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a* ... complex conjugate of number a
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[|All ... norm of the operator A
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H ... Hilbert space
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(o] ... scalar product

P . density matrix
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S ... von Neumann entropy

S(ij) ... von Neumann entropy of subsystems ¢ and j

S ... von Neumannn entropy of subsystem %

Ic ... index of correlations

1, g] ) ... index of correlations of subsystems ¢ and j

N(p) ... negativity of the density matrix p

C(p) ... concurence of the density matrix p

p ... generalized Bloch vector

P, ... group of permutations of n elements

Slab...n) ... symmetric and normalized n-particles state |ab...n)
Alab...n) ... anti-symmetric and normalized n-particles state |ab...n)



Chapter 1

Introduction

In recent years great effort was invested into investigation how to employ quantum
systems as parts of a computer. It has been demonstrated, that quantum informa-
tion is different from classical information and that the essence of this difference is
entanglement of quantum systems. Entanglement is a simple consequence of the
linearity of quantum mechanics, hence it does not have classical counterpart. This
effect equips quantum computer with massive parallelism and hence could be used
to speed up computation. Therefore quantum information processing could be more
efficient than the classical one. On the other hand, it has been realized that the
linear character of quantum theory imposes severe restrictions on the character of
elementary tasks of quantum information processing. For example it is impossible
to clone an arbitrary quantum state perfectly [1].

However, it is possible to make imperfect copies [2]. This particular process of
cloning belongs to the class of so called universal processes. These processes act
on all input states of a quantum system in a ‘similar’ way. For universal processes
working with one quantum system in a pure state and finishing in a N-particle
state this property is mathematically described by the so called covariance condi-
tion. Two-particle processes fulfilling this condition were analyzed in [3]. In this
paper a theoretical framework was developed within which all possible two-particle
universal processes can be described and those compatible with the linear character
of quantum theory were determined. Of special interest were universal processes
generating entangled two-particle output states which do not contain any separable
components. It has been shown that this particular subclass forms a one-parameter
family.

The aim of this work is to investigate subclass of three-particle universal pro-
cesses, which works with one quantum system in a pure state and finishes in a
three-particle state. For this purpose a theoretical framework developed in [3] is
used. General ansatz for three-particle universal process is given and the structure
of the output density matrix is described. Particular processes are treated in more
detail. Of special interest are three-particle universal processes generating output
states with no separable components and a one-parameter family of such processes
is determined.



This text is organized as follows: In chapter 2 an introduction to density matrix
formalism is given. This formalism is widely used in the quantum information theory
for description of a state of a quantum system. In chapter 3 a brief review of the
paper [3] is given. The formalism developed here is used in the following chapter,
which contains the results for three-particle universal processes. Particular three-
particle universal processes are discussed in more detail. Finally, a brief view on a
possible experimental realization of universal processes is given.



Chapter 2

The density matrix

2.1 Description of a quantum system

One of the basic axioms of quantum mechanics concern the description of a quantum
system and the state of this system ( see e. g. [4]):

(A1) With every quantum system we associate a complex Hilbert space H, the so
called state space,

(A2a) a state of this quantum system is described by a ray in the Hilbert space H,
i. e. an one dimensional subspace of H.

The choice of the Hilbert space depends on the properties of the quantum system
under considerations, e. g. for a spin-s system it is C?**!, for a structureless particle
in three dimensions it is L?(R®). The state of this system is then described by a
ray in this Hilbert space, this ray is determined by one unit vector - the so called
state vector. Such a state is called pure. However, this description is not the most
general one and is often insufficient.

For example consider a spin-% particle passing through the Stern-Gerlach appa-
ratus, such that the result of the experiment is that with equal probability % the
particle will fly out from either channel ( spin up or spin down with respect to the
measurement axis ), and that this probability is independent of the measurement
axis we choose. What can we say about the initial state (i. e. before entering the
Stern-Gerlach apparatus ) of the particle? All we know, is that for an arbitrary
choice of the measurement axis the particle is with probability % Spin up or spin
down. Such a state cannot be described by the ray ( or the state vector ) in the
Hilbert space ( in this case H = C? ). However, it can be described by the so called
density matrix ( or statistical operator ), defined bellow. The states, which cannot
be described by a state vector, are called mixtures.

Another reason for the generalization of the description of the quantum state
comes from the description of the composite systems. As we will see in the following
sections, the so called reduced density matrices, which describe the properties of the



subsystems, are in general mixtures, even when the whole composite system is in a
pure state.
The concept of the density matrix is introduced in the following definition.

Definition 2.1 Let p € B(#H) be a hermitian operator on H, then p is positive
operator iff

Vig) M, (lplp) > 0.
Let {|j)} be an orthonormal basis in #, then the number

Trp=_{ilels) (2.1)
J
is the trace of the operator p. If T'rp = 1, then p is a density matrix.

The trace of a positive operator p is well defined - because the numbers (j|p|j)
are nonnegative, T'rp is a sum of nonnegative real numbers and therefore always
exists and is finite or +00. Moreover, T'rp is independent of the choice of the basis
- {Jlplj) = ||\/ﬁj||2, if in the basis {|j)} Trp < 400, then ,/p is a Hilbert-Schmidt
operator and its Hilbert-Schmidt norm is equal to the trace

[Vplly =Trp.

The proposition follows from the fact that the Hilbert-Schmidt norm is basis inde-
pendent.
Now we can generalize the description of the quantum state.

(A2b) To every state of a quantum system belongs certain density matrix p on a
state space H.

2.1.1 Basic properties of density matrices

Every density matrix p is bounded ( ||p|| < 1), positive and hermitian operator,
thus its spectrum is real, positive and bounded from above by 1. From the condition
Trp =1 follows, that p is a Hilbert-Schmidt operator and therefore belongs to the
class of compact operators. From the compactness and boundness of p we obtain
the following properties of its spectrum ( see e. g. [4] ):

(1) every nonzero point of spectrum is an eigenvalue,
(2) every nonzero eigenvalue has a finite multiplicity,
(3) the only possible limit point of the spectrum is 0,
(4) the point spectrum is either finite or countable,

(5) the eigenvalues belong to the interval (0, 1).
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Moreover, p is a normal operator, hence the Hilbert-Schmidt theorem applies
( see e. g. [4] ). From this theorem follows that the eigenvectors of p form an
orthonormal basis in the state space H. Therefore every density matrix can be
diagonalised. If |¢/,,) is the n-th eigenvector of p and w,, the corresponding eigenvalue,
ie.

p‘wn> = wn'd’n)a

then the density matrix p can be written in the form

pP= an|7/]n><wn| (2.2)
From the positivity of p follows, that w, > 0, and from the condition Trp = 1 we

obtain
Trp= Z (¢n|ﬂ|¢n> = an =L

The eigenvalues w, can be interpreted as the probability of finding the system
described by the density matrix (2.2) in the pure state |1),).
If only one of the w,‘s is nonzero, i. e.

wi:]-: wj:()aj;éia

then p has the form
p = |¢i) (il

System with this density matrix is with certainty found to be in the state described
by the vector |1);), so in this case the density matrix p corresponds to the pure state
|1);). Pure states are therefore special case of density matrices - to the pure state
|1)) belongs the density matrix p = |¢)(¢|, which is the projection onto the one-
dimensional subspace determined by vector |¢)). From the properties of projection
operators we obtain the following proposition.

Proposition 2.1  Let p be a density matriz, then
Trp® < Trp. (2.3)
The equality holds iff p describes a pure state.

Proof: In the diagonal basis of p we have
Trp=an= 1, Trp? :Zwi.

Because all w,, belong to the interval (0, 1), w? < w, and the inequality (2.3) holds.
Now if p describes a pure state, then p is a projection and p? = p, so we have equality
n (2.3). On the other hand, if Trp? = Trp, then

sz = an =1
n n
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But this is possible only if one of the w,‘s is one and all others are zero, say
wizl, UJJZO,]#Z
This means that p is the projection onto the state [);)

p = [s) (il

Let us consider system with the density matrix

p= an‘wn><wn|’ (2'4)

our system is therefore with probability w,, in the state |¢,). We now choose some
orthonormal basis {|¢,)} in H and calculate the matrix elements

Pij = <%‘\P\<Pj>-

Because

> len)enl =1,

vectors |1),) can be written in the form
|thn) = Zagg)wm)a

where the coefficients aly) = (pm|1n), similarly

(nl = D" (ol
k
In the basis {|¢,)} the density matrix (2.4) has the form

p="Y waaa{™" o) (4. (2.5)

n,m,k

The matrix elements p; ; are therefore given by

pij = Z wnagn)ag-"), (2.6)
the diagonal elements are
P = an|a£s)|2 > 0. (2.7)



Because w, is the probability of finding our system in the state |¢,) and |a$ff)|2 is
the probability of finding the state [¢,,) in the state |¢,,), diagonal matrix elements
Pm,m can be interpreted as the probability of finding our system in the basis state
|©m). More generally, the probability of finding the system with density matrix (2.4)
in an arbitrary state [¢) is given by

= wal(Walt)* = ($lpl4)- (2.8)

In this way the density matrix p gives us the information about the probability of
finding our system in a given state [1)).

The density matrix can also be used to calculate the mean values of observables
of the quantum system. For a pure state |¢)) the mean value of the observable @ is
given by

(Q)y = WIQ[Y). (2.9)
Thus for the mixed state (2.4) we have
= 3 wn QI (2.10)

Form (2.5) we obtain

@), = ana"” (PmlQliox) =

= Z(@k|p|¢m)<@m|Q|§0k>:
= > (@rlQlen) = Tr(pQ). (2.11)

The knowledge of the density matrix enables us to calculate the mean value of
an arbitrary observable, thus the density matrix contains all available information
about the quantum system. For more information about the density matrices see e.

g. [5].

2.2 Time evolution of mixtures, Liouville‘s equa-
tion

The time evolution of pure states is determined by Schrodinger‘s equation

1) _
) = Hlw). 212
We introduce the time evolution operator U(t) as
U(t)[4(0)) = l4(2))- (2.13)



Inserting (2.13) into the Schrédinger equation (2.12) we obtain

298 1y0)) = HOU) (0)). (2.14)

which must be valid for arbltrary state |¢(0)). Thus we obtain the following operator

equation

U (t)
ot

with the initial condition U(0) = I. For a time independent Hamiltonian the formal
solution is

= HOU(), (2.15)

U(t) = e (2.16)
For the adjoint operator UT(t) we obtain a similar equation
—iaUTJ;(t) —UMTH®). (2.17)
From this equation and the equation (2.15) we have

so the operator U(¢)UT(t) is time independent. From the initial condition U(0) = I
we have

UU'(t) =1, (2.19)

and therefore U(t) is unitary for every t.
Now, if the quantum system is described at ¢ = 0 by the density operator

=5 waltn(0) (e (0)], (2.20)

then at time ¢ this system will be in the state

= 2 wnlbul )] = S wa OO OV = U OOV o)

(2.21)
Differentiating equation (2.21) with respect to ¢ we obtain
20— 200 i)+ vy 2L D -
= HOUt)p(0)U'(t) — Ut)p(0)U' (1) H (),
and therefore
2D s (1) (222

This so called Liouville equation determines the time evolution of density matrices
and is a generalization of Schrodinger‘s equation for pure states.
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2.3 Example - density matrix of a spin—% particle

Let us consider a spin—% particle, i. e. a quantum system with the Hilbert space

H = C?. Density matrix of such system is conveniently described using Pauli

matrices. We define the operators of components of spin S; = Z0;, where o; are

2
Pauli matrices

01:<$(1)>, 02:<g_()i), 03:<(1)_01). (2.23)

The density matrix of our system is 2 x 2 hermitian matrix with trace equal to unity,
thus it can be written in the form

3
p=al+ Z bioi, (2.24)
i=1

where I is 2 x 2 unit matrix. Because the Pauli matrices are traceless, the normal-
ization Trp =1 gives a = % Real parameters b; are determined in the following.

