Character Table

Mikyla Carpenter, John Lee

May 2015

1 A₄: Alternating Group of 4 Symbols

Recall that A_4 is a subgroup of S_4 of index 2. Thus, $|A_4| = \frac{|S_4|}{2} = \frac{4!}{2} = 12$.

First we need to find conjugacy classes of A_4 . We know that e is in its own conjugacy class. Recall, that a conjugacy class of $a \in G$ is $\{g^{-1}ag \mid g \in G\}$. Plus, we know that a permutation in S_n is conjugate only to the same type of permutations. In S_4 , there are four conjugacy classes, e, a set of 2-cycles, set of 3-cycles, and finally set of products of two disjoint 2-cycles.

We hope these sets act as conjugacy classes in A_4 as well. In order to show whether the presented sets are conjugacy classes or not, we would like to prove the following theorem.

Claim: If C is a conjugacy class of G, then $|C| \mid |G|$.

Proof. Consider a conjugation action \circ over G, that is $g \circ x = gxg^{-1}$ for every $g, x \in G$. Then, $\operatorname{Orb}(x)$ is a conjugacy class of x. By Orbit-Stabilizer theorem, $|\operatorname{Orb}(x)| \cdot |\operatorname{Stab}(x)| = |G|$. Thus, $|\operatorname{Orb}(x)| \mid |G|$. Thus, if an order of a conjugacy class of S_n fails to divide the order of G, it is no longer a conjugacy class of A_n . \Box

Thus, in order to determine if the conjugacy classes of S_4 are the same as those of A_4 , we can check if the order of all the conjugacy classes of S_4 that are present in A_4 divide $|A_4|$. Note that there are three conjugacy classes of S_4 present in A_4 , namely [e], [(12)(34)], [(123)], and their orders are 1, 3, and 8, respectively. All but one, the one of order 8 containing the three-cycles, does. Finding gag^{-1} (for all gin A_4 and all three-cycles a) shows that (123), (134), (142), and (243) are in one conjugacy class, and (132), (143), (124), and (234) are in another. Thus A_4 has four conjugacy classes, and so there are four irreducible characters.

 χ_1 is trivial, and $\chi_1(g) = 1$ for all g in A_4 .

Let us do a little digression for now: suppose there exists a group K with a subgroup H such that |K : H| = 3. Then, K/H is a group of order three. Since |K/H| is prime, there exists a generator $pH \leq K$ such that $\langle pH \rangle = G$. Now, let us try to define representations of degree 1 from K/H to a complex field. With the fact that $\rho(e) = \deg \mathbb{C} = 1$ and $\rho(g^k) = (\rho(g))^k$ for any $g \in G$ and positive integer k, we can define three representations as below.

	H	pH	p^2H
ρ_1	1	1	1
ρ_2	1	ω	ω^2
ρ_3	1	ω^2	ω

 $*\omega$ is the third root of unity of 1.

Since $\rho = \text{Tr}(\rho)$ if deg $\rho = 1$, the table above is indeed a character table of a group of order 3.

Now, we may apply this fact to our original group A_4 . There exists a subgroup $H = \{e, (12)(34), (13)(24), (14)(23)\}$ of G of index 3. Then, there exists an element p = (123) such that $A_4 = H \cup pH \cup p^2H$. Plus, $pH = \{(123), (134), (142), (243)\}$ and $p^2H = \{(132), (143), (124), (234)\}$ are already conjugacy classes. Therefore, we may import the above table to our character table as the character table of A_4 .

	[e]	[(12)(34)]	[(123)]	[(132)]
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ_3	1	1	ω^2	ω

But, let us be prudent. Let us check whether χ_2 and χ_3 are indeed irreducible.

$$\langle \chi_2, \chi_2 \rangle = \frac{1}{|A_4|} \sum_{h \in G} \chi_2(h) \overline{\chi_2(h)}$$

$$= \frac{1}{12} (1 + 3 + 4\omega \overline{\omega} + 4\omega^2 \overline{\omega}^2) = 1$$

$$\langle \chi_3, \chi_3 \rangle = \frac{1}{|A_4|} \sum_{h \in G} \chi_3(h) \overline{\chi_3(h)}$$

$$= \frac{1}{12} (1 + 3 + 4\omega^2 \overline{\omega}^2 + 4\omega \overline{\omega}) = 1$$

Thus, χ_2, χ_3 are both irreducible by the orthogonality of irreducible characters.

