + ∆u =

3GM

c2
(u0 + ∆u)2. (6.25)

The terms with u0 on the LHS give 0 together and we can leave them out. On the
RHS, we neglect ∆u against u0 and so the equation for ∆u becomes

d2∆u

dϕ2
+ ∆u =

3GM

c2
u2

0 =
3GM

c2b2
sin2 ϕ. (6.26)

This can be solved and again, you can check that the solution is the following

∆u(ϕ) =
3GM

2c2b2

(
1 +

1

3
cos(2ϕ)

)
. (6.27)
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We add this to u0(ϕ) and obtain the complete solution

u(ϕ) =
sinϕ

b
+

3GM

2c2b2

(
1 +

1

3
cos(2ϕ)

)
. (6.28)

How to understand this? Let's go back to �gure out the trajectory of the photon. It
will be bent. We can picture it in such a way that in comparison to straight line, it
will be de�ected by the angle ∆ϕ

2
at the beginning and at the end.

This is the situation for very huge r, or for u going to 0. The angle ϕ is very small
then and so we can approximate

sinϕ ≈ ϕ, cos(2ϕ) ≈ 1. (6.29)

The last equation then leads to the following

0 =
ϕ

b
+

3GM

2c2b2

(
1 +

1

3

)
, (6.30)

from which we can express the angle

ϕ = −2GM

c2b
. (6.31)

This is the angle at in�nite distance and so we know that it is the half of the
de�ection angle. Thus, for ∆ϕ we obtain

∆ϕ = −4GM

c2b
. (6.32)

We could evaluate this for photon just grazing the Sun, so b would be the Sun radius
andM its mass. This gives the photon grazing the Sun de�ection angle ∆ϕ = 1, 75′′.
This was a perturbative approach for the weak gravitational sources. For stronger
source, we just sketch the way towards the solution. It is more appropriate to use
the equation for ϕ as a function of r

dϕ

dr
=

1

r2

[
1

b2
− 1

r2

(
1− 2µ

r

)]− 1
2

, (6.33)

which was also derived in the previous chapter. We consider b > 3
√

3µ, when the
photon is not captured. In this case, the re�ection angle is given by the integration
of the last equation

∆ϕ = 2 ·
∫ ∞

0

1

r2

[
1

b2
− 1

r2

(
1− 2µ

r

)]− 1
2

dr. (6.34)

At the distance of the closest approach, the square bracket vanishes. So this is how
r0 is determined

1

b2
=

1

r2
0

(
1− 2µ

r0

)
. (6.35)
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6.3 Radar echoes

Next, we consider a situation when radar is �red from the Earth against a di�erent
planet and we are interested in the time delay until the echo bounces from the planet
and comes back. In particular, this situation is interesting when the radar photons
have to travel close to the Sun, because in that case, their trajectory is going to be
bent.
We shall use the Schwarzschild coordinates, particulary r, and again, we denote r0

the distance of the closest approach of the light ray to the Sun. We start from the
equation, which we derived in the previous chapter as the "energy" equation

ṙ2 +
h2

r2

(
1− 2µ

r

)
= c2k2. (6.36)

Recall that the dot denotes the derivative with respect to the a�ne parameter. But
now we are interested in the time duration so we want to introduce time to the
equation. To do this, we rewrite the derivative as

ṙ =
dr

dσ
=

dr

dt

dt

dσ
. (6.37)

The expression for dt
dσ

can be obtained from the null geodesics for the t coordinate,
which was also derived in the previous chapter

dt

dσ
= ṫ =

k

1− 2µ
r

. (6.38)

So by using this, we can write

ṙ2 =

(
dr

dt

)2
k2(

1− 2µ
r

)2 , (6.39)

and from the energy equation, we obtain

k2(
1− 2µ

r

)2

(
dr

dt

)2

+
h2

r2

(
1− 2µ

r

)
− c2k2 = 0. (6.40)

We divide it by k2 and the bracket 1− 2µ
r
and rewrite the equation

1(
1− 2µ

r

)3

(
dr

dt

)2

+
h2

k2r2
− c2

1− 2µ
r

= 0. (6.41)

We would like to integrate this equation, but before that, we rewrite it a little bit.
At the point of closest approach, the distance r has its minimum, so the derivative
dr
dt

∣∣
r=r0

vanishes and from the previous equation, we have

h2

k2r2
0

− c2

1− 2µ
r0

= 0, (6.42)
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which can be rewritten as
h2

k2
=

c2r2
0

1− 2µ
r0

. (6.43)

We use it in the equation (6.41) and work it out

1(
1− 2µ

r

)3

(
dr

dt

)2

+
c2r2

0

r2
(

1− 2µ
r0

) − c2

1− 2µ
r

= 0, (6.44)

(
dr

dt

)2

− c2

(
1− 2µ

r

)2

+ c2 r
2
0

r2

(
1− 2µ

r

)3

1− 2µ
r0

= 0, (6.45)

dr

dt
= c

(
1− 2µ

r

)[
1− r2

0

r2

1− 2µ
r

1− 2µ
r0

] 1
2

, (6.46)

dr

c
(
1− 2µ

r

) [
1− r20

r2
1− 2µ

r

1− 2µ
r0

] 1
2

= dt. (6.47)

By integrating this equation, we obtain the time, which it takes for the light to
arrive from the distance r0 to the distance r∫ r

r0

1

c
(
1− 2µ

r

) [1− r2
0

r2

1− 2µ
r

1− 2µ
r0

]− 1
2

dr = t(r, r0). (6.48)

For weak gravitational �elds, as is the case for planets around the Sun, the term 2µ
r0

is small and we can expand this up to the �rst order in µ
r
. This calculation is left as

an exercise for the reader. After approximately one page of calculations, you should
obtain

t(r, r0) =

∫ r

r0

r

c (r2 − r2
0)

1
2

[
1 +

2µ

r
+

µr0

r(r + r0)

]− 1
2

dr. (6.49)

The advantage of this expression is that it can be integrated analytically and we
obtain this result

t(r, r0) =

√
r2 − r2

0

c
+

2µ

c
ln

[
r +

√
r2 − r2

0

r0

]
+
µ

c

√
r − r0

r + r0

. (6.50)

The �rst term here gives just the time it would take the light to travel along a
straight path from the distance r to r0, because this is the Pythagorean theorem,
when the hypotenuse of the triangle is calculated. The second and the third terms
give the extra time, which it takes due to travel along the curved path.
Let's express the excess time it takes for example from Earth to Venus. We have to
add together the time from Earth to the point of the closest approach, then from
the point of the closest approach to Venus and multiply that with 2, because the
photon has to travel there and back

∆t = 2

[
t(rE, r0) + t(rV , r0)−

√
r2
E − r2

0

c
−
√
r2
V − r2

0

c

]
. (6.51)
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We can simplify this, because r0 is much smaller than rV and it is also much smaller
than rE. So we neglect r0

t(rx, r0)−
√
r2
x − r2

0

c
≈ 2µ

c
ln

[
2rx
r0

]
+
µ

c
, (6.52)

and then, we have ∆t like this

∆t = 2

[
2µ

c
ln

(
2rE
r0

)
+

2µ

c
ln

(
2rV
r0

)
+
µ

c
+
µ

c

]
, (6.53)

∆t =
4µ

c

[
ln

(
4rErV
r2

0

)
+ 1

]
, (6.54)

=⇒ ∆t =
4GM

c3

[
ln

(
4rErV
r2

0

)
+ 1

]
. (6.55)

This is the result in leading order of µ and actually, this is not really measurable on
the Earth, because the measurement would be made in proper time of the Earth,
which is related to the global time like this

∆τ =

(
1− 2µ

rE

) 1
2

∆t. (6.56)

But from this relation, we see that the correction is in sub-leading order in µ
r
. So the

resulting time delay is of the order of hundreds of microseconds, which is measurable.
But actually it is not easily measured, because ∆t depends on rE, rV and r0 and
they must be determined properly.
What is usually done, is that this formula is combined with the prediction of the
orbits and the time delay is measured for di�erent positions and the whole model is
checked against the data.

6.4 Accretion disks around compact objects

Next, the radiation from the accretion disks around compact objects will be dis-
cussed. The physics mechanism is that these disks are heated up very much, usually
by friction, which microscopically means by collisions of particles within those disks.
The good thing is, that it also radiates the characteristic X-ray spectrum, because
some atoms still retain some of their electrons. They can be excited and then de-
excited and this produces the spectral lines. Notably, there is this iron line of 6.4 keV,
which is in the middle of the X-ray spectrum. These photons actually act as a probe
of the space-time geometry and we are going to explain how.
Those photons are emitted somewhere close to the compact object and absorbed
very far away. So �rst of all, they are redshifted due to gravity. But then, they are
also Doppler-shifted, when they are emitted from a moving source. The problem
is, that a faraway observer cannot usually resolve di�erent position of the accretion
disks, and so he or she gets an integrated spectrum, where all redshifts and Doppler
shifts are added together. It should be added, however, that there was the obser-
vation of the black hole in the center of our Galaxy just last year, where just this
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was accomplished and the di�erent positions were resolved. But still, we will keep
in mind that in most of the cases, only the integrated spectrum is observed. This
just means, that we see the broaden spectral lines of some shape and the shape of
those broaden spectral lines is given by the integration of all the shifts.
What we will now be interested in is the ratio of the received and the emitted
frequency. That can be expressed like this

νR
νE

=
~p(R) · ~uR
~p(E) · ~uE

=
pµ(R)uµR
pµ(E)uµE

, (6.57)

where we have the photon 4-momentum p and the 4-velocities of the receiver and
the emitter. The numerator refers to the receiving point and the denominator to the
emitting point. We use here the Schwarzschild coordinate system with t, r, ϑ and ϕ
and we limit ourselves to the ϑ = π

2
-plane. The receiver is at rest far away from the

massive body, and so his 4-velocity is just [uµR] = (1, 0, 0, 0). We will now assume
an emitter moving along a circular orbit, so it will have the third component of the
velocity [uµE] = (u0

E, 0, 0, u
3
E). We work this out

u3
E =

dϕ

dτ
=

dϕ

dt

dt

dτ
= Ωu0

E, (6.58)

where Ω is the angular velocity of this massive particle and it was derived in the
previous chapter as

Ω :=
dϕ

dt
=

√
GM

r3
= c

√
µ

r3
. (6.59)

And so we summarize the emitting 4-velocity as [uµE] = u0
E(1, 0, 0,Ω). The 0th

component can now be �xed, because we know that

gµνu
µuν = c2. (6.60)

We employ the Schwarzschild metric and calculate

c2

(
1− 2GM

c2r

)
(u0

E)2 − r2(u0
E)2Ω2 = c2, (6.61)

(u0
E)2

[
c2

(
1− 2GM

c2r

)
− r2GM

r3

]
= c2, (6.62)

(u0
E)2 =

c2

c2
(
1− 3GM

c2r

) , (6.63)

u0
E =

1√
1− 3µ

r

. (6.64)

We insert this into the ration of frequencies and get

νR
νE

=
p0(R)

p0(E)u0
E + p3(E)u3

E

=

√
1− 3µ

r

p0(R)

p0(E)

1

1 + p3(E)
p0(E)

Ω
. (6.65)

Now we use the fact that Schwarzschild metric is static, so it does not depend on
time. When we discussed geodesics, we said that an independance means that the
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corresponding component of the tangent vectors to the geodesics is conserved. Mo-
mentum is tangent to the geodesics and so its 0th component is conserved. Therefore,
p0 is the same at the place of the emitter as it is at the place of the receiver and
their ratio is 1. So the last item that we have to �x is the ratio of p3 and p0.
Here we use the fact that the photon moves along a null geodesic (gµνpµpν = 0) and
so the 4-momentum must obey

1

c2

(
1− 2µ

r

)−1

(p0)2 −
(

1− 2µ

r

)
(p1)2 − 1

r2
(p3)2 = 0. (6.66)

The result will depend on the angle, under which the photon is emitted. We can con-
sider here two special cases. If the photon is emitted radially, which is perpendicular
to the movement of the emitter, then p3 = 0 and the frequency ratio is

νR
νE

=

√
1− 3µ

r
, ϕ = 0. (6.67)

The second case we look at is when the photon is emitted in the direction of the
emitter or exactly in the opposite direction (ϕ = ±π

2
). Then we have for p3(E)

p0(E)

p3(E)

p0(E)
= ± r

c
√

1− 2µ
r

, (6.68)

and we have to accept both signs, since they are both allowed by the relation for
the null geodesic. Then �nally we have for the ratio of the frequencies

νR
νE

=

√
1− 3µ

r

1

1± rΩ

c
√

1− 2µ
r

=

√
1− 3µ

r

1

1±
√

µ
r√

1− 2µ
r

=

√
1− 3µ

r

1± 1√
r
µ
−2

. (6.69)

The upper sign is for emitter that moves away from the observer and the lower sign
is for emitter that moves towards the observer. If the disk would be observed face
on, then the formula, which was derived for radially emitted photon, applies.
As was said at the beginning, the full observed spectrum includes photons, with
all possible frequency shifts. Still, we can calculate the smallest possible frequency,
which would be emitted from the inner most circular orbit, which is at r = 6µ. For
photons observed edge-on, we obtain

νR
νE

=

√
1− 3µ

6µ

1± 1√
6µ
µ
−2

=

1√
2

1 + 1
2

=

√
2

3
≈ 0, 47. (6.70)

And for face-on, we get

νR
νE

=

√
1− 3µ

6µ
=

1√
2
≈ 0, 71. (6.71)

The detailed shape of the spectrum implicitly carries information about the metric
around massive gravitating body.
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6.5 The geodesic precession of gyroscopes

Finally, we add one more experimentally observed e�ect, which is the precession of
spin. Let's imagine a small massive test body, which has a spin. Spin is a vector and
so it will be assigned a 4-vector in the space-time. In the instantaneous rest frame of
the test body, spin only has spacelike components. On the other hand, the 4-velocity
in that frame only has a timelike component. So it must always hold

~s · ~u = gµνs
µuν = 0, (6.72)

in other words, spin is perpendicular to velocity.
So let's say that a test body moves along a geodesics and the 4-velocity is always
tangential to the geodesics and it satis�es this equation

duµ

dτ
+ Γµνσu

νuσ = 0. (6.73)

Since the spin must always be perpendicular to the 4-velocity, it will be parallel
transported along the geodesics. Its components satisfy this equation

dsµ

dτ
+ Γµνσs

νuσ = 0. (6.74)

Now we solve it for Schwarzschild metric in the equatorial plane with θ = π
2
and we

do it for circular motion. Many Christo�el symbols are in this case zero and what
remains are these 4 equations for each of the components of the 4-spin

ds0

dτ
+ Γ0

10s
1u0 = 0, , (6.75)

ds1

dτ
+ Γ1

00s
0u0 + Γ1

33s
3u3 = 0, (6.76)

ds2

dτ
= 0, (6.77)

ds3

dτ
+ Γ3

13s
1u3 = 0, (6.78)

where the corresponding Christo�el symbols are

Γ0
10 =

µ

r2

(
1− 2µ

r

)−1

, (6.79)

Γ1
00 =

c2µ

r2

(
1− 2µ

r

)
, (6.80)

Γ1
33 = −r

(
1− 2µ

r

)
, (6.81)

Γ3
13 =

1

r
. (6.82)

From the previous discussion of the accretion disks, we know the components of the
4-velocity, which are constant [uµ] = u0(1, 0, 0,Ω). The 0th component and Ω are
given by following relations

u0 =
dt

dτ
=

(
1− 3µ

r

)− 1
2

, Ω =
dϕ

dt
= c

√
µ

r3
. (6.83)
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Since there is no 1st and 2nd component in the 4-velocity, it simpli�es the orthogo-
nality condition

gµνu
µsν = c2

(
1− 2µ

r

)
u0s0 − r2u3s3 = 0. (6.84)

From this, we express s0

s0 =
r2

c2
(
1− 2µ

r

) u3

u0︸︷︷︸
Ω

s3 =
Ωr2

c2
(
1− 2µ

r

)s3. (6.85)

We can use this in the equation for the parallel transport of s0 and get

0 =
ds0

dτ
+ Γ0

10s
1u0 =

Ωr2

c2
(
1− 2µ

r

) ds3

dτ
+
µ

r2

1

1− 2µ
r

s1u
3

Ω

=⇒ Ωr2

c2

ds3

dτ
+
µ

r2

1

Ω
s1u3 = 0.

