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"La filosofia e scritta in questo grandissimo libro che continuamente ci sta aperto 
innanzi a gli occhi (io dico l'universo), rna non si puo intendere se prima non 
s'impara a intender la lingua, e conoscer i canitteri, ne' quali e scritto. Egli e scritto 
in lingua matematica, e i canitteri son triangoli, cerchi, ed altre figure geometriche, 
senza i quaJi mezi e impossibile a intenderne umanamente parola; senza questi e 
un aggirarsi vanamente per un oscuro laberinto." 

Galileo Galilei, p. 38 in Il Saggiatore, Ed. L. Sosio, Feltrinelli, Milano (1965) 

"Philosophy is written in this grand book-I mean the universe-which stands 
continually open to our gaze, but it cannot be understood unless one first learns 
to comprehend the language and to interpret the characters in which it is written. 
It is written in the language of mathematics, and its characters are triangles, 
circles, and other geometrical figures, without which it is humanly impossible 
to understand a single word of it; without these, one is wandering about in a dark 
labyrinth." 

Galileo Galilei, in The Assayer (trans!. from Italian by S. Drake, pp. 106-107 
in L. Geymonat, Galileo Galilei, McGraw-Hill, New York (1965» 



Preface 

Solvable models play an important role in the mathematical modeling of 
natural phenomena. They make it possible to grasp essential features of the 
phenomena and to guide the search for suitable methods of handling more 
complicated and realistic situations. 

In this monograph we present a detailed study of a class of solvable models 
in quantum mechanics. These models describe the motion of a particle in a 
potential having support at the positions of a discrete (finite or infinite) set of 
point sources. We discuss both situations in which the strengths of the sources 
and their locations are precisely known and the cases where these are only 
known with a given probability distribution. The models are solvable in 
the sense that their resolvents and associated mathematical and physical 
quantities like the spectrum, the corresponding eigenfunctions, resonances, 
and scattering quantities can be determined explicitly. 

There is a large literature on such models which are called, because of the 
interactions involved, by various names such as, e.g., "point interactions," 
"zero-range potentials," "delta interactions," "Fermi pseudopotentials," 
"contact interactions." Their main uses are in solid state physics (e.g., the 
Kronig-Penney model of a crystal), atomic and nuclear physics (describing 
short-range nuclear forces or low-energy phenomena), and electromagnetism 
(propagation in dielectric media). 

The main purpose of this monograph is to present in a systematic way the 
mathematical approach to these models, developed in recent years, and to 
illustrate its connections with previous heuristic derivations and computa
tions. Results obtained by different methods in disparate contexts are unified 

vii 



viii Preface 

in this way and a systematic control on approximations to the models, in 
which the point interactions are replaced by more regular ones, is provided. 

There are a few happy cases in mathematical physics in which one can find 
solvable models rich enough to contain essential features of the phenomena 
to be studied, and to serve as a starting point for gaining control of general 
situations by suitable approximations. We hope this monograph will convince 
the reader that point interactions provide such basic models in quantum 
mechanics which can be added to the standard ones of the harmonic oscillator 
and the hydrogen atom. 
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Introduction 

In this monograph we present a detailed investigation of a class of solvable 
models of quantum mechanics; namely, models given by a Schrodinger 
Hamiltonian with potential supported on a discrete (finite or infinite) set of 
points ("sources"). Such point interaction models are "solvable" in the sense 
that their resolvents can be given explicitly in terms of the interaction strengths 
and the location of the sources. As a consequence the spectrum, the eigen
functions, as well as resonances and scattering quantities, can also be deter
mined explicitly. Models of this type have already been discussed extensively, 
particularly in the physical literature concerned with problems in atomic, 
nuclear, and solid state physics. Our main purpose with this monograph is to 
provide a unifying mathematical framework for a large body of knowledge 
which has been accumulated over decades in different fields, often by heuristic 
considerations and numerical computations, and often without knowledge of 
detailed results in other fields. Moreover, we systematically expose advances 
in the study of point interaction models obtained in recent years by a more 
mathematically minded approach. In this introduction we would briefly like 
to introduce the subject and its history, as well as to illustrate the content 
of our monograph. Furthermore, a few related topics not treated in this 
monograph will be mentioned with appropriate references. 

The main basic quantum mechanical systems we discuss are heuristically 
given (in suitable units and coordinates) by "one particle, many center Hamil
tonians" of the form 

H = -A + L Ay c5y(')' (1) 
YEY 
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where ~ denotes the self-adjoint Laplacian in U(lRd) with domain H 2 • 2 (lRd ). 

Here d = 1,2, 3 is the dimension of the underlying configuration space, Y is 
a discrete (finite or countably infinite) subset of IRd, Ay is a coupling constant 
attached to the point source located at y, and by is the Dirac b-function at y 
(i.e., the unit measure concentrated at y). The quantum mechanical particle 
thus moves under the influence of a "contact potential" created by "point 
sources" of strengths Ay located at y. The basic idea behind the study of 
such models is that, once their Hamiltonians have been well defined and 
understood, they can serve as corner stones for more complicated and more 
realistic interactions, obtained by various perturbations, approximations, and 
extensions of (1). Models with interactions of type (1) occur in the literature 
under various names, like "point interaction models," "zero-range potential 
models," "delta interaction models," "Fermi pseudopotential models," and 
"contact interaction models." 

Historically, the first influential paper on models of type (1) was that by 
Kronig and Penney [307J, in 1931, who treated the case d = 1 and Y = 71.. 

with Ay = A independent of y. This "Kronig-Penney model" has become a 
standard reference model in solid state physics, see, e.g., [290J, [493]. It 
provides a simple model for a nonrelativistic electron moving in a fixed crystal 
lattice. A few years later, Bethe and Peierls [86J (1935) and Thomas [485J 
(1935) started to discuss models of type (1) for d = 3 and Y = {O}, in order 
to describe the interaction of a nonrelativistic quantum mechanical particle 
interacting via a "very short range" (in fact zero range) potential with a fixed 
source. By introducing the center of mass and relative coordinates this can 
also be looked upon as a model of a deuteron with idealized zero-range 
nuclear force between the nucleons. In particular, Thomas realized that a re
normalization of the coupling constant is necessary (see below) and exhibited 
an approximation of the Hamiltonian (1) in terms oflocal, scaled short-range 
potentials. His paper was quite influential and was the starting point for 
investigations into corresponding models in the case of a triton (three particles 
interacting by two-body zero-range potentials). It soon turned out that in the 
triton case the naively computed binding energy is actually infinite, so that 
the heuristically defined Hamiltonian is unbounded from below and hence 
physically not acceptable, see, e.g., [134J, [135J, [441J, [485]. 

Subsequent studies aimed at the clarification of this state of affairs led in 
particular to the first rigorous mathematical work by Berezin and Faddeev 
[81J in 1961 on the definition of Hamiltonians of type (1) for d = 3 as self
adjoint operators in L2(1R3). Let us shortly describe the actual mathematical 
problem involved in the case where Y consists of only one point y. Any possible 
mathematical definition of a self-adjoint operator H of the heuristic form 
- ~ + Aby in L 2(lRd) should take into account the fact that, on the space 
C~(lRd - {y}) of smooth functions which vanish outside a compact subset 
of the complement of {y} in IRd, H should coincide with -~. For d ~ 4 
this already forces H to be equal to - ~ on H2 •2 (lRd ) since - ~Ico(~d-{y) is 
essentially self-adjoint for d ~ 4 [389J. For d = 2, 3 it turns out that there is 
a one-parameter family of self-adjoint operators, indexed by a "renormalized 
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coupling constant" 0(, all realizing the heuristic expression -/1 + 2by • In 
physical terms, the coupling constant 2 in the heuristic expression -/1 + 2by 

has to be "renormalized" and turns out to be of the form 2 = 1'/ + 0(1'/2, with 
1'/ infinitesimal and 0( E ( -00, 00]. This was put on a mathematical basis in 
[81] using Krein's theory of self-adjoint extensions (cf. Sect. 1.1.1). Several 
other mathematical definitions of (1) appeared later in the literature, as will 
be discussed briefly below, but perhaps the most intuitive mathematical 
explanation nowadays is provided by nonstandard analysis. It should also be 
remarked that the necessity of renormalization for d = 2, 3 mentioned above 
is not tied to the interpretation of H as an operator, the same applies for 
H interpreted as a quadratic form. In particular, it is not possible, without 
renormalization, to decribe H as a perturbation of -/1 in the sense of qua
dratic forms [188]. This is in sharp contrast to the one-dimensional case 
which allows a straightforward description of b-interactions by means of 
quadratic forms. Actually, a new phenomenon occurs in one dimension: Since 
(in contrast to d = 2, 3) -/1lcO'(IR-{y}l exhibits a four-parameter family of 
self-adjoint extensions in L2(JR), additional types of point interactions (e.g., 
15' -interactions, cf. Ch. 1.4) exist. 

But let us close this short digression on the mathematical definition of (1) 
and return to the historical development of the subject. The investigations 
of Thomas and others in nuclear physics (starting in the 1930s), which we 
mentioned above, were persued in different directions during the following 
decades. In particular, Fermi [179] discussed by similar methods the motion 
of neutrons in hydrogeneous substances, introducing the so-called Fermi 
pseudopotential made explicit by Breit [110] 10 years later (the Fermi pseudo
potentials can be identified with point interactions for d ~ 3 [229]). Some 
of this work has now been incorporated into standard reference books on 
nuclear physics, see, e.g., [93]. 

Somewhat parallel to this work, models involving zero-range potentials 
began to be studied in the 1950s in connection with many-body theories 
and quantum statistical mechanics. Here, particular attention was paid to 
obtaining results on certain statistical quantities by using explicit computa
tions and various approximations, the point interactions being used as limit 
cases around which one could reach more realistic models by perturbation 
theory. For this work we shall give references below. 

Let us mention yet another area of physics in which problems arise and 
which are essentially equivalent to those of many-body Hamiltonians with 
two-body point interactions. This is the theory of sound and electromagnetic 
wave propagations in dielectric media, where the role of the point interactions 
is replaced by boundary conditions at suitable geometric configurations. In 
the one-dimensional case (d = 1), such relations have been pointed out and 
exploited in the work by Heisenberg, Jost [275], Lieb and Koppe [323J, 
Nussenzveig [366J, and others. The book by Gaudin [194J contains many 
references to this subject. In the three-dimensional case (d = 3), the relation 
between Hamiltonians of type (1) and problems of electromagnetism (and 
acoustics) has not yet been exploited sufficiently; see, however, [228], [229], 
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[503] for recent developments (which are particularly interesting in connection 
with work on the construction of antennas). 

We will now discuss the content of the monograph, and at the same time 
take the opportunity to make some complementary remarks. In each of the 
three parts, I to III, theorems and lemmas are numbered consecutively in the 
form x' Y' z where x refers to the chapter, y to the section and z to the number 
within the section. Equations are numbered in the same way. When we refer 
to equations, theorems, or lemmas from another part of the monograph, the 
appropriate roman number is added. 

In this monograph we have divided the subject into three parts corresponding 
to point interactions with one center (Part I), finitely many centers (Part II) 
resp. infinitely many centers (Part III), according to whether Y consists of 
one, finitely many, or infinitely many points. Within the parts we separately 
discuss the three-dimensional case (d = 3) and the cases d = 1, 2. In the 
one-center problem (Part I) the first problem is to define the point interaction. 
Historically, the first discussions in the three-dimensional case go back to 
Bethe and Peierls [86] and Thomas [485], who used a characterization by 
boundary conditions (cf. Theorem 1.1.1). We have already mentioned the 
approach by Berezin and Faddeev [81] using Krein's theory (for a similar 
discussion in the three-particle case, see [342], [343]). The modern approach 
by nonstandard analysis was developed in [12], [14], [37], [355]. Yet another 
approach, particularly suited to probabilistic interpretations, is the one by 
Dirichlet forms introduced by Albeverio, Heegh-Krohn, and Streit [32], 
[33]. Finally, let us mention various approaches based on constructing the 
resolvent by suitable limits of "regularized" resolvents [17], [24], [226]. These 
approaches also lead to results on convergence of eigenvalues, resonances, and 
scattering quantities (as we will discuss in Ch. 1.1). Perturbations of the 
three-dimensional one-center problem by a Coulomb interaction is discussed 
in Ch. 1.2. Here the historical origins may be found in the work of Rellich 
[392] in the 1940s; however, most results are quite recent with main contri
butions from Zorbas [512], Streit, and the authors [22]. 

Let us here mention some work we do not discuss in this monograph. It 
concerns time-dependent point interactions - A + A(t)t5(·) and electromag
netic systems of the type [-iV - A(t)]2 + At5(·) discussed in [111], [145], 
[146], [151], [239], [348], [349], [362], [405], [406],[472], [505], [506]. 