To find χ_4 , we first use the fact that $\sum_{i=1}^n (\chi_i(e))^2 = |G|$ for any group G with the set of irreducible characters $\{\chi_i\}_{i=1}^n$ of G. Thus,

$$(\chi_1(e))^2 + (\chi_2(e))^2 + (\chi_3(e))^2 + (\chi_4(e))^2 = 1 + 1 + 1 + (\chi_4(e))^2 = 12,$$

so $\chi_4(e) = 3$. Again, by the orthogonality of the irreducible characters, $\langle \chi_1, \chi_4 \rangle = 0$, $\langle \chi_2, \chi_4 \rangle = 0$, and $\langle \chi_3, \chi_4 \rangle = 0$. We can ignore dividing by the order of the group since we are setting the values equal to zero anyway, and we find that

$$3 + 3\overline{b} + 4\overline{c} + 4\overline{d} = 0 \tag{1}$$

$$3 + 3\overline{b} + 4\omega\overline{c} + 4\omega^2\overline{d} = 0 \tag{2}$$

$$3 + 3\overline{b} + 4\omega^2\overline{c} + 4\omega\overline{d} = 0 \tag{3}$$

$$(1) + (2) + (3) \implies 9 + 9\overline{b} + 4\overline{c}(1 + \omega + \omega^2) + 4\overline{d}(1 + \omega + \omega^2) = 0$$
$$\implies 9 + 9\overline{b} = 0 \qquad (\text{Since } 1 + \omega + \omega^2 = 0)$$
$$\implies b = -1$$
$$b = -1, (1) \implies 4\overline{c} + 4\overline{d} = 0 \implies \overline{c} = -\overline{d}$$
$$\overline{c} = -\overline{d}, (2) \implies 4\omega\overline{c} - 4\omega^2\overline{c} = 0$$
$$\implies 4\omega\overline{c}(1 - \omega) = 0$$

Since $1 - \omega \neq 0$, $\overline{d} = 0$ Thus, c = d = 0. Thus, the complete table of A_4 would be as below.

	[e]	[(12)(34)]	[(123)]	[(132)]
Size	1	3	4	4
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ_3	1	1	ω^2	ω
χ_4	3	-1	0	0

Group of All Rotations of a Cube 2

Let G be the group of all rotations of a cube. There are three axes of rotation, namely the x-axis, y-axis, and z-axis, as **Figure 1** suggests. However, since rotation is hard to keep track of, let us name each face of the cube in the manner of a die, as in **Figure 2**. Thus, we may interpret rotations as permutations of the numbers on faces. For instance, 90° rotation around x-axis can be written as (1463), as the face 1 moves to 4, 4 to 6, 6 to 3, and 3 back to 1.

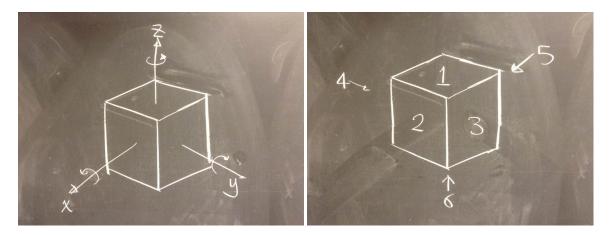


Figure 1Figure 2With this method, it becomes easier to figure out the order of G.Claim: |G| = 24.

Proof. Consider a cube, and number each face. Let 1 be the top face. Then there are four possible ways to position a cube. Since there are six different possibilities for the top face, there are $6 \times 4 = 24$ possible rotations in total. Thus, |G| = 24. \Box

The below is the table of all 24 elements of the group in the manner of permutations.

	e	(2354)	(25)(34)	(2453)
e	e	(2354)	(25)(34)	(2453)
(1562)	(1562)	(142)(356)	(12)(34)(56)	(132)(456)
(16)(25)	(16)(25)	(16)(24)(35)	(16)(34)	(16)(23)(45)
(1265)	(1265)	(135)(264)	(15)(26)(34)	(145)(263)
(1463)	(1463)	(123)(465)	(13)(25)(46)	(153)(246)
(1364)	(1364)	(154)(236)	(14)(25)(36)	(124)(365)

*For row π and column σ , the entry corresponds to a permutation $\sigma\pi$.