(6.86)

This equation is then multiplied by Ωr
µ
and we get

Ω2 r3

µc2︸︷︷︸
Ω−2

ds3

dτ
+

1

r︸︷︷︸
Γ3

13

s1u3 = 0 =⇒ ds3

dτ
+ Γ3

13s
1u3 = 0, (6.87)

which is identical to the parallel transport equation for the 3rd component. So we
are left with only three equations for parallel transport of spin.
We write out the equation for the �rst component with insertion of the Christo�el
symbols and the velocity and s0 components and work it out

ds1

dτ
+
c2µ

r2

(
1− 2µ

r

)
Ωr2

c2
(
1− 2µ

r

)s3u0 − r
(

1− 2µ

r

)
s3Ωu0 = 0, (6.88)

ds1

dτ
+ µΩs3u0 − r

(
1− 2µ

r

)
Ωs3u0 = 0, (6.89)

ds1

dτ
−
[
r

(
1− 2µ

r

)
− µ

]
Ωs3u0 = 0. (6.90)

We multiply the term in the brackets and insert the relation for u0

ds1

dτ
− [r − 3µ] Ωs3 1√

1− 3µ
r

= 0, (6.91)

ds1

dτ
− r

1− 3µ
r√

1− 3µ
r

Ωs3 = 0. (6.92)

Since the fraction is 1
u0
, we arrive to the �nal equation for s1

ds1

dτ
− rΩ

u0
s3 = 0. (6.93)
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The equation for the 2nd component is easy

ds2

dτ
= 0. (6.94)

And the equation for the 3rd component also. We just rewrite u3

ds3

dτ
+

Ωu0

r
s1 = 0. (6.95)

Next, we eliminate s3 from the �rst equation by taking one more derivative (note
that u0 does not depend on τ)

d2s1

dτ 2
− rΩ

u0

ds3

dτ
= 0. (6.96)

Here, we insert the derivative of s3 from the third equation and arrive to the modi�ed
equation for s1

d2s1

dτ 2
+
rΩ

u0

Ωu0

r
s1 = 0 =⇒ d2s1

dτ 2
+ Ω2s1 = 0. (6.97)

Finally, it is more practical to use the derivative with respect to global time coordi-
nate instead of the proper time τ . We rewrite the derivatives like this

d

dτ
=

dt

dτ

d

dt
= u0 d

dt
. (6.98)

This takes us to the �nal set of equations for the transport of the spin components

d2s1

dt2
+

(
Ω

u0

)2

s1 = 0, (6.99)

ds2

dt
= 0, (6.100)

ds3

dt
+

Ω

r
s1 = 0. (6.101)

We solve this for the spin, which is originally oriented in the radial direction, so its
2nd and 3rd components vanish. The solution is

s1(t) = s1(0) cos

(
Ω

u0
t

)
= s1(0) cos (Ω′t) , (6.102)

s2(t) = 0, (6.103)

s3(t) = −u
0

r
sin

(
Ω

u0
t

)
= − Ω

rΩ′
sin (Ω′t) . (6.104)

Here, we introduced the modi�ed angular velocity, with which the spin rotates

Ω′ =
Ω

u0
= Ω

√
1− 3µ

r
< Ω. (6.105)

The 3rd component is negative times the sinus, and so the spin rotates in the opposite
direction than the test particle moves. Since Ω′ < Ω, when the particle completes
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one revolution, the spin has not yet completed the revolution. We easily �nd its
angle, because the period is 2π

Ω

α = 2π − 2π

Ω
Ω′ = 2π

(
1− Ω′

Ω

)
. (6.106)

We work out the Ω′ here

α = 2π

1−
Ω
√

1− 3µ
r

Ω

 , (6.107)

and �nally obtain for the shift of the spin angle after one revolution

α = 2π

(
1−

√
1− 3µ

r

)
. (6.108)

This is called geodesic precession e�ect. It should be measurable, if a gyroscope is let
to �y on a circular orbit around some mass. For a near Earth orbit, the precession
rate is some 8 arcsec per year. NASA actually measured this with a satellite mission
from 2004 to 2010, which was called Gravity Probe B. To say the complete truth,
one should say that there was yet another e�ect, and that was the dragging of the
space-time coordinates because of the rotation of the Earth. But this is not a part
of the Schwarzschild metric, so we have not yet discussed it. It is a part of the Kerr
metric.
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Chapter 7

Schwarzschild black holes

This chapter shall further explore the applications of the Schwarzschild solution.
The singularity at the Schwarzschild radius will be particularly discussed and it will
be shown, that it is only a singularity of the coordinates and not the singularity
of the space-time. The black holes, which are massive bodies with the radius being
smaller than the Schwarzschild radius, will be introduced and the chapter will also
look at the physical processes in their neighborhood.
Today, we have the evidence that black holes really exist. Let's shortly explain why
this is not so straightforwardly obvious. We will work out the nice mathematics
about singularities in Schwarzschild metric, but this applies to spherical symmetry.
If we include the angular momentum, then we still have cylindric symmetry and the
Kerr metric. No real system is ever precisely symmetric. So since the black holes
are so absurd, you might hope that any breaking of the symmetry would cause the
singularity to disappear. Here comes the great result of Roger Penrose. He showed
that the conjecture that there are singularities and event horizons is robust and valid
also in realistic simulations. That is why he got the 2020 Nobel prize.
Let's study the formalism of Schwarzschild metric. Basically, in all chapters so far,
we discussed the situation in distances larger than 2µ where there was a singularity
in this metric. We now look at the interior region below the singularity and the
singularity itself

7.1 Coordinates and singularities

To begin with, let's write the form of the Schwarzschild metric

ds2 = c2

(
1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2. (7.1)

Obviously, there are singularities at r = 0 and rS = 2GM
c2

.
First, we will look at the second one, which is called the Schwarzschild radius. It may
or may not be in the validity domain of Schwarzschild solution. Remember, that this
is vacuum solution with zero Ricci tensor outside of the gravitating mass. So if the
star radius is bigger than rS, then the metric does not apply at this radius anymore.
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But if the radius of the massive body is smaller than rS, then the singularity is in
the domain of the validity of the Schwarzschild metric.
Schwarzschild radius is easy to calculate and for the Sun, it is 2.95 km. This is much
less than the radius of the Sun, which is 700,000 km, so there is no singularity for
the Sun and similar stars.
Anyway, let's assume the situation that the gravitating mass is enclosed within the
Schwarzschild radius and let's �rst look at the interior. The �rst thing that we
notice is that the zero-zero and one-one components of the metric tensor changed
their signs

g00 < 0, g11 > 0. (7.2)

The consequence of that is, that t coordinate becomes spacelike and the r coordinate
becomes timelike. That is really strange and a question is immediately at hand: What
does this mean? The point is that the timelike direction determines how the light
cones are oriented and the light cones tell you, where are the events that can be
causally connected. So this is clearly a physically relevant and important question.
Let's investigate this. First, we look at the photon worldlines, which determine the
light cones, and then at the motion of massive particles.

7.1.1 Radial photon worldlines in Schwarzschild coordinates

Let's write down the metric in a simpler way, when we put together the angles into
a solid angle

ds2 = c2

(
1− 2µ

r

)
dt2 −

(
1− 2µ

r

)−1

dr2 − r2dΩ2. (7.3)

We discuss radially moving photons, and so ds2 = 0 and dΩ2 = 0. Then, we easily
obtain (

dt

dr

)2

=
1

c2

(
1− 2µ

r

)−2

, (7.4)

dt

dr
= ±1

c

(
1− 2µ

r

)−1

. (7.5)

For the plus sign, r grows with time in the outside region and so it is outgoing
photon. The minus sign is for incoming photon. Integrating the equation gives us
the solution

ct = r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣+ const. outgoing, (7.6)

ct = −r − 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣+ const. incoming. (7.7)

So what do these curves look like? These curves can be drawn in a diagram with
t and r coordinates (Fig. 7.1) and show the position of the Schwarzschild radius.
Divide the space into region I outside the Schwarzschild radius (r > 2µ) and II
inside it.
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Figure 7.1: Radial photon worldlines in Schwarzschild coordinates. Green lines cor-
respond to outgoing photons, red lines correspond to incoming photons and blue
cones correspond to light cones.

Let's �rst look at the outgoing photons. Depending on the value of the constant,
we obtain di�ferent worldlines, which correspond to photons moving at di�erent
times. At region I, the logarithms go to minus in�nity as r goes to 2µ. But there is
also a branch of this function in the region II. Similarly, with di�erent values of the
constant, we get other outgoing worldlines.
The incoming worldlines go to plus in�nity as r approaches the Schwarzschild radius.
This is also true in region II. The light cones are oriented upwards in region I, but
they are oriented inwards in the interior region, because t and r have swapped their
signs in the metric. In region 2, all photon worldlines would end at r = 0, but there
is real singularity there. Moreover, any massive particle must move within the light
cone, and so once it �nds itself in region II, it must end up in the singularity at
r = 0.

7.1.2 Radial massive particle worldlines

Let's now look at the situation with massive particles, which radially fall in. The
situation was discussed in the chapter with Schwarzschild metric. It was derived
there, how the proper time advances for a massive particle that is infalling towards
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Figure 7.2: Trajectory of a radially infalling particle released from rest at in�nity.
The dots correspond to unit intervals of cτ/µ, where τ is the particle's proper time
and we have taken τ = t = 0 at r0 = 8µ.

the gravitating mass

τ =
2

3

√ r3
0

2µc2
−

√
r3

2µc2

 . (7.8)

It is assumed here that the particle started at r = r0 at τ = 0 (at rest). Also, the
coordinate time, which it takes to fall from r0 to r was derived there

t =
2

3

√ r3
0

2µc2
−

√
r3

2µc2

+
4µ

c

(√
r0

2µ
−
√

r

2µ

)
+

2µ

c
ln

∣∣∣∣∣∣
√

r
2µ

+ 1√
r

2µ
− 1

√
r0
2µ
− 1√

r0
2µ

+ 1

∣∣∣∣∣∣ .
(7.9)

The trajectory of the massive particles was described there, but only in the outside
region. Now we can also continue to the inside region. Moreover, we can denote
points, at which the particle reaches an equidistant time instant that is depicted in
Fig. 7.2.
In Fig. 7.2, there is a particle that starts at r = 8µ. We have previously seen the
branch in the outside region, which diverges in coordinate time. But now, we also
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see that within �nite proper time, the trajectory re-emerges in the inside region
from the plus in�nite coordinate t and continues towards smaller and smaller r. It
reaches r = 0 in �nite proper time. Strangely, it goes backwards in the coordinate
t. What does that mean? The t coordinate is not really suitable for description of
the inside region. It is the time coordinate at in�nite distance, but it cannot be
interpreted as time below the Schwarzschild radius. Since the proper time remains
�nite throughout the whole trajectory of the particle, it might be, that the singularity
of the Schwarzschild radius is just an issue of the metric and not of the space. In
such a case, it might disappear in more suitable coordinates.

7.1.3 Eddington-Finkelstein (EF) coordinates

The idea how to construct suitable coordinates, which would smoothly connect the
exterior region with the interior region might be the following, use geodetics. They
smoothly take either a particle or a photon from one region to the other and they are
well de�ned and independent of any coordinate system. The technical advantage is
also that for description of objects, for which those geodesics are de�ned, it is enough
to say that one of the coordinates is constant and their trajectory is speci�ed.

Advanced Eddington-Finkelstein coordinates

The advanced Eddington-Finkelstein coordinates will be de�ned, when we use the
worldlines of radially incoming photon. They were given together with constant p

ct = −r − 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣+ p, (7.10)

so that the new coordinate will be

p = ct+ r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ . (7.11)

We will replace the t coordinate in the Schwarzschild metric. To get the metric, we
have to di�erentiate

dp = cdt+ dr + 2µ

1
2µ

r
2µ
− 1

dr, (7.12)

dp = cdt+

(
1 +

1
r

2µ
− 1

)
dr, (7.13)

dp = cdt+

r
2µ

r
2µ
− 1

dr, (7.14)

dp = cdt+
r

r − 2µ
dr. (7.15)

And then express dt

dt =
1

c
dp− 1

c

r

r − 2µ
dr. (7.16)
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In the metric, we shall need dt2

dt2 =
1

c2
dp2 − 2

c2

r

r − 2µ
dpdr +

1

c2

(
r

r − 2µ

)2

dr2. (7.17)

We insert this into the Schwarzschild metric

ds2 = c2

(
1− 2µ

r

)[
1

c2
dp2 − 2

c2

r

r − 2µ
dpdr +

1

c2

(
r

r − 2µ

)2

dr2

]
−

−
(

1− 2µ

r

)−1

dr2 − r2dΩ2

(7.18)

ds2 =

(
1− 2µ

r

)
dp2 − 2dpdr − r2dΩ2. (7.19)

So we have used geodesics of the radially incoming photon. This should be par-
ticularly simple in this new coordinate system. Let's write down the null geodesic
again

0 =

(
1− 2µ

r

)
dp2 − 2dpdr, (7.20)(

1− 2µ

r

)(
dp

dr

)2

− 2
dp

dr
= 0. (7.21)

This is a quadratic equation, which has two solutions. The �rst is

dp

dr
= 0 =⇒ p = const. (7.22)

Clearly, this is the one which we have used to de�ne the new coordinate. The other
solution is

dp

dr
= 2

(
1− 2µ

r

)−1

=⇒ p = 2r + 4µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣+ const. (7.23)

This is the null geodesic for a radially outgoing photon.
We have introduced this p coordinate, but that can be a little unfamiliar. It is a
null coordinate (or a light cone coordinate). It is more common to work with a set
of coordinates, when there is one timelike coordinate and so one introduces t′ as

ct′ = p− r = ct+ 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ . (7.24)

Again, we want to �nd the metric, so we di�erentiate

cdt′ = cdt+ 2µ

1
2µ

r
2µ
− 1

dr = cdt+
1

r
2µ
− 1

dr, (7.25)

express dt

dt = dt′ − 1

c

1
r

2µ
− 1

dr, (7.26)
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Figure 7.3: Radial photon worldlines in advanced Eddington-Finkelstein coordinates.
Red lines correspond to incoming photons, green lines correspond to outgoing pho-
tons and blue cones correspond to light cones.

and take the square

dt2 = dt′2 − 2

c

1
r

2µ
− 1

dt′dr +
1

c2

1(
r

2µ
− 1
)2dr

2. (7.27)

Put this into the Schwarzschild metric

ds2 = c2

(
1− 2µ

r

)dt′2 − 2

c

1
r

2µ
− 1

dt′dr +
1

c2

1(
r

2µ
− 1
)2dr

2

−
−
(

1− 2µ

r

)−1

dr2 − r2dΩ2,

(7.28)

ds2 = c2

(
1− 2µ

r

)
dt′2 − 2c

2µ

r

1− 2µ
r

1− 2µ
r

dt′dr +

(
2µ

r

)2 1− 2µ
r(

1− 2µ
r

)2dr
2−

−
(

1− 2µ

r

)−1

dr2 − r2dΩ2,

(7.29)

ds2 = c2

(
1− 2µ

r

)
dt′2 − 4cµ

r
dt′dr −

1−
(

2µ
r

)2

1− 2µ
r

dr2 − r2dΩ2. (7.30)
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This �nally gives the line element in the advanced Eddington-Finkelstein coordinates

ds2 = c2

(
1− 2µ

r

)
dt′2 − 4cµ

r
dt′dr −

(
1 +

2µ

r

)
dr2 − r2dΩ2. (7.31)

Let's �nally rewrite the photon worldlines in these coordinates. We actually just use
the previously derived relation for p and r and we get

ct′ = −r + const. (7.32)

for incoming photon and

ct′ = r + 4µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣+ const. (7.33)

for outgoing photon.
Again, we can draw the light cones in these coordinates (Fig. 7.3). The vertical axis
is now t′ and the horizontal axis is r. We have the Schwarzschild radius at 2µ. The in-
coming photons travel along straight lines at 45◦. They easily cross the Schwarzschild
radius. The outgoing photon travel along the path given by the logarithm. In the
internal region, these world lines are bent towards r = 0. So the incoming photon
lines are continuous, but there is discontinuity for the outgoing lines. The crossings
of these two sets of worldlines de�ne the lightcones. It is clear from the picture, that
below the Schwarzschild radius, all light cones are completely directed towards the
singularity at r = 0 so there is no escape from that region. The Schwarzschild radius
de�nes the event horizon. Finally, any massive particle will move along a trajectory
fully within the light cones.

7.1.4 Retarded Eddington-Finkelstein coordinates

We can use an analogical coordinate transformation, when we use the radially out-
going photons to de�ne the new metric.
We denote the coordinate q and write

q = ct− r − 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ . (7.34)

With this, the metric can be derived as

ds2 =

(
1− 2µ

r

)
dq2 + 2dqdr − r2dΩ2. (7.35)

However again, this is a null coordinate and so one usually introduces another new
timelike coordinate t∗

ct∗ = q + r = ct− 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ . (7.36)

This de�nes the retarded Eddington-Finkelstein coordinates (t∗, r, θ, ϕ).
The metric is very similar to the advanced Eddington-Finkelstein coordinates. It is
obtained just by time reversal of the line element

ds2 = c2

(
1− 2µ

r

)
dt∗2 +

2cµ

r
dt∗dr −

(
1 +

2µ

r

)
dr2 − r2dΩ2. (7.37)
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As a result of this, also the light cone structure changes. The radially outgoing pho-
tons follow straight lines under 45◦ angle, but the incoming null geodesics go to
plus in�nity as r approaches the Schwarzschild radius. Now this is strange. It looks
like the outgoing photons can always pass, but there is no way inwards through the
event horizon for incoming photons. Such a strange object is called white hole. It is
a question if such object exists at all actually.
How can it be that we just choose a di�erent set of coordinates and obtain qualita-
tively di�erent solutions? The key to the problem is realising that we have extended
Schwarzschild solution, which is, however, only valid in the exterior region. And we
have chosen two di�erent extensions.

7.2 Gravitational collapse and black hole formation

As was said, the black holes are rather strange objects and so it is a question how
could they exist. The idea is that they may appear after gravitational collapse. If
you have a massive body like a star, it may be vulnerable to gravitational collapse,
because gravity force is always attractive. So for a star to be stable, there must be
another force to counter-balance it. In a star that force is nuclear synthesis, which
releases heat. But once there are no more nuclei available for the synthesis, it stops
and the gravity wins.
A star like our Sun would shrink to a radius of a few thousand kilometers and would
become a white dwarf. The stability against further shrinking is guaranteed by the
degenerate elecrton gas, which appears in the interior of the white dwarf. The Fermi
energy grows if the density is increased, and so it costs energy to reduce the size
further. This acts like pressure and is called Fermi pressure. However, in 1930, an
Indian physicist Subrahmanyan Chandrasekhar found out that for masses greater
than 1.4 solar masses, the gravity overwhelms the Fermi pressure and the collaps
goes further. This value is commonly known as the Chandrasekhar limit.
If the mass is not too high, the matter may transform into some new form and a
compact star is born. This used to be called a neutron star, but now it is a subject
of investigation as of what kind of matter is inside. It may be neutrons, it may
be hadrons, kaons, or even some kind of decon�ned matter we do not know yet.
The maximum possible mass of a compact star is also an important question being
researched. It now seems that it might be somewhere above 2 solar masses. This
maximum is called the Oppenheimer-Volko� limit.
Heavier objects collapse into black holes. As was mentioned, Penrose showed that
this is a robust solution and that there must be a singularity at r = 0. Strictly
speaking, the space-time curvature diverges there and general relativity cannot be
applied. So let's now investigate the kinetics of such a collapse.

7.2.1 Spherically symmetric collapse of dust

Imagine a microscopic baron Munchausen who sits on a particle of dust, which is
attracted to gravity center. We will stay outside and observe him from a very large
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and safe distance. Consider his ride on the dust particle as a model of a gravitational
collapse of such a dust cloud. We shall describe this ride in the advanced Eddington-
Finkelstein coordinates in a space-time diagram.

Figure 7.4: Collapse of the surface of a pressureless star to form a black hole in
advanced Eddington-Finkelstein coordinates. The star's surface started at rest at
in�nity, and we have chosen τ = 0 at r = 8µ.