The one-center problem for a particle moving in one dimension is discussed 
in Ch. 1.3 in the case of t5-interactions, and in Ch. 1.4 in the case of ~'
interactions. In Ch. 1.5 the case of a particle moving in two dimensions 
under the influence of a one-center point interaction is briefly discussed. The 
problems are similar to the three-dimensional case, however most results are 
based on recent work. 

In Part II of this monograph we discuss Hamiltonians of type (1) with Ya 
finite subset of IRd. In Ch. II.1 the three-dimensional case is treated. The 
methods of defining the Hamiltonian are similar to the methods introduced 
in Part I. In the physical literature, the model appears quite early and detailed 
results are derived heuristically, e.g., in [151], [277]. Mathematical studies 
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started in the late 1970s [129], [226], [482], [483], [512]. In recent years a 
lot of work has gone into obtaining mathematical results concerning approxi
mations, convergence of eigenvalues and resonances, and scattering theory 
on which we report in this chapter. Chapter 11.2 (resp. 11.3) report on detailed 
corresponding studies carried out recently on the one-dimensional case with 
f>- (resp. f>'-) interactions. Chapter 11.4 reports on recent work on the two
dimensional case. 

At this point we would like to mention a major subject which has been 
omitted from our monograph, namely, the case of multiparticle Hamiltonians, 
i.e., the case where (1) is replaced by 

N 

-/1 + L Aijf>(Xi - Xj), (2) 
i<j 

where Aij are coupling constants for the f>-interactions between particles i 
and j at Xi resp. Xj E IRd. Such heuristic Hamiltonians describe a quantum 
mechanical N-particle system interacting via two-body point interactions 
(-/1 denotes the N d-dimensional Laplacian). Our excuse for not including 
a discussion of this case is twofold. In the one-dimensional case (i.e., d = 1) 
the literature is very rich and a monograph by Gaudin [194] already exists 
(see also [83], [326]). Multiparticle problems with point interactions in one 
dimension have been studied extensively since the 1950s, particularly under 
the influence of work by Heisenberg on the scattering matrix for nuclear 
physics. Some early references are [9], [275], [323], [366], [498], [499], see 
also [326], [346] for some illustrations. More recent references, in addition 
to those given in [194], are [82], [113], [155], [156], [233], [310], [321], 
[328],[335],[338],[339],[340], [433],[449a],[468], [507]. 

In the two- and three-dimensional cases very few mathematical results are 
as yet available, despite considerable work carried out by physicists. We limit 
ourselves here to giving some hints to some studies in this area and some 
references. Flamand [184] gives a very good survey of work done on the 
three-particle problem (N = 3) in three dimensions (d = 3), up to 1967. This 
work was mainly carried out by physicists and mathematicians in the Soviet 
Union in connection with models of nuclear physics (triton and related 
models) [131], [134], [135], [150], [198], [224], [342], [343], [354], [364], 
[429], [441], [484], [485]. The main conclusion of this work is that a class 
of natural self-adjoint realizations of (2) are not bounded from below [342], 
[343]. However, the spectrum can be computed quite easily. In [34] a relation 
was observed between this problem and the so-called Efimov effect in three
particle systems with short-range, two-body potentials (i.e., the formation 
of infinitely many negative three-body bound states below zero, if at least two 
two-particle subsystems have a zero-energy resonance). Heuristically, the rela
tion is brought about by a scaling argument. Two-dimensional multi particle 
systems are discussed in [253], [327], [433]. 

Methodically related to the study of many-body systems is the study of 
quantum statistical mechanical systems, for which we shall also mention 
some references. Bose gases with hard-sphere interactions related to point 
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interactions and Fermi pseudopotential models were discussed extensively in 
the 1950s, particularly by Huang, Luttinger, Wu, and Yang, see, e.g., [264], 
[265], [266], [320], [502]. Many-body systems ofbosons with repulsive two
body ,,-interactions were discussed by Lieb, Liniger, Yang, and coworkers, 
cf., e.g., [322], [324], [331], [508] and the references in [194], [326]. Fermions 
with two-body ,,-interactions were studied by Lieb and others, see, e.g., [325] 
and the references in [194], [326]. 

Let us also mention that the heuristic nonrelativistic limit of quantum field 
theoretical models with <,lit-interaction is described by Schrodinger multi
particle Hamiltonians with two-particle ,,-interactions in d - 1 dimensions. 
This is rigorously discussed for d = 2 in [154]. 

Let us now proceed to the description of work discussed in Part III of 
our monograph, treating point interactions with infinitely many centers. As 
we have mentioned already, a very influential model in solid state physics, 
discussed early in the literature, has been the Kronig-Penney model [307] 
(1931) in one dimension. An early heuristic treatment of a three-dimensional 
crystal with point interactions was given by Goldberger and Seitz [216] in 
1947. 

The systematic mathematical discussion of these and similar Hamiltonians 
in three dimensions is, however, much more recent and was started by the 
work of Grossmann; Mebkhout, and the present authors starting at the end 
of the 1970s. In general, Hamiltonians with infinitely many point interactions 
are defined as limits in the strong resolvent sense of Hamiltonians for N-point 
interactions as N ~ 00. In the case where the centers are periodically arranged, 
group-theoretical methods of reduction to simpler Hamiltonians, exploiting 
the symmetry, permit a more direct definition of the Hamiltonians. This 
leads to a particularly detailed treatment of spectral properties for the case 
of crystals ("Kronig-Penney" -or rather "Goldberger-Seitz" -type models 
in three dimensions) in Sect. 111.1.4, as well as of embedded one- or two
dimensional lattices in [R3, so-called "straight polymers" in Sect. 111.1.5 resp. 
"monomolecular layers" in Sect. 111.1.6. Some physical discussions of related 
systems are given in [151]. Scattering from half-crystals (Bragg scattering) is 
treated in Sect. 111.1.7. This gives details on results announced earlier in [52]. 
The computation of Fermi surfaces for crystals is of basic importance in solid 
state physics. It is usually obtained by various approximations. The point 
interaction model gives the possibility of producing exact formulas for the 
Fermi surfaces as shown in Sect. 111.1.8. This is based on work done by 
H0egh-Krohn, Holden, Johannesen, and Wentzel-Larsen [242]. We also 
discuss crystals with defects, as well as scattering from impurities in crystals 
in Sect. III.1.9. 

In Ch. 111.2 models with infinitely many ,,-interactions in one dimension 
are discussed. Although the prototype of such models is the Kronig-Penney 
model already introduced in 1931, most mathematical results in this chapter 
have been obtained in recent years. The topics discussed in this chapter corre
spond to those treated in the three-dimensional case, Ch. 111.1. In particular, 
Sect. 111.2.3 treats the case of periodic ,,-interactions, and Sect. 111.2.4. develops 
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spectral and scattering theory in connection with half-crystals. Quasi-periodic 
point interactions are briefly studied in Sect. 111.2.5. The discussion of crystals 
with defects and impurity scattering in Sect. 111.2.6 goes back originally to 
Saxon and Hutner [404]. 

In Ch. 111.3 all the basic results of Ch. 111.2 are extended to models with 
infinitely many {i-interactions in one dimension. Let us remark at this point 
that in one dimension, b' -interactions are nontrivial, in higher dimensions, 
d ~ 2, interactions supported on v-dimensional hypersurfaces 0 :::;; v :::;; d - 1 
are nontrivial. For a discussion of point interactions on manifolds, see, e.g., 
[42], [125], [180], [226], [299], [424] and the references therein. 

In Ch. 111.4 we extend the results established for dimensions one and three 
to the two-dimensional case. 

In Ch. 111.5 we discuss random Hamiltonians with point interactions in one 
and three dimensions. SchrOdinger operators with stochastic potentials have 
received a lot of attention in recent years, because of their importance as 
models for amorphous solids. Actually, at the end of the 1940s-early 1950s 
much work had already been done on one-dimensional models of disordered 
solids with point interactions. The paper by Saxon and Hutner [404] was very 
influential. It discussed, in particular, SchrOdinger Hamiltonians with two 
types of atoms (binary alloys) characterized by coupling constants A and B 
conjecturing that gaps in the spectrum of both pure crystals (with pure atoms 
of type A (resp. B» should also be present in arbitrary alloys (with random 
combination of A's and B's). It influenced other papers on the subject such as, 
e.g., [189] (see the extensive bibliography in [326] and in the notes in Ch. 111.5) 
which treated a stochastic Poisson distribution of sources as an "impurity 
band" model or a "one-dimensional liquid metal" model. Incidentally, the 
relation with the one-dimensional version of a scalar-meson pair theory 
Hamiltonian, discussed by Montroll and Potts [344] in their study of inter
actions oflattice defects, was pointed out. Anderson, Mott, and others started 
in the 1950s to discuss, from the physical point of view, the phenomenon of 
localization, by which a discretized random Hamiltonian in three dimensions 
was conjectured to have a nonconducting phase at large disorder and a 
conducting phase at low disorder, the two phases being separated by a 
mobility edge. Mathematical work on the problem was originally started in 
the Soviet Union, see, e.g., [222], [223], [368]. Random point interactions 
were rigorously studied by Kirsch and Martinelli [286], [287], [288], [289] 
and the present authors [20], [30], [206] (our presentation in Ch. 111.5 closely 
follows these papers). There are connections with work on the Laplacian with 
boundary conditions on small, randomly distributed spheres [181], [182], 
[183]. 

Let us also mention that random distributions of sources along Brownian 
paths have also been considered, both in the physical literature, e.g., [162], 
and in the mathematical literature [13], [14], as models for the motion of 
a quantum mechanical particle in the potential created by a polymer. There 
are applications, via a Feynman-Kac type formula, to the study of polymer 
measures of Edward's type [14], [162] and quantum field theory [14]. 
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Appendices A-I give complements to the main text. Let us mention here 
that Appendix J treats Dirac Hamiltonians with point interactions in one 
dimension. 

As a final note, we would like to mention that our monograph only discusses 
the class of solvable quantum mechanical models characterized by point 
interactions in d :s; 3 dimensions. Of course, there are many other solvable 
models in quantum mechanics. Their treatment would have made the size of 
this volume unmanageable, besides that the methods of solutions of these 
models are quite different from the ones we discuss here. In fact, their solvability 
relies on symmetries which allow a group-theoretical treatment (such models 
are often related to classically completely integrable systems). For a discussion 
of these topics, see, e.g., [1OJ, [83J, [185J, [326J, [367]. 

In the references we have tried to be as complete as possible; however, with 
the enormous number of publications over a wide range of fields, including 
mathematics, solid state physics, atomic and nuclear physics, and theoretical 
chemistry, we make no claim to being complete. The notes at the end of each 
chapter give some historical comments and references to the subject discussed. 

For other presentations of some of the material discussed in this monograph 
we refer to the book by Demkov and Ostrovskii [151J, and the survey papers 
[18J, [20J, [29J, [454J. 



PART I 

THE ONE-CENTER POINT 
INTERACTION 



CHAPTER 1.1 

The One-Center Point Interaction in 
Three Dimensions 

1.1.1 Basic Properties 

In this section we develop a precise formulation for the point interaction 
(also called <5, or zero-range, or contact interaction or Fermi pseudopotential 
in the physics literature) centered at a fixed point y in three dimensions. 
Although our methods concentrate mainly on the concept of self-adjoint 
operator extensions, an alternative approach based on local Dirichlet forms 
is sketched at the end of the section. 

