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1 A4: Alternating Group of 4 Symbols

Recall that A4 is a subgroup of S4 of index 2. Thus, |A4| = |S4|
2

= 4!
2

= 12.
First we need to find conjugacy classes of A4. We know that e is in its own

conjugacy class. Recall, that a conjugacy class of a ∈ G is {g−1ag | g ∈ G}. Plus, we
know that a permutation in Sn is conjugate only to the same type of permutations.
In S4, there are four conjugacy classes, e, a set of 2-cycles, set of 3-cycles, and finally
set of products of two disjoint 2-cycles.

We hope these sets act as conjugacy classes in A4 as well. In order to show
whether the presented sets are conjugacy classes or not, we would like to prove the
following theorem.

Claim: If C is a conjugacy class of G, then |C| | |G|.

Proof. Consider a conjugation action ◦ over G, that is g ◦ x = gxg−1 for every
g, x ∈ G. Then, Orb(x) is a conjugacy class of x. By Orbit-Stabilizer theroem,
|Orb(x)| · |Stab(x)| = |G|. Thus, |Orb(x)| | |G|. Thus, if an order of a conjugacy
class of Sn fails to divide the order of G, it is no longer a conjugacy class of An.

Thus, in order to determine if the conjugacy classes of S4 are the same as those
of A4, we can check if the order of all the conjugacy classes of S4 that are present
in A4 divide |A4|. Note that there are three conjugacy classes of S4 present in A4,
namely [e], [(12)(34)], [(123)], and their orders are 1, 3, and 8, respectively. All but
one, the one of order 8 containing the three-cycles, does. Finding gag−1 (for all g
in A4 and all three-cycles a) shows that (123), (134), (142), and (243) are in one
conjugacy class, and (132), (143), (124), and (234) are in another. Thus A4 has four
conjugacy classes, and so there are four irreducible characters.

χ1 is trivial, and χ1(g) = 1 for all g in A4.
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Let us do a little digression for now: suppose there exists a group K with a
subgroup H such that |K : H| = 3. Then, K/H is a group of order three. Since
|K/H| is prime, there exists a generator pH ≤ K such that 〈pH〉 = G. Now, let us
try to define representations of degree 1 from K/H to a complex field. With the fact
that ρ(e) = deg C = 1 and ρ(gk) = (ρ(g))k for any g ∈ G and positive integer k, we
can define three representations as below.

H pH p2H
ρ1 1 1 1
ρ2 1 ω ω2

ρ3 1 ω2 ω

*ω is the third root of unity of 1.

Since ρ = Tr(ρ) if deg ρ = 1, the table above is indeed a character table of a
group of order 3.

Now, we may apply this fact to our original group A4. There exists a subgroup
H = {e, (12)(34), (13)(24), (14)(23)} of G of index 3. Then, there exists an element
p = (123) such that A4 = H ∪ pH ∪ p2H. Plus, pH = {(123), (134), (142), (243)}
and p2H = {(132), (143), (124), (234)} are already conjugacy classes. Therefore, we
may import the above table to our character table as the character table of A4.

[e] [(12)(34)] [(123)] [(132)]
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω

But, let us be prudent. Let us check whether χ2 and χ3 are indeed irreducible.

〈χ2, χ2〉 =
1

|A4|
∑
h∈G

χ2(h)χ2(h)

=
1

12
(1 + 3 + 4ωω + 4ω2ω2) = 1

〈χ3, χ3〉 =
1

|A4|
∑
h∈G

χ3(h)χ3(h)

=
1

12
(1 + 3 + 4ω2ω2 + 4ωω) = 1
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Thus, χ2, χ3 are both irreducible by the orthogonality of irreducible characters.
To find χ4, we first use the fact that

∑n
i=1(χi(e))

2 = |G| for any group G with
the set of irreducible characters {χi}ni=1 of G. Thus,

(χ1(e))
2 + (χ2(e))

2 + (χ3(e))
2 + (χ4(e))