In Fig. 7.4, the dust particle stands at distance 8µ. The dots show its positions at
equidistant time intervals. Clearly, it always moves within the light cones. In �nite
time, it crosses the event horizon and later, it reaches the singularity. Moreover,
so that we as the observer can observe its trajectory, the baron who sits on the
dust particle sends photons to us at regular intervals. As you can see, because of
the curvature, these null geodesics arrive to the observer further and further apart
in time. So �rst of all, the observer sees the baron slowing down. And second,
the observer also sees the baron with less and less luminosity, because less and
less photons arrive to him. The last photon to arrive is radiated just above the
event horizon. It arrives at in�nite time. All subsequent photons are radiated along
worldlines that end up in the singularity.
Let's work this out quantitatively and let's use again the Schwarzschild coordinates,
because we have already derived the formulas that we will need. First, we look at
the time delay it takes for a photon to travel from the emitter, which is the dust
particle, to the distant observer. We use the subscript E for the emitter coordinates
and R for the receiver coordinates. They both lay along the null geodesics, and so
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we can set up this equation for them

ctE − rE − 2µ ln

∣∣∣∣rE2µ
− 1

∣∣∣∣ = ctR − rR − 2µ ln

∣∣∣∣rR2µ
− 1

∣∣∣∣ . (7.38)

The procedure is now going to be that we express rE, the radial coordinate of the
emitter, as it is seen by the observer at the time tR. So we want rE = rE(tR) and
we do it for rE getting close to the Schwarzschild radius 2µ. We start by collecting
the logarithms on one side and the rest on the other side

ln

rR
2µ
− 1

rE
2µ
− 1

=
c

2µ
(tR − tE)− rR − rE

2µ
. (7.39)

We do not write the absolute values here, because all the arguments are positive.
We now want to get rid of rE on the RHS and we use the expression that we have
derived previously for the coordinate time it takes a massive particle to fall towards
the event horizon

tR−tE =
2

3

√ r3
R

2µc2
−

√
r3
E

2µc2

+
4µ

c

(√
rR
2µ
−
√
rE
2µ

)
+

2µ

c
ln

∣∣∣∣∣∣
√

rE
2µ

+ 1√
rE
2µ
− 1

√
rR
2µ
− 1√

rR
2µ

+ 1

∣∣∣∣∣∣ .
(7.40)

And now, we investigate the situation for rE close to the event horizon. So we
introduce a small parameter

ε =

√
rE
2µ
− 1,

{√
rE
2µ

+ 1 = 2 + ε;
rE
2µ

= (1 + ε)2 ≈ 1 + 2ε

}
. (7.41)

We rewrite equation (7.39) in terms of ε up to �rst order

ln

rR
2µ
− 1

ε(2 + ε)
=

c

2µ
(tR − tE)− rR

2µ
+ 1 + 2ε. (7.42)

And the equation for coordinate time up to �rst order in ε becomes

c

2µ
(tR − tE) =

2

3

(
rR
2µ

) 3
2

+ 2

√
rR
2µ
− 8

3
− 4ε+ ln

2 + ε

ε

√
rR
2µ
− 1√

rR
2µ

+ 1

 . (7.43)

We express the linear terms with ε from the second equation and insert them into the
�rst one. We also summarize into capital letters the constants, which only depend
on rR or µ

ln
R

ε(2 + ε)
− 1

2
ln

(2 + ε)Q

ε
=

c

4µ
(tR − tE) +

1

3

(
rR
2µ

) 3
2

− rR
2µ

+

√
rR
2µ
− 1

3
, (7.44)

ln
1

√
ε(2 + ε)

3
2

+ lnR′ =
c

4µ
(tR − tE) +R′′. (7.45)

In the logarithm, we can neglect ε against 2

−1

2
ln ε ≈ c

4µ
(tR − tE) +R′′′, (7.46)
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and then exponentiate the equation

ε ≈ A · exp

(
− c

2µ
(tR − tE)

)
. (7.47)

We want to return to the position of the emitter√
rE
2µ
≈ 1 + A · exp

(
− c

2µ
(tR − tE)

)
. (7.48)

The exponential must be small and so we can use the approximate formula, when
we take the square

rE ≈ 2µ+ a · exp

(
− c

2µ
(tR − tE)

)
. (7.49)

How do we read this result? As the position of the emitter approaches the event
horizon, the time when its photons arrive to the observer must grow. So that rE
approaches exponentially, tR must be very large.

Ratio of frequencies

The ratio of frequencies seen by the observer and emitted by the observer is

νR
νE

=
uµRpµ(R)

uµEpµ(E)
. (7.50)

We have calculated similar ratios in previous chapter already, when we looked at
the radiation from the accretion disks.
The velocity of the emitter is

[uµE] =

((
1− 2µ

r

)−1

,−
√

2µc2

r
, 0, 0

)
, (7.51)

and that of the stationary observer at in�nity is

[uµR] = (1, 0, 0, 0). (7.52)

So the ratio of the frequencies is here

νR
νE

=
p0(R)

u0
Ep0(E) + u1

Ep1(E)
=

[
u0
E +

p1(E)

p0(E)
u1
E

]−1

, (7.53)

where p0 is conserved, because the metric is stationary.
We use that the photon travels along a null geodesics

1

c2

(
1− 2µ

r

)−1

(p0)2 −
(

1− 2µ

r

)
(p1)2 = 0, (7.54)

so if the photon is radially outgoing, then we have

p1 = −1

c

(
1− 2µ

r

)−1

p0. (7.55)
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And so this is the ratio of the frequencies

νR
νE

=
1− 2µ

rE

1 +
√

2µ
rE

= 1−
√

2µ

rE
. (7.56)

Again, for rE close to event horizon, we expand this for a small parameter δ

rE
2µ
− 1 = δ, (7.57)

=⇒ 1−
√

2µ

rE
= 1− 1√

1 + δ
≈ 1− 1 +

δ

2
=
δ

2
=
rE − 2µ

4µ
. (7.58)

And so we �nally get
νR
νE
≈ rE − 2µ

4µ
. (7.59)

The ratio clearly drops to zero as rE goes to the event horizon.

7.3 Kruskal coordinates

The Eddington-Finkelstein coordinates seemed to be better for the description of
worldlines that cross the event horizon, but they only worked in one direction. Martin
Kruskal found a way of extending the Schwarzschild coordinates so that they work
in both directions.
On the way to derive the Kruskal coordinates, we start by using p and q from the
Eddington-Finkelstein coordinates. The metric becomes the following

ds2 =

(
1− 2µ

r

)
dpdq − r2(dϑ2 + sin2 ϑdϕ2). (7.60)

And r is now implicitly de�ned as a function of p and q

1

2
(p− q) = r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ . (7.61)

Let's now explore the 2-dimensional subspace with ϑ and ϕ set to constants. So its
metric is

ds2 =

(
1− 2µ

r

)
dpdq. (7.62)

Now we replace the null-coordinates p and q with standard Schwarzschild time

ct =
1

2
(p+ q), (7.63)

and the new spacelike coordinate

r̃ =
1

2
(p− q) = r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ . (7.64)
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The new metric is

ds2 =

(
1− 2µ

r

)
(c2dt2 − dr̃2) = Ω2(x)ηµνdx

µdxν . (7.65)

This metric has a form of Minkowski metric multiplied by conformal scaling factor
Ω2. The space is curved because of the presence of Ω, but the line element of this
form is set to be conformally �at. This Ω factor is just scaling, which scales both
time and space coordinates in the same way. So it will not change the structure of
the light cones and they will look like in Minkowski space, but with the slopes +1
or -1.
There is still a pathology in this metric, when r goes to 2µ and we would like
to remove it. This can be done by a further coordinate transformation from the
Eddington-Finkelstein pair of coordinates to

p̃ = exp

(
p

4µ

)
, q̃ = − exp

(
q

4µ

)
. (7.66)

Here, the metric (in 2D) is

ds2 =
32µ2

r
exp

(
− r

2µ

)
dp̃dq̃. (7.67)

To get the usual metric, we introduce timelike v

v =
1

2
(p̃+ q̃), (7.68)

and spacelike u

u =
1

2
(p̃− q̃). (7.69)

This completes the introduction of the Kruskal coordinates with this metric

ds2 =
32µ2

r
exp

(
− r

2µ

)
(dv2 − du2)− r2(dϑ2 + sin2 ϑdϕ2). (7.70)

Here, r is still a function which is implicitly de�ned from u and v

u2 − v2 =

(
r

2µ
− 1

)
exp

(
r

2µ

)
. (7.71)

Note again, that u and v have the property that light cones will look like in
Minkowski space-time.
Let's look more closely into the relation between t and r on one side and u and v
on the other side. For r above the event horizon, the transformation relations are

v =

√
r

2µ
− 1 exp

(
r

4µ

)
sinh

(
ct

4µ

)
, (7.72)

u =

√
r

2µ
− 1 exp

(
r

4µ

)
cosh

(
ct

4µ

)
. (7.73)
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And in the internal region, they are

v =

√
1− r

2µ
exp

(
r

4µ

)
cosh

(
ct

4µ

)
, (7.74)

u =

√
1− r

2µ
exp

(
r

4µ

)
sinh

(
ct

4µ

)
. (7.75)

On Fig. 7.5, we can see the plot of these lines with constant t and r. Lines with
constant r are hyperbolas. The horizon with r = 2µ is mapped to the diagonals.
Lines with r < 2µ are hyperbolas at the upper and lower quadrants. The singularity
r = 0 is mapped into the boundary of the allowed region above and below. Constant

timelines correspond to u
v
given by tanh

(
ct
2µ

)
, which are straight lines under some

angle. The normal region mapped by Schwarzschild coordinates is found in part I and
II of the space-time diagram by Kruskal coordinates. But the Kruskal coordinates
seem to involve another universe in regions I' and II'.
Region I is the region outside of the event horizon and region II is inside. Any
particle can travel from outside to region II inside and eventually, it will reach the
singularity. It cannot, however, return from the region II back to region I. On the
other hand every particle would escape from the region II' either to region I or
I'. The singularity at the bottom is the white hole and you see that it cannot be
reached, because it is always in the past. It is currently not clear whether such white
holes really exist and what they mean.

Figure 7.5: Graphical representation of Kruskal coordinates u and v with constant
r and t. Green lines correspond to constant r, blue lines correspond to constant t
and purple areas correspond to areas beyond singularity in r = 0.
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In any case, this diagram shows the maximal extension of Schwarzschild geometry.
This means that any worldline either extends to in�nite values of its a�ne parameter,
or it ends in a singularity. As for the singularity is here, this is where the curvature
becomes in�nite and the classical theory of general relativity does not work anymore.
It is believed, however, that the region close to the singularity should be described
by a quantum theory, which will take care of the singularity.

7.4 Wormholes and the Einstein-Rosen bridge

In Kruskal coordinates, there is actually a smooth connection between the regions
I and I'. Let's �x the Kruskal timelike coordinate with v = 0 and consider the
remaining 3-dimensional hypersurface. Let's write down the line element of this
hypersurface

ds2 = −32µ3

r
exp

(
− r

2µ

)
du2 − r2(dϑ2 + sin2 ϑdϕ2). (7.76)

To simplify this further, let's take the equatorial plane ϑ = π
2
. And so we have a

2-dimensional surface with this line element

ds2 = −32µ3

r
exp

(
− r

2µ

)
du2 − r2dϕ2. (7.77)

We would like to come back to the coordinate r on this particular surface. Note, that
in the regions I and I', we always have r > 2µ, so if v = 0, then we must also have
t = 0. We want then to express du by di�erentiating the transformation relation

du =
∂u

∂r
dr =

∂

∂r

[(
r

2µ
− 1

) 1
2

exp

(
r

4µ

)]
dr, (7.78)

du =

[
1

4µ

(
r

2µ
− 1

)− 1
2

exp

(
r

4µ

)
+

1

4µ

(
r

2µ
− 1

) 1
2

exp

(
r

4µ

)]
dr, (7.79)

du =
1

4µ

(
r

2µ
− 1

)− 1
2

exp

(
r

4µ

)[
1 +

r

2µ
− 1

]
dr, (7.80)

du =
r

8µ2

(
r

2µ
− 1

)− 1
2

exp

(
r

4µ

)
dr. (7.81)

Then we can express du2

du2 =
r2

64µ4

(
r

2µ
− 1

)−1

exp

(
r

2µ

)
dr2. (7.82)

And we write the line element (dσ2 = −ds2) on the 2D surface as

dσ2 =
32µ3

r
exp

(
− r

2µ

)
r2

64µ4

(
r

2µ
− 1

)−1

exp

(
r

2µ

)
dr2 + r2dϕ2, (7.83)
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dσ2 =

r
2µ

r
2µ
− 1

dr2 + r2dϕ2, (7.84)

dσ2 =

(
1− 2µ

r

)−1

dr2 + r2dϕ2. (7.85)

Remember that r > 2µ.
Now we want to visualize this surface and we do it by embedding this 2-dimensional
surface into 3-dimensional Euclidean space. There we choose the cylindrical coordi-
nates with this line element

dσ2 = dρ2 + ρ2dψ2 + dz2. (7.86)

We embed our surface into the 3D Euclidean space by identifying ψ with ϕ and the
other two coordinates will be functions of one parameter r. So the line element in
3D is

dσ2 =

((
dρ

dr

)2

+

(
dz

dr

)2
)
dr2 + ρ2dψ2. (7.87)

Because of the term ρ2dψ2, ρ must be identical to r. Then the �rst term in the
bracket is 1 and we obtain this equation to get the metric that we want

1 +

(
dz

dr

)2

=
1

1− 2µ
r

. (7.88)

The solution for z is
z(r) = ±

√
8µ(r − 2µ) + const. (7.89)

Figure 7.6: The structure of the Einstein-Rosen bridge.

If the solution is drawn also with the ϕ coordinate, it looks like a passage between
two spaces. This structure is called the Einstein-Rosen bridge and it is depicted in
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Fig. 7.6. Although it looks like a passage, remember that the actual physical space
is only the curved surface. Moreover, it is not always there. Remember that we have
�xed v = 0. A similar structure is there for v between -1 and 1, but not before that
and not after that. Moreover, the structure in time is such that nothing can pass
along this surface from one universe to the other. Currently actually nobody knows,
if any wormholes are really there.

7.5 Hawking radiation

Hawking radiation is a quantummechanical e�ect, which causes that there is actually
a steady �ow of particles from the event horizon. Remember that there is always
particle and antiparticle creation and annihilation in vacuum. This is allowed by
quantum theory if the total energy involved in the process and the time of the
�uctuations ful�ll the uncertainty relation

∆E∆t = ~. (7.90)

Let's now apply this. Suppose a particle-antiparticle pair with momenta p and p̄.
Schwarzschild metric does not depend on t and so the 0th component of the 4-
momentum is conserved. This is projected out from the 4-momentum by multiplying
with the basis vector ~e0

p0 = ~e0 · ~p p̄0 = ~e0 · ~̄p. (7.91)

The conservation relation would require that the sum from both particles vanishes

~e0 · ~p+ ~e0 · ~̄p = 0. (7.92)

This is actually broken for the short time allowed by the uncertainty relation. Then,
the pair must again annihilate.
Now suppose that the pair is created close to the event horizon and one of the
particles falls into the black hole. Below the event horizon, ~e0 becomes spacelike and
so ~e0 · ~p is a component of the spatial momentum and it may be negative. But then,
the conservation equation can be ful�lled forever and there is no need for the re-
annihilation. So the remaining particle may escape and it seems like being radiated
from the event horizon. In fact, the pair is created above the event horizon and the
particle that falls into the black hole must tunnel into the interior of the black hole.
On the other side, that black hole takes a negative contribution to its own mass and
so its mass will decrease. The decrease corresponds to the energy which the other
particle takes away.
The full calculation in quantum �eld theory shows that the spectrum of energies is
the blackbody spectrum with this temperature

T =
~c3

8πkBGM
. (7.93)

Note, that this is inversely proportional to the mass of the black hole. So the heavier
the black hole, the smaller is the radiation �ux. But very small black holes would
radiate much energy very fast.
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The black hole actually radiates away its mass, and so the rate is given by the
Stefan-Boltzmann law

dM

dt
= −σT

4A

c2
, (7.94)

where σ is the Stefan-Boltzmann constant

σ =
π2k4

B

60~3c2
, (7.95)

and A is the surface of the event horizon

A = 16πµ2. (7.96)

We put all this together and get the decrease rate for the mass

dM

dt
= − π2k4

B

60~3c2

~4c12

84π4k4
BG

4M4
16π

G2M2

c4

1

c2
= − c4~

15360πG2

1

M2
. (7.97)

And collect all constants except ~ into α

dM

dt
= − α~

M2
. (7.98)

This is now easy to solve and we get the time dependance of the mass

M(t) = [3α~(t0 − t)]
1
3 . (7.99)

This time dependance goes like the third root, so �rst it is slow, and then it speeds
up.
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Chapter 8

Beyond the Schwarzschild metric

In this chapter, we will look at two situations which are not described by the
Schwarzschild metric. First, we will look at spherically symmetric case in the in-
terior of the stars, so we will not be in vacuum. And the second case will correspond
to the gravitational �eld of rotating massive bodies, which are no longer spherically
symmetric, but they are axially symmetric.