Consider in L2 ([R3) the nonnegative operator 

-Alc~(~3_{y}), Y E [R3, (1.1.1) 

where A = fP/OXI + o2/ax~ + 02/0X~ is the Laplacian and denote by Hy its 
closure in L 2 ([R3) (i.e., ~(Hy) = H5· 2([R3 - {y})). By [274] (cf. also [276]) its 
adjoint can be characterized by 

H: = - A, ~(H:)= {g E HI!/([R3 - {y}) n L2([R3)IAg E L2([R3)}, Y E [R3, 
(1.1.2) 

where Hr.:~n(n) denote the corresponding local Sobolev spaces (see, e.g., [389], 
Ch. IX). A straightforward computation shows that 

is the unique solution of 

H: t/J(k) = k2 t/J(k), 

X E [R3 - {y}, 1m k > 0, (1.1.3) 

t/J(k) E ~(H:), PEe - [R, 1m k > 0. (1.1.4) 

11 
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Consequently, fly has deficiency indices (1, 1) and applying Theorem A.1 all 
self-adjoint extensions H9,y of fly are given by the one-parameter family 

H ( ./, i9./,) H' .• /, . i9./, 9,y 9 + c'/'+ + ce '/'_ = yg + IC,/,+ - Ice '/'-, e E [0, 2n), y E /R3, 

where 

X E /R3 - {y}, ImJ±i > 0. (1.1.6) 

Decomposing L2(/R3) with respect to angular momenta, or, in other words, 
introducing spherical coordinates (with center y) we obtain (cf. [389], p. 160) 

(1.1.7) 

where S2 is the unit sphere in /R3. The spherical harmonics {Y/,rnI1 E No, m = 
0, ± 1, ... , ± I} provide a basis for L2(S2). Using, in addition, the unitary 
transformation 

U: L2((0, (0); r2 dr) -+ £1((0, (0); dr), (Uf)(r) = rf(r), (1.1.8) 

we can write (1.1.7) as 

00 

L2(/R3) = EB U- 1 L2((0, (0); dr) ® [Y/,-I,·'" Y/,o, ... , Y/,a, (1.1.9) 
1=0 

where [ft> ... , f,,] denotes the linear span of the vectors f1' ... , f". With 
respect to this decomposition fly equals the direct sum (cf. [389], p. 160) 

fly = Ty-1 {~ u-1 hi U ® I} 1'y, (1.1.10) 

where 1'y unitarily implements the translation x -+ x + y in L2(/R3) (i.e., 
(1'yg)(x) = g(x + y), 9 E £1(/R3), Y E /R3) and 

h' _ d2 l(l + 1) 
I - --d 2 + --2 -, r r 

r > 0, I = 0, 1, 2, ... , 

~(ho) = {tP E L2((0, oo))ltP, tP' E AC,oc((O, (0)); tP(O+) = tP'(O+) = 0; 

tP" E L2((0, oo))} = H3· 2((0, (0)), 

~(hl) = {tP E L2((0, oo))ltP, tP' E AC,oc((O, (0)); 

(1.1.11) 

Here AC'oc((a, b)) denotes the set of locally absolutely continuous functions 
on (a, b). 

By standard results (e.g., [389], Ch. X) hi' I ;?: 1, are self-adjoint whereas ho 
has deficiency indices (1, 1). In particular, all self-adjoint extensions ho.« of ho 
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may be parametrized by (cf. Appendix D) 

d 2 

ho,a = - dr2' 

!?&(ho,a) = {¢J E L2«0, 00))1¢J, ¢J' E AC,oc«O, 00)); -4ncx¢J(O+) + ¢J'(O+) = 0; 

¢J" E U«O, oo))}, -00 < cx ::;; 00. (1.1.12) 

(In obvious notation the boundary condition cx = 00 denotes the Friedrichs 
extension characterized by ¢J(y + ) = 0.) From g(r) = rg(r), g E !?&(ho) and 

:r[g(r) + c(4nr1eiJir + c(4nr1ei6eij=irJlr=0+ 

= c(4nrl(e3lti/4 _ ei6eilt/4) 

= 4ncx[g(r) + c(4n)-1 eiJir + c(4n)-1 ei6 eij=irJ Ir=o+, (1.1.13) 

where 

cx = (4n)-1 cos (n/4) [tan(8/2) - 1J, (1.1.14) 

we infer 

H6,y = 1',-1 {[ U-1 ho,a U E9 ~ U-1hl U ] ® 1} 1',. (1.1.15) 

Obviously, cx varies in IR (cx = +00 if 8 i n) if 8 varies in [0, n) u (n, 2n). Thus 
we have proved 

Theorem 1.1.1. All self-adjoint extensions of By are given by 

-Aa,y = 1',-1 {[ U-1ho,aU E9 ~ U-1hI UJ ® I} 1'" 

-00 < CX ::;; 00, y E 1R3. (1.1.16) 

The special case cx = 00 just leads to the kinetic energy Hamiltonian - A 
(the Friedrichs extension of By) in L 2(1R3) 

-ACX),y=-A on !?'&(_A)=H2,2(1R3). (1.1.17) 

If 1 cx 1 < 00, - Aa , y describes a point interaction centered at y E IR 3. It will 
turn out in Sect. 1.4 that -(4ncxr1 represents the scattering length of -Aa,y. 
Denoting 

Imk > ° (1.1.18) 

it is well known (see, e.g., [389J, p. 58f) that in three dimensions Gk has an 
integral kernel Gk(x - x') given by 

1m k > 0, x, x' E 1R 3, X # x'. 
(1.1.19) 
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In the following we characterize basic properties of -.!\",y' We start with 

Theorem 1.1.2. The resolvent of - .!\<x,y is given by 

(-.!\<x,y - k2 r 1 = Gk + (a - ik/4nrl(Gkc - y), ·)Gk(· - y), 

P E p( -.!\<x,y), 1m k > 0, -00 < a .::; 00, y E 1R 3, (1.1.20) 

with integral kernel 

eiklx-x'i eiklx-yl eikly-x'i 
(-.!\<x,y - k2 r 1(x, x') = 4 I 'I + (a - ik/4n)-1 4 I 14 I 'I' nx-x nx-y ny-x 

k2 Ep(-.!\<x,y), Imk>O, x,x'EIR3, x "#x', x"#y, x'"#y. 
(1.1.21) 

PROOF. Using eq. (1.1.19), eq. (1.1.20) (except for the factor (ex - ikj4nrl) follows 
from (1.1.6) and Theorem A.2. To determine the missing factor it suffices to discuss 
eq. (1.1.20) in the subspace of angular momentum zero. Let 1'/ E L 2((0, 00)) and define 

where 

x.(r) = {<Xl dr' go(k, r, r')I'/(r') + (4nex - ikr1 {<Xl dr' eikr'l'/(r')eikr, 

1m k > 0, -00 < ex :::;; 00, (1.1.22) 

{
k-1 sin(kr)eikr' 

k r r' = ' go( ,,) k-1' (k ') ikr sm r e , 
r:::;; r', 

r:?: r', 
(1.1.23) 

is the Green's function corresponding to ho,<Xl (the Friedrichs extension of ho)' 
Clearly, x., x~ E AC1oc((0, 00)) and x. E L2((0, 00)). Moreover, a direct calculation 
shows that 

-4nexx.(0+) + X~(O+) = 0 (1.1.24) 

and 

r> 0, (1.1.25) 

which proves (1.1.20). • 
Next we would like to collect some additional information on the domain 

of - .!\<x,y and to show that the one-center point interaction is in fact a local 
interaction: 

Theorem 1.1.3. The domain 2&( -.!\<x,y), -00 < a .::; 00, y E 1R3, consists of 
all elements 1/1 of the type 

x "# y, (1.1.26) 

where ifJk E 2&( -.!\) = H2, 2(1R3) and k2 E p( - .!\<x,y), 1m k > O. The decomposi
tion (1.1.26) is unique and with 1/1 E 2&( - .!\<x,y) of this form we obtain 

(1.1.27) 
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Next, let t/J E £0( -Acx,y} and assume that t/J = ° in an open set U ~ [R3. Then 
-A""yt/J = ° in U. 

PROOF. We first note that functions in H2,2([R3) are Holder continuous of exponent 
smaller than t ([283], p. 301) and hence it makes sense to write (My). Next, we infer 
that 

~(_~.,y) = (_~ •. Y _ k2)-1( -~ _ k2)~( -~) 

= {Gk + (a - ik/4nfl(Gk(' - y), ')Gd' - y)}(-~ - k2)~(_~), 

k2 E p( -~.,y), 1m k > 0, (1.1.28) 

which proves (1.1.26). To prove uniqueness of the above decomposition let 1/1 = O. 
Then 

~(X) = -(a - ik/4n)-1~(y)Gdx - y) (1.1.29) 

and ~ E CO([R3), in fact, implies tPk = O. Relation (1.1.27) then simply follows from 

(-~ •• Y - Pfl( -~ - k2)~ 

= tPk + (a - ik/4n)-1(Gk(' - y), (-~ - k2)tPk)Gk(' - y) = 1/1, 

k2 E p( - ~ •. y), 1m k > O. (1.1.30) 

To prove locality (cf. also Lemma C.2) assume first y¢ U. Then 

«_~_k2)Gk(' -y))(X) =0 

implies that 

(-~cx.yl/l)(x) = k21/1(x) + « -~ - k2)~)(X) 

= -(a - ik/4nf1tPk(Y)« -~ - k2)Gk(' - y))(x) = 0, XE U. 
(1.1.31) 

On the other hand, if y E U then I/I(y) = 0 and tPk E CO([R3) implies tPk = 0 and hence 
again 

Finally, we turn to spectral properties of - Acx,y: 

XE U. (1.1.32) 

• 

Theorem 1.1.4. Let -00 < (X ::;; 00, y E [R3. Then the essential spectrum 
CTess( - Acx,y) is purely absolutely continuous and covers the nonnegative real 
axis 

(Here CTae and CTse denote the absolutely and singularly continuous spectrum, 
respectively.) If (X < 0, - Acx,y has precisely one negative, simple eigenvalue, 
i.e., its point spectrum CTp ( -Acx,y) is given by 

-00 < (X < 0, (1.1.34) 

with 

x '" y, (1.1.35) 
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its strictly positive (normalized) eigenfunction. If IX?: 0, - ~a,y has no 
eigenvalues, i.e., 

o :s;; IX :s;; 00. (1.1.36) 

PROOF. Let lexl < 00. Weyl's theorem ([391], p. 112) and (1.1.20) imply 
O'ess( -~a,y) = O'ess( -~) = [0, (0) since (-~",y - k2r 1 - (-~ - k2rt, P E 

p( -~",y), -00 < ex < 00, is of rank one. The absence of O'sc( -~a,y) follows, e.g., 
from Theorem XIII.20 of [391] together with (1.1.20). Assertion (1.1.34) and (1.1.35) 
and the absence of negative eigenvalues of -~a,y for ex ~ 0 then follow from the 
explicit structure of the residuum at k = -4niex of (1.1.20). It remains to prove the 
absence of nonnegative eigenvalues for all ex E IR. From the decomposition (1.1.16) 
we infer that it is sufficient to consider s-waves (/ = 0). But this trivially follows 
from the fact that for r > 0 all solutions of 

-Ij/'(k, r) = k2 1/1(k, r), k ~ 0, r> 0, (1.1.37) 

are given by 

k > 0, 

1/1(0, r) = C3 + c4 r, k = 0, 
(1.1.38) 

which cannot be in L2«0, (0)). • 
So far, we have discussed the approach based on operator extensions. 

Following [32], [33] we finally sketch another method using local Dirichlet 
forms. In L2(JR3;,p; d3 x) we define the energy form 

Bajg, h) = r ,p;jx) d 3 x(Vg)(x)(Vh)(x), 
J~3 

where 

IXEJR, xEJR3 -{y}, 
IX = 00. 

Y E JR3, 
(1.1.39) 

(1.1.40) 

It turns out that Ba,y is closable and the unique self-adjoint operator associated 
with its closure is precisely the operator ,p;:~[ -~a,y + (4nlXf],pa,y if IXE JR 
(resp. -~ if IX = 00) (cf. Appendix F). For a construction of (-~a,y - k2r 1 

by means of nonstandard analysis we refer to [12], [14] and Appendix H. 
Obviously, the results of this section are not confined to self-adjoint exten

sions (i.e., IX E JR) of ffy but straightforwardly extend to accretive extensions 
([389], Ch. X) of iffy if 1m IX < O. In this way, complex point interactions are 
obtained (cf. Theorem 2.1.4). 