2 = 1 + 1 + 1 + (χ4(e))
2 = 12,

so χ4(e) = 3. Again, by the orthogonality of the irreducible characters, 〈χ1, χ4〉 = 0,
〈χ2, χ4〉 = 0, and 〈χ3, χ4〉 = 0. We can ignore dividing by the order of the group
since we are setting the values equal to zero anyway, and we find that

3 + 3b+ 4c+ 4d = 0 (1)

3 + 3b+ 4ωc+ 4ω2d = 0 (2)

3 + 3b+ 4ω2c+ 4ωd = 0 (3)

(1) + (2) + (3) =⇒ 9 + 9b+ 4c(1 + ω + ω2) + 4d(1 + ω + ω2) = 0

=⇒ 9 + 9b = 0 (Since 1 + ω + ω2 = 0)

=⇒ b = −1

b = −1, (1) =⇒ 4c+ 4d = 0 =⇒ c = −d
c = −d, (2) =⇒ 4ωc− 4ω2c = 0

=⇒ 4ωc(1− ω) = 0

Since 1− ω 6= 0, d = 0 Thus, c = d = 0. Thus, the complete table of A4 would be as
below.

[e] [(12)(34)] [(123)] [(132)]
Size 1 3 4 4
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 -1 0 0

2 Group of All Rotations of a Cube

Let G be the group of all rotations of a cube. There are three axes of rotation,
namely the x-axis, y-axis, and z-axis, as Figure 1 suggests. However, since rotation
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is hard to keep track of, let us name each face of the cube in the manner of a die, as
in Figure 2. Thus, we may interpret rotations as permutations of the numbers on
faces. For instance, 90◦ rotation around x-axis can be written as (1463), as the face
1 moves to 4, 4 to 6, 6 to 3, and 3 back to 1.

Figure 1 Figure 2
With this method, it becomes easier to figure out the order of G.
Claim: |G| = 24.

Proof. Consider a cube, and number each face. Let 1 be the top face. Then there
are four possible ways to position a cube. Since there are six different possibilities
for the top face, there are 6× 4 = 24 possible rotations in total. Thus, |G| = 24.

The below is the table of all 24 elements of the group in the manner of permuta-
tions.

e (2354) (25)(34) (2453)
e e (2354) (25)(34) (2453)

(1562) (1562) (142)(356) (12)(34)(56) (132)(456)
(16)(25) (16)(25) (16)(24)(35) (16)(34) (16)(23)(45)
(1265) (1265) (135)(264) (15)(26)(34) (145)(263)
(1463) (1463) (123)(465) (13)(25)(46) (153)(246)
(1364) (1364) (154)(236) (14)(25)(36) (124)(365)

*For row π and column σ, the entry corresponds to a permutation σπ.

4



We know that a conjugacy class of a symmetric group is a set of permutations of
same types. Thus, we can hope that we have five conjugacy classes as below.

[e] ={e}
[(1265)] ={(1265), (1562), (1364), (1463), (2354), (2453)}

[(16)(25)] ={(16)(25), (16)(34), (25)(34)}
[(123)(465)] ={(123)(465), (124)(365), (132)(456), (135)(264), (142)(356), (145)(263),

(153)(246), (154)(236)}
[(12)(34)(56)] = {(12)(34)(56), (13)(25)(46), (14)(25)(36), (15)(26)(34), (16)(24)(35),

(16)(23)(45)}

However, since G is a subgroup of S6, we need to check whether there is a set that
fails to be a conjugacy class in G.

The order of a conjugacy class divides that of the group. However, the order of
conjugacy classes are 1, 6, 3, 8, and 6 respectively, which all divide 24. Thus, all
the sets above must be conjugacy classes of S6; in fact, we checked gag−1 for every
g, a ∈ G, yet decided not to include in the paper.

Since there are five conjugacy classes, we expect to have five irreducible charac-
ters. Let us denote them χ1, · · · , χ5. Note that for every g ∈ G, g and g−1 are in the
same conjugacy class. Thus, by Problem 48 from the homework, all the entries of
the character table are going to be real. Therefore, χk(g) = χk(g) for every k and
g ∈ G.