8.1 The form of metric in stellar interior

An important application of spherically symmetric metric is for the description of
the interiors of compact stars. The stars of the main sequence, the red giants and
even white dwarfs are not too dense, so the Newtonian gravity provides a reasonable
description for them. But the compact stars, formerly known as neutron stars, reach
densities of the order of few nuclear densities and general relativistic formalism is
crucial.
We shall deal with a static and spherically symmetric metric. But this time, we do
not solve the Einstein equations in vacuum, but in the interior of the stellar matter.
We could repeat the same chain of arguments as we did in chapter 5, where the
Schwarzschild metric was introduced, and deduce, that the metric must have this
form

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θdϕ). (8.1)

It was also written there that only the diagonal elements of the Ricci tensor do not
vanish and they are given by these equations

R00 = −A
′′

2B
+
A′

4B

(
A′

A
+
B′

B

)
− A′

rB
, (8.2)

R11 =
A′′

2A
+
A′

4A

(
A′

A
+
B′

B

)
− B′

rB
, (8.3)

R22 =
1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
, (8.4)

R33 = R22 sin2 θ. (8.5)
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where the prime is derivative with respect to r. Now we are not in vacuum, but in
the interior of a compact star, so we have non-zero energy-momentum tensor. We
use this form of the Einstein equation

Rµν = −κ
(
Tµν −

1

2
Tgµν

)
, (8.6)

where T := T µµ and κ = 8πG
c4

.
For the compact stars, it is not too unreasonable to assume, that it is �lled with the
perfect �uid. So the energy-momentum tensor is

Tµν =
(
ρ+

p

c2

)
uµuν − pgµν , (8.7)

where ρ is the proper mass density in the instantaneous rest frame, which is actually
the energy density divided by c2

ρ = ρ(r) =
ε(r)

c2
, (8.8)

and p = p(r) is the isotropic pressure also in the instantaneous rest frame of the
�uid.
When we contract the indices, then we get the expression for T

T = T µµ =
(
ρ+

p

c2

)
uµuµ − pgµνgµν , (8.9)

T =
(
ρ+

p

c2

)
c2 − pδµµ, (8.10)

T = ρc2 + p− 4p, (8.11)

T = ρc2 − 3p. (8.12)

We can insert all this into the Einstein �eld equations

Rµν = −κ
[(
ρ+

p

c2

)
uµuν − pgµν −

1

2
(ρc2 − 3p)gµν

]
, (8.13)

Rµν = −κ
[(
ρ+

p

c2

)
uµuν −

1

2
(ρc2 − p)gµν

]
. (8.14)

Since the Ricci tensor has no non-diagonal elements, it must hold

u0ui = 0. (8.15)

But then, since u2 still must be equal to c2, the only possibility is that uµ only has
the timelike component [uµ] = c

√
A(1, 0, 0, 0). So this is perfectly consistent with

the assumption that we have a static solution. We have a situation in hydrostatic
equilibrium.
We take these equations for Rµν , solve these expressions for the velocity, insert the
metric that we have written down at the beginning, and these are the equations that
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we obtained for the diagonal elements of the Ricci tensor

R00 = −1

2
κ
(
ρc2 + 3p

)
A, (8.16)

R11 = −1

2
κ(ρc2 − p)B, (8.17)

R22 = −1

2
κ(ρc2 − p)r2, (8.18)

R33 = R22 sin2 θ. (8.19)

Remember that we want to determine the functions A and B. The procedure is the
following. First, we divide these equations by A, B and r2 respectively, and then
add them together, so that the pressure on the RHS is eliminated

R00

A
+
R11

B
+

2R22

r2
= −2κρc2. (8.20)

Now we insert the expressions for Ricci tensor components (8.2)-(8.4) and after a
few operations, we arrive at the di�erential equation only for B(

1− 1

B

)
+
rB′

B2
= κr2ρc2. (8.21)

We rewrite the LHS a bit and get

d

dr

[
r

(
1− 1

B

)]
= κr2ρc2. (8.22)

This is can be directly integrated

r

(
1− 1

B

)
= κc2

∫ r

0

x2ρ(x)dx. (8.23)

Now we insert the expression for κ

1− 1

B
=

8πG

c2r

∫ r

0

x2ρ(x)dx, (8.24)

and extract B

1

B
= 1− 2G

c2r
4π

∫ r

0

x2ρ(x)dx︸ ︷︷ ︸
m(r)

, (8.25)

B =

[
1− 2G

c2r
m(r)

]−1

. (8.26)

Here we introduced function m(r), which looks like the mass contained within the
radius r. In particular, if the integral is extended up to R, which is the radius of the
whole gravitating body, then we should match the Schwarzschild metric, which had
the parameter M here. However, the proper volume element is

d3V =
√
B(r)r2 sin θdrdθdϕ, (8.27)
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and so the real proper mass is

m̃(r) = 4π

∫ r

0

ρ(x)
√
B(x)x2dx = 4π

∫ r

0

ρ(x)

[
1− 2G

c2x
m(x)

]− 1
2

x2dx, (8.28)

which is bigger than m(r). The di�erence between those two quantities is the grav-
itational binding energy

Ẽ = M̃ −M, (8.29)

where M̃ = m̃(R). Binding energy is the energy that is needed to take apart the
whole body and disperse its parts into in�nity.
Next, we still need to determine the function A. This will be done slightly di�erently.
Not from the Einstein equation, but from the energy conservation, which we write
out explicitly

0 = ∇µT
µν = ∇µ

[(
ρ+

p

c2

)
uµuν

]
−∇µ(pgµν). (8.30)

The �rst term can be written like covariant divergence and in the second, we use
that the covariant derivative of the metric tensor is zero and the pressure is a scalar
function

0 =
1√
−g

∂µ

[√
−g
(
ρ+

p

c2

)
uµuν

]
+
(
ρ+

p

c2

)
Γνσµu

µuσ − gµν∂µp. (8.31)

Since u only has zero components (u0 = c√
A
, ui = 0), there remains only the deriva-

tive with respect to t in the �rst term. But we look at static situation here and so
nothing depends on t and the whole term must vanish. For the same reason, in the
second term, only Γν00 will contribute. This Christo�el symbol has following form

Γν00 = −1

2
gµν∂µg00 = −1

2
gµν∂µA. (8.32)

So altogether from the energy conservation we have

0 =
(
ρ+

p

c2

)(
−1

2
gµν∂µA

)
c2

A
− gµν∂µp, (8.33)

0 =
ρc2 + p

2A
∂µA+ ∂µp. (8.34)

A depends only on r and so the only non-trivial equation is that, when the derivatives
are with respect to r

ρc2 + p

2A
A′ + p′ = 0, (8.35)

A′

A
= − 2p′

ρc2 + p
. (8.36)

So this is the equation for A, which respects the hydrostatic equilibrium.
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8.2 The relativistic equations of stellar structure

Now we can formulate the equations that will describe the structure of the compact
stars. What we mean by that is that we formulate the equations, which determine
the matter density ρ and pressure p as functions of the radial coordinate r.
The �rst to put down is actually a constraint between ρ and m, which is pretty
straightforward from the de�nition of m

dm(r)

dr
= 4πr2ρ(r). (8.37)

Som as a function of r is also in the game. The next two relations are betweenm and
the pressure and the pressure and ρ. The second (p = p(ρ)) is actually the equation
of state, which must be determined from some microscopic theory describing the
matter. The last one to determine is the relation between m and p. The procedure
to �nd this equation is to relate two expressions for R22 that were written in previous
section. Insert for A and B and their derivatives and �nally simplify the obtained
equation. The result is the following

dp

dr
= − 1

r2
(ρc2 + p)

4πG
c4
pr3 + Gm(r)

c2

1− 2Gm(r)
c2r

. (8.38)

This is called the Oppenheimer-Volko� equation.
So we have three equations that determine the structure of compact stars. There are
two di�erential equations and that means, that we need two boundary conditions.
The �rst is obvious

m(0) = 0. (8.39)

The second could be that we either determine the central density or the central
pressure. It does not matter which one of them we choose to determine, because
they are coupled through the equation of state. Nevertheless, as we integrate the
pressure in the Oppenheimer-Volko� equation, it decreases from the central value
all the way to 0 at the surface of the compact star. So the vanishing of the pressure
determines the radius of the star. And then, if we integrated density from the center
to the radius, we must obtain the mass of the compact stars. The second boundary
condition is that we require certain mass and radius of the star.
Practically, in current research, this is used for the search after the equation of state,
because the Oppenheimer-Volko� equation is given by the geometry and there is
nothing one could change there. But we look at the equation of state and want to
identify such one, that is consistent with observations of the compact stars.
We can also look at the Newton limit of these equations. In the Oppenheimer-Volko�
equation, the pressure is much smaller than the mass density and the correction term
in the denominator is much smaller than 1. As a result, the equation simpli�es to

dp

dr
= −Gm(r)ρ(r)

r2
. (8.40)

This is the Newtonian equation of hydrostatic equilibrium.
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8.2.1 Constant density interior solution

We can look at a kind of solution of these equations in a simple case, that the density
is constant everywhere. That is not very realistic, but it may be close to reality.
Nevertheless, we still need that the pressure varies with the radial coordinate to act
against the gravity, and so we have

dp

dρ
→ +∞. (8.41)

Since this derivative is proportional to the square of the sound velocity, we clearly
have non-causal theory. But we will go with this for a while for the sake of illustration.
The relation for m simpli�es

m(r) =
4

3
πρr3. (8.42)

And the Oppenheimer-Volko� equation is

dp

dr
= −4πG

3c4

r(ρc2 + p)(ρc2 + 3p)

1− 8πG
3c2
ρr2

. (8.43)

This is separable and can be integrated∫ p(r)

p0

dp̃

(ρc2 + p̃)(ρc2 + 3p̃)
= −4πG

3c4

∫ r

0

r̃dr̃

1− 8πG
3c2
ρr̃2

. (8.44)

Integrals can be performed and the result is cast in this form

ρc2 + 3p

ρc2 + p
=
ρc2 + 3p0

ρc2 + p0

(
1− 8πG

3c2
ρr2

) 1
2

. (8.45)

At the surface, the pressure is 0, and so LHS is 1. Then, we can derive this relation
for the radius of the star, which depends on the pressure in the center

R2 =
3c2

8πGρ

[
1−

(
ρc2 + p0

ρc2 + 3p0

)2
]
. (8.46)

We can also formulate the inverse relation for the central pressure as a function of
the radius

p0 = ρc2
1−

√
1− 2µ

R

3
√

1− 2µ
R
− 1

, µ =
GM

c2
. (8.47)

And if we put this into the equation for p at the radius r, then we get that dependance

p(r) = ρc2

√
1− 2µr2

R3 −
√

1− 2µ
R

3
√

1− 2µ
R
−
√

1− 2µr2

R3

, r ≤ R. (8.48)
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For completeness, we can write down what we would have obtained for the functions
A and B. You are invited to derive it for yourself

B(r) =
1

1− 2µr2

R3

, (8.49)

A(r) =
c2

4

[
3

√
1− 2µ

R
−
√

1− 2µr2

R3

]2

. (8.50)

Finally, let's look more closely one more time at the equation for p0 (8.47). There is
singularity if the denominator goes to 0

3

√
1− 2µ

R
− 1 = 0, (8.51)√

1− 2µ

R
=

1

3
, (8.52)

1− 2µ

R
=

1

9
, (8.53)

2µ

R
=

8

9
, (8.54)

µ

R
=
GM

c2R
=

4

9
. (8.55)

The central pressure would diverge there. So the condition for the mass would be

GM

c2R
<

4

9
. (8.56)

We have derived this for unrealistically sti� equation of state. But the statement is
actually more general and is valid for any equation of state. This is called Buchdahl's
theorem.

8.3 The Kerr geometry

In this section, we will discuss the geometry around massive objects, which are
rotating. In fact, this is the majority of them in the universe. Our discussion will
lead to the Kerr geometry.
So here are the requirements: The metric is stationary and so it does not depend
on t, the spherical symmetry is gone and we have the axial symmetry. If we talk
about rotating objects, then the axis is identi�ed with the direction of the angular
momentum. The axial symmetry implies, that the metric neither depends on the
azimuthal angle. But it will depend on the �rst and the second coordinate

gµν = gµν(x1, x2). (8.57)

Moreover, since we consider rotating bodies around one axis, we require symmetry
under simultaneous inversion of t and ϕ. Based on this, all terms of the metric,
which are linear in only one of these coordinates, must vanish

g01 = g02 = g13 = g23 = 0. (8.58)
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So we get the general form of the metric like this

ds2 = g00dt
2 + 2g03dtdϕ+ g33dϕ

2 + [g11(dx1)2 + 2g12dx
1dx2 + g22(dx2)2]. (8.59)

The metric only depends on x1 and x2 and so the part in the brackets is independent
from the rest of the metric and can be treated separately. Since any 2-dimensional
pseudo-Riemannian metric is conformally �at, we may be sure, that this part can
be put into this form

[g11(dx1)2 + 2g12dx
1dx2 + g22(dx2)2]→ Ω2(x)ηab. (8.60)

However, we will use the possibility to scale x1 and x2 di�erently, so that we can
later understand this as a generalization of the Schwarzschild coordinates. So �nally,
we put the metric into this form

ds2 = Adt2 −B(dϕ− ωdt)2 − Cdr2 −Ddθ2. (8.61)

The coe�cients A, B, C, D and ω must be determined. The coe�cients of the metric
are then the following

gtt = A−Bω2, (8.62)

gtϕ = Bω, (8.63)

gϕϕ = −B (8.64)

grr = −C (8.65)

gθθ = −D. (8.66)

We can further derive the contravariant components

grr = − 1

C
, (8.67)

gθθ = − 1

D
, (8.68)

but for the other two, we must invert the matrix

G =

(
gtt gtϕ
gtϕ gϕϕ

)
→ G−1 =

1

detG

(
gϕϕ −gtϕ
−gtϕ gtt

)
, (8.69)

gtt =
gϕϕ

detG
=

1

A
, (8.70)

gtϕ = − gtϕ
detG

=
ω

A
, (8.71)

gϕϕ =
gtt

detG
=
Bω2 − A
AB

. (8.72)

With this general form of the metric, we will now discuss three genuine properties.

8.3.1 The dragging of inertial frames

First, recall that the metric does not depend on ϕ and so the covariant component
pϕ = −L (component of angular momentum) is conserved. Because we have the
o�-diagonal terms in the metric, the contravariant component is more complicated

pϕ = gϕtpt + gϕϕpϕ, (8.73)
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and the same for contravarian pt

pt = gttpt + gϕtpϕ. (8.74)

Having said this, consider a particle with zero angular momentum L = 0 = −pϕ.
The corresponding contravariant component, however, is not zero

pϕ = gϕtpt ∝
dϕ

dσ
. (8.75)

Here we express its proportionality to the derivative with respect to the a�ne pa-
rameter. We do the same for contravariant pt

pt = gttpt ∝
dt

dσ
. (8.76)

The proportionality factors are the same. Now we can express

dϕ

dt
=

dϕ
dσ
dt
dσ

=
pϕ

pt
=
gϕt

gtt
= ω. (8.77)

Later will be shown what ω actually means. But now we have a strange situation.
We started with zero angular momentum, say at in�nite distance, and in spite of
that, its ϕ coordinate grows with time. This is the consequence of the o�-diagonal
terms of the metric, and that is an e�ect of the rotation. This e�ect is called the
dragging of inertial frames.

8.3.2 Stationary limit surfaces

Second property, that we look at, is the existence of stationary limit surfaces. Sup-
pose a photon emitted in the direction of the ϕ coordinate (ds2 = 0). So initially,
only dϕ and dt are non-zero along a geodesics and the metric takes this form

gttdt
2 + 2gtϕdtdϕ+ gϕϕdϕ

2 = 0. (8.78)

From this, we can obtain

dϕ

dt
= − gtϕ

gϕϕ
±

√(
gtϕ
gϕϕ

)2

− gtt
gϕϕ

. (8.79)

If gtt is positive, then the photon may be emitted in both directions and the values
of dϕ

dt
will be di�erent. It becomes interesting if gtt becomes zero. Then we have two

solutions

dϕ

dt
= −2gtϕ

gϕϕ
, (8.80)

dϕ

dt
= 0. (8.81)

So the photon emitted in the opposite direction as the rotation does not move at all.
This surface is called stationary limit surface. It is an analogy to the event horizon
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in the Schwarzschild metric.
We can also add, that if the photon is emitted at this surface and observed elsewhere,
then its gravitational redshift is given by the ratio

νR
νE

=

√
gtt(E)

gtt(R)
. (8.82)

So if gtt(E) = 0, then the received frequency is 0 and we have an in�nite redshift.

8.3.3 Event horizons

In Schwarzschild metric, the in�nite redshift surface and the event horizon were
identical. But here, they may be di�erent. In general, the event horizon is a surface,
to which at every point the normal vector is a null vector.
Let's have a surface de�ned implicitly

f(xµ) = 0, (8.83)

and the normal vector will be de�ned by the gradient of the scalar function f

nµ = ∇µf = ∂µf. (8.84)

If it should be a null vector, then we have

gµνnµnν = 0. (8.85)

In other words, the vector is also normal to itself. This is a paradoxical situation,
which is however possible in pseudo-Riemannian manifolds, that the normal vector
to the surface also is a part of that surface.
Let's choose a displacement in the direction of n within the surface

dxµ ∝ nµ. (8.86)

But since nµ is also normal to the surface, we must have

nµdxµ = 0. (8.87)

Then, however, the corresponding element of length is

dxµdxµ = ds2 = 0, (8.88)

and this means that the null geodesic lies within the surface. Or, in other words, the
surface is tangential to the light cone. But then, the light cone must be positioned
fully only on one side of the surface. Therefore, the surface can be crossed by a real
particle only in one direction into the light cone. And this exactly is the property of
the event horizon. So we showed that the null surface is the event horizon.
Coming back to the gradient, the null surface is given by this

gµν(∂µf)(∂νf) = 0. (8.89)

And for our particular metric, this means

grr(∂rf)2 + gθθ(∂θf)2 = 0. (8.90)

There is a possibility to make this simpler because the coordinates may be choosen
so, that the null surface is only given by r and the condition simpli�es

grr(∂rf)2 = 0. (8.91)
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8.3.4 The Kerr metric

We are ready to write down the Kerr metric

ds2 = Adt2 −B(dϕ− ωdt)2 − Cdr2 −Ddθ2. (8.92)

In principle, the procedure is analogical to what we have done for the Schwarzschild
metric. Derive the connection coe�cients Γ, derive the Riemann tensor, contract the
Riemann tensor to �nd the Ricci tensor and put the Ricci tensor equal to zero.
Eventhough the derivation is straightforward, it is tedious and it is not shown here. It
would show, however, that this case is more general and the constraints that we have
used so far do not specify the metric uniquely. So we have two more requirements.
At in�nite distance, the metric tends to Minkowski metric

r → +∞ =⇒ gµν → ηµν , (8.93)

and there exists smooth and convex event horizon.
The metric in Kerr geometry takes this form

ds2 = c2

(
1− 2µr

ρ2

)
dt2 +

4µacr sin2 θ

ρ2
dtdϕ− ρ2

∆
dr2 − ρ2dθ2−

−
(
r2 + a2 +

2µra2 sin2 θ

ρ2

)
sin2 θdϕ2.

(8.94)

There are two constants, µ and a, and functions

ρ2 = r2 + a2 cos2 θ, (8.95)

and
∆ = r2 − 2µr + a2. (8.96)

This is the Boyer-Lindquist form for the ds2 and the used coordinates are also called
Boyer-Lindquist coordinates.
There are some other ways how to express this form. One can de�ne

Σ2 = (r2 + a2)2 − a2∆ sin2 θ, (8.97)

and then the metric can be rewritten as

ds2 =
∆− a2 sin2 θ

ρ2
c2dt2 +

4µar sin2 θ

ρ2
cdtdϕ− ρ2

∆
dr2 − ρ2dθ2−

−Σ2 sin2 θ

ρ2
dϕ2.

(8.98)

And this then can be put into the form suggested for rotation

ds2 =
ρ2∆

Σ2
c2dt2 − Σ2 sin2 θ

ρ2
(dϕ− ωdt)2 − ρ2

∆
dr2 − ρ2dθ2, (8.99)

where

ω =
2µcra

Σ2
. (8.100)
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One can check that as a goes to 0, this metric goes to the Schwarzschild metric. To
get to this, we identify µ with GM

c2
and it can be also inferred that a is proportional

to the angular momentum
J = Mac. (8.101)

It is also instructive to consider the µ goes to 0 limit of the metric. In this case, we
should recover the Minkowski metric. We obtain

ds2 = c2dt2 − ρ2

r2 + a2
dr2 − ρ2dθ2 − (r2 + a2) sin2 θdϕ2. (8.102)

The Cartesian coordinates are expressed like this

x =
√
r2 + a2 sin θ cosϕ, (8.103)

y =
√
r2 + a2 sin θ sinϕ, (8.104)

z = r cos θ. (8.105)

The case with r = 0 actually corresponds to a ring of radius a in a z = 0 surface.