Since -~ICo(~n-{y}), y E JRn, n EN, is essentially self-adjoint in L2(JRn) if 
n ?: 4 ([389], Ch. X), there are no point interactions in more than three 
dimensions. On the other hand, operators of the type 

- [(n - 2)/2]2 < A < 1 - [(n - 2)/2]2, 
(1.1.41) 

certainly admit self-adjoint extensions which correspond to an interaction 
given by A 1 x - y 1- 2 plus point interaction centered at y as discussed in [209]. 
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1.1.2 Approximations by Means of Local as well as Nonlocal 
Scaled Short-Range Interactions 

The question as to under what circumstances -Aa,y can be obtained as a 
norm resolvent limit of scaled short-range Hamiltonians is answered in this 
section. We first treat the case oflocal interactions. Recall that 

1m k > 0, (1.2.1) 

denotes the "free" resolvent with integral kernel 

Gk(x - x') = eiklx-x'lj4n Ix - x'I, 1m k > 0, x, x' E 1R 3, X -# x', (1.2.2) 

and assume V: 1R3 --+ IR to be measurable and belonging to the Rollnik class R, 
i.e., II vIii == Sl\!6 d3 x d 3 x / l V(x) I I V(x/)llx - x /I- 2 < 00. For the general theory 
of Rollnik functions, see [434]. We also introduce 

v(x) = I V(x) I 1/2, u(x) = I V(x) I 1/2 sgn[V(x)] (1.2.3) 

and note 

Lemma 1.2.1. Let V E R. Then V is form compact with respect to - A, i.e., 

E>O, (1.2.4) 

and 

1m k ~ 0. (1.2.5) 

PROOF. Equation (1.2.4) follows from (1.2.5) which in turn is a direct consequence 
of V E R and dominated convergence. • 

In addition, we define 

v(x) = v(x - 8-1 y), u(x) = u(x - 8-1 y), 8 > 0, y E 1R3, (1.2.6) 

and 

1m k > 0, 8> 0, (1.2.7) 

where A(') is real-analytic near the origin with A(O) = 1. Because of (1.2.5), 
11(8, k) extends to a Hilbert-Schmidt operator for 1m k ~ 0. Moreover, by 
eq. (1.2.4) and by Appendix B, the form sum 

Hy(8) = -A + A(8)V(' - 8- 1 y), 8> 0, y E 1R3, (1.2.8) 

is well defined and by Theorem B.1(b) the resolvent equation 

(Hy(8) - pr1 = Gk - A(8)Gkv[1 + 11(8, k)r1uGk, 

k2 E p(Hy(8)), 1m k > 0, y E 1R3, (1.2.9) 

holds. To obtain suitable scaled short-range Hamiltonians H.,y we denote by 
U£ the unitary scaling group 

(1.2.10) 
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and define 

He,y = e-2UeHy(e)Ue-l = -A -i- y",y, 

y",,(x) = A(e)e-2V((x - y)/e), e > 0, 
(1.2,11) 

In order to discuss the limit e! ° of He,y we first introduce Hilbert-Schmidt 
operators A.(k), Be(k) = A(e)uGekv, Ce(k), e > 0, with integral kernels 

Then, using 

Ae(k, x, x') = Gk(x - y - ex')v(x'), 

Be(k, x, x') = A(e)u(x)Gek(x - x')v(x'), 

Ce(k, x, x') = u(x)Gk(ex + y - x'), 

e > 0, 

1m k > 0, 

1m k 2 0, 

1m k > 0, 

we infer from (1.2.9) using translations x -+ x + (y/e), e > 0, 

(He.y - k2fl = e2Ue[Hy(e) - (ekfr 1 Ue- 1 

= Gk - A(e)Ae(k)e[1 + Be(k)r 1Ce(k), 

(1.2,12) 

(1.2,13) 

(12.14) 

(1.2.15) 

k2 E p(He,y), 1m k > 0. (1.2.16) 

Lemma 1.2.2. Let y E ~3 and define rank-one operators A(k), C(k), and 
the Hilbert-Schmidt operator uGov with kernels 

A(k, x, x') = Gk(x - y)v(x'), 1m k > 0, x -# y, (1.2.17) 

(uGov)(x, x') = u(x)(4nlx - x'lf1 v(x'), x -# x', (1.2.18) 

C(k, x, x') = u(x)Gk(y - x'), 1m k > 0, x' -# y. (1.2.19) 

Then for fixed k, 1m k > 0, Ae(k), Be(k), Ce(k) converge in Hilbert-Schmidt 
norm to A(k), uGov, C(k), respectively, as e! 0. 

PROOF. By dominated convergence 

w-lim Ae(k) = A(k), w-lim B,(k) = uGov, w-lim C,(k) = C(k). (1.2.20) 
,.j.o ,,1.0 ,,1.0 

Since, obviously, 

lim IIAe(k)112 = IIA(k)b lim IIB,(k)112 = IluGovb lim IIC,(k)112 = IIC(k)112' 
e,l.o ,,1.0 ,,1.0 

the assertion follows by Theorem 2.21 of [438]. 

(1.2.21) 

• 
So far the whole analysis did not use any particular spectral informations 

about the underlying Hamiltonians. However, in order to determine the limit 
e! ° of e[l + Be(k)r1 we have to take into account zero-energy spectral 
properties of 

(1.2.22) 
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or by unitary equivalence (translations) zero-energy properties of 

H = -,:1 -i- v. (1.2.23) 

Therefore we introduce below, after Lemma 1.2.3, the notion of a zero-energy 
resonance (resp. a zero-energy bound state) of H. Assume now, in addition, 
V E U([R3). If 

(1.2.24) 

we define 
I/!(x) = (Gov~)(x). (1.2.25) 

Lemma 1.2.3. Suppose V E U([R3) (\ R. Then I/! E L~c([R3), VI/! E L2([R3), 
and HI/! = 0 in the sense of distributions. If, in addition, 1'1 VEL 1([R3), then 
I/! E L 2 ([R3) is equivalent to 

(v,~) = - r d3x V(x)l/!(x) = O. 
J~3 

(1.2.26) 

PROOF. From 

(1.2.27) 

where 

(1.2.28) 

and the fact that 

(1.2.29) 

and 

(1.2.30) 

for appropriate constants c, C> 0, one infers that 1/11 E L;;'c(lR3) if V E L1([R3), and 
1/11 E L 2 ([R3) if 1'1 V E L 1([R3). Moreover, 

(VI/I)(x) = - f d3x'(4nr1Ix - xT3(x - XI)V(XI)iP(X ' ), (1.2.31) 

in the sense of distributions, and Fubini's theorem imply 

~ (4nr 2 r d3 x' d3 x" v(XI)V(XI)ItP(x')lliP(x")1 r d3 x Ix - x'I-2 Ix - x'T2 
J~ JF 

= d(4nr2 r d3 x' d3 x"lx ' - x"l-lv(x')v(x") liP(x')lliP(x")1 
J~6 

(1.2.32) 
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where 

(e3 the unit vector in the z3-direction). Since vt/l = -(sgn V)/fo E L2([R3), Vt/l defines 
a distribution (cf. Corollary II.8(a) in [434]) and - Ilt/l + Vt/I = 0 in the sense of 
distributions. If t/I E U([R3) then t/I E £0(H) by Corollary II. 8(a)) of [434]. • 

If t/l E L 2(1R3), then t/l is a zero-energy eigenstate of Hand 0 E (Jp(H). If 
t/l E Lfoc(1R3), but t/l ¢ L2(1R3) we call t/l a zero-energy resonance function of H 
and the spectral point 0 a resonance of H. Lemma 1.2.3 is a convenient tool 
to decide whether 0 is a zero-energy bound state (resp. resonance) of H. We 
thus distinguish the following cases: 

Case I: -1 is not an eigenvalue of uGo v. 

Case II: -1 is a simple eigenvalue of uGov, 

uGov</J = -,p, 
and 

Case III: -1 is an eigenvalue of uGov, 

and 

Ifrl = GOV,p1 E U(1R3), 

Case IV: -1 is an eigenvalue of uGov, 

1 = 1, ... , N. 

UGOV,p1 = -,pI' ,pI E L2(1R3), 1 = 1, ... , N, N;;::: 2, 

t/ll = GOV,p1 E Lfoc(1R3), 1 = 1, ... , N, 

and at least one t/llo ¢ L 2(1R3). 

Observe that the functions ,pI' t/ll can be chosen to be real-valued. Clearly, 
case I is the generic one in the sense that if V is replaced by g V, g ;;::: 0, then 
cases II-IV only occur for discrete values of the coupling constant g. In 
particular, if V ;::: ° then only case I occurs. In case II, H has a simple zero
energy resonance; in case III, H has a zero-energy eigenvalue of multiplicity N. 
Since in case IV one can always choose a particular linear combination of the 
,pz's such that (v, ,pl) # ° but (v, ,pI) = 0,1 = 2, ... , N, H has a simple zero-energy 
resonance and a zero-energy eigenvalue of multiplicity N - 1 in case IV if 
V E Rand (1 + 1·1) V E Ll(1R3). If, in addition, Vis spherically symmetric then 
(v, </J) = 0 for all functions,p belonging to angular momentum 1 ;::: 1. Thus case 
II (i.e. a zero-energy resonance) only occurs in s-waves whereas p- and higher 
waves only support zero-energy bound states. From now on we always assume 
(1 + I'I)VE U(1R3) in cases II-IV. 
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Given the above case distinction we can formulate 

Lemma 1.2.4. Let V E R. Incases II-IV assume, in addition, (1 + 1'1) V E 

U(1R3) and A.'(O) =f. 0 in cases III and IV. Then 

n-lim e[l + B,(k)r 1 = 
d·o 

o in case I, 

[(4nt1ikl(v, ~W + A.'(0)r1(~, .)~ in case II, 

N 

[A.'(0)r1 L (~I' . )~I in case III, 
1=1 

N 

L (~, B1(k)~)I/(~I" . )~I in case IV, 
1,1'=1 

(1.2.33) 

where k 2 E C - IR, 1m k > 0, and (~, Bl (k)~)i/ denotes the inverse of the 
matrix (~I' B1 (k)~d 

~I(X) = sgn[V(x)]~I(x), 1, l' = 1, ... , N, 
(1.2.34) 

PROOF. Case I: Since n-lim.J.o B.(k) = uGov and (1 + uGovfl exists the result 
immediately follows. 

In cases II - IV we first note the norm convergent expansion 

00 

(1 + uGov + Z)-l = Z-l P + L (-zrTm +1, 
m=O 

Z E C - {O} small enough, 
(1.2.35) 

where 

J, = (sgn V)~" / = 1, ... , N, 

is the projection onto the eigenspace of uGo v to the eigenvalue -1 and 

T = n-lim (1 + z + uGov)-1(1 - P) 

(1.2.36) 

(1.2.37) 

denotes the corresponding reduced resolvent. Moreover, the ~, can be chosen in 
such a way that 

/, /' = 1, ... ,N. (1.2.38) 

In order to prove (1.2.35)-(1.2.38) we first show that the algebraic and geometric multi
plicity of the eigenvalue -1 of uGov coincide. For this purpose it suffices to prove 
that (1 + uGOV)2g = O,g E L2(~3)implies(1 + uGov)g = 0: Assume (1 + uGOV)2g = 

o and define f = (1 + uGov)g. Then (1 + uGov)f = 0 and, consequently, 

(j,f) = «1 + vGou)g, (1 + uGov)g) = (g, (1 + uGOV)2g) = 0, (1.2.39) 

where 

9 = (sgn V)g. (1.2.40) 

But 0 = -(j, uGovf) = _(GJ/2 Uj, GJ/2vf) = -IIGJ/2VfI1 2 implies vf = 0 and hence 
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f = 0 (since f = - uGo vf). By [283], Ch. III.6.5 we get an expansion of the type 
(1.2.35). It remains to show that the normalization (1.2.38) is indeed possible. This 
actually follows from 

(J, 1/» = -(J, uGovl/» = -IIGJ/zvl/>llz f= 0, 

uGovl/> = -I/>, I/> E U(~3), J = (sgn V)I/>, 
(1.2.41) 

and the analog of the Gram-Schmidt orthogonalization process. 
Next we remark that, due to the hypothesis V ERn L 1(~3), the expansion 

Be(k) = uGov + eX(O)uGov + e(4nf1 ik(v, ')u + o(e) 

== Bo + eB1 (k) + o(e) (1.2.42) 

is valid in Hilbert-Schmidt norm for fixed k with 1m k ~ O. Equation (1.2.42) is 
shown as follows: By the mean-value theorem 

Je(e)G'k(x, x') = Go(x, x') - eX(e8(e))Go(x, x') + e(4n)-1 ike ie9(e)k1x-x'l, x f= x', 

for appropriate functions 0 ::;; O(e), 8(e) ::;; 1. Thus 

IIBe(k) - uGov - eX(O)uGov - e(4n)-lik(v, ')ull~ 

::;; 2eZIX(e8(e)) - X(O)iZlluGovll~ 

(1.2.43) 

+ 2eZ(4nfZlklz f d3x d3x' lV(x)llV(x')lle ie9(e)k1x-x'l - W = o(eZ) 
J ~6 (1.2.44) 

by dominated convergence. (A slightly more detailed estimate actually shows that 
o(e) can be replaced by 0(e3/Z) in (1.2.42) since 1'1 V E L1(~3).) 

Case II: By eqs. (1.2.35) and (1.2.42) 

e[l + Be(k)r 1 

= e[l + Bo + eB1 + o(e)]-l 

= [1 + e(l + e + Bof1(B1 - 1 + o(e))]-le(l + e + Bof1 

= [1 + P(B1 - 1) + o(e)]-l[p + O(e)], k Z E p(He,y), 1m k > O. (1.2.45) 

Since [1 + P(B1 - 1)]-1 is easily seen to exist as a bounded operator in LZ(~3) 

[1 + P(B1 - 1)]-1 = 1 + [(ik/4n)l(v, 1/>)iZ + Je'(0)r1 [1 + X(O)] (J, ')1/> 

- (ik/4n) [(ik/4n) I(v, 1/>)iZ + X(0)r1(1/>, v)(v, ')1/> (1.2.46) 

and from 

[1 + P(B1 - 1)]-1 P = [(ik/4n) I(v, 1/>)iZ + Je'(0)r1(J, ')1/> 

we get (1.2.33). 

Case III: Observing again that [1 + P(B1 - 1)]-1 exists, 

[1 + P(B1 - 1)r1 = 1 + [1 + X(Of1 ]P, 

and that 

in case III we obtain the desired result directly from (1.2.45). 