The first character, χ1, is a trivial character, which yields 1 for every conjugacy
class.

There exists a subgroup H ≤ G of index 2.
Claim: H = {e, [(16)(25)], [(135)(264)]} is a subgroup of G of index 2

Proof. Observe that for any π ∈ H, π is a product of an even amount of 2-cycles,
while σ ∈ G \ H is a product of odd amount of 2-cycles. Since the product of any
even amount of 2-cycles is still even, H is a subgroup of G. Since |G/H| = 2, H is a
subgroup of G of index 2.

Thus, we have another character χ2, which assigns 1 for any π ∈ H = {e, [(16)(25)],
[(135)(264)]}, and assigns −1 otherwise.

Also, we have an ”obvious” representation. Observe that any permutation of
the form of (abcd) corresponds to a rotation of ±90◦ around either of x, y, or z-
axis. Plus, any permutation of the form of (ab)(cd) corresponds to a rotation of 180◦

around either of x, y, or z-axis. Moreover, any permutation of the form of (abc)(def)
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corresponds to a composition of two rotations of ±90◦ around two distinct axes, and
finally (ab)(cd)(ef) corresponds to a composition of a rotation of ±90◦ around an
axis and that of 180◦ around another axis.

Let Ri,X denote the rotation of X◦ around the i-axis. Then the following holds.

Rx,±90 =

1 0 0
0 cos±90◦ − sin±90◦

0 sin±90◦ cos±90◦

 , Ry,±90 =

cos±90◦ 0 − sin±90◦

0 1 0
sin±90◦ 0 cos±90◦


Rz,±90 =

cos±90◦ − sin±90◦ 0
sin±90◦ cos±90◦ 0

0 0 1


Since cos±90◦ = 0, the traces of all the 90◦ rotations are 1.

The matrices of 180◦ rotations are as below.

Rx,180 =

1 0 0
0 −1 0
0 0 −1

 , Ry,180 =

−1 0 0
0 1 0
0 0 −1

 , Rz,180 =

−1 0 0
0 −1 0
0 0 1


And it is easy to notice that the traces of 180◦ rotations around any axes are

−1. The trace of a product of two ±90◦ rotation matrices around two different
axes is cos±90◦ + cos±90◦ + (cos±90◦)2 = 0. Finally, the trace of a product of a
rotation matrix 180◦ around an axis and a rotation matrix 90◦ around another axis
is 1 ·+(−1) · 0 + (−1) · 1 = −1.

Let us denote the character of the ”obvious” representation by χ3. In order to
check the irreducibility of χ3, we will compute 〈χ3, χ3〉.

〈χ3, χ3〉 =
1

24

∑
h∈G

(χ3(h))2

=
1

24

(
32 + 6 · 12 + 3 · (−1)2 + 6 · (−1)2

)
= 1.

Thus, χ3 is an irreducible character.
With these facts, let us begin to fill out the table.

[e] [(1265)] [(16)(25)] [(135)(264)] [(14)(25)(36)]
Size 1 6 3 8 6
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 3 1 -1 0 1
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Now, consider a left-regular representation of S6. The trace of the matrix corre-
sponds to the number of fixed points of the matrix. Let us denote the character of
this representation χ. Then the following holds.

χ(e) = 6, χ([(1265)]) = χ([(16)(25)]) = 2, χ([(135)(264)]) = χ([(14)(25)(36)]) = 0.

Let us compute 〈χ, χ〉.
〈χ, χ〉 = 1

24
(36 + 6 · 22 + 3 · 22 + 8 · 0 + 6 · 0) = 3.

This implies the representation is indeed a direct sum of three irreducible repre-
sentations. Let us check 〈χ, χ1〉, 〈χ, χ2〉, and 〈χ, χ3〉.

〈χ, χ1〉 =
1

24
(6 + 6 · 1 · 2 + 3 · 1 · 2 + 8 · 1 · 0 + 6 · 1 · 0) = 1.