There is a close analogy between the two-level system and the polarization state
of light. Hence it is possible to characterize the state of such system with the help
of a polarization vector. This polarization vector p has components

Using the formula (2.11) we obtain
pi = Tr(po;). (2.26)

The matrix po; can be written in the form

3 3 3
1 1 )
poi = 50 + ]2_1 bjojo; = L + b1+ E b E :59'“6‘716’ (2.27)

7j=1 k=1

where we have used the relation between Pauli matrices

3
00 = 5klI+izfjklUj- (2.28)

7j=1
Thus the trace of the matrix po; is

Tr(poi) = 2b; = (0:) = pi- (2:29)

With the polarization vector we can write the density matrix p as

1 1 1+ps p1—1ps3
=—(I O) = — . . 2.30
P 2( +po) 2<P1+ZP3 1—-ps (2:30)
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This density matrix describes a pure state, if it is a projector, i. e. p?> = p. From the
proposition (2.1) we know that this is equivalent to the relation Trp* = Trp = 1.
From the equation (2.30) we obtain the form of p?

2

3 3 3
1 1
o = Z(I + ; pioi) = Z(I +2 ; pioi + ;1 P;PkO;0k), (2.31)
= — J! =

so the trace of this matrix is

3

1 1 1
Trp* = 571 Z p;PrTr(0j0k) = 5(1 +[p)) L. (2.32)
Jk=1
Thus we have
Ip| <1, p|=1<+= Trp*=1. (2.33)

We have proven the following proposition.

Proposition 2.2 The norm of the polarization vector fulfills the inequality
0<ipl<1, (2.34)

and the norm of p is one iff p is projector.

Pure states of a spin—% system are therefore described by polarization vectors
with unit norm, i. e. by points of the unit sphere ( so called Poincaré sphere ). Mixed
states have the polarization vectors with norm less than one, they corresponds to the
inner points of the unit ball. The center of this ball corresponds to the unpolarized
state, i. e. a state with zero polarization vector p = 0 and the density matrix

p:%I.

2.4 Composite systems

2.4.1 Description of a composite system and its subsystems

Let us consider a quantum system S consisting of subsystems Si, S5, ..., S,, with
Hilbert spaces H1, Ho, ..., H,. The Hilbert space of the system S is the tensor
product of the state spaces of the subsystems S;, i. e.

H=H QMR ...® H,. (2.35)

The state of the composite system S is described by the density operator p, acting
on this Hilbert space. More complicated questions are, what are the states of the
subsystems Sy, So, ..., S, if the composite system is in the state p, and on the

12



other hand, what do we know about the composite system, having the states of the
subsystems.

For simplicity let us consider a quantum system S consisting of two subsystems
S1, Sz with Hilbert spaces Hj, Ho. Denote the orthonormal bases in #; as {|n)}, in
Hs as {|v)}. The state of the composite system is described by the density operator
p acting on the Hilbert space H. The states of the subsystems are described by
the so called reduced density operators p(;), acting on the subspaces H;, which are
determined by the following requirement. The mean value of an arbitrary observable
related only to the subsystem S; in the state p, i. e. observable of the type

Al = A1®Ia
A2 - I®A2, (236)

must depend only on the reduced state p(;), which means
(A7), = (A, . (2.3
From (2.11) this is equivalent to the relation
Tr(pA;) = Tr(pg)A;)- (2.38)

The reduced states p(;) are determined unambiguously by this relation.
We will determine the explicit form of the matrix elements of the reduced states.
We denote the matrix elements of p in the basis {|nv)} as

P, o = (mpu|p|nv). (2.39)
The matrix elements of the observable A; in the basis {|mu)} are given by
At v = Aty (2.40)
where
At pn = (m|Aq|n). (2.41)

Calculating (2.38) in the basis {|mu)} we obtain

Tr(pAl) = Z P, nuAlmné;w =

m,mn,u,V

= Z (Z Pmy, nu)Almn =

m,n

= P(L) gy A =

13



Thus the matrix elements of the reduced density operator p(;) in the basis {|m)}
are given by

PD)mn = (M) Z Pty - (2.43)

The reduced density matrix of the first subsystem is determined by the partial trace
of the full density matrix p over the second subsystem

py=Trap =Y {ulplp). (2.44)

u

Similarly for p() we obtain
@) = (Hlpe) anu, s (2.45)

hence the matrix p(o) is determined by the partial trace over the first subsystem

ooy = Trip='3" (nlpln). (2.46)

2.4.2 Quantum correlations

The reduced density matrices are determined by the full density matrix unambigu-
ously. The opposite statement, however, is not valid. The reason is, that the com-
posite systems have observables which are not trivial combinations of those of their
subsystems. If S; has N states, i. e. its Hilbert space is H = CV, than it has N2 —
linearly independent observables, which is the number of independent parameters in
the N x N density matrix of this system ( it is a hermitian matrix with unit trace ).
Similarly, if S, has M states, it has M? — 1 linearly independent observables, thus
the separate systems S;, Sy together have M? + N2 — 2 independent observables.
The composite system S, consisting of the subsystems Sy, Sy, has M N states and
therefore M?N? — 1 nontrivial independent observables, which is obviously more
than for the two separate subsystems. Thus the composite system involves more
information than the sum of its subsystems. This additional information resides in
the quantum correlations, which have no counterpart in classical physics.

There are several types of the density matrices of the composite systems. First
type are called factorized states and have the form

P = pa) ® pe)- (2.47)

In this case the density matrix of the composite system is fully determined by the
reduced density operators. The composite system contains as much information as
the two subsystems together and these states do not exhibit any correlations.

14



The second type are called separable states. The density matrix of a separable
state can be written as a sum of a tensor product of one particle density matrices,
i. e.

p=D wap), ® Pl2), (2.48)
n

The last type of states are those which cannot be written in the form (2.47) or
(2.48). These are the so called entangled states. Entanglement is responsible for
many non-classical effects, such as violation of Bell‘s inequalities, quantum telepor-
tation and dense coding ( see e. g. [6], [7] ). Thus the entangled states are of
special interest, because they are in the heart of the difference between quantum
and classical information theory.

An example of entangled states are the well known Bell states. Consider a
composite system consisting of two spin—% particles, i. e. a system with the Hilbert
space H = C? ® C?%. Denoting the basis vectors of the subsystems as |0), [1), the
four Bell states are given by

1

@) = ﬁ(|00)+|11)),

_ 1

@7) = E(|00>—|11)),

oo L

T = \/5(‘10>+|01>)7

T) = —(]10) — Jo1)). (2.49)

S5

2

These four vectors form an orthonormal basis in 4. The first three vectors form so
called triplet subspace, the last vector generates so called singlet subspace. These
subspaces are invariant under U®U transformations, where U is an arbitrary unitary
operator on C?. The reduced density matrices of the Bell states are in all cases the
same, namely they have the form

1/1 0
P) = PR = Pred = 5 ( 01 ) : (2.50)

This corresponds to the unpolarized state of a spin—% particle, i. e. with polarization
vector p = 0. The Bell states have no single particle properties ( reduced density
matrices contains no information ) and all the information is distributed in the
correlations between the two spins. On the example of the Bell states we can also
see, that the description of the state by a ray in the Hilbert space is insufficient -
the Bell states are pure, i. e. we can assign a certain ray to each of these states, but
the reduced states are mixtures.
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2.5 Functions on the density matrices

Entangled quantum systems are of special interest in quantum information theory.
To quantify the strength of correlations between the quantum systems, several func-
tions on the density matrices are defined, which serves as correlation measures. The
basic requirements on these measures are:

(R1) The measure has a positive range and vanish for every factorized state.

(R2) The measure should attain its maximum value for the composite systems in
the pure state, such that the reduced states are maximally disordered, i. e.
the reduced density matrices has the form

N;
Pa) = ﬁf( ),

2

where Nj is the dimension of the i-th subsystem‘s Hilbert space and IN¥) is
the unit operator on this Hilbert space.

(R3) Measure should be invariant under local transformations, i. e. under trans-
formations of the form

U=U1)®U(2)®..0U(n),
where U(7) is an unitary operator acting on the i-th particle.

However, not much is known about higher order entanglement, so we will mainly
concern with two particle entanglement.

2.5.1 Entropic measures

Entropic measures of entanglement are based on the entropy of the quantum system.
The von Neumann entropy of the density operator p is given by

S(p) = =Tr(plnp). (2.51)

We will show, that this is well defined function. Because every density matrix fulfills
the inequality

0<p<l, (2.52)
and the function f(z) = z1lnz has in the interval (0, 1) minimum at the point e™*
with value f(e™1) = —e™!, for the operator pln p we have the inequality

—e 1< plnp <0, (2.53)

valid for arbitrary density operator p. An arbitrary vector |¢) € H fulfills

(Y|pInpltp) < 0. (2.54)
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Thus for arbitrary orthonormal basis {[j)} in H the sum

=2 {ilpInplj) = S(p) (2.55)

exists and is nonnegative finite or +00. S(p) is base independent, because if S(p) is
finite in the basis {|j)}, than plnp is trace-class operator and its trace is finite and
basis independent; otherwise S(p) = +oc again independently of the basis.

In the diagonal basis of p the von Neumann entropy is given by

S(p) = —ij In w, (2.56)

where w; is the eigenvalue corresponding to the j-th eigenvector. If p describes a
pure state, i. e. only one of its eigenvalues is one and all others are zero, the von
Neumann entropy is zero. For mixtures S(p) is always positive and for the N-level
system it has a maximum of

Smaz = In N

for p = %I . Thus the von Neumann entropy measures the deviation from the pure
state. For an isolated system it is also time independent.

Consider now the composite system consisting of two subsystems. We can define
the entropy of the subsystems with the reduced density operators

Say = =Tr(paylnpa)),
S = —Tr(p(g)lnp(g)). (2.57)

These entropies are in general time dependent. For the entropy of the composite
system S and the entropies of the reduced states S(1y, S(2) the Araki-Lieb inequality
( see e. g. [8] ) holds

1Say — S| £ S < Suy + S (2.58)

This inequality has an interesting consequence when the composite system is in the
pure state - i. e. when S = 0, in this case the entropies of the subsystems must be
equal.

Finally we can introduce the index of correlations, which characterize the strength
of the correlations between the subsystems of a two particle system

Ic = S(l) + S(g) - S. (2.59)

From the Araki-Lieb inequality follows, that I is always nonnegative. It vanishes
for uncorrelated states, because in this case

P = pa) @ p), (2.60)
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and therefore

S = =Tr((pa) ® pe)(In pa) @ p))) =
= —Tr(payInpa))Troe — TroaTr(pe) Inpe)) =
= S +5)-

The maximal value of I is obtained in the case, when the composite system is pure
(S =0) and the subsystems are maximally disordered. If both subsystems have
N states, then this maximal value is

Iomas =210 N. (2.61)

The index of correlations is also invariant under local unitary transformations. Thus
it fulfills all three requirements (R1), (R2), (R3) and could be used as a correlation
measure. It is a good measure when the two-particle state is pure, however, it is not
very sensitive when the two-particle state is mixed. More about the entropy and
the index of correlations can be found e. g. in [9], [10].

2.5.2 Negativity based measures

Consider the composite system consisting of two particles. Denoting the orthonor-
mal basis in the first subsystem as {|m)} and in the second subsystem as {|u)}, the
matrix elements of the two particle density operator p in the tensor product basis
are given by

P, v = (mps|p|nv). (2.62)

We define the partial transpose p7 of the density operator p as the matrix with
the matrix elements

prljzz, nv — Pmy, ny- (2.63)

For the separable state of the form

p= Z Wrp(1), ® P2, (2.64)

the partial transpose pf7 is

P =) wnpy, ® prayy (2.65)

It follows from the fact, that p(Q)Z is positive semidefinite matrix with unit trace,
the partial transpose p©'? of the separable state p is again the density matrix. Thus
for separable state its partial transpose must have nonnegative eigenvalues. This
leads us to the Peres-Horodecki criterion of separability ( see e. g. [11] ).