8.3.5 The structure of a Kerr black hole

If we take a look at the Boyle-Lindquist metric, we realize that the singularities are
at ∆ = 0 and ρ = 0. The latter is a real singularity, because the curvature scalar
diverges there. Now, where does it occur?

ρ2 = r2 + a2 cos2 θ = 0, (8.106)

=⇒ r = 0 and θ =
π

2
. (8.107)

So this is the ring that was mentioned at the end of the previous subsection.

The other case is
∆ = r2 − 2µr + a2 = 0. (8.108)

There are two solutions

r± = µ±
√
µ2 − a2. (8.109)

It was discussed that the event horizon appears when grr = 0 or grr → ∞. The
covariant form was previously derived as

grr = −ρ
2

∆
. (8.110)

So if ∆ vanishes, we have the event horizon. Since we have two solutions, we have
two event horizons. Let's look at the line element within the surface given by the
event horizon, where we set t = 0

dσ2 = ρ2
±dθ

2 +

(
2µr±
ρ±

)2

sin2 θdϕ2. (8.111)
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Figure 8.1: Structure of the Kerr black hole. Blue spheres correspond to stationary
limit surfaces, green spheres correspond to inner and outer event horizons and red
circle corresponds to ring singularity at r = 0.

This corresponds to the geometry of a rotational ellipsoid.
We can also see that µ must be bigger than a. Otherewise we do not have two event
horizons. We can write this condition

µ2 > a2, (8.112)

G2M2

c4
>

J2

M2c2
, (8.113)

G2M4

c2
> J2, (8.114)

GM2

c
> J, (8.115)

and see, that the angular momentum is limited by the squared mass.

Stationary limit surfaces

For stationary limit surfaces, we require

gtt = c2

(
1− 2µr

ρ2

)
= c2 r

2 − 2µr + a2 cos2 θ

ρ2
= 0. (8.116)

The solution is
rS± = µ±

√
µ2 − a2 cos2 θ. (8.117)

This again de�nes two rotational ellipsoids.
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We summarize this in a schematic �gure of the structure of the Kerr black hole
(Fig. 8.1). There is outer event horizon and inner horizon, there are two in�nite
redshift surfaces and inside, there is the ring singularity at r = 0.
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Chapter 9

The Friedmann-Robertson-Walker

geometry

This chapter will review the basics of the description of our universe. The appropriate
geometry goes under the name Friedmann-Robertson-Walker.

9.1 Symmetries and principles

We actually start similarly to what we did so far. In both cases of Schwarzschild
and Kerr geometry, we started with considering the symmetry of the problem, and
then we deduced the form of the metric. So let's look at the universe. If we look not
so far away, then we recognize the Milky Way, which is our Galaxy. A little further,
there is Andromeda galaxy and other smaller galaxies from our local group. Above
that, we �nd ourselves on the outer part of a giant supercluster of galaxies.
In the whole universe, we see such superclusters and we see them from our stand-
point isotropic. So the observation is that on small scales we see structures, but on
large scales we see the universe as isotropic. The �rst symmetry is thus isotropy.
Then, there comes a principle which in modern days we take as granted, but which
actually cannot be supported by a direct observation. That is, that there is no pre-
ferred observer in the universe or a preferred center of the universe. This goes under
the name Copernican principle.
Out of these two, the implication is that the universe must be spatially homo-

geneous. So this is carefully put together in the cosmological principle, which
states: At any particular time, the universe looks isotropic and the same from any

position in space you choose for observation.

This now brings a problem, because the principle is formulated so that you refer to
some time global for the whole universe. And we also have separated space from the
time. But we are in relativity, so they must be coupled and we know that there is no
global inertial frame. So we have to say a little more about what is actually meant
by the time and space.

125



9.1.1 How to choose "time" and "space"?

The idea is the following: The whole universe is �lled with a sum of matter or en-
ergy1. In today's observation, these are the galaxies and any other matter that �lls
the universe. There is some local motion on the level of galaxies, for example they
rotate. So we average out all this local motion and arrive to a matter distribution,
where the matter moves with velocities that di�er on large scales, on which the
universe is homogeneous, but the di�erences of velocities on small scales, where the
universe is not homogeneous, are averaged out.
So what we have constructed is the model of a cosmological �uid. It �ows with ve-
locity di�erences over large scales, but with averaged out velocities over small scales.
With this, we introduce the fundamental observers, who locally co-move with the
cosmological �uid. In other words, they have zero peculiar velocity2. The fundamen-
tal observers evolve along timelike worldlines. The set of all these worldlines is called
a congruence.
Then comes another postulate, calledWeyl's postulate: The congruence of world-

lines of all fundamental observers is hypersurface-orthogonal. This means, that we
can construct a 3-dimensional spacelike hypersurface, that is orthogonal to all world-
lines, and assign it a value of the time coordinate, which will be common for all the
intersecting points at all the worldlines. Another hypersurface crosses the congru-
ence at di�erent positions and assumes a di�erent time coordinate.
So we have naturally sliced the space-time into hypersurfaces corresponding to 3-
dimensional space, which are ordered in time by threading of the worldlines of fun-
damental observers. Based on this, we introduce the synchronous comoving coordi-
nates.

The synchronous comoving coordinates

The labels of the space-time hypersurfaces are taken to be the proper time. And so
we have de�ned the synchronous time coordinate, or the cosmic time. The spatial
coordinates are chosen so that the fundamental observers do not change their coor-
dinates, so they are comoving.
Since the hypersurfaces are orthogonal to the worldlines of fundamental observers,
there will be no time-space cross terms in the metric and so the metric will be

ds2 = c2dt2 − gijdxidxj, i, j = 1, 2, 3. (9.1)

What can we deduce from homogeneity and isotropy? Let's look only at the spacelike
part of the metric tensor. The distance between two points is

dσ2 = gij∆x
i∆xj, i, j = 1, 2, 3. (9.2)

The distance may change with time, but the change must not depend on where these
two points are in space, because of the homogeneity. Also, it must not depend on
how they are oriented with respect to each other, because of the isotropy. And so

1Both words may be used very loosely as synonyma, because they are coupled.
2Peculiar velocity is the velocity with respect to the instantaneous rest frame of the �uid.
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the distance can only change due to a time dependent factor, which is common for
all components of the metric. So the space-time metric will be the following

ds2 = c2dt2 − S2(t)hijdx
idxj, hij = hij(x

1, x2, x3). (9.3)

The maximally symmetric 3-space

There is no preferred direction in the 3-space, but there may be a curvature. However,
it must be the same at all directions. So at every point, there should be just one
number that speci�es the curvature. Moreover, since we have homogeneity, that
number must be common for the whole space. Then if we take all the symmetries
and antisymmetries of the Riemann tensor, it must have this form

Rijkl = K(gikgjl − gilgjk). (9.4)

It is straightforward to calculate the Ricci tensor

Rjk = gilRijkl, (9.5)

Rjk = Kgil(gikgjl − gilgjk), (9.6)

Rjk = K(δlkgjl − δllgjk), (9.7)

Rjk = K(gjk − 3gjk), (9.8)

Rjk = −2Kgjk, (9.9)

and also the scalar curvature

R = Rk
k = gjk(−2Kgjk) = −2Kδkk = −6K. (9.10)

We want to write down the metric for an isotropic space. This was done already in
chapter 5, when the Schwarzschild metric was derived. So we will go through this
quickly, because it is just repeating the arguments. There may be only the rotational
invariants in the metric

~x · ~x = r2, ~dx · ~dx, ~x · ~dx. (9.11)

And so in spherical coordinates, the metric takes this form

dσ2 = C(r̃)r̃2dr̃2 +D(r̃)(dr̃ + r̃2dϑ2 + r̃2 sin2 ϑdϕ2). (9.12)

And r̃ can be rescaled as r2 = r̃2D(r̃), so that we simplify the form to

dσ2 = B(r)dr2 + r2dϑ2 + r2 sin2 ϑdϕ2. (9.13)

We will need to determine the function B and we do it by matching the curvature. So
we have to calculate the curvature from this metric. Here are the non-zero connection
coe�cients

Γrrr =
1

2B(r)

dB

dr
, Γrϑϑ = − r

B(r)
, Γrϕϕ = −r sin2 ϑ

B(r)
,

Γϑrϑ = Γϕrϕ =
1

r
, Γϑϕϕ = − sinϑ cosϑ, Γϕϕϑ = cotϑ.

(9.14)
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From them, we can calculate the Ricci tensor as

Rij = ∂jΓ
k
ik − ∂kΓkij + ΓlikΓ

k
lj − ΓlijΓ

k
lk. (9.15)

And the non-zero components are only the diagonal ones

Rrr = − 1

rB

dB

dr
, (9.16)

Rϑϑ =
1

B
− 1− r

2B2

dB

dr
, (9.17)

Rϕϕ = Rϑϑ sin2 ϑ. (9.18)

This is now put into equation with the previously derived Ricci tensor in equation
(9.9). And for the �rst two components of the Ricci tensor, we obtain

1

rB(r)

dB

dr
= 2B(r)K, (9.19)

1 +
r

2B2

dB

dr
− 1

B
= 2r2K. (9.20)

The �rst equation can be integrated∫
dB

B2
=

∫
2rKdr, (9.21)

− 1

B
= Kr2 − A, (9.22)

B =
1

A−Kr2
, (9.23)

where A is the integration constant, which can be determined from the second
equation. So we calculate the derivative

dB

dr
=

2Kr

(A−Kr2)2
, (9.24)

and insert everythng into the second equation

1 +
r

2
(A−Kr2)2 2Kr

(A−Kr2)2
− A+Kr2 = 2r2K, (9.25)

1 +Kr2 − A+Kr2 = 2r2K, (9.26)

1− A = 0, (9.27)

A = 1. (9.28)

So the metric in the 3-space takes this form

dσ2 =
1

1−Kr2
dr2 + r2dϑ2 + r2 sin2 ϑdϕ2. (9.29)

It looks like there is a speci�c point, which is the center of this coordinate system.
But this can be chosen completely arbitrary, so the argument of the homogeneity is
respected.
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9.2 The Friedmann-Robertson-Walker metric

Based on previous calculations, we now write down the metric of the whole space-
time

ds2 = c2dt2 − S2(t)

[
dr2

1−Kr2
+ r2(dϑ2 + sin2 ϑdϕ2)

]
. (9.30)

Remember, that K can have any value. It is customary for non-zero K, that the
r coordinate is rescaled so that the absolute value of K is absorbed into the new
coordinate r̄ =

√
|K|r. And so the metric is modi�ed to

ds2 = c2dt2 − S2(t)

|K|

[
dr̄2

1− kr̄2
+ r̄2(dϑ2 + sin2 ϑdϕ2)

]
, (9.31)

where k = sign(K).
To simplify the writing, we denote the prefactor before the brackets as one function

R(t) =

{
S(t)√
|K|

for K 6= 0

S(t) for K = 0
. (9.32)

And also for simplicity, we will write r instead of r̄ and �nally obtain the line element
in the Friedmann-Robertson-Walker metric as

ds2 = c2dt2 −R2(t)

[
dr2

1− kr2
+ r2(dϑ2 + sin2 ϑdϕ2)

]
, k = −1, 0, 1. (9.33)

These three di�erent choices of k lead to three di�erent geometries of the space-time

Positive spatial curvature: k=1

In this case, there is a peculiarity in the metric, because the coe�cients of dr2

become singular as r goes to 1 and it would be negative if r > 1. But that would
change the signature of the metric, and we do not want that. So we rather limit
ourselves to the interval from 0 to 1 for r. Remember that r is a radial coordinate, it
is not really the distance from the center. So in this case, it is convenient to replace
it with a sinus of some angle

r = sinχ, χ ∈
〈

0,
π

2

〉
. (9.34)

Then the di�erential is

dr = cosχdχ =

√
1− sin2 χdχ =

√
1− r2dχ. (9.35)

If we only take the spatial part of the metric, then the line element is

dσ2 = R2
[
dχ2 + sin2 χ(dϑ2 + sin2 ϑdϕ2)

]
. (9.36)

Let's understand what this means. We claim that this is speci�c hypersurface if it is
embedded in 4-dimensional Euclidean space. If spherical coordinates are introduced
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in 4-dimensional Euclidean space, then the Cartesian coordinates are expressed like
this

x = R sinχ sinϑ cosϕ, ϕ ∈ 〈0, 2π〉 , (9.37)

y = R sinχ sinϑ sinϕ, ϑ ∈ 〈0, π〉 , (9.38)

z = R sinχ cosϑ, χ ∈ 〈0, π〉 , (9.39)

w = R cosχ. (9.40)

If we now keep R constant, so that we specify the hypersurface of a 3-sphere, then
the di�erentials are calculated like this

dxi =
∂xi
∂χ

dχ+
∂xi
∂ϑ

dϑ+
∂xi
∂ϕ

dϕ. (9.41)

And if this is worked out, then we get the line element on such a hypersurface like
this

dσ2 = dx2 + dy2 + dz2 + dw2 = R2
[
dχ2 + sin2 χ(dϑ2 + sin2 ϑdϕ2)

]
, (9.42)

which is exactly the form that was obtained from the Friedmann-Robertson-Walker
metric with k = 1. So in this case, R is sometimes re�ered as the the radius of the
universe.

Zero spatial curvature: k=0

If we look at the case with k = 0, then the 3-space element is simple. But to keep
our coordinates consistent, we replace r with χ. So the line element is

dσ2 = R2
[
dχ2 + χ2(dϑ2 + sin2 ϑdϕ2)

]
. (9.43)

And this is simply what we get with spherical coordinates in ordinary 3-dimensional
Euclidean space.

Negative spatial curvature: k=-1

The last possibility is that the spatial curvature is negative. Again, we substitute r,
but this time as hyperbolic sinus

r = sinhχ. (9.44)

The di�erential is
dr = coshχdχ =

√
1 + r2dχ. (9.45)

Then the spatial part of the Friedmann-Robertson-Walker metric is

dσ2 = R2
[
dχ2 + sinh2 χ(dϑ2 + sin2 ϑdϕ2)

]
. (9.46)
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Again, we would like to visualize in quotation marks what kind of space it is. We
claim that this is a 3-dimensional hyperboloid, which could be embedded in a 4-
dimensional Minkowski space.
The hyperboloid is de�ned by this constraint

w2 − (x2 + y2 + z2) = R2. (9.47)

And the constraint can be satis�ed by appropriate parametrization of the hypersur-
face, which is this

w = R coshχ, (9.48)

x = R sinhχ sinϑ cosϕ, (9.49)

y = R sinhχ sinϑ sinϕ, (9.50)

z = R sinhχ cosϑ, (9.51)

χ ∈ 〈0,∞) , ϑ ∈ 〈0, π〉 , ϕ ∈ 〈0, 2π〉 . (9.52)

The Minkowski space, which we use for embedding, has opposite metric to what we
use in this course

dσ2 = −dw2 + dx2 + dy2 + dz2. (9.53)

You are invited to show that if we calculate this line element on the hypersurface,
then we directly obtain the spatial part of the Friedmann-Robertson-Walker metric
for k = −1.

We summarize all these cases with the new form of the Friedmann-Robertson-Walker
metric

ds2 = c2dt2 −R2(t)
[
dχ2 + S2(χ)(dϑ2 + sin2 ϑdϕ2)

]
, (9.54)

where

S(χ) =


sinχ for k = 1

χ for k = 0

sinhχ for k = −1

. (9.55)

9.2.1 Geodesics in the FRW metric

We will use the geodesic equation in this form

u̇µ =
1

2
(∂µgνσ)uνuσ. (9.56)

Here we use u, which is the derivative of the coordinate with respect to the a�ne
parameter

uµ = ẋµ =
dxµ

dσ
, (9.57)

and the dot stands for the derivative with respect to the a�ne parameter.
On this equation we see that if the metric does not depend on coordinate xµ, then
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uµ is conserved. Evidently, we need the components of the metric tensor. We will
use the last formulation of the metric and summarize them here

g00 = c2, (9.58)

g11 = −R2(t), (9.59)

g22 = −R2(t)S2(χ), (9.60)

g33 = −R2(t)S2(χ) sin2 ϑ. (9.61)

Still, before we consider the geodesic equation, we introduce a trick. We place the
origin of the coordinates frame to the point, in which we consider the geodesic. The
good thing is that we can do it, because the space is homogeneous.
So now let's look at the individual components of the 4-velocity. The metric does
neither depend on ϕ, nor on ϑ, and so those components of the velocity will be
conserved. Let's start with ϕ, which is the third component

u3 = g33u
3 = −R2(t)S2(χ) sin2 ϑu3. (9.62)

Since we consider this at the origin it must hold

χ = 0 =⇒ S(χ) = 0. (9.63)

Therefore u3 must be zero and ϕ stays constant. Similarly it will work for u2

u2 = g22u
2 = −R2(t)S2(χ)u2, (9.64)

and so for the same reason, it also must be zero and the ϑ coordinate also does not
change.
The equation for the r component is

u̇1 =
1

2
(∂1gνσ)uνuσ. (9.65)

Since the second and the third components of the velocity are zero, the only possible
contributions are u0 and u1

u̇1 =
1

2
(∂1g00u

0u0 +
1

2
(∂1g11)u1u1. (9.66)

However, neither g00 nor g11 depend on r or χ and so again, this velocity must be
constant

u1 = −R2(t)u1 = −R2(t)χ̇ = constant. (9.67)

The zeroth component will be determined from the normalization condition. For
massive particles, we must have

uµu
ν = c2, (9.68)

ṫ2c2 −R2(t)χ̇2 = c2, (9.69)

ṫ2 = 1 +
R2(t)χ̇2

c2
. (9.70)

132



And for massless particles we have

uµu
ν = 0, (9.71)

ṫ2c2 −R2(t)χ̇2 = 0, (9.72)

ṫ2 =
R2(t)χ̇2

c2
. (9.73)

From this equation for the photons, we can derive the formula for the cosmological
redshift.