〈χ, χ2〉 =
1

24
(6− 6 · 1 · 2 + 3 · 1 · 2 + 8 · 1 · 0− 6 · 1 · 0) = 0

〈χ, χ3〉 =
1

24
(18 + 6 · 1 · 2− 3 · 1 · 2 + 8 · 0 · 0− 6 · 1 · 0) = 1

This fact implies χ is actually equivalent to a direct sum of χ1, χ3, and another
irreducible character yet determined. Since the direct sum of characters is indeed
equal to sum of characters, we can determine the fourth irreducible character χ4 =
χ− χ1 − χ3. Thus, we may update our table as following.

[e] [(1265)] [(16)(25)] [(135)(264)] [(14)(25)(36)]
Size 1 6 3 8 6
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 3 1 -1 0 1
χ4 2 0 2 -1 0
χ5 a b c d e

Let us check whether χ4 is actually irreducible.

〈χ4, χ4〉 =
1

|G|
∑
h∈G

χ4(h)χ4(h)

=
1

24

(
1 · 22 + 6 · 02 + 3 · 22 + 8 · (−1)2 + 6 · 02

)
= 1

By the orthogonality of irreducible characters, χ4 is indeed irreducible.
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Since we have 4 irreducible characters, it is easy to figure out χ5. First of all,
note that 3 · 2 · 12 + 32 + 22 + (χ5(e))

2 = |G| = 24. Thus, a = 3.
We can obtain the last row simply by computing a set of simultaneous equations.

We can ignore dividing by the order of the group, since we are setting the values
equal to zero.

3 + 6b+ 3c+ 8d+ 6e = 0 (4)

3− 6b+ 3c+ 8d− 6e = 0 (5)

9 + 6b− 3c− 6e = 0 (6)

6 + 6c− 8d = 0 (7)

(4) + (5) =⇒ 6 + 6c+ 16d = 0

(4)− (5) =⇒ 12b+ 12e = 0

(4) + (5)− (7) =⇒ 24d = 0 =⇒ d = 0

(5) + (6), d = 0 =⇒ 12 + 12b = 0 =⇒ b = −1

(4)− (5), b = −1 =⇒ 12e = 12 =⇒ e = 1

(4) + (5), d = 0 =⇒ c = −1

Thus, we may complete our character table.

[e] [(1265)] [(16)(25)] [(135)(264)] [(14)(25)(36)]
Size 1 6 3 8 6
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 2 -1 0
χ4 3 -1 -1 0 1
χ5 3 1 -1 0 -1

3 A5: Alternating Group of 5 Symbols

Recall that |An| = n!
2

. Thus, |A5| = 60.
Note that a conjugacy class of an element a is {g−1ag | g ∈ G}. And as mentioned

earlier, a conjugacy class of a symmetric group is a set of permutations of same types.
Let us check whether the conjugacy classes of S5 still acts as conjugacy classes in A5.

First, observe the table of conjugacy classes of S5 and their sizes.
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[e] [(123)] [(12)(34)] [(12345)]
Size 1 20 15 24

Let us denote the set of cycles of length 5, C. Note that |C| = 24 does not divide
60. Thus, C fails to be a conjugacy class in A5.

Indeed, C in A5 is a union of two distinct conjugacy classes. Then, there are
two conjugacy classes in A5 such that C1 = {π(12345)π−1 | π ∈ A5} and C2 =
{σ(12345)σ−1 | σ ∈ S5 \ A5}.

Indeed, C2 turns out to be a conjugacy class containing 12 elements as below.

{σ(12345)σ−1 | σ ∈ S5 \ A5} = {(12354), (12435), (12543), (13245), (13452), (13524),

(14253), (14325), (14532), (15234), (15342), (15423)}

Thus, there A5 has five conjugacy classes as below.

[e] [(123)] [(12)(34)] [(12345)] [(12354)]
Size 1 20 15 12 12

Therefore, we may expect to have five irreducible characters.
The first irreducible character is a trivial character, χ1, of course.
For the second irreducible character, consider left-regular representation ρ of A5.