18



Proposition 2.3 Necessary condition for the separability of the state p is the non-
negativity of the spectrum of its partial transpose pt't.

The measure based on this criterion was proposed by Vidal and Werner in [12].
They have defined the negativity N(p) of the two particle density operator p as

N(p) =13 il (2.66)

where p; are the negative eigenvalues of the partial transpose p’?. This measure is
convex, i. e.

N(Z pipi) < ZpiN(pi): (2.67)

for arbitrary density operators p; and for p; > 0, such that ) .p; = 1. Because
the partial transpose of an arbitrary separable state hasn’t any negative eigenvalue,
the negativity vanish for factorized and separable states. Thus it pinpoints the
non-classical correlations and serves as an entanglement measure.

For two qubit system we can define concurrence C(p) ( see e. g. [13] ) by

C(p) = max {05 H1— Ko — M3 — #’4}7 (268)

where p;‘s are the eigenvalues, numbered in decreasing order, of the partial transpose
pPT. Wootters has proven, that the concurrence is a good measure of entanglement
for two qubit systems.
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Chapter 3

Universal processes with two
particles

In this chapter a short review of the work [3] is given. This paper was the base for
this diploma thesis and many results are used in the following chapter.

At first an example of two simple processes is studied. These processes posses
certain symmetry, or covariance property, which is taken as the definition of universal
process. Then the general ansatz for two particle universal processes is given and
the properties of the output states are studied.

3.1 Definition of universal process

Consider the following quantum process : initially we prepare two qubits in the state

1
1(P) = pin(P) ® 1. (3.1)
The density matrix of the first particle p;,(p) is the projection operator onto the
state with the polarization vector p

pnl®) = [P}l = 5(T + P0). 3.2

Because we limit ourselves to pure initial states, the vector p must have unit norm,
but it can take an arbitrary position on the Poincare sphere. The second particle is
in a completely unpolarized state.

Now we transfer our initial state p;(p) into the output state

~ Pypi(p)Py
pa(p) = Tr(Pyp(p)Ps)

The operator P; = >, |JM)(JM]| is the projection onto a two particle state
with the total angular momentum J. In our case of two qubits this total angular
momentum can take values J = 1 or J = 0, hence we have two different processes.

(3.3)
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Choosing the direction of the polarization of the input state p as the quantization
axis the result of this transformation is given by

2 1
pQ(p):§|J:1M=1)(J:1M=1|+§|J=1M:0><J:1M:0| (3.4)
for J =1, or by
pep)=|J=0M=0){J=0M =0| (3.5)

if J = 0. The process with J = 1 is the projection onto the symmetric subspace
of the two particle Hilbert space. Werner has shown [2] that this projection is an
optimal cloning process. Thus, the process with J = 1 copies an arbitrary input state
in an optimal way. On the other hand, the process with J = 0 is the projection
onto the anti-symmetric subspace. The output state is the anti-symmetric Bell
state formed by both qubits, independently of the input state. Because this Bell
state is maximally entangled this particular process is an example of an optimal
entanglement process.

Both processes are universal in the sense that all input states are treated in a
similar way, i. e. they posses the following covariance property. If we begin with
the state |pg), the result of this processes is described by the density matrix ps(po)
given in (3.4) or (3.5). Now, if we change our input state |py) by some unitary
transformation U(p) into the state |p) = U(p)|po), the output density matrix ps(p)
is given by

p2(p) = U(p) ® U(p)p2(p0)U" (p) ® U' (). (3.6)
We take this covariance property as the definition of universal quantum process.

Definition 3.1 Linear mapping P : B(H) — B(H ® H) is universal, if the follow-
ing diagram

U(p)

Po) 'p) = U(p)|po)

pout(p) -
U(p) ® U(P)pout(Po)UT (p) ® Ut (p)

pout(pO) U(p) 2 U(p)

is commutative for an arbitrary one-particle unitary transformation U(p).

The possible output states of a universal quantum process constitute a two
particle representation of the group of unitary one particle transformations.
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3.2 General structure of two-particle universal quan-
tum process

We will now give the general ansatz for the universal process involving two systems
of equal dimensions. This process is of the form

P pm(p) b2 Pref — pout(p)- (37)

Operators pres and p;, (p) are one-particle density matrices. The reference state py
is unspecified, the input state is described by generalized Bloch vector p, i. e.

pin(P) = [P)(P!- (3.8)

The dimensions of the Hilbert spaces of input and reference state are the same
( N >2). The operator py,(p) is a two particle density matrix.

Arbitrary density operator of a N dimensional quantum system can be repre-
sented in the terms of some basis of the su(N) algebra. In order to implement the
covariance condition (3.6) we use the basis {A;;}, (i, j =1, ..., N), which fulfills
the following commutation relations

[Aij7 Amﬂ] = Aab(éjméaidbn - 5in5am5bj)a (39)

where we have used Einstein summation convention in which one has to sum over
all indices which appears in an expression twice from one to N. This convention is
widely used in the following text to simplify the notation of expressions.

A representation of these generators is given by the N x N matrices

1
(i)™ = 6ixdjt = 000 (3.10)
The density matrix p;,(p) can be written in the form

pin(P) = %(I + pijAij)- (3.11)

From the fact that A;Lj = Aj; follows pj; = pj;. Moreover due to the constraint
Zfil A;; = 0 only N? —1 of these matrices are linearly independent so that we may
choose pyy = 0. The non-negativity of the density matrix p;,(p) imposes further
restrictions on the parameters p;;, however, their explicit form is not important for
us at this time.

In terms of matrices (3.10) the most general output state is represented by the
density matrix

1
pou(p) = T51®T+ 0} (p)Ay @1+

+0i7 (P)T® Ay + Kiju(p)Ai; ® A (3.12)
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(1_)(

The linearity requirement of quantum mechanics implies that o;;”(p), ag-) (p) and

Kijii(p) have to be linear with respect to p, i. e.

0%']1' p) = 04(1’2)]%',
Kiju(p) = Kijpu+ Kipji + Kupjx + Kjxpi +
+Kipix + Kripij + Kzojkl' (3.13)

To fulfill the covariance condition (3.6) we have to compare the matrices py,:(p) and
U(p) @ U(P)pout(Po)U(P) ® U(p), where unitary matrix U(p) transforms the state
|po) to the state |p). Thus we have

palbo) = [Po)(pol = (T +pAy)
pn®) = [B)(pl = 3 (T+H,U(0) AU (). (3.14)

Comparing the terms of operators pou:(p) and U(p) ® U(P)pout(Po)UT (P) ® U'(p)
we obtain the equations

o (P)A; ®T = of) (po)U(p)AyU (p) ® T, (3.15)
o PI® Ay = aff (po)I® U(p)A;;U'(p), (3.16)
Kij(P)Aiy ® Ay = Kiju(po)(U(p) @ U(p))(Aij @ Ak
U'(p) @ U'(p))- (3.17)
The equations (3.15), (3.16) are thanks to relation (3.14) fulfilled for
of;” (p) = of; Vpy;. (3.18)

To fulfill the equation (3.17) it is necessary, that both left and righthand sides of
this equation involve only terms, which are invariant under unitary transformations
of the type U ® U - the scalar part, or the terms, which are transformed like the
generators A;; under the transformation U - the vector part. To investigate the
transformation properties we will use the commutation relations (3.9) and the fact,
that every unitary matrix U can be written in the form

U = exp (iV), (3.19)

where V' is certain hermitian matrix, and thus it can be expanded in the basis A;;
as

V= U,‘jA Vij = v (320)

17 — Y-
Unitary transformation U ® U can be written in the form
UU = exp(iV)®exp (iV) =
= (exp(iV)@I)(I®exp(iV)) =
= exp(iV@Iexp(I®iV)=
= exp(iVRI+I®iV). (3.21)
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If we use the relation

exp (A)Bexp (—A) = 3 %LA, (A, B]..] (3.22)

n=0

nx
the matrix M = K;;(U @ U)(Ay; ® Ag)(UT @ UT) can be written in the form
+0c0 in
M = Z Kiju[VOI+IQV, [, [VOI+IQV, Aj;® Ayll..] =
= Kz’jklAij Q@ Ap + iK;ju([V, Ayl @ A + Ay ® [V, Apl]) +... (3.23)

Thanks to linearity of the commutator it is sufficient to investigate the special case
where V = A,,,,. For this choice of V we obtain

M = KijuAij @ Ap +iKjki(Amj @ Apbin — Ain ® Agidjm +
+Aij @ Apilpn — Ain @ Apnlim) + - (3.24)

For the scalar part all the terms except the first one in (3.23) must vanish. This
is possible only in the case of Kjj,; = Cd;,0;. Thus the scalar part has the form
CAZ'J' X Ajz

The generators A, are turned by the transformation U into

+0o0 lc
UAabUT - Z [Amna [ [Amn: Aab” ] - ab + Z[Amna Aab] + ...
k=0
- Aab + iAmbdan - Z'Aamdmb + (325)
The matrix M will have similar transformation properties if Kijx = £0ia050;k,

therefore the matrix A;;®A j; transforms under arbitrary transformations of the form
U ®U in the same way as A; transforms under transformation U. Analogously, the
hermitian conjugated matrix A;; ® A;; have the same transformation properties as
the matrix Aj;. Therefore the vector part has the form Bp;A;; @ Aji+ B piiA ;i @ Ay
and we have the equality in (3.17) if

Kijki(p) = Cdjbi + Bpudjk + B pjkdir. (3.26)

From these facts, the most general output matrix, which fulfills the covariance con-
dition (3.6) and depends linearly on the input, must have the form

1
Pout(P) = FI @1+ aYp,A; @1+
( )pijI X Aij —+ CAZJ X Aji +

+5pizAij ® Aji + B'puAji @ Ayj. (3.27)

where a2 and C are real parameters and § is complex. However, these parameters
cannot have arbitrary values - p,.:(p) must be a density matrix, i. e. a positive
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operator with unit trace. The matrix (3.27) is hermitian, which follows from the
fact that A}Lj = Aj;, and has a unit trace, because the generators A;; are trace-less.
The requirement of positivity implies that the eigenvalues of the matrix (3.27) must
be non-negative. Therefore we have to find out the eigenvalues of the matrix (3.27)
as the functions of the parameters o', C, B, and find the conditions, under which
these eigenvalues are non-negative. Due to the covariance condition (3.6) we can
restrict ourselves to a particular pure input state, say pi,(pi; = Nbi1d;1) = [1)(1].
In the matrix representation (3.10) the output state can be written as a direct sum
of four density operators according to

4
Pout(Pij = Ni16j1) = Z Dpipi, (3.28)

where the partial density operators are

pr o= [11)(11],
N
1 (W —a®)N
po = (1) (L51( + )+
o 2(N — 1) 2
o 1 (a® — oMN
1)(j1
HO Gy gy )
.. C+Np C+ Np*
+17) Gl ———+ i) (Lj|———),
P2
T
P = mZU])(Jﬂ,
al 1
IS S
TN Z (N = 2)
(27} Cril + |JZ><ZJDP—4)- (3.29)
These matrices are normalized so that Trp; = 1 for + = 1, ..., 4. The partial
probabilities in the Eq.(3.28) are given by
1 1 1)2
o= gt @@+ -1+ 00— 1)+ (g4 T
2 20 N -1
P = (N—l)(N2+(“+a<2’)(N—2)———2(ﬁ+ﬁ) )
1 B+p
1 c pB+p
- _ MY S € D IS ) I
D4 (N -1)(N 2)(N2 @ o N+ N ). (3.30)
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The normalization of the trace of the density operator poy:(pi; = Nd;19;1) implies

pr+pe+p3s+pi=1. (3.31)

From the equations (3.29) and (3.30) we obtain the eigenvalues of the matrix
Pout(Pij = Ndi16;1), namely

AL = p
P (a® — a@)N ? .