The cosmological redshift

We put the last equation into this form
c

R(t)
ṫ = χ̇, (9.74)

c

R(t)
dt = dχ. (9.75)

And now if this describes a light pulse, which an emitter sends to a receiver, then
we can integrate these coordinates along the path of the photon∫ tR

tE

c

R(t)
dt =

∫ χR

0

dχ. (9.76)

If he sends another light pulse just an in�nitesimal delay later, then the boundaries
on the LHS shift, but those on the RHS do not∫ tR+δtR

tE+δtE

c

R(t)
dt =

∫ χR

0

dχ. (9.77)

This means that both LHS are equal∫ tR

tE

c

R(t)
dt =

∫ tR+δtR

tE+δtE

c

R(t)
dt. (9.78)

We cancel the parts of the integrals, which are there on both sides and we are left
with this ∫ tE+δtE

tE

c

R(t)
dt =

∫ tR+δtR

tR

c

R(t)
dt. (9.79)

But since the time intervals are in�nitesimal, the integrants may be considered
constant and we arrive at this relation

δtE
R(tE)

=
δtR
R(tR)

. (9.80)

These time shifts may be the delays between two crests of the light-wave. In other
words, this may be the period at the place of the emitter and the period at the place
of the receiver. So we can write this ratio of frequencies

νE
νR

=
δtR
δtE

=
R(tR)

R(tE)
. (9.81)

And the redshift z is actually de�ned in this way

1 + z =
νE
νR

=
R(tR)

R(tE)
. (9.82)
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9.2.2 Time dependence of the scale factor

This is commonly known through the expansion of the universe. We will denote the
present time as t0. If we observe the objects in the universe, we look at signals, which
were sent out in the past. If the past is not too ancient, then for recent past we can
Taylor expand the scale factor R around the present time

R(t) = R(t0 − (t0 − t)), (9.83)

R(t) = R(t0)− (t0 − t)Ṙ(t0) +
1

2
(t0 − t)2R̈(t0)− ..., (9.84)

where the dots symbolize di�erentiation with respect to t. We rewrite this further
into the form

R(t) = R(t0)

[
1− (t0 − t)

Ṙ(t0)

R(t0)︸ ︷︷ ︸
H(t0)

−1

2
(t0 − t)2

(
Ṙ(t0)

R(t0)︸ ︷︷ ︸
H2(t0)

)2(
−R̈(t0)R(t0)

Ṙ2(t0)︸ ︷︷ ︸
q(t0)

)
− ...

]
,

(9.85)
where we introduce the Hubble parameter H(t0) and the deceleration parameter
q(t0).
The usual notation of the present day values isH0 = H(t0) and q0 = q(t0). With this,
we can calculate the redshift for a photon emitted in the recent past and observed
today from relation (9.82)

z =
R(t0)

R(t)
− 1 =

1

1− (t0 − t)H0 − 1
2
(t0 − t)2q0H2

0

− 1. (9.86)

If the look-back time t0 − t is small, then we can Taylor expand this expression up
to the second order in the time di�erence and get

z = (t0 − t)H0 + (t0 − t)2

(
1 +

1

2
q0

)
H2

0 . (9.87)

The redshift is the observed quantity, while the look-back time is not and so it
is more useful to express the look-back time from the redshift. We can solve this
quadratic equation and get

t0 − t =
−H0 ±

√
H2

0 + 4H2
0

(
1 + 1

2
q0

)
z

2H2
0

(
1 + 1

2
q0

) . (9.88)

Obviously only the upper sign applies because we want the positive look-back time.
If we say that the redshift is small, then we can Taylor expand up to second order
in z and this is the result

t0 − t =
z

H0

−
1 + 1

2
q0

H0

z2. (9.89)

We can also calculate the χ coordinate of the emitter if we assume that the present
observer sits at 0. We use the integral equation (9.76). For R(t) we use the Taylor
expansion (9.85). And so here is the integral

χ =

∫ t0

t

cdt′

R(t′)
=

∫ t0

t

cdt′

R0

[
1− (t0 − t′)H0 − 1

2
(t0 − t′)2H2

0q0

] . (9.90)
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We still assume that the look-back time is small and so we can Taylor expand the
integrant. If we want the result of the integral up to second order, then here it is
enough to expand up to �rst order under the integral

χ =

∫ t0

t

c

R0

(1 + (t0 − t′)H0 + ...) dt′, (9.91)

χ =
c

R0

[
(t0 − t) +

1

2
(t0 − t)2H0 + ...

]
. (9.92)

But �nally we want to express χ as a function of the redshift and so we insert for
t0 − t and express it through z and we go to second order in z

χ =
c

R0

[(
z

H0

−
1 + q0

2

H0

z2

)
+

1

2

z2

H2
0

H0

]
, (9.93)

χ =
c

R0H0

[
z − 1

2
(1 + q0)z2

]
. (9.94)

If this is now the coordinate of some galaxy and we sit at zero, then the distance to
that galaxy is

d = R0χ. (9.95)

If we use the last equation, then we have

d =
c

H0

[
z − 1

2
(1 + q0)z2

]
. (9.96)

We see that if z is really small and we limit ourselves to the �rst order in z, then
we have

H0d = cz. (9.97)

As we would interpret the redshift as being due to Doppler shift due to galaxy
receding from us with some velocity v, then the RHS is given just by this velocity
of the galaxy

H0d = v. (9.98)

This is the Hubble's law discovered in 1929. We now see actually that it is due to
the leading term in the Taylor expansion of the scale parameter.
We see from this derivation that the Hubble constant is only the constant just now,
but otherwise it is a function of time. Recall that it was given as

H(t) =
Ṙ(t)

R(t)
. (9.99)

To get the �rst estimate of what does this function of time look like, we use the
Taylor expansion for R and Ṙ

H(t) =
R0(H0 + (t0 − t)q0H

2
0 + ...)

R0(1− (t0 − t)H0 + ...)
, (9.100)

H(t) ≈ H0(1 + (t0 − t)q0H0)(1 + (t0 − t)H0 + ...), (9.101)

H(t) ≈ H0(1 + (t0 − t)(1 + q0)H0 + ...), (9.102)
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and we express the look-back time through the redshift up to �rst order and get

H(z) ≈ H0(1 + (1 + q0)z). (9.103)

If we have the Hubble constant as function of the redshift, we can determine the
look-back time and the coordinate of the observed photon. We realize this

dz = d(1 + z) = d

(
R0

R

)
= −R0

R2
Ṙdt = −R0

R

Ṙ

R
dt = −(1 + z)H(z)dt, (9.104)

and we can integrate this relation∫ t0

t

dt′ =

∫ 0

z

− dz′

(1 + z′)H(z′)
, (9.105)

t0 − t =

∫ 0

z

− dz′

(1 + z′)H(z′)
. (9.106)

For calculating the coordinate, we use the expression which we derived from the
photon geodesic

χ =

∫ t0

t

cdt

R(t)
. (9.107)

We perform a substitution

dt =
−1

(1 + z)H(z)
dz, (9.108)

use what we derived for the redshift

R(t) =
R0

1 + z
(9.109)

and then the integral is the following

χ =

∫ 0

z

c
1 + z′

R0

−1

(1 + z′)H(z′)
dz′, (9.110)

χ =
c

R0

∫ z

0

dz′

H(z′)
. (9.111)

9.2.3 Distance in the FRW geometry

In the previous discussions, the distance from a galaxy was already mentioned. But
that needs some more words to explain. Given the metric, it was said that the proper
distance is

d = R(t)χ. (9.112)

But this is practically not measurable. So for practical use, we need some opera-
tionally de�ned distances. These can be luminosity distance and the angular diam-
eter distance.
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Luminosity distance

If we have a radiating source, then its absolute luminosity is the total energy radiated
per unit time. In Euclidean space, the �ux of energy measured at distance d goes
down as 1

d2

F =
L

4πd2
. (9.113)

The luminosity distance is based on this relation and depends on the square root of
the ratio L

F

d2
L =

√
L

4πF
. (9.114)

We do not have Euclidean space, however. We have the Friedmann-Robertson-
Walker geometry and so we need to relate this de�nition to the quantities of the
metric. Suppose that the emitter as well as the receiver comove with the cosmological
�uid. So their χ coordinates are �xed. We put the emitter at zero and the observer
at χ. The photons must be emitted earlier at time tE so that they are observed at
the time t0. During this time, they spread out isotropically into a sphere with this
proper area

A = 4πR2(t0)S2(χ). (9.115)

But there is another factor which decreases the received energy. Each photon is
redshifted by the factor

νO
νE

=
1

1 + z
. (9.116)

This is the observed over the emitted frequency. And by the same factor, also the
arrival rate is decreased. So altogether, we have this �ux

F (t0) =
L(tE)

4πR2
0S

2(χ)

1

(1 + z)2
. (9.117)

And so for the luminosity distance, we derive

dL =

√
L

4πF
= R0S(χ)(1 + z). (9.118)

Angular diameter distance

The motivation here, again, is from the Euclidean space. If we have an object with
the proper diameter l far away, and we observe it on the angular diameter ∆ϑ, then
the distance is

dA =
l

∆ϑ
. (9.119)

And again, we have to relate it to the coordinates in the FRW geometry.
Let's describe the situation. The observer sits at 0 and the observed object sits at
some distance χ. Consider two of its points, that are situated at the same coordinate
ϕ. The photons from these two points arrive at the position of the observer at time
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Figure 9.1: Observer sitting at 0 observing the blue object. Red points correspond to
points on the object with the same ϕ coordinate. The photons from the two points
are emitted at tE and observed at t0.

t0. During the time as they propagate, they always stay at the same value of ϕ.
They arrive to the observer with the angular distance ∆ϑ. A sketch of this situation
is in Fig. 9.1.
It is the observer who measures the distance, and so we have to consider the mea-
surement from his point of view. This can be seen in Fig. 9.2. So we have to project
the worldlines along the worldlines of the observer. As you do that, the distance
between the observer and the source that counts, is the one at the time, when the
photons were produced. So R is taken at the time tE. So then the geometry, such as
the size of the emitting object, is

l = R(tE)S(χ)∆ϑ, (9.120)

and so the angular diameter distance is

dA = R(tE)S(χ). (9.121)

But we would like to express the scaling factor R with its value at the time of
observation t0. So we do it with the help of the redshift

dA = R(t0)
R(tE)

R(t0)
S(χ) =

R0S(χ)

1 + z
. (9.122)

You can see that there is a di�erence between the luminosity distance and the
angular diameter distance. They di�er by the factor

dL
dA

= (1 + z)2. (9.123)
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Figure 9.2: The situation from Fig. 9.1 from the observer's point of view.

9.2.4 Volumes and number densities in the FRW metric

To be speci�c, we want to look at the 3-volume. With this metric, the in�nitesimal
volume, which corresponds to the coordinate interval (χ, χ+ dχ) and solid angle

dΩ = sinϑdϑdϕ, (9.124)

is
dV0 = (R0dχ)

[
R2

0S
2(χ)dΩ

]
= R3

0S
2(χ)dχdΩ. (9.125)

Practically, the distances are often measured with the redshift. And so we replace
dχ with dz. But then, we need the derivative. We will obtain this from relation that
we derived previously

χ =
c

R0

∫ z

0

dz′

H(z′)
. (9.126)

The derivative is
dχ =

c

R0H(z)
dz. (9.127)

So for the volume, we get

dV0 =
cR2

0S
2(χ(z))

H(z)
dzdΩ. (9.128)

This is the present day volume element. But often, when we consider expanding
universe, it is useful to derive the time dependance of the volume. To get this, it is
the easiest to look at equation (9.125). The volume is proportional to R3

0 and the only
time dependance in the equation is in R. So if we know how R is time dependent,
then we can plug it in. The look-back time can also be expressed through the redshift,
which we use here. So we will stick with the redshift and express everything with
the redshift.
For the redshift, we had this equation

1 + z =
νE
νR

=
R(tR)

R(tE)
. (9.129)
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And so R at any time, or at any redshift, can be expressed as

R =
R0

1 + z
. (9.130)

So we can use it for the volume

dV (z) =
dV0

(1 + z)3
=
cR2

0S
2(χ(z))

(1 + z)3H(z)
dzdΩ. (9.131)

This is practically useful to have the volume as the function of z. Suppose you want
to count the galaxies in the sky that you see at solid angle dΩ in some redshift
interval (z, z + dz). This is then the density of galaxies at that redshift times dV

dN = n(z)
cR2

0S
2(χ)

(1 + z)3H(z)
dzdΩ =

n(z)

(1 + z)3

cR2
0S

2(χ(z))

H(z)
dzdΩ. (9.132)

But the second term is the present day volume. So if the galaxies are not destroyed,
then n(z) over (1 + z)3 must be the present day density of galaxies n0. And so we
also derived the time evolution of the density. As a consequence, if we want to count
all galaxies up to some redshift zf and we assume that they were not destroyed
meanwhile, then we integrate this relation

N =

∫ zf

0

dz

∫
dΩn0

cR2
0S

2(χ(z))

H(z)
. (9.133)

The angular interval brings 4π and we get

N = 4πcn0R
2
0

∫ zf

0

S2(χ(z))

H(z)
dz. (9.134)

And to calculate this integral, we must know how R evolved with time.

9.3 The cosmological �eld equations

The cosmological �eld equations are the Einstein equations for the FRW metric.
The goal in solving these equations is to �nd the time dependance of R. We use the
Eintein equation in the form with only the Ricci tensor on the LHS

Rµν = −κ
(
Tµν −

1

2
Tgµν

)
+ Λgµν , (9.135)

where T = T µµ and

κ =
8πG

c4
. (9.136)

Let's start with the LHS. So we need the Ricci tensor. We go back to the coordinates
[xµ] = (t, r, ϑ, ϕ) and use the metric in this form

ds2 = c2dt2 −R2(t)

[
dr2

1− kr2
+ r2

(
dϑ2 + sin2 ϑdϕ2

)]
. (9.137)
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So these are the components of the metric

g00 = c2, g00 =
1

c2
, (9.138)

g11 = − R2(t)

1− kr2
, g11 = −1− kr2

R2(t)
, (9.139)

g22 = −R2(t)r2, g22 = − 1

R2(t)r2
, (9.140)

g33 = −R2(t)r2 sin2 ϑ, g33 = − 1

R2(t)r2 sin2 ϑ
. (9.141)

The next step are the connection coe�cients

Γσµν =
1

2
gσρ(∂νgρµ + ∂µgρν − ∂ρgµν), (9.142)

and the non-zero ones are these

Γ0
11 =

RṘ

c2(1− kr2)
, Γ0

22 =
RṘr2

c2
, Γ0

33 =
RṘr2 sin2 ϑ

c2
, (9.143)

Γ1
01 =

Ṙ

R
, Γ1

11 =
kr

1− kr2
, Γ1

22 = −r(kr2), Γ1
33 = −r(1− kr2) sin2 ϑ, (9.144)

Γ2
02 =

Ṙ

R
, Γ2

12 =
1

r
, Γ2

33 = − sinϑ cosϑ, (9.145)

Γ3
03 =

Ṙ

R
, Γ3

13 =
1

r
, Γ3

23 = cotϑ. (9.146)

The Ricci tensor components are directly calculated from this formula

Rµν = ∂νΓ
σ
µσ − ∂σΓσµν + ΓρµσΓσρν − ΓρµνΓ

σ
ρσ. (9.147)

It turns out that only the diagonal terms are non-zero

R00 =
3R̈

R
, (9.148)

R11 = −RR̈ + 2Ṙ2 + 2c2k

c2(1− kr2)
, (9.149)

R22 = −RR̈ + 2Ṙ2 + 2c2k

c2
r2, (9.150)

R33 = −RR̈ + 2Ṙ2 + 2c2k

c2
r2 sin2 ϑ. (9.151)

Now we turn to the RHS of the Einstein equation. There is the energy-momentum
tensor. We take a simple model and neglect viscosity and heat conduction. So we
assume that the energy-momentum tensor is that of a perfect �uid

T µν = (ρc2 + p)
uµuν

c2
− pgµν . (9.152)

The density and pressure must be functions of only the cosmic time (ρ = ρ(t), p =
p(t)). This is the cosmological �uid, so it comoves with the coordinates. Then, its
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contravariant 4-velocity has only the zeroth component [uµ] = (1, 0, 0, 0) = δµ0. And
similarly the covariant 4-velocity

uµ = gµνu
ν = gµνδ

ν
0 = gµ0 = c2δ0

µ. (9.153)

So the energy-momentum tensor is then

Tµν = (ρc2 + p)c2δ0
µδ

0
ν − pgµν . (9.154)

And we easily caluclate its contraction

T µµ = (ρc2 + p)− pδµµ = ρc2 − 3p. (9.155)

So altogether, the RHS of the Einstein equation is

−κ
(
Tµν −

1

2
Tgµν

)
+ Λgµν =

= −κ
[
(ρc2 + p)c2δ0

µδ
0
ν − pgµν −

1

2
ρc2gµν +

3

2
pgµν

]
+ Λgµν =

= −κ
[
(ρc2 + p)c2δ0

µδ
0
ν −

1

2
(ρc2 − p)gµν

]
+ Λgµν .

(9.156)

If you look at this, the metric tensor is diagonal. So also here, we only have diagonal
terms. We write them out explicitly from 00 to 33

−κ
[
(ρc2 + p)c2 − 1

2
(ρc2 − p)c2

]
+ Λc2 = −1

2
κ(ρc2 + 3p)c2 + Λc2, (9.157)

−κ
[
−1

2
(ρc2 − p) −R

2

1− kr2

]
+ Λ

−R2

1− kr2
= −

[
1

2
κ(ρc2 − p) + Λ

]
R2

1− kr2
, (9.158)

−κ
[
−1

2
(ρc2 − p)

(
−R2r2

)]
+ Λ

(
−R2r2

)
= −

[
1

2
κ(ρc2 − p) + Λ

]
R2r2, (9.159)

−κ
[
−1

2
(ρc2 − p)

(
−R2r2 sin2 ϑ

)]
+ Λ

(
−R2r2 sin2 ϑ

)
=

= −
[

1

2
κ(ρc2 − p) + Λ

]
R2r2 sin2 ϑ.

(9.160)

So now we can put the zero-zero component into equation with the zero-zero com-
ponent of the Ricci tensor

3R̈

R
= −1

2
κ(ρc2 + 3p)c2 + Λc2, (9.161)

and if we look closely to the remaining three components, the 3 equations would be
equivalent. So we cancel the factors on both sides and arrive at this

RR̈ + 2Ṙ2 + 2c2k

c2
=

[
1

2
κ(ρc2 − p) + Λ

]
R2. (9.162)

We insert for κ

κ =
8πG

c4
, (9.163)
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and from the �rst equation, we express R̈

R̈ = −4πG

3

(
ρ+

3p

c2

)
R +

Λc2R

3
. (9.164)

Then, in the second equation we insert for R̈ and express Ṙ2

2Ṙ2 =

[
4πG

c4
(ρc2 − p) + Λ

]
c2R2 − 2c2k −RR̈, (9.165)

Ṙ2 =

[
2πG

c4
(ρc2 − p) +

Λ

2

]
c2R2 +

2πG

3

(
ρ+

3p

c2

)
R2 − Λc2R2

6
− c2k. (9.166)

Pressure cancels out and we collect the other terms

Ṙ2 =
8πG

3
ρR2 +

1

3
Λc2R2 − c2k. (9.167)

Equations (9.164) and (9.167) are called Friedmann-Lemaitre equations. if Λ is set to
zero, then they are called Friedmann equations. For the Friedmann equations, there
is no solution where R would be constant. This kills the idea of a static universe
and let Einstein to introduce his cosmological constant.