We know that a conjugacy class of a symmetric group is a set of permutations of same types. Thus, we can hope that we have five conjugacy classes as below.

$$\begin{split} & [e] = \{e\} \\ & [(1265)] = \{(1265), (1562), (1364), (1463), (2354), (2453)\} \\ & [(16)(25)] = \{(16)(25), (16)(34), (25)(34)\} \\ & [(123)(465)] = \{(123)(465), (124)(365), (132)(456), (135)(264), (142)(356), (145)(263), \\ & (153)(246), (154)(236)\} \\ & [(12)(34)(56)] = \{(12)(34)(56), (13)(25)(46), (14)(25)(36), (15)(26)(34), (16)(24)(35), \\ & (16)(23)(45)\} \end{split}$$

However, since G is a subgroup of S_6 , we need to check whether there is a set that fails to be a conjugacy class in G.

The order of a conjugacy class divides that of the group. However, the order of conjugacy classes are 1, 6, 3, 8, and 6 respectively, which all divide 24. Thus, all the sets above must be conjugacy classes of S_6 ; in fact, we checked gag^{-1} for every $g, a \in G$, yet decided not to include in the paper.

Since there are five conjugacy classes, we expect to have five irreducible characters. Let us denote them χ_1, \dots, χ_5 . Note that for every $g \in G, g$ and g^{-1} are in the same conjugacy class. Thus, by **Problem 48** from the homework, all the entries of the character table are going to be real. Therefore, $\overline{\chi_k(g)} = \chi_k(g)$ for every k and $g \in G$.

The first character, χ_1 , is a trivial character, which yields 1 for every conjugacy class.

There exists a subgroup $H \leq G$ of index 2.

Claim: $H = \{e, [(16)(25)], [(135)(264)]\}$ is a subgroup of G of index 2

Proof. Observe that for any $\pi \in H$, π is a product of an even amount of 2-cycles, while $\sigma \in G \setminus H$ is a product of odd amount of 2-cycles. Since the product of any even amount of 2-cycles is still even, H is a subgroup of G. Since |G/H| = 2, H is a subgroup of G of index 2.

Thus, we have another character χ_2 , which assigns 1 for any $\pi \in H = \{e, [(16)(25)], [(135)(264)]\}$, and assigns -1 otherwise.

Also, we have an "obvious" representation. Observe that any permutation of the form of (abcd) corresponds to a rotation of $\pm 90^{\circ}$ around either of x, y, or z-axis. Plus, any permutation of the form of (ab)(cd) corresponds to a rotation of 180° around either of x, y, or z-axis. Moreover, any permutation of the form of (abc)(def)

corresponds to a composition of two rotations of $\pm 90^{\circ}$ around two distinct axes, and finally (ab)(cd)(ef) corresponds to a composition of a rotation of $\pm 90^{\circ}$ around an axis and that of 180° around another axis.

Let $R_{i,X}$ denote the rotation of X° around the *i*-axis. Then the following holds.

$$R_{x,\pm90} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \pm 90^{\circ} & -\sin \pm 90^{\circ} \\ 0 & \sin \pm 90^{\circ} & \cos \pm 90^{\circ} \end{pmatrix}, R_{y,\pm90} = \begin{pmatrix} \cos \pm 90^{\circ} & 0 & -\sin \pm 90^{\circ} \\ 0 & 1 & 0 \\ \sin \pm 90^{\circ} & 0 & \cos \pm 90^{\circ} \end{pmatrix}$$
$$R_{z,\pm90} = \begin{pmatrix} \cos \pm 90^{\circ} & -\sin \pm 90^{\circ} & 0 \\ \sin \pm 90^{\circ} & \cos \pm 90^{\circ} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Since $\cos \pm 90^\circ = 0$, the traces of all the 90° rotations are 1.

The matrices of 180° rotations are as below.

$$R_{x,180} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, R_{y,180} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, R_{z,180} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

And it is easy to notice that the traces of 180° rotations around any axes are -1. The trace of a product of two $\pm 90^{\circ}$ rotation matrices around two different axes is $\cos \pm 90^{\circ} + \cos \pm 90^{\circ} + (\cos \pm 90^{\circ})^2 = 0$. Finally, the trace of a product of a rotation matrix 180° around an axis and a rotation matrix 90° around another axis is $1 \cdot + (-1) \cdot 0 + (-1) \cdot 1 = -1$.