= — = N
Ao+ 2(N—1) \/( 9 ) +[C+ NBJ%,

- b3
/\3 - N—].,

yz!
= + . .32

Therefore the matrix pou:(pi; = Nd;10;1) is non-negative iff all probabilities p; and
all eigenvalues \; of equations (3.30) and (3.32) are non-negative and fulfill the
condition (3.31).

For dimensions N > 3 one may choose for example the probabilities (py, ps, ps)
as independent coordinates instead of the three independent real-valued parameters
(M +a®, C, (B+ B*)). Inverting the equations (3.30) and using the condition
(3.31) we obtain

* 1 D4 y4!
b8 = ~Fwony TNy =) TN =T
N -2 p p p
M4 4® — P L D3
aita M(N-1 NN-1) NN-1) NN-1,
c = _Ps P4 (3.33)

N-1 (N-1)(N-2)

To identify a particular process uniquely, one also has to specify the remaining two
independent parameters, namely (o) — o(?)) and (8 — 8*).

3.3 The cloning regime

Werner [2] defined cloning maps from L particles to M particles by

(o) = %SMW ® 190D)s,,. (3.34)

where Sj; is a projection operator onto the symmetric subspace of H®M  d[M] is
the dimension of this symmetric subspace, i. e.

d[M] = (N“H) : (3.35)

M
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where N is the dimension of the one particle Hilbert space H. p®Y is a tensor
product of L density operators p, which is assumed to be pure. Werner has also
proven that these cloning maps are optimal.

A possible realization of these cloning maps were given by Fan, Matsumoto and
Wadati [14]. The input state p is a projection onto the state |1)

pin = [P}V, (3.36)

where
D N
0y = mili), Y |m[’=1. (3.37)
=1 =1

The tensor product of L such states can be written in the form

QL L L‘ ni nN
0 .

and the vector n = (ny,...,ny) fulfills the relation 3~ n; = L. The state |n)
denotes a completely symmetric and normalized state of n; systems in the state |7).
The L to M cloning machine maps the state |n) ® R, where R describes M — L blank
copies and the initial state of the cloning machine, to the state
M-I
Urnln) @ R=Y  an;ln+j) ® R, (3.39)

j=0

where n 4+ j = m, that is Z,]cvzl Jjk = M — L, R; denotes the orthogonal normalized
internal states of the cloning machine, and

M—LYL+N=1) | (ng+ )
0‘”’:\/( (M)—i-(N—l)! ) gﬁ (3.40)

Because of the orthogonality of the states R;, the reduced density operator

((,fffne), which describes the output M particle state and is obtained from the full

density matrix by taking partial trace over the cloning machine, has the form

L I M—L
{ . n . .
P =3 mﬁm...ﬁw Y aZln+j)(n+jl. (3.41)
=yl ny! o

Consider now the case where L =1 and M = 2,i. e. 1 — 2 cloning map. This
map posses the covariance property (3.6) and therefore can be described within the
formalism given in the section (3.2). We can restrict ourselves to a special choice of
the input state, say

) = (1), (3.42)



the output for arbitrary different input state is obtained from the covariance property
of the cloning process. In the particular case (3.42) the output state has the form

N
(clone) 2 1 . .
= ——|11){11| + —— E 15)(1 A4

where S|ij) is symmetric and normalized state |ij), i. e.

1
Slig) = —=(|eg) + |j7))- 3.44
i) ﬁ(m 192)) (3.44)
This output state corresponds to the probabilities
. 2
b = N+17
_ N-1
= Ni1v
P3 = D4 = O; (345)
and the parameters
N+2
n - 4@ - T2
“ “ ON2(N + 1)’
. 1
p=F= 2N(N +1)’
Cc = 0. (3.46)

The quality of the copies is described by the fidelity F defined as

clone
F = (o™ |9), (3.47)
where pgl)one) is one-particle reduced density matrix obtained from the density matrix

elone) 1n our case
N+3 1
(clone) N/
= ——|1)(1 —_— 3.48
A = s s (3.45
and [1) = 1), so the fidelity F is given by

N+3
= ——. 3.49
R TiY (3.49)

This value of the fidelity F is exactly the one given by Werner for 1 — 2 cloning
and proven to be the optimal one.
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3.4 Universal entanglement process

In the paper [3] was shown, that sufficient and necessary condition for the output
density matrix (3.28) of universal quantum process to involve any separable compo-
nents is

P = p3 = 0, p2 = 1—ps. (3.50)

From the positivity of the operator (3.28) under the conditions (3.50) follows that
ol = o®

g = B (3.51)

Thus for the universal entanglement process there are just two non-vanishing blocks
po and ps and they have the form

N
e = LN anjyaga
2 N—lg |17)(154,

A = pa—g D Al (352)

2=i<j
Here the state Alij) means anti-symmetric and normalized state |ij), (i # j), 1. e.
1
V2

Therefore the output states of the universal entanglement process form a one-
parameter family

Alig) = —=([ig) = 138))- (3.53)

P’ (pij = Noudj) = (1 — pa)ps™ @ papl™. (3.54)

Due to covariance all output states resulting from the same universal entanglement
process have the same von Neumann entropy
(N—-1)(N-2) N -1

+ (1 — In ;
2py (1=py) 1—ps4

(3.55)

S(ps) = paln

For N > 4 this function attains a minimum for p; = 0, the smallest possible von
Neumann entropy is

Spin = In (N — 1). (3.56)

For N < 4 this process of minimal von Neumann entropy is characterized by p, = 1
and the minimal entropy is given by
(N-1)(N-2)

Spin = In > . (3.57)
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For N = 4 both processes, i. e. p, = 0 and p, = 1, yield the same von Neumann
entropy for the output states. The process with maximum von Neumann entropy is
characterized by ps = % and

N(N —1)

5 (3.58)

Smae = In

Thus this process generates an output state which is a maximal mixture of all

possible w anti-symmetric two-particle states. This output state is invariant
under U @ U transformatlons which is apparent from the fact that for p, = (NN )
we obtain
o) = o@ =y
B = =0
1
C = ———, 3.59
N(N -1) ( )

so this output state involves only the scalar part.
The reduced density matrices of both subsystems have the same form

1-— 1 +p4
Py =Py = —5 1+ 5 ZI (3.60)

Thus both subsystems have the same von Neumann entropy

1-— 2 1 2(N —1
_ p4ln " +p4ln ( )

2 1—py 2 1+p,4

(3.61)

For the one-parameter family of universal entanglement process the index of corre-
lations defined in (2.59) is given by

felpd) =1 i+ p) (N -2

P4 In (3.62)

ni
1+ py

The partial transpose of the state (3.54) has only one negative eigenvalue of
magnitude

_ P4 1 i (1 — p4)?
“__Q(N—1)_§\/(N—1)2+ N-1" (3.63)

Thus the negativity of the state (3.54) is given by

Ny = |- (3.64)

For dimensions N < 5 the negativity is maximal for p, = 1, for N > 5 the maximum
value is achieved for p, = 0.
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For dimensions N > 2 universal entanglement processes are also capable of
preserving the information about the initial state. In the output state of equation
(3.27) this information is contained in the terms proportional to the parameters
a®, o and B. The parameters o) and o® characterize the information which is
contained in the reduced states of the first and second quantum system, parameter
[ characterizes the information which is distributed over both quantum systems.
According to equations (3.30) and (3.51) these parameters are given by

oo - N=2 P
N2(N—-1) N(N-1)
1 P4

e S VR

(3.65)

Thus, the universal entanglement process with p, = 0 yields the maximal value for
o) = a® | namely

N -2

Omaz = ma (3.66)

and preserves the maximum amount of information about the input state in each
subsystem separately. If we compare this maximal value of a(!) for universal entan-
glement process with the value of o") for the optimal cloning regime, given in the
equation (3.46), we see that they differ by terms of relative magnitude O(1/N) so
that their difference tends to zero with increasing dimension N. This demonstrates
that for V > 2 a universal entanglement process with p, = 0 preserves almost as
much information about the initial state as an optimal cloning process.

Other properties of the universal entanglement processes were discussed in the

paper [3].
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Chapter 4

Universal processes with three
particles

In this chapter three-particle universal processes are studied. The definition of the
two-particle universal process 3.1 is modified for a universal process from one to
M particles. For three-particle processes the general structure of the output state
is given. In the last section the properties of interesting classes of three-particle
universal processes are discussed.

4.1 Definition and general structure of three-particle
universal processes

Definition 3.1 of the two-particle universal process can be easily extended to define
universal processes from one to M particles. Consider a linear map P from 1 to M
particles, i. e.

P : Pin — Pout, Pin S B(H)a Pout S B(H®M)a (41)

where H is a one-particle Hilbert space. We will call this map universal, if it posses
an analogous covariance property as (3.6) for the two-particle processes, i. e.

pout(P) = U(P) ® ... ® UP) pout(P0) U(P)' ® ... ® U(p)', (4.2)

-

-~

Mx M x

where one-particle unitary transformation U(p) maps the state |pg) to the state |p),
i. e.

Ip) = U(p)[Po)- (4.3)

In this chapter we will consider universal processes with three particles, i. e. a linear
map P from 1 to 3 particles

P Pin = Pout, Pin € B(H), Pout S B(H ® H ® ?‘[), (44)
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which fulfill the covariance condition

Pout(P) = U(P) ® U(P) ® U(P)pout(Po)U ()T @ U(p)! @ U(p)', (4.5)

if the relation (4.3) is fulfilled. For three-particle universal process the covariance
condition (4.5) is depicted in the following diagram

U(p)
Po) p) = U(p)|po)

4

Pout(Po) o) ® U & U )pout(p)=U(p)®U(p)®U(p)><
pjeripI e TP % pout (P0)UT (p) ® Ut (p) ® U (p)

Fig. 4.1: Pictorial representation of the covariance condition (4.5).

To describe the general structure of the three-particle universal process we will
use the formalism given in the section 3.2. With the help of the generators A;; the
most general output density matrix of the process P can be written in the form

1
Pout(P) = ml RIRT+ US)(p)Aij RIRI+ vg)(p)l QA; T+
‘f‘US) PIRI®A;+ wz(;l)cl(p)Aij QAT+

+w§;1)cl(p)Aij QIR Ay + wg’,ll(p)l ® Aij ® A +

Fijkimn(P)Aij ® Ay @ A (4.6)

The linearity requirement implies that the functions u, v, w have to be linear with
respect to p. To guarantee, that the covariance condition (4.5) is fulfilled, the matrix
(4.6) must involve only those terms, which transforms like scalars or vectors with
respect to U @ U @ U transformations. The generalization to three particles involves
terms which can be easily guessed from the known two-particle ansatz (3.27) - we
can simply make a tensor product of terms in this ansatz with a one-particle scalar
I to obtain three-particle vector and scalar terms. Moreover, if we make a tensor
product of the scalar part from the ansatz (3.27) with one-particle vector term A,;,
we will obtain three-particle vector terms. However, the complete form involves also
‘nontrivial’ combinations of one and two-particle vector terms, where we sum over
two indices so that only two other will remain free and the resulting term will be
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a vector, or we sum over all four indices to obtain a scalar term. The summation
has to be done in such way that one summation index is on the first position of the
matrix A;; and the second summation index is on the second position. In this way
we obtain all three-particle scalar a vector terms.

The whole ansatz can be hence decomposed into:

e Scalar terms

- A;; ® Ajp ® Ap; + hermitian conjugate

e Vector terms

- AGQIQL I®RA; QL IRI® Ay,

-~ A ®@ALRIL A QI® Ay, I® Ajr ® Ap; + hermitian conjugate

— A QALNRAR, Au®@A;; @A, Au®A; Ay,

— A QALRA ), Ap®Ai®Ay, Aj®A;; @A) + hermitian conjugate.