9.3.1 Equation of motion for the cosmological �uid

We will consider the energy-momentum conservation equation

∇µT
µν = 0. (9.168)

This can be manipulated into continuity equation, which is

∇µ(ρuµ) +
p

c2
∇µu

µ = 0, (9.169)

and the equation of motion for the cosmological �uid(
ρ+

p

c2

)
uµ∇µu

ν =

(
gµν − uµuν

c2

)
∇µp. (9.170)

The second equation is actually trivial, because there is zero on both sides. We can
show this.
Let's start with the LHS. We have there the covariant derivative of velocity, multi-
plied by uµ

uµ∇µu
ν = uµ∂µu

ν︸ ︷︷ ︸
0

+ Γνσµu
σuµ︸ ︷︷ ︸

Γν00

= 0. (9.171)

The velocity is constant, and so the �rst term vanishes. As for the second term, the
velocities only have zeroth component, and so only Γ with two lower indices equal to
zero contribute. But there is no such Christo�el symbol, which would be non-zero,
so also here we get zero.
On the RHS we have ∇µp, but p is a scalar function, and so this is equal to ordinary
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derivative ∂µp. And since p only depends on time, only the zeroth derivative con-
tributes, so the index µ must be zero. Now gµν only has diagonal components and
so from the bracket, only the zero-zero component can contribute, but that is zero(

g00 − u0u0

c2

)
=

(
1

c2
− 1 · 1

c2

)
= 0. (9.172)

So also the RHS vanishes.
Now let's turn back to the continuity equation. We write out the covariant derivatives

∇µ(ρuµ) +
p

c2
∇µu

µ = 0, (9.173)

(∇µρ)uµ + ρ∇µu
µ +

p

c2
∇µu

µ = 0, (9.174)

uµ(∇µρ) +
(
ρ+

p

c2

)
∇µu

µ = 0, (9.175)

uµ(∇µρ)︸ ︷︷ ︸
ρ̇

+
(
ρ+

p

c2

)∂µuµ︸︷︷︸
0

+Γµνµu
ν

 = 0. (9.176)

Since ρ is scalar, in the �rst term we can replace the covariant derivative with the
normal derivative. And since it is multiplied with uµ, it only includes the zeroth
component, which is the time derivative. In the second term, the derivative of the
velocity is zero. And since the velocity only has zeroth component, which is 1, we
get the sum of the Γ's with second index equal to zero

Γ0
00 + Γ1

01 + Γ2
02 + Γ3

03 = 3
Ṙ

R
. (9.177)

So altogether we get this equation

ρ̇+
(
ρ+

p

c2

)
3
Ṙ

R
= 0. (9.178)

We want to get the evolution of ρ. We seperate the density and the pressure

ρ̇+ ρ3
Ṙ

R
= −3

p

c2

Ṙ

R
. (9.179)

Now the trick is to multiply this equation with R3

ρ̇R3 + ρ3ṘR2 = −3
p

c2
ṘR2, (9.180)

d(ρR3)

dt
= −3

p

c2
ṘR2. (9.181)

We would �nally like to see how the density is related to the scale parameter R. To
this end, we rewrite the derivative with respect to R

d

dt
=

dR

dt

d

dR
= Ṙ

d

dR
, (9.182)
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=⇒ Ṙ
d(ρR3)

dR
= −3

p

c2
ṘR2, (9.183)

d(ρR3)

dR
= −3

p

c2
R2. (9.184)

To solve this, we need to know how pressure is related to the density, so we need
the equation of state. We assume that it is proportional to the density

p = wρc2. (9.185)

The particular choices would be: w = 0 for dust, w = 1
3
for radiation, or w = −1 for

vacuum with Λ 6= 0. To make the di�erential equation separable, we substitute ρR3

by a new variable Q. This is then the equation to be solved

dQ

dR
= −3wρR2 = −3w

Q

R3
R2, (9.186)

dQ

Q
= −3w

dR

R
. (9.187)

The solution is
Q = CR−3w, (9.188)

where C is the integration constant. And if we come back to the density, we arrive
at this scaling

ρ = CR−3(w+1). (9.189)

If the cosmological �uid has more than one components, which do not interact, then
each component evolves like this with its own parameter w. This can be for example
dust and radiation. Generally, if w > 0, then there is pressure and as the volume
increases, then work is done. So the energy density of such a component drops faster,
due to that work. This can change the relative contribution of each component to
the total density in the course of time.
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Chapter 10

Linearized general relativity and

gravitational waves

As a matter of fact, gravitational waves will be actually a small perturbation above
some background. That is good, because then we can treat them perturbatively,
which will greatly simplify the formalism, because otherwise Einstein equations are
pretty non-linear. So we will start by linearizing the equations of general relativity,
and this will happen in the weak �eld metric

10.1 The weak �eld metric

To make the simulation even simpler, we introduce the weak �eld above the back-
ground of no �eld at all. So the metric is just slightly di�erent from Minkowskian

gµν = ηµν + hµν , (10.1)

where |hµν | � 1 and partial derivatives of hµν are small as well. This does not
uniquely specify the coordinates. If there is one set of coordinates, which satisfy this
relation, then there would be many of them, all related by some transformation.

10.1.1 Lorentz transformations

x′µ = Λµ
νx

ν . (10.2)

Lorentz transformations conserve the Minkowski metric, so the transformation ma-
trices must full�l this relation

ηµν = Λρ
µΛσ

νηρσ. (10.3)

So we determine the primed metric

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ = Λ ρ

µΛ σ
ν (ηρσ + hρσ) = ηµν + Λ ρ

µΛ σ
ν hρσ︸ ︷︷ ︸

h′µν

. (10.4)
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Here we see that the in�nitesimal tensor h transforms under Lorentz transformation
like we would expect from a tensor in Minkowski space-time. So we will use it and
we adopt a di�erent point of view from the one we used so far.
Until now when we treated gravity, we included it e�ectively in a curved space-time
with the metric gµν . But now we will assume a �at Minkowski space-time with the
metric ηµν . This by itself does not include any gravity. Gravity is represented by the
tensor �eld hµν . This transforms as a tensor under Lorentz transforamation, but not
under general coordinate transformation.

10.1.2 In�nitesimal transformations

x′µ = xµ + ξµ(x), (10.5)

where ξµ are functions of the same order as hµν (o(ξµ) = o(hµν)). The transformation
matrix is the following

∂x′µ

∂xν
= δµν + ∂νξ

µ, (10.6)

and the inverse transformation di�ers by the sign

∂xµ

∂x′ν
= δµν − ∂νξµ. (10.7)

So we write down the transformed metric up to �rst order in small quantities

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ = (δρµ − ∂µξρ)(δσν − ∂νξσ)(ηρσ + hρσ),

g′µν = ηµν + hµν − ∂µξν − ∂νξµ︸ ︷︷ ︸
h′µν

. (10.8)

So from this we get the new form of the perturbation.
Let's now reinforce our picture. The in�nitesimal transformation does not change
the Minkowski metric. So if we assume that the underlying space is �at, it stays �at.
But it changes the tensor �eld hµν de�ned above this space. Then, from this point
of view, the formula for h′µν looks more like a gauge transformation than coordinate
transformation. And we are going to adopt this point of view. This

h′µν = hµν − ∂µξν − ∂νξµ, (10.9)

is a gauge transformation which will later allow us to choose particularly favorable
form of the �eld h. In this sense, it is completely analogical to the gauge transfor-
mations of the vector potential in classical electrodynamics.
Note that we also have the metric with contravariant components, which must look
like this

gµν = ηµν − hµν . (10.10)

And since we always work up to �rst order in small quantities, raising and lowering
indices on hµν goes via multiplying with ηµν . That can be seen from this relation

hµν = gµσhσν = (ηµσ − hµσ)hσν ≈ ηµσhσν . (10.11)

With this decomposition of the metric tensor, we can now look at the linear gravi-
tational �eld equations.
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10.2 The linearized gravitational �eld equation

Linearization means, that we express the Ricci tensor and scalar curvature in terms
of the tensor h, because only h has non-vanishing derivatives. And we only keep
terms up to �rst order in h. Recall the Einstein equation

Rµν −
1

2
gµνR = −κTµν . (10.12)

To get the Ricci tensor and scalar, we need the Christo�el symbols. With this metric,
they are calculated like this

Γσµν =
1

2
ησρ(∂νhρµ + ∂µhρν − ∂ρhµν) =

1

2
(∂νh

σ
µ + ∂µh

σ
ν − ∂σhµν), (10.13)

where ∂σ := ησρ∂ρ.
Riemann tensor is then this

Rσ
µνρ = ∂νΓ

σ
µρ − ∂ρΓσµν + ΓτµρΓ

σ
τν − ΓτµνΓ

σ
τρ. (10.14)

The last two terms are of second order in h, and so they will be ignored. Then the
Riemann tensor becomes this

Rσ
µνρ =

1

2

[
∂ν(∂ρh

σ
µ + ∂µh

σ
ρ − ∂σhµρ)− ∂ρ(∂νhσµ + ∂µh

σ
ν − ∂σhµν)

]
, (10.15)

Rσ
µνρ =

1

2
(∂ν∂µh

σ
ρ + ∂ρ∂

σhµν − ∂ν∂σhµρ − ∂ρ∂µhσν). (10.16)

The contraction gives the Ricci tensor

Rµν = Rσ
µνσ =

1

2
(∂ν∂µh

σ
σ + ∂σ∂

σhµν − ∂ν∂σhσµ − ∂σ∂µhσν). (10.17)

We introduce some shorthands, the trace

h = hσσ, (10.18)

and the d'Alembert operator
�2 = ∂σ∂

σ. (10.19)

The Ricci tensor then becomes

Rµν =
1

2
(∂ν∂µh+ �2hµν − ∂ν∂σhσµ − ∂σ∂µhσν). (10.20)

Finally we contract the Ricci tensor to get the scalar curvature

R = Rν
ν = ηνµRµν = �2h− ∂ν∂σhσν . (10.21)

We can now put all of this into the Einstein equation

1

2
(∂ν∂µh+ �2hµν − ∂ν∂σhσµ − ∂σ∂µhσν)−

1

2
ηµν(�

2h− ∂ρ∂σhσρ) = −κTµν . (10.22)
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The LHS is a bit complicated, but it can be simpli�ed by a trick. The trick is an
introduction of new tensor de�ned like this

h̄µν := hµν −
1

2
ηµνh. (10.23)

If we look at the trace of h̄

h̄ = h̄µµ = hµµ −
1

2
δµµh = h− 2h = −h, (10.24)

we see that it is the reversed value of h. So h̄ is called the trace reverse. If we also
reversed the h̄, then we would be back to h

¯̄hµν = h̄µν −
1

2
ηµν h̄ = (hµν −

1

2
ηµνh) +

1

2
ηµνh = hµν . (10.25)

So we will express h as the trace reverse of h̄

hµν = h̄µν −
1

2
ηµν h̄. (10.26)

And insert this into the �eld equations. After some algebra, one derives

�2h̄µν + ηµν∂ρ∂σh̄
ρσ − ∂ν∂ρh̄ρµ − ∂µ∂ρh̄ρν = −2κTµν . (10.27)

This equation generally holds for the metric that can be separated, as we did in
the beginning, to Minkowski part and the small perturbations h, which we treat as
tensors in �at space.
Before we simplify this equation further, we will add one property that follows from
this equation. We take the derivative with respect to xµ

∂µ�2h̄µν + ∂ν∂ρ∂σh̄
ρσ − ∂µ∂ν∂ρh̄ρµ −�2∂ρh̄

ρ
ν = 0. (10.28)

Since the LHS gives zero, then the same must be true for the RHS. And so we
conclude that the derivative of Tµν vanishes

∂µTµν = 0. (10.29)

This looks like the energy conservation, but it is not, because in energy conservation,
we had the covariant derivative. Now since the Christo�els are non-zero, the covari-
ant derivative would not vanish. And it rather seems that we do not have the energy
conservation. The reason for this inconsistency is our linearization procedure. In this
treatment Tµν acts as if it was a source, which is not in�uenced by the gravity. In the
full treatment gravity, which is on the LHS, also in�uences the energy-momentum
tensor. Our treatment is ok if we look at simulations where we can treat the energy-
momentum tensor as not in�uenced by the gravitational �eld at the place, where
we are interested in it. We assume there that the source of the �eld is given. This
is the case when we look at gravitational waves generated by some distant source.
So altogether we keep in mind that there are some inconsistencies in our treatment,
because they can pop up from time to time.
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10.2.1 The Lorentz gauge

Now we get back to the �eld equation and simplify it by not taking any general h,
but h which satis�es speci�c conditions. In other words, we can choose a gauge as it
is done in electrodynamics. We �rst need to derive how the trace reverse transforms
under gauge transformation

h̄′
µν

= h′µν − 1

2
ηµνh′ = hµν − ∂µξν − ∂νξµ − 1

2
ηµν(h− 2∂ρξ

ρ) (10.30)

h̄′
µν

= h̄µν − ∂µξν − ∂νξµ + ηµν∂ρξ
ρ. (10.31)

Among the terms in the �eld equation, there are derivatives of h̄µν , and so let's look
at how they act on the transformed tensor

∂ν h̄′
µν

= ∂ν h̄
µν − ∂ν∂µξν −�2ξµ + ∂µ∂ρξ

ρ, (10.32)

∂ν h̄′
µν

= ∂ν h̄
µν −�2ξµ. (10.33)

So this means that via an appropriate gauge transformation, we can put all these
�rst derivatives to zero. We must choose ξ so that this is valid

�2ξµ = ∂ν h̄
µν . (10.34)

The �eld equation then simpli�es considerably

�2h̄′µν = −2κTµν . (10.35)

For brevity we now drop the prime and raise indices

�2h̄µν = −2κT µν . (10.36)

We call such choice of ξ the Lorentz gauge.
Know that even now we still have some freedom to transform to another gauge,
which actually means that the Lorentz gauge is a family of gauges. What we require
is that the function ξ full�ls this condition

�2ξµ = 0. (10.37)

10.2.2 Solution in vacuum

If we solve the equation that we derived in vaccum, the RHS is zero

�2h̄µν(0) = 0. (10.38)

The solution is a plane wave

h̄µν(0) = Aµν exp(ikσx
σ), (10.39)

where Aµν and kσ are constant. We insert this into the equation

�2Aµν exp(ikσx
σ) = ηκρ∂κ∂ρA

µν exp(ikσx
σ) =

= −ηκρkκkρAµν exp(ikσx
σ) = −kκkκAµν exp(ikσx

σ) = 0.
(10.40)
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So we see that if this should be the solution, then we must have

kκk
κ = 0, (10.41)

and so the wave travels on null geodesic with the speed of light. Moreover, we must
satisfy the gauge condition

0 = ∂µh̄
µν = ∂µA

µν exp(ikρx
ρ) = ikµA

µν exp(ikρx
ρ), (10.42)

and so the amplitude A must be perpendicular to k

kµA
µν = 0. (10.43)

Finally, since the equations are linear, also a superposition of such waves will solve
the equation in vacuum. The superposition is written like this

h̄µν(0)(x) =

∫
Aµν(~k) exp(ikρx

ρ)d3~k. (10.44)

10.2.3 Solution of the �eld equations with source

The next step is to solve the �eld equation in the Lorentz gauge with a source

�2h̄µν = −2κT µν . (10.45)

The Lorenz gauge is
∂µh̄

µν = 0. (10.46)

This kind of equations if customarily solved with the help of the Green's function,
which is the response to the δ-function source

�2
xG(x− y) = δ(4)(x− y). (10.47)

The general solution with T µν on the RHS would be this

h̄µν(x) = h̄µν(0) − 2κ

∫
G(x− y)T µν(y)d4y. (10.48)

So let's �nd the Green's function. Without loss of generality, we can put y = 0

�2G(x) = δ(4)(x). (10.49)

And denote the components of the 4-vector x like this

[xµ] = (ct, ~x). (10.50)

We now integrate this equation over a 4-volume, which we choose like this: spacelike
coordinates within a sphere of radius r (|~x| < r) and time from -∞ to +∞∫

V

∂µ∂
µG(x)d4x =

∫
V

δ(4)(x)d4x = 1. (10.51)
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The integral of the Green's function we change into surface integral with the help
of Gauss-Ostrogradsky theorem∫

S

[∂µG(x)]nµdS = 1. (10.52)

Note here that because of the metric, which is negative in the spacelike part, the
normal vector nµ points inwards, where it is spacelike. Now we have shown a while
ago that the wave vector of the variation of gravitational �eld must be a null vector,
and so the variations travel at the speed of light. So if we have a δ-function source
in space and time, the signal that it generates must be limited to the future light
cone with the apex in zero.
Then the Green's function must take this form

G(x) =

{
f(r)δ(ct− |~x|) for ct ≥ 0,

0 for ct<0,
(10.53)

And f(r) is some function of r, which we need to determine. So the surface integral
will only get a non-zero contribution where the surface is intersected by the light
cone. This situation is given by this condition

ct = r. (10.54)

The inward pointing normal vector here is the radial vector and so the derivative
will be with respect to the spherical radial coordinate r

nµ∂µ = −∂r. (10.55)

For this integration it is then suitable to parametrize the surface with angular part
of the spherical coordinates

dS = cdtr2dΩ = cdtr2 sinϑdϑdϕ. (10.56)

So altogether, the surface integral is rewritten like this∫
S

nµ∂µG(x)dS =

∫ ∞
−∞

cdt

∫ π

0

sinϑdϑ

∫ 2π

0

dϕr2

[
−∂G(x)

∂r

]
=

= −4πr2

∫ ∞
−∞

∂G(x)

∂r
cdt = 1.

(10.57)

We now insert the expression for the Green's function

−4πr2

∫ ∞
0

∂

∂r
[f(r)δ(ct− r)]cdt =

= −4πr2∂f

∂r

∫ ∞
0

δ(ct− r)cdt− 4πr2f(r)

∫ ∞
0

∂δ(ct− r)
∂r

cdt.

(10.58)

The �rst integral gives 1 and the second integral can be shown to give 0 by integrating
by parts. And so we end up with this equation for f

−4πr2∂f

∂r
= 1. (10.59)
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This is easily integrated and we have the solution

f(r) =
1

4πr
. (10.60)

There may be an integration constant, but we have chosen it to be 0, so that the
Green's function vanishes as r goes to in�nity. So here is the complete Green's
function

G(x) =
δ(x0 − |~x|)

4π|~x|
θ(x0), (10.61)

where the θ-function makes sure that the Green's function is only non-zero in the
future time. With the Green's function, we can now write the complete solution for
the gravity �eld generated by given tensor T µν

h̄µν(x) = − κ

2π

∫
δ((x0 − y0)− |~x− ~y|)

|~x− ~y|
θ(x0 − y0)T µν(y)d4y. (10.62)

We apply here the δ-function for the time integration and arrive at 3-dimensional
integral

h̄µν(ct, ~x) = −4G

c4

∫
T µν(ct− |~x− ~y|, ~y)

|~x− ~y|
d3~y. (10.63)

This is rather natural result. The contribution to h̄µν from the energy-momentum
tensor is taken at the retarded time

tr = t− |~x− ~y|
c

. (10.64)

This is our solution. There is one last step to accomplish, and that is to prove that
the condition of the Lorentz gauge is full�led

∂

∂xµ

∫
T µν(ct− |~x− ~y|, ~y)

|~x− ~y|
d3~y = 0. (10.65)

This can be shown after some manipulation to the integral, but we are going to skip
the technical part and just state that the gauge condition is, indeed, respected.
So we will work with this solution with what comes and �rst we will decompose the
RHS by means of the multipole expansion.