Let us denote the character of the "obvious" representation by χ_3 . In order to check the irreducibility of χ_3 , we will compute $\langle \chi_3, \chi_3 \rangle$.

$$\langle \chi_3, \chi_3 \rangle = \frac{1}{24} \sum_{h \in G} (\chi_3(h))^2$$

= $\frac{1}{24} (3^2 + 6 \cdot 1^2 + 3 \cdot (-1)^2 + 6 \cdot (-1)^2) = 1.$

Thus, χ_3 is an irreducible character. With these facts, let us begin to fill out the table.

	[e]	[(1265)]	[(16)(25)]	[(135)(264)]	[(14)(25)(36)]
Size	1	6	3	8	6
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	3	1	-1	0	1

Now, consider a left-regular representation of S_6 . The trace of the matrix corresponds to the number of fixed points of the matrix. Let us denote the character of this representation χ . Then the following holds.

$$\chi(e) = 6, \chi([(1265)]) = \chi([(16)(25)]) = 2, \chi([(135)(264)]) = \chi([(14)(25)(36)]) = 0.$$

Let us compute $\langle \chi, \chi \rangle$. $\langle \chi, \chi \rangle = \frac{1}{24} (36 + 6 \cdot 2^2 + 3 \cdot 2^2 + 8 \cdot 0 + 6 \cdot 0) = 3.$ This implies the representation is indeed a direct sum of three irreducible representations. Let us check $\langle \chi, \chi_1 \rangle, \langle \chi, \chi_2 \rangle$, and $\langle \chi, \chi_3 \rangle$.

$$\langle \chi, \chi_1 \rangle = \frac{1}{24} \left(6 + 6 \cdot 1 \cdot 2 + 3 \cdot 1 \cdot 2 + 8 \cdot 1 \cdot 0 + 6 \cdot 1 \cdot 0 \right) = 1.$$

$$\langle \chi, \chi_2 \rangle = \frac{1}{24} \left(6 - 6 \cdot 1 \cdot 2 + 3 \cdot 1 \cdot 2 + 8 \cdot 1 \cdot 0 - 6 \cdot 1 \cdot 0 \right) = 0$$

$$\langle \chi, \chi_3 \rangle = \frac{1}{24} \left(18 + 6 \cdot 1 \cdot 2 - 3 \cdot 1 \cdot 2 + 8 \cdot 0 \cdot 0 - 6 \cdot 1 \cdot 0 \right) = 1$$

This fact implies χ is actually equivalent to a direct sum of χ_1, χ_3 , and another irreducible character yet determined. Since the direct sum of characters is indeed equal to sum of characters, we can determine the fourth irreducible character $\chi_4 =$ $\chi - \chi_1 - \chi_3$. Thus, we may update our table as following.

	[e]	[(1265)]	[(16)(25)]	[(135)(264)]	[(14)(25)(36)]
Size	1	6	3	8	6
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	3	1	-1	0	1
χ_4	2	0	2	-1	0
χ_5	a	b	С	d	e

Let us check whether χ_4 is actually irreducible.

$$\langle \chi_4, \chi_4 \rangle = \frac{1}{|G|} \sum_{h \in G} \chi_4(h) \overline{\chi_4(h)}$$

= $\frac{1}{24} \left(1 \cdot 2^2 + 6 \cdot 0^2 + 3 \cdot 2^2 + 8 \cdot (-1)^2 + 6 \cdot 0^2 \right) = 1$

By the orthogonality of irreducible characters, χ_4 is indeed irreducible.

Since we have 4 irreducible characters, it is easy to figure out χ_5 . First of all, note that $3 \cdot 2 \cdot 1^2 + 3^2 + 2^2 + (\chi_5(e))^2 = |G| = 24$. Thus, a = 3.

We can obtain the last row simply by computing a set of simultaneous equations. We can ignore dividing by the order of the group, since we are setting the values equal to zero.

$$3 + 6b + 3c + 8d + 6e = 0 \tag{4}$$

$$3 - 6b + 3c + 8d - 6e = 0 \tag{5}$$

$$9 + 6b - 3c - 6e = 0 \tag{6}$$

$$6 + 6c - 8d = 0 \tag{7}$$

$$(4) + (5) \implies 6 + 6c + 16d = 0$$

$$(4) - (5) \implies 12b + 12e = 0$$

$$(4) + (5) - (7) \implies 24d = 0 \implies d = 0$$

$$(5) + (6), d = 0 \implies 12 + 12b = 0 \implies b = -1$$

$$(4) - (5), b = -1 \implies 12e = 12 \implies e = 1$$

$$(4) + (5), d = 0 \implies c = -1$$

Thus, we may complete our character table.