The most general output state of the three-particle universal process has to be of
the form

Pout(P) = %I RQIQT+51A;; @ Aj @ Api + 5TAj; @ Ay @ Ay +
45 AL ®A; O+ 558, OT® A+ s 1® Ay ® Ay +
+UiDijAi; @ Ap @ Ay + vapij A @ Ay @ Ay +
+u3pij A @ Ay @ Ayj + vapijAix @ A @ Ay +
Ui Ak @ Ay @ Ay + vspij A @ Ay @ Ay +
+UsD;iAki @ Aji @ Ay + vePij A @ Ay @ Ayj +
+vgPjiAe @ Api @ Aji + v7pij Ay QTR T +
+ugpii I @ Ay @ T+ vopi;, IR T® Ayj +
+v10Pij Ak @ Ag; @ T4+ viopjiAr @ Ay, @ T+

+o1pij A @ T ® Agj + vi1pji Ak @ 1T Q@ Ay +

+v12D0i 1 @ Ajp @ Ay + viopiil ® Agi @ Ajy, (4.7)
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where so, S3, S4, V1, V9, V3, Uy, Vg, Vg are real parameters and s{, v4, vs, Vg, V19, V11
and v, are complex parameters.

To guarantee, that this matrix is a density operator, we have to find the eigen-
values as a functions of the parameters s; and v; and find the conditions, under
which these eigenvalues are non-negative. Due to the covariance condition (4.5) we
can restricts ourselves to a particular input state - say pi,(pi; = Ndidj) = [1)(1].
In the matrix representation (3.10) the output state can be written as a direct sum
of seven density operators

7
Pout(Pij = N dj1) = Z Opip;- (4.8)
i=1

The partial density operators p; are mutually orthogonal and are constructed in
the following way. Matrix p; is a projection onto the state |111), matrix p, is a sum
of projections onto the states [ii7), ¢ > 2. Matrix ps involves transition-projection
operators of the type |114)(11i|, ¢ > 2, where index ¢ can take arbitrary position
in ket and bra-vector. Matrix p, involves bra-kets of the type |14i)(1éi|, i > 2.
Matrices ps and pg contains bra-kets of the type [1ij)(1ij|, respectively |iij){iij],
where ¢ # j > 2. Thus these two blocks will be present in the density matrix (4.8) if
the dimension N of the one-particle Hilbert space H will be at least three. The last
matrix p; contains bra-kets of the type |ijk)(ijk| where i # j # k > 2, hence this
block will be present in the density matrix (4.8) for N > 4. Presence of bra-vectors
(1| and ket-vectors |1) in the matrices pi, ps, ps and ps is a consequence of the
choice of the input state |1)(1]|.

The first four partial density operators are present for arbitrary dimension N of
the one particle Hilbert space 4. The matrices p; and ps have very simple form,
namely

o= (1))
1 N

T - N N

mo= o Ol (19)
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To simplify the lengthy notation of the partial probabilities p; we use the fol-
lowing combinations of the parameters s; and v;:

A = s9+ 53+ 84,

B = s +s],

C = v +vy+us,

D = v +v]+vs+ v} + v+ 05,
E = v;+vg+ vy,

F = v+ vy +vi1 + 07 + viz + v, (4.10)

Partial probabilities p; and py corresponding to matrices p;, po are given by

P = %+%(A+(N—1)(F+C))+
f NN WD (v -,
by = (N—1){%+¥(A-0)+%F
(N—2)(N-1) . 1
- DB}, (4.11)
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The structure of the matrices ps and p4 is more complicated. The matrix ps has
the form

1 1 232—83—S4+N(’U7+’08—2’Ug)
ps = Y = +
i—2 3 N—1 P3
(N —1)(2v1 + 205y — v11 — V] — V12 — vf2)}|11i>(11i\ N
b3
1 1 284 — 89 — 83+ N(v7 +v9g — 2
i + 4 2 3 (U7 (%) U8)+
3 N-1 P3

(N —1)(2v12 + 20}, — v19 — v}y — V11 — V}y)
b3

1 1 283 — 89 — 84 + N(vg + vg — 2v7)
+2 + +

H1i1)(141] +

(V= 1)(2v11 + 207; — v1g — v}y — V12 — V]y)

b3

Hil1)(i11] +

1 1 . .
—i—p—({83 — N(Sl — (N = 1)s]) + Nvj; —vg + (N — 1)(v1 + v; + vs) H1i1)(114| +
3

1 N
+{s3+ N((N —1)s1 — s7) + Nvyy —vg + (N — 1) (vy + vy + ) }110)(1e1] +

1 . .
+{s4+ N((N —1)s1 — s7) + Nvjy — vy + (N — 1) (ve + vi + vg) }Hi11)(114| +
1
s = 3 (51 = (N = 1)s7) + Nviz — vg + (N = 1)(vz + vs + v6)}[116) (111] +

1
+{s2 — —=(s1 = (N = 1)s]) + Nvjy — vi + (N — 1)(v3 + v + ve) }|i11)(1il| +

N
s+ (V= D)5y = 51) + Noso — v + (N = 1)(es + v+ v§)} 1) {011,
(4.12)
and the corresponding partial probability ps3 is given by
p3 = (N-1) %_wB_FN];?)A_ 3(NN_ 1)0_
—3(]\[7_1)2194r (2N —3)E + W= 1)(N_3)F}. (4.13)

N2 N
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The partial density operator p, has the form

N

Zl 1 283 — 89 — S4 + (N — 2)(2v1 — w9 — + N(2vu; — vg —

Py = _{ 3 S9 S4 ( )( U1 Vo ’Ug) (’07 Ug Ug)+
i:23 N_1 p4

+2v11 + 20} — v — V], — v

12 7 Y1219 43) (144

P4
1 1 284 — 89 — 84+ (N — 2)(2v9 — v —v3) + N(2vg —v7 — v
+_{ + 4 2 4 ( )( 2 1 3) ( 8 7 9)+
3°"N-1 Ps
2v12 + 207y — V19 — V]y — V11 — V] Vild)(iti] +
yZ!
1 1 289 — 83 — 84+ (N — 2)(2v3 — v7 — v9) + N(2v9 — v7 — v
+_{ + 2 3 4 ( )( 3 1 2) ( 9 7 8)+
3°'N-1 2
2’010 + 21)){0 — V11 — Uikl — V12 — UTQ }‘”1><”1‘
Pa
+p—({52 —v3 —vg — V) + N((N —1)s1 — s7) + Nojy + (N — 1)vi }H|ili) (14| +
4
1
+{sg —v3 — v —vs — N(Sl — (N —1)s7) + Nvig + (N — 1)vs }|14d) (ili| +

1
+{s4 — vy — v —v§ — N(Sl — (N —1)s7) + Nvj, + (N — 1)vy }iel)(14i| +

1
+{84 — Vg — Vs — Vg + —((N - 1)81 — SD + N’U12 + (N — 1)1)4}‘1’&2)(’1,21' +

N
1
+{s3s —v1 —vs + Nvj; —v; + (N — 1)vg + N((N —1)sy — s7) }Héal)(ald] +
1
+{s3 —v1 —vi+ Nvyy —vg + (N — 1)vg — N(sl — (N = 1)s7) }Hila)(iel]),
(4.14)
the corresponding partial probability p, is
3 3(N-2) N -3
= (N-1D{—= — B A
po= Wi == B4+
N? —2N +3 3(N -1 2N -3
+ N oy (N2 )D-I—(N—B)E— F}. (4.15)

The partial density operators ps and pg will appear in the density matrix (4.8)
if the dimension N of the one-particle Hilbert space H is greater or equal to 3.
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The matrix ps is given by

Ps

N

Z 1{ 1 1)2+’U3—2U1+N(21)7—U3—’09)+
isnizg S V= DIV =2) ps
2 2* _ _ * _ _ *
S 0 = B T 0 1) g +

b5
1 1 v1 +v3 — 2vy + N(2us —v7 — v
g 1 3 2 (20g 7 9)+
3°(N-1)(N-2) Ds
2 2* _ _ * _ *
e e DD TG

b5
1 1 v1 + vy — 2u3 + N(2v9 — v7 — v
14 1 2 3 (209 7 8)+
3°(N-1)(N-2) Ds

* *

SR i) i1+
Ds

({0 + (V= Do = (o + 5D} 1) 1+

s+ (V= 1oy = (51 + s UL +
o+ (V= D)y — (51 + 5)}id1) (Gl +

% 1 B SN e
+{s2 —v3 —vg — vy — V5 + Ny — N(Sl + s7) H1ag) (ilj] +

1 DN
+{s9 —v3 —vg — v} — Vi + Nvj, — N(sl + s7) Hilg)(lig| +

1 oy e
{54 — vy — v —v5 — v5 + Nojy — (51 + 87) Hij 1) (Lj1] +

1 N
+{s4 — vy —v4 — V5 — V6 + Nv1z — N(Sl + s7) H17%) (i51| +

1 R
+{s3 — vy —vs + Nvj, —v; —v§ — N(Sl + 1) Hag1)(ilj| +

» 1 N
—1—{53—1)1—v5—}-an—v4—U6—N(sl—f-sl)}\zl]}(zyl\—}-

+(s1+ Nug)[ig1)(gli| + (s1 + Nue)j10) (ig1] + (s + Nvp)lig1)(Lij| +

+(s1+ Nug|)1ig) (11| + (s1 + Nvg)|i15)(1j3| + (s7 + Nvs)|153)(il5]).

" (4.16)



The corresponding partial probability ps is

N -3
6 OIN—3 . 3(N-1)
—i—ﬁB N F+ Nz D}. (4.17)

Partial density operator ps has the form

| 1 289 — 83 — 84 — 203 + V1 + Uy

Ps = ”_52': g{(N—l)(N—Q)—'— De }|“’]><“’]|+
4,J=2,i#]

1 1 284—82—53—202+U1+?)3
+- + 172)(17%| +
3 - -2 " Higo i
1 1 283—82—54—21)1+UQ+?)3
+- + 711){g10| +
3 - -2 " Hoia G
1 1 N
+—{s3 —v1 — < (s1 = (N = 1)s7) }igi) (uej| +

Ds N

+{s3 — v + %((N — 1)sy — s7) Hiig) (igi| +

LV = 1)s1 — s2) i) Gidg| +

+{s4 —vo + N

o= 0 = (51— (N = 1))} i) i +

s = vy = (51— (N = 1))} ) i +
s = vy (N = s — s} g, (4.18)

the partial probability pg is given by
3 3(N —-2) N -3

P = (N=1)(N-2){5 - =B+ ——A-
N -3 3 3
———C— 5D —-3E+—F}.
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The last submatrix p; will be present in the density operator (4.8) if the di-
mension N will be greater or equal to 4. This partial density operator has the
form

N

1
=2 o [ijk) (ijk|+
i\j k=2, %4k (N=1)(N=2)(N -3)

1 1 N
o — v = lsn 4 s1)Hogk) (kg +

1 .
+{s9 —v3 — N(sl + s7) Higk) (jik| +
1 v
+{s4 — vy — N(81 + s Higk)(kji| +
+s1ligk) (kij| + s1|kij)(ijk|), (4.19)

the corresponding partial probability p; is given by

1 2
o= (N=1)(N=2)(N = 3){x5+ 55 -
L (A-C—F)—E-—D)} (4.20)
N N2 '
The partial density operators p; are normalized so that Trp; =1, 1 =1, ..., 7
hence the partial probabilities fulfill the relation
P1+ Py +p3+py+ps+ps+pr =1 (4.21)