Then, ρ : A5 → GL(R5) so that ρ(g)(~ek) = ~egk. Let χρ be the character of this
representation. Then, χρ(g) corresponds to the number of fixed points of the repre-
sentation, ρ(g).

[e] [(123)] [(12)(34)] [(12345)] [(12354)]
Size 1 20 15 12 12
χ1 1 1 1 1 1
χρ 5 2 1 0 0

Computing 〈χρ, χρ〉 results as below.

〈χρ, χρ〉 =
1

|A5|
∑
h∈A5

χρ(h)χρ(h)

=
1

60
(1 · 52 + 20 · 22 + 15 · 12) = 2

Thus, it implies χρ is indeed a direct sum of two irreducible representations. Let
us compute the inner product of χ1 and χρ.
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〈χ1, χρ〉 =
1

|A5|
∑
h∈A5

χ1(h)χρ(h)

=
1

60
(1 · 5 + 20 · 2 + 15 · 1) = 1

Thus, χρ = χ1 + χ2 where χ2 is another irreducible character. Thus, we can now
figure out the second character, χ2(g) = χρ(g)− χ1(g) = χρ(g)− 1. Thus, the table
can be updated as below.

[e] [(123)] [(12)(34)] [(12345)] [(12354)]
Size 1 20 15 12 12
χ1 1 1 1 1 1
χ2 4 1 0 -1 -1

But, let us once more clarify whether χ2 is indeed an irreducible character by
computing 〈χ2, χ2〉.

〈χ2, χ2〉 =
1

|A5|
∑
h∈G

χ2(h)χ2(h)

=
1

60
(1 · 42 + 20 · 12 + 12 · (−1)2 + 12 · (−1)2) = 1.

Thus, χ2 is an irreducible character as expected.
Now, consider an icosahedron. We claim that A5 is isomorphic to a group of

rotations of an icosahedron, G. In order to do so, first, I would like to show that
their orders are equal, and point out the bijection by stating how we can interpret a
rotation of icosahedron in the manner of alternating group of 5 symbols.

An icosahedron has 12 vertices, and each vertex is surrounded by five equilateral
triangles. Name each vertex after the letters A, · · · , L. Let A come to the top; then
there are five possible rotations, since there are five triangles around A. Since we
have 11 other possibilities for the top vertex, we have 12× 5 = 60 possible rotations
in total. Thus, |G| = |A5|.

Observe that an icosahedron is composed of 30 edges. Note that for each edge
in an icosahedron, there are four perpendicular edges and one parallel edge. Thus,
if we form a group K, of edges that are perpendicular and parallel to each other,
then |K| = 6. Thus, we may form 5 distinct groups K1, · · · , K5 out of 30 edges of
icosahedron. The parallelism and perpendicularity of two edges are invariant under
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any rotation. Thus, we may view a rotation of icosahedron as a permutation of
K1, · · · , K5. Thus, A5 is isomorphic to a group of rotations of an icosahedron, G.

Now, we can define a representation φ : A5 → GL(R3), and denote χφ as its
character. First, e is an identity matrix of degree 3, thus χφ(e) = 3.

For any permutation, π ∈ [(123)], π can be interpreted as either 60◦ or 120◦

rotation around an axis penetrating through a center of a triangular face of the
solid. Observe that the rotation has order of 3 just like any permutation of the
form (abc). Let the rotation axis be z-axis for the sake of computation. Then,

φ(π) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 where θ = 60◦ or 120◦. For either case, χφ(π) = 0.

For any permutation, σ ∈ [(12)(34)], σ can be interpreted as 180◦ rotation
around an axis penetrating through a midpoint of an edge of the solid. The ro-
tation has order of 2 as any permutation just as any permutation of the form
(ab)(cd). Let the axis, again, be z-axis for the sake of computation. Then, φ(σ) =cos 180◦ − sin 180◦ 0

sin 180◦ cos 180◦ 0
0 0 1

 . Thus, χφ(σ) = −1.