Multipole expansion

The usual situation that one treats is that there is some distant source, which is
much smaller than the distance from the observer to the source. It makes sense to
put the center of coordinates into the center of mass of the source, so that we have
this

|~x| � |~y|. (10.66)

Then, if we denote r = |~x|, we can Taylor expand this

1

|~x− ~y|
≈ 1

r
+ (−yi)∂i

1

r
+

1

2!
(−yi)(−yj)∂i∂j

1

r
+ ..., (10.67)

1

|~x− ~y|
≈ 1

r
+ yi

xi
r3

+ yiyj
3xixj − r2δij

r5
+ ..., (10.68)
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for small ~y. We put this into the integral and get the systematic expansion of the
solution

h̄µν(ct, ~x) = −4G

c4

[
1

r

∫
T µν(ctr, ~y)d3~y +

xi
r3

∫
T µν(ctr, ~y)yid

3~y+

+
3xixj − r2δij

r5

∫
T µν(ctr, ~y)yiyjd

3~y

]
.

(10.69)

This can be expressed more formally by introducing multipole moments of the source

Mµνi1...il(ctr) =

∫
T µν(ctr, ~y)yi1yi2 ...yild3~y, (10.70)

and thus rewriting the expansion like this

h̄µν(ct, ~x) = −4G

c4

∞∑
l=0

(−1)l

l!
Mµνi1...il∂i...∂l

1

r
. (10.71)

The higher terms in this expansion are proportional to 1
rl+1 , so it is reasonable to

expect that for large distancies, the higher terms will have less and less contribution.
This is one of the elements of the compact source approximation.

Compact source approximation

This approximation consists from taking only the �rst term of the expansion and
neglecting ~y in the reduced time

tr = t− |~x− ~y|
c

→ t− r

c
. (10.72)

So h̄µν is then given by this expression

h̄µν(ct, ~x) = −4G

c4r

∫
T µν(ct− r, ~y)d3~y. (10.73)

The zero-zero component of the integral is the total energy of the source. We denote
it as ∫

T 00d3~y = Mc2. (10.74)

By this, we assume that the parts of the source move much slower than c. The zero-i
components are proportional to total momentum and are equal to 0 if our choice
of the y coordinates is with respect to the center of mass. The i-j components may
generally be non-zero so componentwise, h̄ can be written like this

h̄00 = −4GM

c2r
, (10.75)

h̄i0 = h̄0i = 0, (10.76)

h̄ij(ct, ~x) = −4G

c4r

∫
T ij(ct− r, ~y)d3~y. (10.77)
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This last integral may be complicated to evaluate and some tricks are necessary.
First we notice that from the divergence of the energy-momentum tensor, we have

∂0T
00 + ∂kT

0k = 0 =⇒ ∂kT
0k = −∂0T

00, (10.78)

∂0T
i0 + ∂kT

ik = 0 =⇒ ∂kT
ik = −∂0T

i0. (10.79)

Technically for shortness we call this energy-momentum conservation. We shall say
also that the zeroth component is ct-reduced so the derivative is this

∂0 =
1

c

∂

∂tr
. (10.80)

We want to express the intregral of T ij. For this, we �rst consider this integral∫
∂k(T

ikyj)d3~y =

∫
(∂kT

ik)yjd3~y +

∫
T ijd3~y. (10.81)

We take the integration volume so big that T ij is zero at the edges. Then we can
use the Gauss-Ostrogradsky theorem on the LHS and turn the integral into surface
integral. Then we get that the surface integral gives zero. So we get the relation for
the integral of T ij ∫

T ijd3~y = −
∫

(∂kT
ik)yjd3~y. (10.82)

The RHS can be rewritten with the time derivative, thanks to the energy-momentum
conservation ∫

T ijd3~y =

∫
(∂0T

i0)yjd3~y. (10.83)

Since T ij is symmetric, we can symmetrize also this expression∫
T ijd3~y =

1

2c

d

dtr

∫
(T i0yj + T j0yi)d3~y. (10.84)

To rewrite this RHS, we consider another integral∫
∂k(T

0kyiyj)d3~y =

∫
(∂kT

0k)yiyjd3~y +

∫
(T 0iyj + T 0jyi)d3~y. (10.85)

Again, by using the Gauss-Ostrogradsky theorem, the LHS vanishes and we have
this relation ∫

(T 0iyj + T 0jyi)d3~y = −
∫

(∂kT
0k)yiyjd3~y. (10.86)

And by the energy-momentum conservation, we rewrite the second integral∫
(T 0iyj + T 0jyi)d3~y =

∫
(∂0T

00)yiyjd3~y. (10.87)

We insert this into equation (10.84) and obtain for the integral of T ij∫
T ijd3~y =

1

2c

d2

dt2r

∫
T 00yiyjd3~y. (10.88)

And so we have derived the expression for h̄ij

h̄ij(ct, ~x) = −2G

c6r

d2

dt2r

∫
T 00(ctr, ~y)yiyjd3~y. (10.89)

We denote the integral as I ij. It is the quadrupole moment tensor of the energy
density. And this is called the quadrupole moment formula.
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10.3 Plane gravitational waves and polarization states

With all this we are now ready to analyze the gravitational waves. First of all, we
will only take the real part of the solutions for h̄µν

h̄µν =
1

2
Aµν exp(ikρx

ρ) +
1

2
A∗µν exp(−ikρxρ). (10.90)

The amplitude tensor Aµν is symmetric, so there are 10 independent components.
There are 4 conditions of the Lorentz gauge, so we are down to 6 independent
complex components. We are going to further reduce this number. We denote the
wave vector components as

[kµ] =
(ω
c
,~k
)
. (10.91)

This must be null vector, so the dispersion relation is

kµk
µ = 0 =⇒ ω2 = |~k|2c2. (10.92)

For further treatment, we choose the coordinate frame so that k is in the z direction

[kµ] = (k, 0, 0, k). (10.93)

From the Lorentz gaugee, we then have

Aµ3 = Aµ0. (10.94)

So the whole matrix parametrized with 6 components looks like this

[Aµν ] =


A00 A01 A02 A00

A01 A11 A12 A01

A02 A12 A22 A02

A00 A01 A02 A00

 . (10.95)

Now we want to simplify this further and so we use another gauge transformation,
which satis�es this condition

�2ξµ = 0. (10.96)

So that we stay in the Lorentz gauge. Here is a transformation that we are going to
try

ξµ = εµ exp(ikρx
ρ). (10.97)

We had the transformation relation for h̄µν in equation (10.31). And so we work out
the transformed wave

h̄′
µν

= Aµν exp(ikσx
σ)− ∂µ(εν exp(ikρx

ρ))− ∂ν(εµ exp(ikρx
ρ))+

+ηµν∂σ(εσ exp(ikρx
ρ)),

(10.98)

h̄′
µν

= (Aµν − ikµεν − ikνεµ + iηµνkσε
σ) exp(ikρx

ρ). (10.99)

Thus we get the transformation for the amplitude

A′µν = Aµν − ikµεν − ikνεµ + iηµνkσε
σ. (10.100)
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We can write out explicitly the 6 independent components of Aµν in our particular
case

A′00 = A00 − ik(ε0 + ε3), (10.101)

A′01 = A01 − ikε1, (10.102)

A′02 = A02 − ikε2, (10.103)

A′11 = A11 − ik(ε0 − ε3), (10.104)

A′12 = A12, (10.105)

A′22 = A22 − ik(ε0 − ε3). (10.106)

The gauge we want to choose is such that only A11, A22, A12 and A21 are non-zero.
So from this we derive easily the expressions for ε1 and ε2

A′01 = 0 =⇒ ε1 = −iA
01

k
, (10.107)

A′02 = 0 =⇒ ε2 = −iA
02

k
, (10.108)

and then for ε0 and ε3

A′00 = 0 =⇒ ε0 + ε3 = −iA
00

k
. (10.109)

The last thing that we will require is

A′11 = −A′22 =⇒ 0 = A11 + A22 − 2ik(ε0 − ε3) (10.110)

=⇒ ε0 − ε3 = −i(A
11 + A22)

2k
. (10.111)

From this and the equation for ε0 + ε3, we derive expressions for ε0

ε0 = − i

2k

(
A00 +

A11 + A22

2

)
, (10.112)

and for ε3

ε3 = − i

2k

(
A00 − A11 + A22

2

)
. (10.113)

So with this gauge transformation, we have derived this matrix for the amplitude

[AµνTT ] =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 . (10.114)

The new gauge is called the transverse-traceless (TT) gauge. A nice additional con-
sequence of having zero trace is, that the reverse trace tensor is identical to original
h

h̄µν = hµν . (10.115)
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Usually, two linear polarization tensors are introduced

eµν1 =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , (10.116)

and

eµν2 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (10.117)

And so then we can write the amplitude for a wave in z direction in TT gauge in
this decomposition

AµνTT = aeµν1 + beµν2 . (10.118)

This was an illustration, useful to introduce a transverse-traceless gauge. But it was
only done for the propagation of the waves in z direction. We would like to have a
general procedure how to transform to the TT gauge for any direction of the waves.

10.3.1 TT gauge de�nition

The TT gauge will be de�ned by requiring

h̄0i
TT = 0, (10.119)

and
h̄TT = 0. (10.120)

This means also that the reverse traced h̄ is equal to h

h̄µν = hµν . (10.121)

Taking the �rst part of the de�nition and the Lorentz gauge, we derive also this

0 = ∂µh̄
µ0
TT = ∂0h̄

00
TT + ∂ih̄

i0
TT = ∂0h̄

00
TT =⇒ ∂0h̄

00
TT = 0, (10.122)

0 = ∂µh̄
µi
TT = ∂0h̄

0i
TT + ∂jh̄

ji
TT = ∂jh̄

ji
TT =⇒ ∂jh̄

ji
TT = 0. (10.123)

So we see that h̄00 must be constant. If the perturbation of the gravitational �eld is
time dependent, then the only consistent constant is 0. And so

h̄00
TT = 0, (10.124)

for non-stationary perturbations.
We now apply these conditions to the plane waves. This sets the conditions for the
amplitude tensor

A01
TT = 0, (10.125)

A00
TT = 0, (10.126)

(ATT )µµ = 0, (10.127)

AijTTkj = 0. (10.128)

158



We see that there will be only space components in the tensor A and altogether
they must be perpendicular to the 3-vector k. To �nd such a part of the tensor, we
�rst construct a projector to a vector, which projects out the components of the
3-vector, which is perpendicular to k

pij := δij −
kikj

|~k|2
. (10.129)

If we want to project a tensor, then we act with two such tensors. In this way, we
get the transverse tensor

AijTT = δikδ
j
lA

kl. (10.130)

We also need to make sure that the resulting tensor is traceless. For this, we �rst
recognize that the trace of the projector is

pii = 3− 1 = 2, (10.131)

and then we construct a new projector out of a combination of projectors so that
we �nd the traceless amplitude

AijTT =

(
pikp

j
l −

1

2
pijpkl

)
Akl. (10.132)

By this procedure, we construct a transverse and traceless amplitude to any direction
of the wave vector.

10.4 The e�ect of gravitational waves on free parti-

cles

Let's start with one particle. Its behaviour is described by the geodesics

duσ

dτ
+ Γσµνu

µuν = 0. (10.133)

We choose a particle initially at rest, so the 4-velocity is

[uµ] = c(1, 0, 0, 0). (10.134)

So the equation is very simple

duσ

dτ
= −c2Γσ00. (10.135)

Next, we can express the Christo�el symbol

duσ

dτ
= −1

2
c2ησρ(∂0hρ0 + ∂0h0ρ − ∂ρh00). (10.136)

In a TT gauge, all these components of the h tensor vanish, and we get that the
4-velocity does not change. It may look strange, but it is not. It just means that the
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particle stays at the same values of the coordinates.
To see the e�ect of the gravitational waves, we must look at the distances between
particles. The spatial separation between two particles is given by a spacelike vector

[ξµ] = (0, ξ1, ξ2, ξ3). (10.137)

The actual physical separation involves the metric

l2 = −gijξiξj = (δij − hij)ξiξj, (10.138)

and so we see that if hij will oscillate, then the separation will also oscillate. It is,
however, more convenient to use di�erent parametrization for the separation denoted
ζ and de�ned like this

ζ i = ξi − 1

2
hikξ

k. (10.139)

The inverse relation up to �rst order in h has the opposite sign

ξi = ζ i +
1

2
hikζ

k. (10.140)

So we express the physical separation as

l2 = (δij − hij)
(
ζ i +

1

2
hikζ

k

)(
ζj +

1

2
hjl ζ

l

)
, (10.141)

l2 = δijζ
iζj − hijζ iζj +

1

2
hjkζ

jζk +
1

2
hilζ

iζ l. (10.142)

This is up to �rst order in h and all the terms with h cancel

l2 = δijζ
iζj, (10.143)

so the metric in the new ζ coordinate is Euclidean.
Let's now look at a particular situation. A wave traveling in z-direction

~k = (0, 0, k), (10.144)

and an amplitude with polarization e1

Aµν = aeµν1 =


0 0 0 0
0 a 0 0
0 0 −a 0
0 0 0 0

 . (10.145)

The perturbation tensor oscillates like this

hµνTT = aeµν1 cos(kµx
µ) = aeµν1 cos(k(x0 − x3)). (10.146)

So we look at the vector ζ for �xed ξ perpendicular to z and this perturbation

[ζ i] = [ξi]− 1

2

[
aeiν cos

(
k(x0 − x3)

)
ξν
]
, (10.147)

(ζ1, ζ2, ζ3) = (ξ1, ξ2, 0) +
1

2
a cos

(
k(x0 − x3)

)
(ξ1,−ξ2, 0). (10.148)

We see that the �rst and the second component of the physical distance oscillate
with opposite phases. When the �rst gets bigger, the second shrinks and vice versa.
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We can similarly look at the second polarization

Aµν = beµν2 . (10.149)

Here we can work out that the distance will be

(ζ1, ζ2, ζ3) = (ξ1, ξ2, 0) +
1

2
b cos

(
k(x0 − x3)

)
(ξ2, ξ1, 0). (10.150)

One can also make the amplitude a complex linear combination of both polarizations

Aµν = a (eµν1 ± ie
µν
2 ) . (10.151)

In this case, a circular polarization is obtained.

10.5 The generation of gravitational waves

We will work in the compact source approximation. So we derive this for the zero-
zero component

h̄00 = −4GM

c2r
, (10.152)

the i-zero component is
h̄i0 = h̄0i = 0, (10.153)

and for the spatial components, we had the quadrupole formula

h̄ij(ct, ~x) = −2G

c6r

[
d2I ij(ctr)

dt2r

]
, (10.154)

where

I ij(ctr) =

∫
T 00(ctr, ~y)yiyjd3~y. (10.155)

To illustrate the generation, we assume two massive particles A and B, both with
equal masses M and mutual separation 2a, which rotate around the center of mass
in the x1x2-plane with angular velocity Ω. So these are their positions

[xiA] = (a cos Ωt, a sin Ωt, 0), (10.156)

[xiB] = −(a cos Ωt, a sin Ωt, 0). (10.157)

To get the quadrupole moment, we need the energy density distribution. For the
two massive points, it will be expressed with help of δ-functions

T 00(ct, ~x) = Mc2
[
δ(x1 − a cos Ωt)δ(x2 − a sin Ωt)+

+δ(x1 + a cos Ωt)δ(x2 + a sin Ωt)
]
δ(x3).

(10.158)

This may be seen as a proxy for a rotating binary star system. With this we calcu-
late the components of the quadrupole moment. The integration is straightforward
thanks to the δ-functions

I11(ct) = Mc2
[
(a cos Ωt)2 + (−a cos Ωt)2

]
= Mc2a2 (1 + cos(2Ωt)) , (10.159)

I22(ct) = Mc2
[
(a sin Ωt)2 + (−a sin Ωt)2

]
= Mc2a2 (1− cos(2Ωt)) , (10.160)

I12(ct) = Mc2
[
a2 cos Ωt sin Ωt+ a2 cos Ωt sin Ωt

]
= Mc2a2 sin(2Ωt), (10.161)

I21(ct) = I12(ct). (10.162)
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We put this in the quadrupole formula and derive the metric perturbation. We can
summarize it in a matrix

[h̄ij(ct, ~x)] =
8GMa2Ω2

c4r

cos
(
2Ω
(
t− r

c

))
sin
(
2Ω
(
t− r

c

))
0

sin
(
2Ω
(
t− r

c

))
− cos

(
2Ω
(
t− r

c

))
0

0 0 0

 . (10.163)

The zero-zero component is not part of the radiation. It is the modi�cation of the
metric due to presence of the mass. The radiation part only includes the transverse
components. We express it in the Lorentz gauge

[h̄µνrad(ct, ~x)] =
8GMa2Ω2

c4r


0 0 0 0
0 cos

(
2Ω
(
t− r

c

))
sin
(
2Ω
(
t− r

c

))
0

0 sin
(
2Ω
(
t− r

c

))
− cos

(
2Ω
(
t− r

c

))
0

0 0 0 0

 . (10.164)

If we want to see what di�erent observers will measure, we go to the TT gauge,
which is speci�c for every direction. The z-direction is perpendicular to the plane in
which there is the rotation. The perturbation tensor after the transformation comes
out like this

(hTTrad)µν =
8GMa2Ω2

c4r
Re
[
(eµν1 − ie

µν
2 ) exp

(
2iΩ

(
t− r

c

))]
. (10.165)

So in this case we have circularly polarized wave.
For an observer in x1-direction, we perform the procedure of transforming into the
TT gauge and the result is

(hTTrad)µν =
4GMa2Ω2

c4r


0 0 0 0
0 0 0 0
0 0 − cos

(
2Ω
(
t− r

c

))
0

0 0 0 cos
(
2Ω
(
t− r

c

))
 . (10.166)

So if we look closer, we see that in this case we have an analogy of e1 polarization
for the wave traveling in x1-direction. This is generally what the observer would see
if he is sitting within the plane of rotation.
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