(1.2.47) 

(1.2.48) 

(1.2.49) 
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Case IV: Here again [1 + P(BI - 1)]-1 is a bounded operator 

(1.2.50) 

and inserting 

into (1.2.45) completes the proof. ( By inspection 

det[(~, Bl(k)~.)] = [4nX(0)/ik]N-l [,1.'(0) + (4n)-lik ,~ I(v, ~w].) • 
From now on we always assume the normalization (~, r/J) = -1 in case II 

and (~" r/J,,) = -1511',1, l' = 1, ... , N, in cases III and IV. 
Lemmas 1.2.2 and 1.2.4 now enable us to present the main result of this 

section. 

Theorem 1.2.5. Let V E R be real-valued and y E 1R3. Incases II-IV assume, 
in addition, (1 + 1·1) VEL 1(1R3) and A.'(O) f:: 0 in cases III and IV. Then, if 
k2 E p( - A,.,y), we get k2 E p(H.,y) for 8 > 0 small enough and that He,y 
converges to - A,.,y in norm resolvent sense as 8 ! 0, viz. 

n-lim (H.,y - pr1 = (-A,.,y - k2rl, y E 1R3, (1.2.52) 
• .1.0 

where IX is given by 

-A'(O) I (v, r/J)1-2 

IX = 00 

in case I, 

in case II, 

in case III, (1.2.53) 

- A' (0) {,~ I(v, r/J,W} -1 in case IV. 

In particular, H.,y converges in norm resolvent sense to - A in cases I and III 
as 8!0. 

PROOF. Denoting the right-hand side of (1.2.33) by D(k) we obtain from the 
resolvent equation (1.2.16), and from Lemmas 1.2.2 and 1.2.4 that 

n-lim (H." - k2r l = Gk - A(k)D(k)C(k), 
.+0 

k2 E C - IR, 1m k > O. (1.2.54) 

Inserting the explicit result (1.2.33) into (1.2.54), using the criterion (1.2.26) yields 
(1.2.52) and (1.2.53) after comparison with (1.1.20). • 

As a consequence, if IX < 0 (i.e., A.'(O) > 0 in case II or IV), there exists a 
sequence of eigenvalues E. of H.,y that converges to -(41tlXf as 8! O. More
over, Theorem 1.2.5 implies strong convergence of the unitary (resp. semi-) 
groups associated with H.,y to that of - A,.,Y' Obviously, self-adjointness of 
H.,y or - A,.,y was inessential in the above proof and thus one also obtains 
strong convergence of the corresponding contraction semigroups e-itH •. " 
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t ~ 0, if, e.g., V:$; 0 (V ~ 0) and 1m A ~ 0 (1m A :$; 0) to eittl..,y, t ~ 0, as dO 
([389J, Ch. X; [283J, Ch. IX). 

A look at (1.2.52) and (1.2.53) shows that, in general (i.e., in case I) He,y 
converges to -~ as 6! O. To illustrate this phenomenon we take, e.g., 

V(x) = (1 + Ixlr s. (1.2.55) 

Then 

Y E [R3, (1.2.56) 

such that 

He,y = -~ + [1 + 6A'(0) + 0(62 )]63 (6 + Ix _ yl)-s, 

f0(He,y) = f0( - ~), 6 > O. 
(1.2.57) 

Thus for x -# y 

v.(x) ---,--+ 0 pointwise, 
e ... O 

(1.2.58) 

which indicates that in the limit 6! 0 the resulting "potential" in lime-l-o He,y 
should either vanish (like it does in cases I and III) or should be concentrated 
at x = y (as in cases II and IV). It will become clear later on in Sect. 1.4 why 
only a zero-energy resonance of H forces He,y to converge to a point interac
tion Hamiltonian (centered at y) in the limit 6! O. Since He,y = 6-2 UeHy(6) Ue- 1 

and, moreover, l1y(6) = - ~ + V(· - 6-1 y) is unitarily equivalent (by transla
tions) to H = - ~ + V it is intuitively clear that the limit of He,y as 6 ! 0 depends 
on the asymptotic behavior of He,y in configuration space or equivalently, 
on the low-energy behavior of l1y(6) and hence of H. 

Now we turn to the discussion of nonlocal interactions. Let W be a self
adjoint trace class operator in L 2([R3), WE gj1 (L 2([R3)). In addition, assume 
that W can be written as the product of two Hilbert-Schmidt operators 
W1 , W2 E gj2(U([R3)) 

W= W1 W2 

such that the integral kernels ltj(x, x') of ltj, j = 1, 2, satisfy 

a1 , B2 E U([R3) n L2([R3), 

where 

a1 (x) = (t3 d3 xii W1 (x, X'W y/2, 

Then the analog of Lemma 1.2.1 reads 

(1.2.59) 

(1.2.60) 

Lemma 1.2.6. Let ltj, j = 1, 2, be as above. Then W is relatively compact 
with respect to - ~ and 

1m k ~ O. (1.2.62) 
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PROOF. Since WE al\(L2 (1R 3 )), it is obviously relatively compact with respect to 
-~. In order to prove (1.2.62) we observe that 

by Sobolev's inequality (cf. Lemma B.6). • 
The analog of the operator (1.2.23) (we again call it H) is then given by 

(1.2.64) 

and the scaled short-range Hamiltonian H"y now reads 

8 > 0, y E 1R3, 
(1.2.65) 

where A(') has been introduced in (1.2.7), V, denotes the unitary scaling 
group (1.2.10), and Ty unitarily implements translations x -+ x + y in L2(1R3) 
(cf. (1.1.10)). Similar to (1.2.16), one obtains 

(H"y - k2rl = Gk - A(8)A,(k)8[1 + B,(k)r1C,(k), 

k2 E p(H"y), 1m k > 0, 8> 0, y E 1R3, (1.2.66) 

where A,(k), B,(k) = A(8) W2 G,k Wl' C,(k), 8> 0, are Hilbert-Schmidt operators 
with integral kernels 

1m k > 0, 

B,(k, x, x') = A(8) r d3 x" d3 x'" W2 (x, X")G,k(X" - x"')W1(x"', x'), 
J~6 

(1.2.67) 

1m k ;?: 0, (1.2.68) 

1m k > 0. (1.2.69) 

Similar to Lemma 1.2.2 we now have 
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Lemma 1.2.7. Let y E 1R3 and define rank-one operators A(k), C(k), and 
the Hilbert-Schmidt operator W2 GO W1 with integral kernels 

A(k, X, x') = Gk(x - y)v1 (x'), 1m k > 0, x -# y, (1.2.70) 

(W2 GOW1)(X, x') = r d3 x" d3 x lll W2 (x, x")(4nlx" - x lll l)-lW1(X Ill , x'), 
J~6 

(1.2.71) 

1m k > 0, x' -# y, (1.2.72) 

where 

Then, for fixed k, 1m k > 0, A.(k), B.(k), C.(k) converge in Hilbert-Schmidt 
norm to A(k), W2 Go W1, C(k), respectively, as e ! O. 

PROOF. Analogous to that of Lemma 1.2.2. • 
Next we have to study zero-energy properties of H. If 

(1.2.74) 

we define 

I/J(x) = (Go W1 ~)(x). (1.2.75) 

Then similar to Lemma 1.2.3 we obtain 

-- 1323 23 Lemma 1.2.S. Suppose ill' V1 E L (IR ) n L (IR ). Then I/J E Lloc(1R ), VI/J E 
L2(1R3), and HI/J = 0 in the sense of distributions. If, in addition, 1·1 1/2a1 E 
L1(1R3), then I/J E L2(1R3) is equivalent to 

(V1'~) = - r d3 x d 3 x' W(x, X')I/J(X ' ) = O. 
J~6 

(1.2.76) 

PROOF. As in Lemma 1.2.3, we decompose 

where 

(1.2.77) 

"'l(X) = (4nt1 r d3 x ' d3x"(lx - x ' I-1 -lxl-1)W1(X', x");(x"). (1.2.78) JR. 
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1'1 1/2a1 E U(~3). Similarly, one infers (cf. (1.2.32)) 

! d3xl(V",)(xWs(4n)-2! d3X'd3X"d3y'd3y"IW1(X',x")IIW1(y',y")I' 
J~3 JR12 

. ItP(x")1ItP(y")1 ! d3 x Ix - x'I-2Ix _ y'I- 2 
JR3 

(1.2.79) 

by Sobolev's inequality (cf. Lemma B.6). If", E L2(~3), then by (1.2.79), '" E H2.1(~3) 
and hence'" is in the form domain of H. The fact that H", = 0 in the sense of 
distributions then shows", E ~(H) and H", = O. • 

Zero-energy resonances (resp. zero-energy bound states) of H are now 
defined as before (Le., one simply distinguishes whether", E L2(~3) or not) 
assuming al , B2 E U(~3) (') L2(~3) and 1'l l /2al E Ll(~3). In particular, the 
case distinctions on page 20 apply with the only change that uGov should be 
replaced by W2 Go Wl . 

Lemma 1.2.4 then has to be replaced by 

Lemma 1.2.9. Let al> B2 E U(~3) (') L2(~3). In cases II-IV assume, in 
addition, 1'l l /2al E L 1(~3) and A'(O) # 0 in cases III and IV. Then 

o ~w~L 

[(4nt l ikl(vl'tPW + A:(O)]-l(J, ·)tP in case II, 

n-lim e[l + B.(k)r l = 
• .1-0 

N 

[A'(O)r l L (J" . )tPl 
1=1 

in case III, 

in case IV, 

(1.2.80) 

where k2 E C - ~, 1m k > 0, and (J, Bl (k)tP)i/ denotes the inverse of the 
matrix (J" Bl (k)tPl') 

W2GOWl tPl = -tPl' 

(J", tPl) = - bu', 1, l' = 1, ... , N, (1.2.81) 

PROOF. One can follow the analogous proof of Lemma 1.2.4 step by step. • 

Given Lemmas 1.2.7 and 1.2.9 we finally state 

Theorem 1.2.10. Let al , B2 E Ll(~3) (') L2(~3), and Y E ~3. In cases II-IV 
assume, in addition, 1'l l /2al E U(~3) and Je'(O) # 0 in cases III and IV. Then, 
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if k2 E p( -Ll~,y), we get k2 E p(H.,y) for e > ° small enough and that H.,y 
converges to - Ll~,y in norm resolvent sense as e! 0, viz. 

n-lim (H - k2)-1 = (- Ll - k2)-1 
t,y a,Y' 

.-1-0 
(1.2.82) 

where a is given by 

00 in case I, 

-A'(0)I(v1 , ~W2 in case II, 

11.= 00 in case III, (1.2.83) 

-A'(O) {,~ l(v1 , ~,W r1 in case IV. 

In particular, H.,y converges in norm resolvent sense to - Ll in cases I and III 
ase! 0. 

PROOF. Identical to that of Theorem 1.2.5. • 
Clearly, our comments before Lemma 1.2.4 and after Lemma 1.2.3 and 

Theorem 1.2.5 apply as well for nonlocal interactions after a suitable reinter
pretation. We omit the details. 

To simplify the treatment in the following we assume from now on that 

(v, ~,) = 0, I = 2, ... ,N, in case IV. (1.2.84) 

While assumption (1.2.84) considerably reduces the complexity of the fol
lowing proofs we emphasize that all results in Sects. 1.3, 1.4, and Ch. 2 
immediately extend to the general situation (v, ~l) "# 0, ... , (v, ~M) "# 0, 
(v, ifJM+d = 0, ... , (v, ifJN) = 0, 1 ::;::; M ::;::; N - 1. (If V is spherically symmetric, 
then (1.2.84) automatically holds as explained before Lemma 1.2.4.) 