Finally, for any permutation of κ ∈ [(12345)] or κ ∈ [(12354)] can be interpreted
as the multiples of 72◦ rotation around an axis from a vertex to the opposite vertex
of the solid. The rotation has order 5 as any permutation of the form (abcde). Let

the axis be z-axis for the sake of computation. Then, φ(κ) =

cosϑ − sinϑ 0
sinϑ cosϑ 0

0 0 1


Indeed, it turned out to be cos 72◦ = cos 288◦ and cos 144◦ = cos 216◦. Thus, we have
two different possibillities for χφ(κ), namely 1 + 2 cos 72◦ and 1 + 2 cos 144◦. Let us
denote them by ζ1 and ζ2, respectively. Thus, we obtained two characters, χφ1 and
χφ2 .

[e] [(123)] [(12)(34)] [(12345)] [(12354)]
Size 1 20 15 12 12
χ1 1 1 1 1 1
χ2 4 1 0 -1 -1
χφ1 3 0 -1 ζ1 ζ2
χφ2 3 0 -1 ζ2 ζ1

Now, let us check whether they are irreducible characters or not, by computing
〈χφ1 , χφ1〉 and 〈χφ2 , χφ2〉.
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〈χφ1 , χφ1〉 =
1

|A5|
∑
h∈G

χφ1(h)χφ1(h)

=
1

60
(1 · 32 + 20 · 02 + 15 · (−1)2 + 12 · (ζ1)2 + 12 · (ζ2)2) = 1

〈χφ2 , χφ2〉 =
1

|A5|
∑
h∈G

χφ2(h)χφ2(h)

=
1

60
(1 · 32 + 20 · 02 + 15 · (−1)2 + 12 · (ζ2)2 + 12 · (ζ1)2) = 1

Thus, again by the orthogonality of the irreducible characters, χφ1 and χφ2 are
irreducible characters.

[e] [(123)] [(12)(34)] [(12345)] [(12354)]
Size 1 20 15 12 12
χ1 1 1 1 1 1
χ2 4 1 0 -1 -1
χ3 3 0 -1 ζ1 ζ2
χ4 3 0 -1 ζ2 ζ1
χ5 a b c d e

First, we can compute a easily. Note that
∑n

i=1(χi(e))
2 = |G| for any group G

with the set of irreducible characters {χi}ni=1. Thus, 12 + 42 + 2 · 32 + a2 = 60. This
gives out a = 5.

Now, by the orthogonality of irreducible characters, 〈χi, χ5〉 = 0 for any i ∈
{1, 2, 3, 4}.

〈χ5, χ1〉 =
1

60
(5 + 20b+ 15c+ 12d+ 12e) = 0

〈χ5, χ2〉 =
1

60
(20 + 20b− 12d− 12e) = 0

〈χ5, χ3〉 =
1

60
(15− 15c+ dζ1 + eζ2) = 0

〈χ5, χ4〉 =
1

60
(15− 15c+ dζ2 + eζ1) = 0
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Therefore,

〈χ5, χ3〉 − 〈χ5, χ4〉 =
1

60
(d(ζ1 − ζ2) + e(ζ2 − ζ1)) = 0 =⇒ d = −e

d = −e =⇒ 〈χ5, χ2〉 =
1

60
(20 + 20b) = 0 =⇒ b = −1

d = −e, b = −1 =⇒ 〈χ5, χ1〉 =
1

60
(5− 20 + 15c) = 0 =⇒ c = 1.

c = 1, d = −e =⇒ 〈χ5, χ3〉 =
1

60
(15− 15 + dζ1 − dζ2) = 0 =⇒ d = e = 0

Thus, the complete character table of A5 is as below.

[e] [(123)] [(12)(34)] [(12345)] [(12354)]
Size 1 20 15 12 12
χ1 1 1 1 1 1
χ2 4 1 0 -1 -1
χ3 3 0 -1 ζ1 ζ2
χ4 3 0 -1 ζ2 ζ1
χ5 3 -1 1 0 0
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