The partial density operators are mutually orthogonal. Thus the spectrum of the
matrix (4.8) is the set of the eigenvalues of the partial density operators multiplied by
the corresponding partial probability. Therefore the matrix (4.8) will be a positive
operator if all probabilities p; and all eigenvalues of the partial density matrices
will be non-negative. However, it is not possible to give simple formulas for the
eigenvalues of the partial density operators - due to large number of parameters
s; and v; the problem of finding the eigenvalues is extremely exacting even for
small values of dimension N. Therefore in the general case we are not able to give
conditions, under which the output density matrix (4.8) of a three-particle universal
process will be a positive operator. On the other hand, in some rather simplified, but
still interesting cases, we can give exact formulas for the eigenvalues of the operator
(4.8) and therefore it is possible to find the conditions, under which this operator is
positive. These processes will be studied in the section 4.2.
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For dimensions N > 3 we can take the probabilities p;, ¢+ = 2, ..., 7 as inde-
pendent variables. If we invert equations (4.11), (4.13), (4.15), (4.17), (4.19), (4.20)
and use the relation (4.21) we obtain

A

3p2 + P4 _ Ps n (N —4)ps _
N(N—-1) N(N-1)(N-2) NN-1)(N-2)

3p7
NN~ 1)(N —2)’

D2 D6 2p7
(N —1)(N = 2)(N = 3)’

P4 B Ps + Do i
N(N—-1) N(N-1)(N-2)

3p7

NN )N —2)(N—3)’

1 potpstps (N —3)(ps +ps)

N N-1 (N—1)(N —2)

(11 + N(N —6))ps
C(N-1D(N-2)(N-=3)

3 3p2 + p3 + 2p4 + 2p5 + 3p6 + 3]77

e N2(N — 1) ’

3 3p2+2p3+3ps (BN —7)ps _

M T NN-1  NN-DN-2
(3N — 8)ps 3(N —3)pr

" N(N-1)(N-2) N(N-1)(N-2) (422)

The probabilities p; are much easier understood than the parameters s; and wv;,
because the range of these probabilities is restricted to the interval (0, 1). In general,
the universal process is not fully determined by values of these probabilities, however,
in some examples given in the following section it will be sufficient to specify these
probabilities to uniquely determine universal process in consideration.
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4.2 Examples of three-particle universal processes

4.2.1 Processes involving only the scalar part

The density matrix of the output state of the universal process involving only the
scalar part has the form

SC 1 *
pgut) = ml RQISIT+51A;; @ Ajk @ Api + sTA;; @ Ay @ Ajg +

This matrix is invariant under U @ U ® U transformations and is independent of the
. . (sc) .

input state p;,(p). Therefore the structure of the matrix p,,; can be considerably
simplified when compared with the structure of general case (4.8). The output

density operator pgfft) can be written as a direct sum of three density operators

3
o) =" @plpl*. (4.24)
=1

The first two partial density operators pﬁ“’, pg“) are present for arbitrary value of

the dimension N and have the form

1 N
P = 5 D L) i
i=1

N

(s¢) _ 1 259 — S3—S4\,...\,...
p? = D + 3 0 g g+
iy SNV —1) 3}
1 253 — 89 =S4\, ..\, ...
+( )| i) (jii| +

+
3N(N — 1) 30

+(3N(]\17 Tt = ;p;i)_ =)\igi) il +

(o0 = s = (Y = DS+

s + (V= ) = 1) i) gl +

s+ (V= 1) = 1) i) g +

0= oo — (N = Vs i) i +

+s2 = olon = (N = )si) i) il +

s+ (N = D)y — si)) i i) (1.25)
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The partial density operator p$’® will appear for dimensions N greater or equal

to 3, it has the form

N
1
(s0) _ i
& 2 N oD g Rk
1,5,k=1i#j#k
1

1 .
+ o (52 = = (s1 + 81)) k) (jik| +
p:(;SC) N

= sy + )ik ikj| +

+(83 N

1 . g
(51— (51 + s1)Iigk) (kjil +

+s1ijk)(jki| + s3|jki)(ijk|). (4.26)

The partial probabilities p{*”

,  are given by

P9 = (14 NN = 1)(sa + 5+ 52) + NV = 1)(N = 2)(s1 + 7)),

sc 3 N-2 T
pé) = (N—l)(N2+(N—3)(82+83+84)—3( N )(514‘81);

p$9 = (N—2)(N - 1)(]\1[2 + ;(51 +5%) — (524 53+ 54)). (4.27)

Because the partial density operators pg“) are normalized so that Trp

partial probabilities fulfill the relation

() = 1, the

K3

p( 4 p(“) + p(sc) 1. (4.28)

In this rather simple case of an universal quantum process it is possible to give

explicit and simple formulas for the eigenvalues. The eigenvalues of pi’9 are given
by

\ _ 1— pgsc) . pgsc)
1 N )
1 pgsc) pz()’sc) A
A = — —
2 N T2N—1) 2N
(se) (sc)
1 ps (N +1) (N—4)(N+1) 3
A3 = —(1-— — 4.29
where
A= \/4(8% — $983 + $3 — S984 — S354 + 57) — 3(s1 — 87)% (4.30)
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Their multiplicities are

n, = )
N(N +1)(N — 1)
Noy = 3 )
N(N — —
ny = NNZDN=2) (4.31)
6
fulfilling
ni; + Noy + No_ + N3 = N3, (432)

which is the dimension of the three particle Hilbert space for a given N. Also
’I’Ll)\l + n2+)\2+ + n2_)\2_ + ng)\3 = 1, (433)

(sc)

which is the trace of the density matrix p,,; .

The matrix pgf:? has to be a positive operator and therefore the eigenvalues
(4.29) must be non-negative. For example in the case of sy =0and N =2or N =3
these conditions restricts the range of the other free parameters so, s3, s4 to the

region depicted in the following figures.

s2
-0.2 -0.1 0
-0.2
-0.1
s3
0
-0. 1
s4 2

Fig. 4.2: Set of points (s2, s3, s4) characterizing possible tripartite universal pro-
cesses involving only the scalar part for s; =0 and N = 2.
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Fig. 4.3: Set of points (s2, s3, s4) characterizing possible tripartite universal pro-
cesses involving only the scalar part for sy =0 and N = 2 from a different point of
view.

‘(\\ \
\\t\\%\\\\\\\\\\\\\{

Fig. 4.4: Set of points (s2, s3, S4) characterizing possible tripartite universal pro-
cesses involving only the scalar part for s; =0 and N = 3.
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s2
-0.04 -0.02 0 0. 02

-0.04
-0.02
s3
0
) 02
0.02} 02
s4 - 0. 04

Fig. 4.5: Set of points (s2, s3, s4) characterizing possible tripartite universal pro-
cesses involving only the scalar part for s =0 and N = 3 from a different point of

view.

The von Neumann entropy of the state pi°9 is given by

S() = SN+ DV + 2 In (<) +

out (sc)
1
+(N + 1)(NpS + (N = 1)pf? + N(N —1)A — N +1) x

IN(N —1)

(se) (se) )+
Np;” +(N—-1)py " + N(N-1)A-N+1

x In (

+(N 4+ D(NpF + (N = 1)pf? — N(N = 1)A = N + 1) x

IN(N — 1)
Np§® + (N = 1)p§? — N(N — 1)A — N + 1

2

)+

X In (

H((N =1)(N =2) = (N + 1)(N = 2)p5) — (N + 1)(N — 4)p§”) x

N(N —1)(N —2) )
(N = 1)(N =2) — (N +1)(N = 2)p5 — (N + 1)(N — 4)p§ """
(4.34)

x In (
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In the case N = 3 the von Neumann entropy is zero for

pgsc) — pgsc) = A = 0’
F9 = 1. (4.35)
(sc)

out 1S @ projection onto the three-particle

In this case the output density matrix p
singlet subspace

Pl (P9 =1) = A[123)(123]A, (4.36)

In all other possible cases the von Neumann (4.34) entropy is non-zero, hence except
(so)

out 18 & mixture.

the case of singlet (4.36) the output density operator p

We can also calculate the von Neumann entropy of the reduced states of p((,fft),
which describes the entropy of the subsystems. Two-particle reduced states are
given by tracing out the unwanted particle label out. For example the matrix pg;)),
which describes the properties of the first two particles, is given by tracing out the

third particle
Pz = Trs(p). (4.37)

In our case this two-particle reduced state is given by

N
w 1 N
Pgm)) = (ﬁ"' _1)52)Z‘ZZ><”‘+
- Z ——82 )ig)(ij| + Nsslij) (jil);
4,j=1,i#]

(sc) (sc)

the reduced density operators P(o3) and P(13) (s¢)

are given by the same formula as Pi2)
(sc)

by just replacing s; with s3, respectively s,. Eigenvalues of the state P(19) are
1 2
VS = NQ( +N (N— 1)82),
1
vy = ﬁ(l — N%(N +1)sy), (4.38)
with multiplicities
N(N +1)
m; = )
2
N(N -1
my = Y1) (4:39)
2
fulfilling equations
my +mg = N? (4.40)



which is the dimension of the two particle Hilbert space, and

mivy + Mol = 1 (441)

which is the trace of pg;)) Because the eigenvalues (4.38) have to be non-negative,

the range of the parameter s; is restricted to interval (—¢ N—ll) N +11) ~7)-
The von Neumann entropy of this reduced state is

1 N?

Saz) = FE((V+1)(A+ NN = 1)sp)1n (5 NIV 1)52)
N2

1— N2%2(N + 1)32)).

+

+(N = 1)(1 — N2(N +1)s5) In ( (4.42)

Si12

0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

S»2
Fig. 4.6: Entropy S(12) of the reduced state pgi% as a function of parameter sy for
dimensions N = 2 ( full line ), N = 3 ( dashed line ) and N =4 ( dotted line ).

ig)) is a pure state,

—~—

Notice that S12) = 0 for N = 2 and s, = —i, so in this case p

in fact it is a projection onto the anti-symmetric Bell state
(sc) 1 1
Pz (52 = —7) = 5([12) = [21))((12] — (21]). (4.43)

In all other possible cases S(12) is non-zero and the two-particle reduced state is a
mixture.

One-particle reduced states of p
systems. In our case

(

S
ou

Ct) are given by tracing out two unwanted sub-

sc 1 . . 1
Py = Traglp) = 5 D lidil = L. (4.44)



matrices pgc), '08?’ which describes the properties of the second and the third

particle, are given by the same formulas. The von Neumann entropy of this reduced
state is

Say = N. (4.45)

The strength of the correlations between i-th and j-th subsystem is quantified
by the index of correlations given by

I = Sy + Sy — Sy (4.46)

For the universal quantum process involving only the scalar part this index of cor-
relations for the first and the second system is given by
NQ

(12 _ _ L 2(N —
Ic” = 2N = go{(N+ DA+ N (N = Do) In (T 5.+

N2
1-— NZ(N + 1)82

+(N = 1)(1 = N*(N + 1)s9) In ( )} (4.47)

IC

-0.25 -0.2 -0.15 -0.1 -0.05
S2

Fig. 4.7: Index of correlations 18 s a function of parameter sy for N =2 ( full
line ), N =3 ( dashed line ) and N = 4 ( dotted line ).

Correlations between subsystems 2, 3 and 1, 3 are quantified by functions I((;2 3

and Ig 3), which are given by the same formula as I(C1 ) The only difference is that
parameter sy is replaced with sz, respectively sy.

The non-classical correlations between the subsystems i and j are quantified by
the negativity defined in (2.66). For example we can calculate the negativity of the

state pgi;)) To do this we have to find the eigenvalues of the partial transpose of the
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matrix pg;)) These eigenvalues are

1
M1 = m — S9, (448)
with multiplicity N? — 1, and
1
p2 = g5 + (N = 1N +1)sq, (4.49)

with multiplicity 1. Because the range of the parameter s, is restricted to interval

<_(N—11) N W +11) ~z), the eigenvalue y; is always non-negative. The second eigen-

value is negative if the parameter s, belongs to interval (— (N—ll)N27 — (Nfl)(11\l+1)N2 ).

Therefore the negativity of the density operator pg‘;;)) is given by

1 1
N =4 o S Camnee e (4.50)
(12) b2l 52 € (~m=we — D)
0.5F
0.4
> \
= 0.3} '
s \
- \
S 0.2l L
2 . \\
0.1} )
. \
\\
0 [ \ .- 4
-0.25 -0.2 -0.15 0.1 -0.05 0
S2

Fig. 4.8: Negativity of the density operator pg;)) as a function of parameter s, for

dimensions N =2 ( full line ), N = 3 ( dashed line ) and N =4 ( dotted line ).