1.1.3 Convergence of Eigenvalues and Resonances 

Having proved norm resolvent convergence in Sect. 1.2, we now turn to the 
spectrum and investigate eigenvalues and resonances of H •. y as e! 0. Regarding 
the essential spectrum we note that Lemma 1.2.1 and Theorem B. 1 (b) imply 

and by Theorem 1.1.4 this result remains true in the limit e ! 0, 

O'ess(-Ll~,y) = O'ess(-Ll) = [0, (0), 

A detailed discussion of the discrete spectrum is given in 

Theorem 1.3.1. Let y E 1R3 and assume e2al ' IV E R for some a > ° is real
valued. 
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(a) In all cases I-IV any negative eigenvalue Eo = k~ < 0 of H = -~ + V 
of multiplicity M gives rise to M (not necessarily distinct) negative 
eigenvalues EI ,. = kl,. < 0, I = 1, ... , M, of H.,y running to -00 as 8! 0 
like 

-1 -kl ,. = 8 ko + 0(1), 1= 1, ... , M. (1.3.3) 

In addition, 8kl ,. is analytic in 8 near 8 = O. 
(b) Assume case II. If n-lim • .J..o(H.,y-k2rl=(-~IZ,y-prl, PE 

p( -~IZ,y) with IX < 0 (i.e., .1./(0) > 0), then -~IZ,y has the simple eigen
value Eo = k~ < 0, ko = -4n:ilX = 4n:iA.'(0)I(v, tPW2, and the zero
energy resonance of H implies that for 8> 0 small enough H.,y has 
precisely one simple eigenvalue E. = k: < 0 near Eo which is analytic in 
8 near 8 = 0 

k. = ko + 0(8). (1.3.4) 

(c) Assume case III and .1. /(0) > O. If N = 1 then the zero-energy bound state 
of H gives rise to a negative, simple eigenvalue E1,. = kL < 0 of H.,y 
running to - 00 as 8 ! 0 like 

k1,. = 8-1/2 i{ -8n:A.'(0{t. d3 x d3 x ' tPl(X)V(X)' 

'Ix - x'I V(X /)tPl (x') Tl} 1/2 + 0(1). (1.3.5) 

(Note that Ix - x'I is conditionally strictly negative [298].) In addition, 
81/2k1,. is analytic in 81/2 near 81/2 = O. Moreover, if N> 1, let Ch 

I = 1, ... , N, denote the eigenvalues (counting multiplicity) of the matrix 
(~h CtPl'), I, I' = 1, ... , N, where C is the Hilbert-Schmidt operator with 
kernel 

C(x, x') = -(8n:r1u(x)Ix - x/lv(x/) (1.3.6) 

(necessarily, CI > 0, I = 1, ... , N). Then the zero-energy bound states of 
H give rise to N negative (not necessarily distinct) eigenvalues EI ,. = 
kl,. < 0 of H.,y running to -00 as 8! 0 like 

kl ,. = 8-1/2i[A.'(0)/ca1/2 + 0(1), 1= 1, ... , N. (1.3.7) 

In addition, 81/2 kl ,., 1= 1, ... , N, are analytic in 81/2 near 81/2 = 0 (we 
choose 81/2 > 0 for 8 > 0) and the multiplicity of kl ,. coincides with that 
of the eigenvalue cl . 

(d) Assume case IV and (1.2.84). If n-lim • .J..o (H.,y - pr1 = ( - ~IZ,y - k2rl, 
P E p( -~IZ,y) with IX < 0 (i.e., A.'(O) > 0), then -~IZ,y has the simple 
eigenvalue Eo = k~ < 0, ko = - 4n:ilX = 4n:iA.' (0) I (v, tPd 1-2, and the zero
energy resonance of H implies that for 8 > 0 small enough H.,y has 
precisely one simple eigenvalue B1,. = kL < 0 near Eo which is analytic 
in 8 near 8 = 0, 

k1,. = ko + 0(8). (1.3.8) 

In addition, if N = 2, the zero-energy bound state of H gives rise to a 
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negative, simple eigenvalue E 2 •• = k~,. < 0 of H.,y running to -00 as 
8! 0 like 

(1.3.9) 

where 8 1/2 k 2 ,. is analytic in 8 1/2 near 8 1/2 = O. 
For N > 2, let again cl , 1= 1, ... , N, denote the eigenvalues (counting 

multiplicity) of the matrix (~I' C<PI')' I, I' = 2, ... , N (necessarily CI > 0, 
I = 2, ... ,N). Then the zero-energy bound states of H give rise to N - 1 
negative (not necessarily distinct) eigenvalues E I ,. = kl. < 0 of H.,y 
running to - 00 as 8 ! 0 like 

I = 2, ... , N, (1.3.10) 

such that 8 1/2 k l ,., I = 2, ... , N, are analytic in 8 1/2 near 8 1/2 = 0 (again 
8 1/2 > 0 for 8 > 0) and the multiplicity of k l ,. coincides with that of CI' 

PROOF. By eq. (1.2.16) and Theorem B.l(c), H.,y has an eigenvalue E. = k; < 0 

if and only if -1 is an eigenvalue of B,(k.). 
(a) Let k = ek and define 

B"ii = B,(e-1 k) = A(e)uGiiv, Imk;:::o: O. (1.3.11) 

By hypothesis, Bo Ii has an eigenvalue -1 and following the proof of expansion 
(1.2.42), B"ii is ea~ify seen to be analytic with respect to (e, k) around (0, ko) in 
Hilbert-Schmidt norm. By the implicit function theorem and by Theorem B.2 the 
equation det2 (1 + B,,;;) = 0 has M (not necessarily distinct) solutions k, ... I = 1, ... , 
M, for lei small enough. Moreover, by scaling x -> ex, e> 0, and an additional 
translation x -> x + y/e, e > 0, "1" < 0, I = 1, ... , M, are the eigenvalues of H(e) = 

-~ + A(e) V. An application of Rellich's theorem (cf. Lemma B.4) then proves 
analyticity of k"., 1 = 1, ... , M, in e near e = O. 

Of course, the same result follows directly from (degenerate) perturbation theory 
and the fact that due to the scaling property (1.2.11) the eigenvalues E. = k; < 0 of 
H"y and E(e) = k(e)2 < 0 of Hie) obey k, = e-1 k(e). 

(b) As in the proof of (1.2.42) B.(k) is analytic with respect to (e, k) in Hilbert
Schmidt norm near e = 0 and any k with 1m k > -a/eo, lei < eo, and 

B.(k) = [1 + d'(O)]uGov + (4n)-1iek(v, ')u + 0(e2). (1.3.12) 

Thus using [435] 

det2 (1 + A + B) = det2 (1 + A) det[1 + (1 + Af1 B]e-Tr B, (1.3.13) 

if A E ~2(Jr), (1 + Af1 E ~(Jr), B E ~1(Jr) for some (separable) Hilbert space Jr, 
we obtain that 

det2 [1 + B,(k)] = det2 [1 + B.(k) + P] det{1 - [1 + B,(k) + pr1 P}e, (1.3.14) 

smce 

[1 + uGov + pr1 = P + T, P = -(~, .)~ (1.3.15) 
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exists. Consequently, for lei small enough, 

det2 [1 + B,(k)] = 0 iff 
(1.3.16) 

det{1 - [1 + B,(k) + pr i P} = 1 - (~, [1 + B,(k) + prIqJ) = O. 

From the expansion (1.3.12) we get 

[1 + B,(k) + pr i = (1 + uGov + p)-I - e(1 + uGov + p)-I . 

. [(ik/4n)(v, ·)u + X(O)uGov] (1 + uGov + p)-I + 0(e2), 
(1.3.17) 

and hence by (1.3.15) 

P[1 + B,(k) + prip = -(~, .)qJ - e(ik/4n)l(v, qJW(~, .)qJ - eX(O)(~, .)qJ + 0(e2). 
(1.3.18) 

Insertion of (1.3.18) into (1.3.16) and the implicit function theorem immediately 
yield all assertions of part (b) since (1.3.16) has a simple zero at (e, k) = (0, ko), 
ko = 4niX(0)I(v, qJ)I-2. 

(c) We introduce 

k = el /2 k. (1.3.19) 

Then 

1 + B,(k) = 1 + B,,(k) = 1 + )"(J.l2)uG"fiv 

= 1 + uGov + J.l(ik/4n)(v, ·)u + J.l2 ),,'(O)uGov + J.l2PC + 0(J.l3), (1.3.20) 

where C is defined by (1.3.6), and B,,(k) is analytic in Hilbert-Schmidt norm with 
respect to J.l and k for 1J.l1 small enough and 1m k > -a/J.lo, 1J.l1 < J.lo. Consequently, 

det2 [1 + B,,(k)] = det2 [1 + Bik) + P] det2 {1 - [1 + B,,(k) + pr i P} (1.3.21) 

implies, for 1J.l1 small enough, that 

(1.3.22) 
since 

[1 + uGov + pr i = p + T (1.3.23) 

exists. Moreover, the fact that 

det2 (1 + A) = det(1 + A) exp[ - Tr(A)] (1.3.24) 

for A E []II (£) (£ a separable Hilbert space) shows that for 1J.l1 small enough (1.3.22) 
is equivalent to 

det{1- [1 + B,,(k) + prIp} = det{1 - P[1 + B,,(k) + prIp} = O. (1.3.25) 

Since P is of finite rank, (1.3.25) is analytic with respect to J.l, k for 1J.l1 < J.lo small 
enough and 1m k > -a/J.lo [261]. From the expansion (1.3.20) we infer that 

[1 + B,,(k) + pr i 

= (1 + uGov + Pfl - J.l(ik/4n)(1 + uGov + p)-I(V, ·)u(1 + uGov + p)-I 

- J.l2 X(O)(l + uGov + PfI uGov(1 + uGov + Pfl 

- J.l2P(1 + uGov + PflC(1 + uGov + P)-I 

- J.l2(k/4n)2 [(1 + uGov + p)-I(V, . )u]2(1 + uGov + Pfl + 0(J.l3) (1.3.26) 
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and hence using (1.3.23) and Pu = 0 

P[l + B~(k) + pr1 P = [1 + Jl2 X(O)]P - Jl2 k2 PCP + O(Jl3). (1.3.27) 

From (1.3.25) and (1.3.27) we obtain 

det{l - P[l + ,l.'(0)Jl2 - Jl2PC]P} = O(Jl) (1.3.28) 

and thus 

det{X(0)k-2bll , + (~I'C1>I')} = O(Jl). (1.3.29) 

From the fact that [272] 

(~I' C1>I') = r d3plpl-4 (v1>I)"(p)(v1>I')"(p) == <1>1,1>1')' 
J~3 

I, l' = 1, ... , N, (1.3.30) 

which follows from (V1>I)" E coo([R3) and (V1>I)"(O) = 0, 1= 1, ... , N (since e·I • lv1>1 E 

L 1([R3) for some a > 0 and (v, 1>1) = 0, 1= 1, ... , N) one can show that the self-adjoint 
matrix <1>1' 1>1')' I, l' = 1, ... , N, is positive definite. In fact, 

~ E eN - {O}, (1.3.31) 

since {M, {(V1>I)") and hence the vectors {[I'1- 2(v1>I)Y'}, 1= 1, ... , N, are linearly 
independent. Denote by C1, 1= 1, ... , N, the eigenvalues of (~l' C1>d (counting 
multiplicity). Then to zeroth order in Jl, (1.3.29) has the solutions 

1= 1, ... ,N. (1.3.32) 

If in (1.3.19) we use the principal branch for e1/2 (i.e., e1/2 > 0 for e > 0) then the plus 
sign has to be chosen in (1.3.32). To prove that (1.3.29) has solutions kl,~ analytic 
in Jl we argue as follows. By repeating the calculations leading to (1.3.29) but keeping 
,l.(Jl2) fixed and only expanding with respect to the variable fJ 

we obtain 

Introducing 

v = [,l.(Jl2) - 1]/Jl2k2 

as another new variable, (1.3.34) is equivalent to 

det{Vbll' + (~I' C1>I') + r~ f3'<Dr+2'1l'} = O. 

(1.3.33) 

(1.3.34) 

(1.3.35) 

(1.3.36) 

By inspection <Dr, II' is a self-adjoint matrix and fJ E [R for Jl E [R and k E m. Con
sequently, we can apply Rellich's theorem (cf. Lemma BA) and obtain VI as_ an 
analytic function of fJ 

VI(fJ) = -CI + O(fJ), 1= 1, ... ,N. (1.3.37) 

Since C1 =I 0 we get 
00 00 00 

k?(fJ, Jl) = _c, 1 L (q!r 1 ,l.(Q)(0)Jl2q- 2 + L r:x,fJ' L (q!r 1 ,l.(q)(0)Jl2q- 2, (1.3.38) 
q~l r~l q~l 
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or 
_ 00 co_oo kr = _c,l I (q!f l l(q)(0)p2q- 2 + I !X.,(pik,), I (q!f l l(q)(0)p2q-2, 

q=l ,=1 q=l 

I = 1, ... , N. (1.3.39) 

Introducing 

00 00 00 

F,(x, p) = _x2 - c, l I (q!f l l(q)(0)p2q-2 + I !X.,(pix), I (q!f l l(q)(0)JI2q- 2, 
q=l ,=1 q=l 

I = 1, ... , N, (1.3.40) 

we infer that F,(·, .) is analytic near (kto, 0) with 

(1.3.41) 

By the implicit function theorem one can solve for x as an analytic function of p. 
(d) In order to determine the effect of the zero-energy bound state of H we define 

N _ 

pi = - I (rA, .)t/J" (1.3.42) 
'=2 

and note that similar to (1.2.36) 

00 

(1 + uGov + pi + Z)-l = Z-lPl + I (-z)mTt+1, Z E C - {O} small enough 

(1.3.43) 
m=O 

using that -1 is a simple eigenvalue of uGov + pi, where 

Tl = n-lim (1 + uGov + pi + Zfl[1 - PI] (1.3.44) 

and 

(1.3.45) 

Next we prove that [1 + B,.{k) + p/r l pi is analytic in p and k for Ipi small enough 
and 1m k > -a/po, Ipi < Po. In fact, using the expansions (1.3.20) and (1.3.43) and 
the relations (1.3.45) one obtains along the lines of (1.2.45) that 

[1 + BI'(k) + PTI pi = {I - PI + (ik/4n) PI (v, ·)u + O(p)} -1 [Pi + O(p)] 
(1.3.46) 

is analytic in p near p = 0 since [1 - PI + (ik/4n) PI (v, . )url is easily shown to 
exist by a straightforward application of the formula 

[1 + p(~, .)'" + Rrl = [1 + Rrl - {P-l + (~, [1 + Rrl",)}-l. 