	[e]	[(1265)]	[(16)(25)]	[(135)(264)]	[(14)(25)(36)]
Size	1	6	3	8	6
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	2	0	2	-1	0
χ_4	3	-1	-1	0	1
χ_5	3	1	-1	0	-1

3 A₅: Alternating Group of 5 Symbols

Recall that $|A_n| = \frac{n!}{2}$. Thus, $|A_5| = 60$.

Note that a conjugacy class of an element a is $\{g^{-1}ag \mid g \in G\}$. And as mentioned earlier, a conjugacy class of a symmetric group is a set of permutations of same types. Let us check whether the conjugacy classes of S_5 still acts as conjugacy classes in A_5 .

First, observe the table of conjugacy classes of S_5 and their sizes.

	[e]	[(123)]	[(12)(34)]	[(12345)]
Size	1	20	15	24

Let us denote the set of cycles of length 5, C. Note that |C| = 24 does not divide 60. Thus, C fails to be a conjugacy class in A_5 .

Indeed, C in A_5 is a union of two distinct conjugacy classes. Then, there are two conjugacy classes in A_5 such that $C_1 = \{\pi(12345)\pi^{-1} \mid \pi \in A_5\}$ and $C_2 = \{\sigma(12345)\sigma^{-1} \mid \sigma \in S_5 \setminus A_5\}$.

Indeed, C_2 turns out to be a conjugacy class containing 12 elements as below.

$$\{\sigma(12345)\sigma^{-1} \mid \sigma \in S_5 \setminus A_5\} = \{(12354), (12435), (12543), (13245), (13452), (13524), (14253), (14325), (14532), (15234), (15342), (15423)\}$$

Thus, there A_5 has five conjugacy classes as below.

	[e]	[(123)]	[(12)(34)]	[(12345)]	[(12354)]
Size	1	20	15	12	12

Therefore, we may expect to have five irreducible characters.

The first irreducible character is a trivial character, χ_1 , of course.

For the second irreducible character, consider left-regular representation ρ of A_5 . Then, $\rho : A_5 \to GL(\mathbb{R}^5)$ so that $\rho(g)(\vec{e}_k) = \vec{e}_{gk}$. Let χ_{ρ} be the character of this representation. Then, $\chi_{\rho}(g)$ corresponds to the number of fixed points of the representation, $\rho(g)$.

	[e]	[(123)]	[(12)(34)]	[(12345)]	[(12354)]
Size	1	20	15	12	12
χ_1	1	1	1	1	1
$\chi_{ ho}$	5	2	1	0	0

Computing $\langle \chi_{\rho}, \chi_{\rho} \rangle$ results as below.

$$\langle \chi_{\rho}, \chi_{\rho} \rangle = \frac{1}{|A_5|} \sum_{h \in A_5} \chi_{\rho}(h) \overline{\chi_{\rho}(h)}$$

= $\frac{1}{60} (1 \cdot 5^2 + 20 \cdot 2^2 + 15 \cdot 1^2) = 2$

Thus, it implies χ_{ρ} is indeed a direct sum of two irreducible representations. Let us compute the inner product of χ_1 and χ_{ρ} .

$$\langle \chi_1, \chi_\rho \rangle = \frac{1}{|A_5|} \sum_{h \in A_5} \chi_1(h) \overline{\chi_\rho(h)}$$

= $\frac{1}{60} (1 \cdot 5 + 20 \cdot 2 + 15 \cdot 1) = 1$

Thus, $\chi_{\rho} = \chi_1 + \chi_2$ where χ_2 is another irreducible character. Thus, we can now figure out the second character, $\chi_2(g) = \chi_{\rho}(g) - \chi_1(g) = \chi_{\rho}(g) - 1$. Thus, the table can be updated as below.