Negativity of the reduced density operators pg?) and pgig)) are given by equation

(4.50), where one have to replace the parameter sy with s3, respectively s4.

For universal processes involving only the scalar part we have been able to give
exact formulas for the eigenvalues of the output density matrix pgfft) and thus to
find the conditions, under which this matrix is positive. The output state pgfft) is
invariant under U ® U ® U transformations and, with an exception of a particular
process for three qutrits, corresponds to a mixed state, due to the fact that its
von Neumann entropy is nonzero. Von Neumann entropy was used to calculate
index of correlations, which quantifies the strength of the correlations between two

one-particle subsystems. Non-classical correlations were described by negativity.
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4.2.2 The cloning regime

Let us analyze the process of 1 — 3 cloning. This process posses the covariance
property (4.5), hence it can be described within the formalism given in the section
4.1. According to [14] the output state of L — M cloning process is described by
the density operator

L

L!
pletone) — Zm 2 g2y Z a2+ j)(n+ jl, (4.51)

n—
where the input state [n), n = (n4, ..., ny ), denotes symmetric and normalized state
with n; systems in the state |i). Vector n fulfills the equation S~ | n; = L.
In the case of 1 to 3 cloning process L =1 and M = 3. We can restrict ourselves
to a special choice of the input state, say

) = 1), (4.52)

the output for arbitrary different input state is obtained from the covariance property
of this process. In this case ™" has the form

o

(clone) 6 111)(111] +
pout (N+1)(N+2)| >< |

4 N el
T NIV Y ;S|11])(11]|S+

2 = .. ..
TINT (N +2) ;S|1]]><1]J|S+

N

2

+ > S|Ljk)(15k|S, (4.53)
(N+1)(N+2) Py P

where S|ijk) is symmetric and normalized state |ijk), i. e
Slijk)y = Z |7 (1) k)). (4.54)
\/_ wEPy

This particular process corresponds to the following choice of parameters s; and
V;:

81:07

1
3N(N +1)(N+2)’

Sog = 83 = 8§ =
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U1

U4

U7

V10

The probabilities p;

1

T T B T SN TN+ 2)
B B B 1
- BT T NN )(N+ 2)
. _ _N+3
- 8 — 9 — 3N3(N+1)’
N+3
— vy = v = (4.55)

3N2(N+1)(N+2)

are given by

b =

p2 = ps = pr = 0,

AN - 1)
s = N+ )N +2)
2(N — 1)
Pr= Wrn(vr2y
py = DN =2) (4.56)

(N+1)(N+2)

We see that in this particular case only four of the seven blocks of the density
matrix (4.8) appear because p; = ps = p; = 0. The non-vanishing blocks have a
very simple structure - they are given by the sum of the projections onto the states

Slijk), namely

pro= [111)(111],

N
1
- 117)(114
ps N_ljz_;S\ 3)(114|S,

N
pa = ﬁ;s|1jj><1j.7|5,
9 N
o= (N—1)(N_2)HZ S[1g) (14515 (4.57)
1,j=2,1<j

The quality of the copies is described by the fidelity F defined by

F = (lpf™ 1), (4.58)
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where pgfl)‘me) is one-particle reduced density matrix taken from the matrix p\<o")
In our case
2p3  ps P 2 -
(clone) _ 2L 2By a ) (i 4.59
A5 = 4 P BRI g e )
and [1)) = 1), so the fidelity F is given by
2 N+5
F=(+ 2 P D5y 79 (4.60)

3 7373 T 3IN+1)

This value of fidelity F agrees with the fidelity given by Werner [2], which was
proven to be the optimal one for the 1 to 3 universal cloning process.

4.2.3 Universal processes generating anti-symmetric states

Among two-particle universal processes the processes generating anti-symmetric
states were of special interest - as shown in [3] these universal processes form a
one parameter family which produces output states with no separable components.
Every two-particle universal process generating output states with no separable com-
ponents belongs to this family. Therefore it is worth to study three-particle universal
processes generating totally anti-symmetric states.

From the structure of the output density matrix of three-particle covariant pro-
cess given in the section 4.1 we see, that anti-symmetric states should be present
in the partial density operators p; and p;. Hence the process, which leads to anti-
symmetric output state, must fulfill

pL=p2 = p3 = p = ps = 0,
ps + pr = 1L (4.61)
Inserting these conditions into the relations (4.22) we obtain

1+2p7

A = 82+S3+S4=—N(N_1)(N_2),

B = si+si= b
TN - (N —2)(V =3y’
_ . p7 _ 1
C = v1+U2+U3—(N_1)(N_2)(N_3) N(N—l)(N_2)’
D = wy+vj+wvs+vi+ve+vg = = B 2L
T T T T TS T NN )(N—2)  (N-1)(N-2)(N-3)

N -3 pr

E = = —
VTS TY = BN 1) T NN —1)

N(N—-1)(N—-2) N2?(N-1)(N-2)
(4.62)

* * *
F = U10+U10+U11+U11+U12+U12—
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The matrices ps and p; can be written as a sum of projections onto anti-
symmetric states if the following relations among parameters s; and v; are fulfilled

. B
81 - 81 == 5,
A
Sg = 83 = 8§14 = g,
C
V1 = V9 = V3 = g,
% X * D
o= === ==
E
Vry = Vg = Vg = 5,
% * * F
Vip = Vg = V11 = VU = V12 = Uy = g (463)
Using the given conditions the output state has the form
pot’” (pij = Noudjn) = (1= pr)pi™” & prpi™, (4.64)
where matrices p™", pi") are given by
9 N
(anti) .. ..
p = A|lig)(1ij| A,
> (N -1)(N -2 M;,Kj
6 N
(antq) .. ..
p = Alijk)(ijk|A, (4.65)
BCER LR e

and Al|ijk) denotes anti-symmetric and normalized state |ijk), i. e.

Alijh) = —= 3 sgn(a) (@) (i) (k). (1.66)
TEPs
Thus the three-particle universal processes producing anti-symmetric states form
a one parameter family. Output states of this one parameter family contain no
separable components. The case of three qutrits is an exception, because for qutrits
pr equals zero and the one parameter family collapses to one process, which produces
the three-particle singlet state p\*"") = A|123)(123|A. The case of three qutrits is
studied at the end of this section.
The entropy of the one parameter family (4.64) is given by

N-1)(N-2 N—-1)(N-2)(N -3

(N-DWN=2) (N =)V = 2)(N=3)
2(1 —pr) 6pr

for N > 3, for N = 3 the output state is pure so its entropy is zero. S is a concave

function, hence it has a minimum at the point p; = 0 or p; = 1, depending on the
dimension N. For N < 6 this minimum is at the point p; = 1, it has a value

Spin(N < 6) =In N DW - W =3) (4.68)

S=(1-p;)ln , (4.67)
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0 0.2 0.4 0.6 0.8 1
p7

Fig. 4.9: Entropy S as the function of p; for dimensions N = 4 (full line), N =5
(dashed line) and N = 6 (dotted line).

For N = 6 the entropy is the same for p; = 1 and p; = 0. If N > 6, then the
minimum is at the point p; = 0. In this case the minimum is
(N-1)(N-2)

Smin(N > 6) = In ; . (4.69)

0 0.2 0.4 0.6 0.8 1
p7

Fig. 4.10: Entropy S as the function of p; for dimensions N =7 (full line), N =8
(dashed line) and N =9 (dotted line).
The minimal value of entropy as a function of the dimension N is shown in the

following graph.
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5 10 15 20 25 30
N

Fig. 4.11: Minimal value of entropy as a function of N.

The entropy has a maximum at the point p; = NT, its value is

N(N —1)(N —2)
. .

(N-1)(N-2)
6

Smaz = In (4.70)
In this case the output state is mixture of all & three-particle anti-symmetric
states and is invariant under U ® U ® U transformations. This corresponds to the
fact, that for p; = 222 from (4.62) we obtain

v = 0,i=1,..,12,
1
N(N —1)(N —2)’
1

Sg = 83 = 8§ = —m, (471)

S1 =

so this is a scalar process.

The two-particle reduced states of the one parameter family (4.64) are the same
for all three two-particle subsystems. The reduced density operator of subsystems
k and 1 can be written in the form

v 2(1—pr) & o 2(1 + 2py) al g
(anti) 7
p =3oD) ;:2 A|1i)(1i|A + 3 E Alig)(ij|A.  (4.72)

(k) = 3N = (N—1)(N —2)

§,j=2,i<j
This state has the same form as the output states of two-particle universal entangle-
ment processes ( see (3.54)). The only difference is that the parameter p, is replaced
here with %.
The entropy of the reduced state (4.72) is given by
20—pr), B(N—-1) 142 3(N-1)(N-2)
3 2(1—pr) 3 2(1 + 2pr)

S(kl) = (4.73)

o7



For N <7 the minimum as at the point p; = 1 and has the value

&MWJNg7y=m(N_1¥N_2X (4.74)

0 0.2 0.4 0.6 0.8 1
p7

Fig. 4.12: Entropy of the two particle subsystem for N = 4 (full line), N =5
(dashed line) and N = 6 (dotted line).

For N > 7 the minimum is at the point p; = 0, the minimal entropy is given by

2. 3(N-1 1. 3(N-1)(N =2
StV > 7) = 2 22 1, SWZVEZD 7
3.6 ‘ ‘ SIS
3.4
> T T
o 3 2 //// \\\
E //// \\
Ll 37///
2.8 N
0 0.2 0.4 0.6 0.8 1
p7

Fig. 4.13: Entropy of the two particle subsystem for N = 7 (full line), N = 8
(dashed line) and N =9 (dotted line).
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The entropy S has the maximum at the same point as the entropy of the

whole system S, that is for p; = %, its value is
N(N -1
S(kl)maw =In 7( 9 ) (476)

For the two particle density matrix p;) we can calculate the negativity, which
serves as a measure of entanglement. The negativity of the density matrix pgy)
is given by the sum of the absolute values of the negative eigenvalues of partial
transpose p(y). This partial transpose has only one negative eigenvalue, namely

=—(14+2 AN — 3 —4(2N — 4ANp? 4.
7 6(N—1)( + p7+\/ 3 ( 3)pr +4Np3), (4.77)

so the negativity of p is given by —pu and is a function of p; and N

1
Nlotwn) = o=y L+ 201 + VAN =3 42N = 3)p; + ANp2).  (4.78)
The negativity has a minimum at p; = %, the minimal value is
Ny = (4.79)
mn N' .

Maximal negativity is obtained at the points p; = 0 or p; = 1 depending on the
dimension N. For N < 7 the maximum is achieved at p; = 1 and has the value

1
Nmaz(N < 7) = ﬁ (480)

Negativity

Fig. 4.14: Negativity as a function of p; for N = 4 ( full line ), N =5 ( dashed
line ) and N =6 ( dotted line ).
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For N > 7 the maximum is at the point p; = 0 and has a value

1+ vaN =3 (4.81)

6(N —1)

Nmaw(N 2 7) =

Negativity

p7

Fig. 4.15: Negativity as a function of p; for N =7 ( full line ), N = 8 ( dashed
line ) and N =9 ( dotted line ).

The optimal negativity as a function of N is shown in the following graph.