·([1 + R*rl~, ·)[1 + Rrl ", (1.3.47) 

assuming pEe, ~, '" E.1f, R, [1 + Rrl E Bi(.1f), {P-l + (~, [1 + Rrl ",)} -:f:. 0 for 
some separable Hilbert space .1f. From now on one can follow the proof of part (c) 
step by step after replacing P by P'. Equation (1.3.27) then reads 

PI[1 + B,.{k) + PTlpi = [1 + p2A.'(0)]PI - p2PpICpl + O(p3), (1.3.48) 

which proves the assertions in connection with (1.3.9) and (1.3.10). It remains to 
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determine the contribution of the zero-energy resonance of H. First of all, we note 
that 

is analytic in I> near I> = 0 since 

{I - [1 + A'(O)]P't l = 1 - [A.' (O)TI [1 + A'(O)]P' 

exists because of the assumption ;"(0) i= O. Consequently, we get 

1 + B,(k) = [1 + B,(k) + PIJ{1 - [1 + B,(k) + PITIPd, 

and since (cf. (1.3.18)) 

PI [1 + B.(k) + PI TIPI = -(¢l' ')r/JI - l>(ik/4n)l(v, r/JIW(¢I' ')r/JI 

- 1>A'(0)(¢1' . )r/JI + 0(1)2), 

one can follow the last part of the proof of (b) step by step. 

(1.3.50) 

(1.3.51) 

(1.3.52) 

• 
Next we derive similar results for resonances. We first recall the one-to

one correspondence between a negative bound state Eo = k6 < 0 of some 
Hamiltonian H = -~ + v, V E R real-valued, and a pole of (1 + uGkV)-l 
at ko = iJ - Eo in the upper k-plane. In particular, the multiplicity of Eo 
coincides with the (geometric) multiplicity of the eigenvalue -1 of uGko v and 
also coincides with the multiplicity of the zero of the modified Fredholm 
determinant det2 (1 + uGkv) at k = ko (cf. Appendix B). If V E R, then uGkv 
is holomorphic in Hilbert-Schmidt norm with respect to k in 1m k > O. In 
order to define resonances we now assume that uGkv has an analytic continua
tion into the region 0 > 1m k > - a for some a > 0 such that uGkv remains 
Hilbert-Schmidt for 0 ~ 1m k > -a. In this case kl with 0> 1m kl > -a is 
called a resonance of H if UGk1 v has an eigenvalue -1. Similarly, the multi
plicity of the resonance kl is defined to be the multiplicity of the zero of the 
modified Fredholm determinant det2 (1 + uGkv) at k = kl (c.f. Appendix B). 

Resonances for the point interaction Hamiltonian -~",y are defined analo
gously as poles of the resolvent kernel (- ~",y - k2)-I(X, x'), x i= x', x i= y, 
x' i= y in the lower k-plane. According to this definition -~",y has a simple 
resonance kl if and only if IY. ~ 0 in which case 

kl = -4nilY., x i= y, IY. ~ 0, (1.3.53) 

with t/lk 1 being the corresponding resonance function. The origin k = 0 needs 
a separate discussion: In fact, as discussed in detail in Sect. 1.2, k = 0 can be 
resonance and/or a bound state of H = -~ + V. For IY. = 0 the operator 
-~",y has only a zero-energy resonance and no zero-energy bound state. 

The analog of Theorem 1.3.1 for resonances now reads 

Theorem 1.3.2. Let y E 1R3 and assume that e2al ' IV E R for all a> 0 is 
real-valued. 

(a) In all cases I-IV any resonance ko, 1m ko < 0, of H = -~ + V of 
multiplicity M gives rise to M (not necessarily distinct) resonances kl", 
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1m kl" < 0, I = 1, "', m, of H"y running to infinity as 8! 0 like 

m l ~ 1, I = 1, ... , m, (1.3,54) 

where 8k l " have convergent Puiseux expansions near 8 = 0, i.e" there 
exist functions hi analytic near the origin, hlO) = 0, I = 1, ... , m, such 
that 

_ _ 00 

8k = k + h (8 1/m,) = k +" a 8r/m, I" 0 I 0 L.. I,r , 
r=l 

m 

m l ~ 1, 1= 1, ... , m, L m l = M, (1.3.55) 
1=1 

(b) Assume case II. If n-lim,-l-O (H"y - pr1 = (- Ll~,y - k2rl, P E 
p( - Ll~,y) with oc > 0 (i.e., A' (0) < 0), then - Ll~,y has the simple resonance 
ko = -4nioc = 4niA'(0)I(v, cPW 2 and the zero-energy resonance of H 
implies that for 8 > 0 small enough H"y has precisely one simple re
sonance k" 1m k, < 0, Re k, = 0, near ko which is analytic in 8 near 
8 = 0 and hence fulfills (1.3.4). 

(c) Assume case III. If A.'(O) > 0 and N = 1 the zero-energy bound state of 
H gives rise to a simple resonance k1" 1m k1" < 0, Re k1" = 0, of H"y 
running to irifinity as 8 ! 0 like 

k1" = -i8-1/2 {-8nA'(0{t6 d 3 x d 3 x' cP1(X)V(X)' 

]
-1}1/2 

'Ix - x'i V(X')cP1 (x') + 0(1) (1.3.56) 

such that 81/2 k1" is analytic in 8 1/2 near 8 1/2 = 0 (we choose 8 1/2 > 0 for 
8> 0). 

If A.'(O) < 0 and N = 1 the zero-energy bound state of H gives rise to 
a resonance pair kte of H"y (both resonances are simple) running to 
irifinity as 8 ! 0 like 

kt., = ±8-1/2 {8nA.'(0{t6 d 3 x d 3 x' cP1(X)V(X)' 

]
-1}1/2 

'Ix - x'i v(x')cPdx') + 0(1) (1.3.57) 

such that 81/2 kt., are analytic in 8 1/2 near 8 1/2 = O. 
If A'(O) > 0 and N > 1 the zero-energy bound states of H give rise 

to N (not necessarily distinct) resonances k~" 1m k~, < 0, Re k~, = 0, 
1= 1, ... , N, of H"y running to infinity as 8! 0 like 

I = 1, ... , N, (1.3.58) 

with CI > 0 the eigenvalues of (;PI' CcPl'), I, l' = 1, ... , N. Again 8 1/2 k~" 
1= 1, ... , N, are analytic in 8 1/2 near 8 1/2 = 0 and the multiplicity of k~, 
coincides with that of the eigenvalue Cl' If A.'(O) < 0 and N > 1 the 
zero-energy bound states of H give rise to N (not necessarily distinct) 
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resonance pairs kt-., I = 1, ... , N, of H.,y running to infinity as e ! 0 like 

I = 1, ... ,N. (1.3.59) 

Each e1/2kt., 1= 1, ... , N, is analytic in e1/2 near e1/2 = 0 and the 
multiplicity of k17. coincides with that of CI' 

(d) Assume case IV and (1.2.84). If n-lim • .J..o (H.,y - k2r 1 = (- L\",y - k2rl, 
P E p( - L\",y) with rt > 0 (i.e., A,'(O) < 0) then - L\",y has the simple reso
nance ko = -4nirt = 4niX(0)I(v, tPdl- 2 and the zero-energy resonance 
of H implies that for e > 0 small enough H.,y has precisely one simple 
resonance k1,£' 1m k1,. < 0, Re k1,. = 0 near ko which is analytic in e 
near e = 0 and hence satisfies (1.3.8). 

If X(O) > 0 and N = 2 the zero-energy bound state of H gives rise to 
a simple resonance k"i.,., 1m kie < 0, Re k"i.,. = 0, of H.,y running to 
infinity as e ! 0 like 

k"i.,. = - ie-1/2 { - 8nx(0{t6 d3 x d3 x' tP2(X)V(X)' 

'Ix - xii V(X I)tP2(XI)T1 f/2 + 0(1), (1.3.60) 

such that e1/2 ki. is analytic in e1/2 near e1/2 = 0 (again B1/2 > 0 for e > 0). 
If X (0) < 0 and N = 2 the zero-energy bound state of H gives rise to 

a resonance pair kt.e of He,y (both resonances are simple) running to 
infinity as e ! 0 like 

kt.. = ±B-1/2 {8nA,I(0{t6 d3 x d3 x ' tP2(X)V(X)' 

'Ix - xii V(X I)tP2(XI)Jl} 1/2 + 0(1), (1.3.61) 

where B1/2 kt.. are analytic in e1/2 near e1/2 = O. 
If X(O) > 0 and N > 2 the zero-energy bound state of H gives rise to 

N - 1 (not necessarily distinct) resonances kl,£' 1m kl" < 0, Re kl" = 0, 
I = 2, ... , N, of H.,y running to infinity as e ! 0 like 

kl,. = -B-1/2i[A,'(0)/ca1/2 + 0(1), I = 1, ... , N, (1.3.62) 

with CI > 0 the eigenvalues of (~I' CtPl')' I, I' = 2, ... , N. Again e1/2 kl,£' 
1= 2, ... , N, are analytic in e1/2 near e1/2 = 0 and the multiplicity of kl" 
coincides with that of CI' 

If X(O) < 0 and N > 2 the zero-energy bound state of H gives rise to 
N - 1 (not necessarily distinct) resonance pairs kI7., I = 2, ... , N, of 
H.,y running to infinity as e! 0 like 

I = 2, ... , N. (1.3.63) 

In addition, each B1/2 k17 .. 1= 2, ... , N, is analytic in B1/2 near B1/2 = 0 
and the multiplicity of k'7e coincides with that of CI' 
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PROOF. (a) Here one can follow the proof of Theorem 1.3. 1 (a) step by step. The 
only difference concerns the fact that now, in general, there is no constraint ml = 1. 

(b)-(d). All considerations about antibound states (i.e., resonances on the nega
tive imaginary axis) follow directly from the proof of Theorem 1.3. 1 (b)-(d) since one 
can again apply Rellich's theorem. The conclusions about the resonance pairs are 
obtained as follows: By (1.2.11) every (anti-) bound state k, .• of H •. y corresponds to 
an (anti-) bound state kM) = ek, .• of Hy(e). Moreover, since k, .• = 0(e-1/2 ) as e ~ 0, 
k,(e) = 0(e1/2 ) runs to zero as e ~ O. In fact, at e = 0 the bound state and antibound 
state collide. In other words, for e > 0, 1'(0) > 0 the solutions k,(e) of the equation 
det2 [1 + B(e, k)] = 0 (cf. (1.3.7» have a square root branch point at e = 0, 

k,±(e) = ±ileI1/2[1'(0)/CIJi/2 + O(e). (1.3.64) 

For 1'(0) < 0, or equivalently for e < 0, we then get the resonance pair 

k,±(e) = ± leI1/2[ -A'(0)/CIJi/2 + O(e). (1.3.65) 

• 
We note that if A.'(O) = 0 in case II then the same analysis shows that 

k. = O(e) as e! O. It then depends on the first nonvanishing coefficient in the 
Taylor expansion of k. whether 1m k. ~ 0 and hence whether H6 ,1 has a simple 
bound state or a resonance. 

1.1.4 Stationary Scattering Theory 

In this section we discuss scattering theory in connection with point interac
tions and prove that scattering quantities corresponding to H',1 converge in 
a reasonable sense to that of the point interaction Hamiltonian -.1a,1 as 
e!O. 

We first treat stationary scattering theory for the pair (-.1a,1' -.1). Since 
- .1a,1 is invariant under rotations in ~3 with center y we first concentrate on 
the partial wave decomposition (1.1.15). The fact that - .1a,1 actually describes 
an s-wave interaction (since the partial wave decompositions of - .1a,1 and 
the kinetic energy operator -.1 coincide for I ~ 1) considerably reduces the 
problem. Henceforth, we mainly confine ourselves to the case I = O. 

Define 

Then by inspection 

-4noc"'0,a(k, 0+) + "'~,a(k, 0+) = 0, 

- "'~,a(k, r) = P"'o,ik, r), r > 0, 

k ~ 0, -00 < oc :5 00, r ~ O. 
(1.4.1) 

(1.4.2) 

lim lim e-i(k+i6)'lho,a - (k + ie)2rl(r, r') = "'o,a(k, r), 
6+0 "-+00 

r ~ 0; 

k ~ 0, -00 < oc :5 00. 