	[e]	[(123)]	[(12)(34)]	[(12345)]	[(12354)]
Size	1	20	15	12	12
χ_1	1	1	1	1	1
χ_2	4	1	0	-1	-1

But, let us once more clarify whether χ_2 is indeed an irreducible character by computing $\langle \chi_2, \chi_2 \rangle$.

$$\begin{aligned} \langle \chi_2, \chi_2 \rangle &= \frac{1}{|A_5|} \sum_{h \in G} \chi_2(h) \overline{\chi_2(h)} \\ &= \frac{1}{60} (1 \cdot 4^2 + 20 \cdot 1^2 + 12 \cdot (-1)^2 + 12 \cdot (-1)^2) = 1 \end{aligned}$$

Thus, χ_2 is an irreducible character as expected.

Now, consider an icosahedron. We claim that A_5 is isomorphic to a group of rotations of an icosahedron, G. In order to do so, first, I would like to show that their orders are equal, and point out the bijection by stating how we can interpret a rotation of icosahedron in the manner of alternating group of 5 symbols.

An icosahedron has 12 vertices, and each vertex is surrounded by five equilateral triangles. Name each vertex after the letters A, \dots, L . Let A come to the top; then there are five possible rotations, since there are five triangles around A. Since we have 11 other possibilities for the top vertex, we have $12 \times 5 = 60$ possible rotations in total. Thus, $|G| = |A_5|$.

Observe that an icosahedron is composed of 30 edges. Note that for each edge in an icosahedron, there are four perpendicular edges and one parallel edge. Thus, if we form a group K, of edges that are perpendicular and parallel to each other, then |K| = 6. Thus, we may form 5 distinct groups K_1, \dots, K_5 out of 30 edges of icosahedron. The parallelism and perpendicularity of two edges are invariant under any rotation. Thus, we may view a rotation of icosahedron as a permutation of K_1, \dots, K_5 . Thus, A_5 is isomorphic to a group of rotations of an icosahedron, G.

Now, we can define a representation $\phi : A_5 \to GL(\mathbb{R}^3)$, and denote χ_{ϕ} as its character. First, e is an identity matrix of degree 3, thus $\chi_{\phi}(e) = 3$.

For any permutation, $\pi \in [(123)]$, π can be interpreted as either 60° or 120° rotation around an axis penetrating through a center of a triangular face of the solid. Observe that the rotation has order of 3 just like any permutation of the form (abc). Let the rotation axis be z-axis for the sake of computation. Then, $\left(\cos\theta - \sin\theta \ 0\right)$

$$\phi(\pi) = \begin{pmatrix} \cos \theta & \sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix} \text{ where } \theta = 60^{\circ} \text{ or } 120^{\circ}. \text{ For either case, } \chi_{\phi}(\pi) = 0.$$

For any permutation, $\sigma \in [(12)(34)]$, σ can be interpreted as 180° rotation around an axis penetrating through a midpoint of an edge of the solid. The rotation has order of 2 as any permutation just as any permutation of the form (ab)(cd). Let the axis, again, be z-axis for the sake of computation. Then, $\phi(\sigma) =$ $\begin{pmatrix} \cos 180^\circ & -\sin 180^\circ & 0\\ \sin 180^\circ & \cos 180^\circ & 0 \end{pmatrix}. \text{ Thus, } \chi_{\phi}(\sigma) = -1.$

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$$

Finally, for any permutation of $\kappa \in [(12345)]$ or $\kappa \in [(12354)]$ can be as the multiples of 72° rotation around an axis from a vertex to the optimal of $\kappa \in [(12354)]$ can be as the multiples of 72° rotation around an axis from a vertex to the optimal of $\kappa \in [(12354)]$ can be as the multiples of 72° rotation around an axis from a vertex to the optimal of $\kappa \in [(12354)]$ can be as the multiples of 72° rotation around an axis from a vertex to the optimal of $\kappa \in [(12354)]$ can be a subscription of $\kappa \in [(1$

be interpreted pposite vertex of the solid. The rotation has order 5 as any permutation of the form (abcde). Let

the axis be z-axis for the sake of computation. Then, $\phi(\kappa) = \begin{pmatrix} \cos \vartheta & \cos \vartheta & 0\\ \sin \vartheta & \cos \vartheta & 0\\ 0 & 0 & 1 \end{pmatrix}$

Indeed, it turned out to be $\cos 72^\circ = \cos 288^\circ$ and $\cos 144^\circ = \cos 216^\circ$. Thus, we have two different possibilities for $\chi_{\phi}(\kappa)$, namely $1 + 2\cos 72^{\circ}$ and $1 + 2\cos 144^{\circ}$. Let us denote them by ζ_1 and ζ_2 , respectively. Thus, we obtained two characters, χ_{ϕ_1} and χ_{ϕ_2} .