5 10 15 20 25 30 35 40
N

Fig. 4.16: Maximal value of negativity as a function of the dimension N.
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The reduced density operator of the k-th subsystem of the density matrix (4.64)
is given by
1—-p 24p al
(antt) _ == Py 4+ 28T NG 4.82
reduced density operators of the other two one-particle subsystems have the same
form. The entropy of this state is given by

Sy = In + In 4.83
W= T1-p 3 2+ pr (4:83)
One-particle entropy S is maximal for p; = #=2. Under this condition the
reduced state pgzgm) is maximally disordered, i. e.
anti 1
P = L (4.84)
and the entropy S is
Styy = In N. (4.85)
For N <8 S(;) has a minimum at p; = 1, the minimal value is
S(k)min(N < 8) =1In (N — 1). (4.86)
1.8
1.7~
1.6 ___-———mm e -
21.5 T
o ~ N
2 1.4] AN
0
1.3
1.2}
1.1, ‘ ‘ ‘ ‘ .
0 0.2 0.4 0.6 0.8 1
p7

Fig. 4.17: One particle entropy as a function of p; for N =4 ( full line ), N =5
( dashed line ) and N =6 ( dotted line ).

For N > 8 the minimum is obtained at p; = 0 and its value is

(N28):11n3+glnm. (4.87)

S(k)min 3 3 2
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Fig. 4.18: One particle entropy as a function of p; for N =7 ( full line ), N =8
( dashed line ) and N =9 ( dotted line ).

Using the entropy we can define the index of correlations Igc Y which shows the

strength of correlations between subsystems k£ and /. The index of correlations is
given by

Igcl) = S(k) + S(l) — S(k:l)- (4.88)
In our case Sy = Sy and we have
2(1 — 2 2(2 3(N -1
I((;{d) = (L= pr) In + (2+pr) In ( ) —
3 (N — 1) 3 2 +p7
_142p; 3(N—-1)(N-2) (4.89)
3 2(1 + 2py) '

The index of correlations (4.89) has a minimum at p; = ¥=2, the minimal value

is

I8 =2InN —1In NV -1 (4.90)
The maximum is achieved for N < 6 at p; = 1 and has a value
1% (N<6) =2In(N—1)—In "= 1)2(N -2 (4.91)
for N > 6 maximum is at p; = 0 and is given by
% (N >6) = %(2 In NQ_ o+ 4ln 3(N2_ D _ 3= DIV = 2)). (4.92)
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Fig. 4.19: Index of correlations as a function of p; for N =4 ( full line ), N =5
( dashed line ) and N =6 ( dotted line ).

0.92¢
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0.88¢
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0. 84’ \\ //
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Fig. 4.20: Index of correlations as a function of p; for N =7 ( full line ), N =8
( dashed line ) and N =9 ( dotted line ).

We see that particular universal process of the one parameter family (4.64)
described by p7 = % produces state with maximal entropy S, maximal entropy of
two-particle reduced states S(;;) and maximal entropy of one-particle reduced states
Sk)- On the other hand this state has a minimal value of the index of correlations
and the negativity among the one parameter family (4.64). This process involves
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only the scalar part as shown in (4.71), thus the output state of this universal process
is invariant under U ® U ® U transformations. This particular process is the only
one within the one parameter family (4.64) for which the one-particle reduced states
are maximally disordered, i. e.

(anti) _ (anti) __ (anti) _ 1
Py "= Po  =Pa = NI- (4.93)

The output state of this universal process is independent of the input state p;,(p)
so that all information about this initial state is lost.

However, other universal processes from the one parameter family (4.64) are
capable of preserving the information about the initial state. In the output state
of equation (4.7) this information is contained in the terms proportional to the pa-
rameter v;. The parameters vy, vg, and vy characterize the information which is
contained in each one-particle subsystem separately, i. e. in the one-particle re-
duced states p(1), pe) and pg). The parameters vig, vi1 and vyp characterize the
information which is distributed over the two-particle subsystems, i. e. informa-
tion contained in the two-particle reduced states p(i2), p(13) and p(a3). Finally the
parameters v;, ¢ = 1,...,6 characterize the information distributed over the whole
three-particle system. According to equation (4.62) the universal process with p; = 0
yields the maximal possible value for v; = vg = v9, namely

N -3

= - 4.94
VUTmax 3N3(N_1): ( 9)

and preserves the maximum amount of information about the initial state in one-
particle subsystems. If we compare this value of v7,,,, Wwith the maximal value
achievable by an optimal cloning process given in (4.55), we see, that they differ
by terms of relative magnitude O(1/N) so that their difference tends to zero with
increasing dimension NN of the one-particle Hilbert space. Thus for N > 3 a universal
process with p; = 0 preserves almost as much information about the input state as
an optimal 1 to 3 cloning process studied in section 4.2.2 (compare with Fig. 4.21).
From the equation (4.82) we see, that the fidelity F defined as

F=(1lp"), (4.95)

is for the one parameter family (4.64) given by

1 —
F= 3p7. (4.96)

Therefore the process with p; = 0 achieves the maximal value of fidelity, namely

1
=_. 4.97
F=s (497

64



0.8¢

0.6¢

ratio

0.4¢

0.2

Fig. 4.21: Dimensional dependence of the ratio between vz,,,, defined by (4.94) and
the mazimal value achievable by an optimal cloning process given in (4.55).

0.9¢
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0.6+
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N

Fig. 4.22: Dimensional dependence of the ratio between the mazximal fidelity F
achievable by the one-parameter family given by (4.97) and the fidelity achievable by
the optimal cloning process given by (4.60).

As was mentioned earlier, the case of three qutrits is an execption. In this case
p7 = 0 and the one-parameter family (4.64) collapses to one process, which produces
the three-particle singlet state

Pl — A|123)(123). (4.98)
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This state is independent of the input state p;,(p) and is invariant under U ®
U ® U transformations. Therefore for three qutrits universal process generating
anti-symmetric states is not capable of preserving any information about the initial
state pin (D).

Because the output state (4.98) is pure its von Neumann entropy is zero. The
two-particle reduced states of the density operator (4.98) are the same for all three
two-particle subsystems and have the form

anti 1
Pl = 5 (A12)(12|A + A[13)(13]4 + A|23)(23|4). (4.99)
This state is a mixture of all three two-particle anti-symmetric states which can
be constructed for two three-level systems and has a maximal value of entropy,
namely S(;;y = In3. Partial transpose of the reduced state (4.99) has one negative
eigenvalue, namely = —3. Thus the negativity of the state (4.99) is given by

ants 1
N(pn™) = 3 (4.100)
One-particle reduced state of the density matrix (4.98) have the same form for
all three one-particle subspaces, namely

(anti) __  (anti) __  (anti) __ 1
Pay = Pe T Pa T §I, (4.101)

where I is 3 X 3 unit matrix. Thus the one-particle states p(;mti) are maximally
disordered and have the von Neumann entropy S(;) = In3. The index of correlations

between the subsystems i and j is given by
Igj) = S(i) + S(j) - S(ij) = In 3. (4.102)

Tripartite universal processes generating totally anti-symmetric states form a
one-parameter family. Output states of this one-parameter family contain no sep-
arable components. This result is similar to the result for two-particle universal
processes [3]. However, for bipartite universal processes the statement is stronger in
that sense, that every two-particle universal process generating output states with
no separable components belongs to the one-parameter family of processes, which
generates anti-symmetric states. We are not able to prove, that this statement is
valid also for three-particle universal processes, due to the fact that we cannot give
exact formulas for the eigenvalues of the output state (4.8) in the most general case.

There are two exceptional cases from the one-parameter family of processes. For
qubits no such process is possible, due to the fact that for three two-level systems
we cannot construct any anti-symmetric state. For qutrits the one-parameter family
collapses to one process, which generates three-particle singlet state independently of
the input state. As this process involves only the scalar part, all information about
the initial state of a quantum system is lost. On the other hand, for dimensions
N > 3 the one-parameter family preserves information about the input state.
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4.3 View on possible experimental realization of
universal processes

Experimental realization of universal processes is a difficult task. Generally speak-
ing, two different approaches were proposed. The first one is probabilistic. In this
approach certain projection is done to obtain the wanted output state. As this pro-
cedure involves a quantum measurement it has a certain probability of failure. The
second approach uses ancilla. Here we have to use larger quantum system, part of
this system belongs to the ancilla. Universal process can be realized by some unitary
transformation on this larger system. The output state is obtained by applying this
unitary transformation and then tracing out the ancilla.

Among universal processes most of the attention was paid to cloning processes
and this covers also the possible experimental realization. The process of optimal
cloning can be realized in a probabilistic way by adding systems in an unpolar-
ized state and making a projection onto the symmetric subspace. This realization
follows the proposal for the optimal cloning process given by Werner [2]. A differ-
ent approach using the ancilla was given in [14]. The ancilla represents the inner
state of the quantum cloning machine. An explicit form of the unitary cloning
transformation was given also in [14]. The output state is obtained by applying this
transformation and omitting the inner state of the quantum cloning machine. There
were also several experiments concerning optimal cloning processes. For two-level
system the optimal quantum cloning realized via photon stimulated emission was
proposed in [15], [16].

We suppose that these two approaches could apply for different universal pro-
cesses. Possible realization of universal processes involving only the scalar part
analyzed in section 4.2.1 is given by adding systems in an unpolarized state and
projecting onto the wanted scalar output state. As this state is invariant under
U ®U ® U transformations, the probability of success of this process is independent
of the input state. This probabilistic approach could be used also to realize univer-
sal processes generating entangled totally anti-symmetric states discussed in section
4.2.3. Tt could be performed by adding two particles in an unpolarized state and
making a projection onto the anti-symmetric subspace of the three-particle Hilbert
space. However, different realization using the ancilla may be also of interest. We
intend to follow this line in the near future.
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Chapter 5

Conclusions

Universal processes from one to three particles with Hilbert spaces of equal dimen-
sion N have been investigated. They form a special class of general three-particle
processes. The definition of a two-particle universal process was modified for tripar-
tite universal process and the general ansatz for the output density matrix of such
a process was given. For a particular case of the input state the block structure of
the output density matrix was derived. However, due to large number of parameters
(most general output density matrix depends on 23 real parameters) it was not pos-
sible to find the eigenvalues of this output density matrix in an explicit form. The
problem of finding conditions, under which this output density matrix represents
a positive operator, is therefore still open for the general case. Therefore we have
restricted our further investigation to a particular cases of three-particle universal
processes.

One of them were universal processes involving only the scalar part. In this case
we were able to give explicit formulas for the eigenvalues, due to smaller number of
free parameters and the fact that the block structure of the output density matrix
of scalar processes can be considerably simplified when compared with the structure
of the general case. Thus for scalar processes we can give the conditions for the
output density matrix to be a positive operator. Basic properties of the resulting
states were discussed, emphasize was given to the entanglement properties of the
states.

Other particular case was the optimal cloning process. It has been shown how
the optimal cloning process from one to three particles can be described within the
formalism given in section 4.1. Output density matrix of this process can be written
as sum of projections onto symmetric states. We have calculated the fidelity, which
describes the quality of the copies. Our value of fidelity agrees with the value given
by Werner [2] for one to three cloning process and which was proven to be the
optimal one.

Finally, we have investigated particular tripartite universal processes generat-
ing anti-symmetric states. These processes form a one-parameter family and their
output states contain no separable components. The case of three qutrits is an
exception, because the one-parameter family collapses to a single process, which
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generates three-particle singlet state independently of the input state. Therefore in
this case all information about the initial state of a quantum system is lost. How-
ever, in Hilbert spaces of dimensions larger than three the one-parameter family
generating anti-symmetric states is capable of preserving information about the in-
put state. The particular process from this family, which preserves maximal amount
of information about the input state, was determined.

We have investigated two-particle subsystems of the one-parameter family gen-
erating anti-symmetric states. Reduced density operators have the same form for
all three two-particle subsystems, thus these subsystems posses the same properties.
Negativity of these reduced density operators was calculated. This function serves
as a measure of entanglement for bipartite systems. Particular process from the
one-parameter family, which produces states with maximally entangled two-particle
subsystems, was determined. Other basic properties of the output states of the
one-parameter family, such as von Neumann entropy and index of correlations, were
discussed.

Universal processes might play an important role in various branches of quantum
information processing, e. g. in preparation of entangled states or copies of the
input state. Therefore their profound investigation is of importance for the future
applications.
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