	[e]	[(123)]	[(12)(34)]	[(12345)]	[(12354)]
Size	1	20	15	12	12
χ_1	1	1	1	1	1
χ_2	4	1	0	-1	-1
χ_{ϕ_1}	3	0	-1	ζ_1	ζ_2
χ_{ϕ_2}	3	0	-1	ζ_2	ζ_1

Now, let us check whether they are irreducible characters or not, by computing $\langle \chi_{\phi_1}, \chi_{\phi_1} \rangle$ and $\langle \chi_{\phi_2}, \chi_{\phi_2} \rangle$.

$$\langle \chi_{\phi_1}, \chi_{\phi_1} \rangle = \frac{1}{|A_5|} \sum_{h \in G} \chi_{\phi_1}(h) \overline{\chi_{\phi_1}(h)}$$

$$= \frac{1}{60} (1 \cdot 3^2 + 20 \cdot 0^2 + 15 \cdot (-1)^2 + 12 \cdot (\zeta_1)^2 + 12 \cdot (\zeta_2)^2) = 1$$

$$\langle \chi_{\phi_2}, \chi_{\phi_2} \rangle = \frac{1}{|A_5|} \sum_{h \in G} \chi_{\phi_2}(h) \overline{\chi_{\phi_2}(h)}$$

$$= \frac{1}{60} (1 \cdot 3^2 + 20 \cdot 0^2 + 15 \cdot (-1)^2 + 12 \cdot (\zeta_2)^2 + 12 \cdot (\zeta_1)^2) = 1$$

Thus, again by the orthogonality of the irreducible characters, χ_{ϕ_1} and χ_{ϕ_2} are irreducible characters.

	[e]	[(123)]	[(12)(34)]	[(12345)]	[(12354)]
Size	1	20	15	12	12
χ_1	1	1	1	1	1
χ_2	4	1	0	-1	-1
χ_3	3	0	-1	ζ_1	ζ_2
χ_4	3	0	-1	ζ_2	ζ_1
χ_5	a	b	С	d	e

First, we can compute a easily. Note that $\sum_{i=1}^{n} (\chi_i(e))^2 = |G|$ for any group G with the set of irreducible characters $\{\chi_i\}_{i=1}^{n}$. Thus, $1^2 + 4^2 + 2 \cdot 3^2 + a^2 = 60$. This gives out a = 5.

Now, by the orthogonality of irreducible characters, $\langle \chi_i, \chi_5 \rangle = 0$ for any $i \in \{1, 2, 3, 4\}$.

$$\langle \chi_5, \chi_1 \rangle = \frac{1}{60} (5 + 20b + 15c + 12d + 12e) = 0$$

$$\langle \chi_5, \chi_2 \rangle = \frac{1}{60} (20 + 20b - 12d - 12e) = 0$$

$$\langle \chi_5, \chi_3 \rangle = \frac{1}{60} (15 - 15c + d\zeta_1 + e\zeta_2) = 0$$

$$\langle \chi_5, \chi_4 \rangle = \frac{1}{60} (15 - 15c + d\zeta_2 + e\zeta_1) = 0$$

Therefore,

$$\langle \chi_5, \chi_3 \rangle - \langle \chi_5, \chi_4 \rangle = \frac{1}{60} (d(\zeta_1 - \zeta_2) + e(\zeta_2 - \zeta_1)) = 0 \implies d = -e d = -e \implies \langle \chi_5, \chi_2 \rangle = \frac{1}{60} (20 + 20b) = 0 \implies b = -1 d = -e, b = -1 \implies \langle \chi_5, \chi_1 \rangle = \frac{1}{60} (5 - 20 + 15c) = 0 \implies c = 1. c = 1, d = -e \implies \langle \chi_5, \chi_3 \rangle = \frac{1}{60} (15 - 15 + d\zeta_1 - d\zeta_2) = 0 \implies d = e = 0$$

Thus, the complete character table of A_5 is as below.

	[e]	[(123)]	[(12)(34)]	[(12345)]	[(12354)]
Size	1	20	15	12	12
χ_1	1	1	1	1	1
χ_2	4	1	0	-1	-1
χ_3	3	0	-1	ζ_1	ζ_2
χ_4	3	0	-1	ζ_2	ζ_1
χ_5	3	-1	1	0	0