Hence "'o,ik) constitute a set of generalized eigenfunctions ([353J, Ch. VI) 
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associated with ho.,<" Similarly, 

I/Il(k, r) = (nr/2k)I/2 JI+I/2(kr), k, r ~ 0, I = 1, 2, ... , (1.4.3) 

are generalized eigenfunctions of hi, 1 = 1, 2, ... , where Jv(') denote Bessel 
functions of order v [IJ. By introducing the s-wave scattering phase shift oo.,,(k) 
via 

sin[oo.,,(k)J = k[(4no:)2 + k2r l /2, 

k ~ 0, -00 < 0: ::;; 00, (1.4.4) 

the expression (1.4.1) can be rewritten in the familiar form 

I/Io.,,(k, r) = k-leiOo .• (k) sin[kr + oo.,,(k)], k > 0, -00 < 0: ::;; 00, r ~ 0. 
(1.4.5) 

In particular, from (1.4.3) and (1.4.4) one derives the (on-shell) partial wave 
scattering matrix 

.9'o.,,(k) = e2ilio .• (k) = (4no: - iktl(4no: + ik), k ~ 0, -00 < 0: ::;; 00, 

g;(k) = 1, ol(k) = 0, 1 = 1, 2, .... (1.4.6) 

At this point it is useful to compare with the effective range expansion for 
real-valued spherically symmetric potentials V obeying 

too dr re2ar l V(r) I < 00 for some a> 0. (1.4.7) 

This low-energy expansion reads (cf., e.g., [360J, Ch. 12) 

pHI cot c5z(g, k) = - [al(g)r l + rl(g)k2/2 + O(e), 

k ~ 0, g E~, 1 = 0, 1, ... , (1.4.8) 

where the right-hand side of (1.4.8) is real-analytic in k2 near k2 = 0, and by 
definition (jl(g, k) represent the phase shifts associated with the Schrodinger 
operators -d2/dr2 + 1(1 + 1)/r2 ..j.. gV(r). The coefficients al(g) and rl(g), 1= 0, 
1, ... , are called partial wave scattering lengths and effective range parameters, 
respectively. The explicit expressions 

k cot oo.,,(k) = 4no:, ol(k) == 0, 1= 1,2, ... , (1.4.9) 

for the point interaction show that the effective range expansion for this 
interaction is already exact in zeroth order with respect to k2, i.e., the s-wave 
scattering parameters are given by 

£[,0." = -(4no:tl , 

~o." == ° etc., -00 < 0: ::;; 00, 0: f= 0, 
(1.4.10) 

and all low-energy parameters vanish identically in higher partial waves 
1= 1, 2, .... This shows in a nice way that the point interaction is in fact a 
zero-range interaction which acts nontrivially only in the s-wave I = 0. More
over, it provides a physical interpretation of the boundary condition parameter 
4no: as the negative inverse scattering length. 
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Next let 

. eikwy eiklx-yl 
'P (kw x) = e,kwx + ---

~.y , (4nlX - ik) Ix - yl' 

k ~ 0, WE S2, -00 < IX ::;; 00, x, y E ~3, X i= y. (1.4.11) 

Then obviously 'P~.y(kw, x) is the scattering wave function corresponding to 
-A~.y as can, e.g., be read off directly from (1.1.16), (1.4.1), and the Bessel 
function expansion of eikw(x-y) 

e-ikWY'P~.y(kw, x) = 4nlx - YI-ll/lO.~(klx - yI)Yoo(w)Yoo(wJ 
co , 

+ 4nlx - yl-l L L i'l/I,(klx - yIPlm(w) Yim(wJ, 
'=1 m=-' 

k ~ 0, WE S2, -00 < IX ::;; 00, x i= y, Wx = x/lxl. (1.4.12) 

By inspection 'P~.y(kw, x) fulfills 

{-4nlXlx - YI'P~.y(kw, x) + Ix - yl-l(X - y)Vx 'P~.y(kw, x)}lx=y = 0, 

x i= y, (1.4.13) 

lim lim 
,-1-0 Ix'l-+co 

-lx'I- 1x'=w 

x i= y; k ~ 0, WE S2, -00 < IX ::;; 00. 

The on-shell scattering amplitude Ia,y(k, w, w') associated with - A~.y is then 
given by 

Ia.y(k, w, w') = lim Ixle-iklxl['P~.y(kw', x) - eikw'X] 
Ixl-+co 

Ixl- 1x=w 

= (4nlX - ik)-l eik(w'-W)Y, 

k ~ 0, w, W' E S2, -00 < IX ::;; 00, y E ~3. (1.4.14) 

The corresponding off-shell extension I~.y(k, p, q) is then defined to be 

lajk, p, q) = (4nlX - ikflei(p-q)y, 

k E C, k i= -4nilX, p, q E C3, -00 < IX ::;; 00, y E ~3, (1.4.15) 

and we get 

Ia.y(k, w, w') = I~.y(k, p, q)llpl=lql=k' 

p, q E ~3, W = Ipl-lp, W' = Iql-lq. (1.4.16) 

The unitary on-shell scattering operator ~jk) in U(S2) finally reads 

~.y(k) = 1 - (k/2ni)(4nlX - ikfl(e-ik(')y, . )e-ik(')y, 

k~O, -00 <IX::;; 00, YE~3, (1.4.17) 

(in particular, if we choose y = 0, (1.4.17) takes on the simple form ~.o(k) = 
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1 + 2ik(4mx - ik)-l (YOO , .) Yoo ). We also note that in the low-energy limit 
k-.O 

CJl. (k) n {l' 
, a, y ---;;:::t 1 - 2( y; .) y; 

00, 0o, 

and 

-00 < IY. ::s;; 00, IY. #- 0, (1.4.18) 
IY. = 0; y E 1R 3, 

-limlajk, w, w') = -(4nlY.t1 = aa' -00 < IY. ::s;; 00, IY. #- 0, Y E IR\ 
k~O 

(1.4.19) 

with aa the scatterinng length obtained in (1.4.10). 
As can be read off from (1.4.17), ~jk) has a meromorphic continuation in 

k to all of I[ and the pole of ~jk) obviously coincides with the bound state 
or resonance of - Lla,y as long as IY. #- O. The methods described above are 
entirely stationary ones. For the connection of ~,y with time-dependent 
scattering theory we refer to Appendix E. 

Next, we briefly turn to stationary scattering theory associated with the 
Schr6dinger operator H"y. Assume V to be real-valued and 

for some a> ° (1.4.20) 

for the rest of this section, and let u and v be as in Sect. 1.2. We introduce 
in L2(1R3) 

where 

<I>;jp, x) = u,(x)e iPX, 

<1>+ (p x) = v (x)e iPx • E,Y' B , 8 > 0, p E 1[3, 11m pi < a, 
(1.4.21) 

u,(x) = u((x - Y)/8), v,(x) = v((x - Y)/8), 8 > 0, y E 1R3. (1.4.22) 

The transition operator t,(k) then reads 

t,(k) = 8- 2 .1(8)[1 + 8- 2 A(8)U,Gkv,rl, 

0< 8 < 80' 1m k > -a/8o, k2 rt~" (1.4.23) 

where .1(.) has been introduced in Sect. 1.2 and the exceptional set ~, is 
given by 

~, = {k 2 E ICIA(8)UG'kV¢, = -¢, for some ¢, E L2(1R3), ¢, #- 0, 1m k > -a/8o}, 

° < 8 < 80' (1.4.24) 

Due to condition (1.4.20), ~, is discrete and a compact set of Lebesgue measure 
zero [434]. The on-shell scattering amplitude J.,y(k, w, w') is then defined as 

J.,y(k, w, w') = -(4n)-1(<I>:y(kw), t,(k)<I>~jkw')), 

8, k > 0, k2 rt ~" w, W' E S2, Y E 1R3 (1.4.25) 
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and its off-shell extension J.,y(k, p, q) is given by 

such that 

J.jk, w, w') = J.jk, p, q)llpl=lql=k' 

e > 0, y, p, q E 1R 3, W = Ipl-lp, w' = Iql-lq. (1.4.27) 

The unitary on-shell scattering operator Se,y(k) in L 2(S2) is defined by 

(Sejk)t,6)(w) = t,6(w) - (k/2ni) r dw' J.,y(k, w, w')t,6(w'), JS2 

In order to determine the limit e t 0 of J.,y and Se,y it essentially suffices to 
consider te(k) as e t o. Thus we state the following generalization of Lemma 1.2.4. 

Lemma 1.4.1. Let e2al -1V E R for some a> 0 and A'(O) #- 0 in cases III and 
IV. Assume (1.2.84) and let 0 < lei < eo be small enough. Then e[l + Be(k)rt. 
1m k > -a/eo, is analytic in e near e = 0 and the following expansion in 
norm holds 

e[l + Be(k)r1 = e(l + uGovtl - e2 (1 + uGovtl Bl (k)(l + uGovtl + 0(e3 ) 

in case I, (1.4.29) 

e[l + Be(k)r1 = [(ik/4n) I(v, t,6W + A'(O)rl(~, .)t,6 + eT 

- e(ik/4n) [(ik/4n) I(v, t,6W + A'(0)r1 (t,6, v)(T*v, .)t,6 

- e(ik/4n)[(ik/4n)l(v, t,6W + A'(O)rl(v, t,6)(~, ')Tu 

+ e(ik/4n)2[(ik/4n) I(v, t,6W 

+ A'(0)r21(v, t,6W(v, Tu)(~, .)t,6 

- e[(ik/4n) I(v, t,6W + A'(0)r2(~, B2(k)t,6)(~, .)t,6 + 0(e2), 

k #- 0 if A'(O) = 0 in case II, (1.4.30) 

e[l + Be(k)r1 = -[A'(0)r1p + eT - e[A'(0)r 2PB2(k)P 

- e2TB1(k)T + e2[A'(0)rlpB2(k)T - e2[A'(0)r1 . 

. {{1 - [1 + (A'(O)tl]P} [PB2(k) + TB1(k) - T]VP 

+ e2[A'(0)r1 {1 - [1 + (A'(O)tl ]P}· 

. [PB3 (k) + TB2(k) - T 2B1(k)]P + 0(e3 ) 

in case III, (1.4.31) 
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N 

B[l + B.(k)r1 = L (~, Bl (k)rP)l/(~/, . )rPI + BT 
1.1'=1 

N 

- B(ik/4n)(v, rPl) I (~, Bl(k)rP)l}(~/" ')Tu 
1=1 

N 

- B(ik/4n)(rPl' v) I (~, Bl (k)rP)"f/(T*v, . )rPI 
1=1 

N 

+ B(ik/4n)2(v, Tu)l(v, rPIW L (~, B1(k)rP)l/' 
1,1'=1 

in case IV. (1.4.32) 

Here the analytic expansion valid in Hilbert-Schmidt norm (cf. (1.2.42)) 

00 

B.(k) = Bo + I BnBn(k), 
n=1 

Bo = uGov, 

Bl (k) = Jc'(O)uGov + (ik/4n)(v, . )u, 

B2(k) = [A"(O)/2]uGov + (ik/4n)Jc'(O)(v, ')u + k2C, 

(C defined in (1.3.6)), etc., has been used. In case IV 

([J, B1 (k)r/J)/i,1 = [(ik/4n)l(v, rPIWbllbl'l + A'(O)]-lbll' 

denotes the inverse of the matrix (~I' Bl (k)rPl'), I, I' = 1, ... , N. 

(1.4.33) 

(1.4.34) 

(1.4.35) 

PROOF. Case I: Since (1 + uGOV)-l exists, (1.4.29) immediately results by inserting 
expansion (1.4.33) for B.(k) into [1 + B.(k)r1. 

Case II: We partly follow the proof of Theorem 1.3.1(b) and expand (cf. (1.3.17)) 

e[l + B.(k)r1 = e{l - [1 + B.(k) + pr1 P} -1 [1 + B.(k) + pr1 

= e{1 - P + e[P + T] [Bl(k) + O(e)]p}-I[p + T + O(e)], 

lei small enough. (1.4.36) 

Formula (1.3.47) then shows that e[l + B.(k)r1 is analyticin B neare = 0 since after 
identifying.7f = L 2([R3), f3 = 1, ,fr = [J, rjJ = r/I, R = e[P + T]Bl (k)P one infers that 

e{1 + (J, {I + e[P + T]B1(k)pr l r/1)}-1 = -[(ik/4n)l(v, r/lW + .. qO)]-l + O(e) 
(1.4.37) 

is analytic in e near e = O. The right-hand side of (1.4.30) then results after an explicit 
expansion of (1.4.36) in terms of e. 
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Case III: We again expand as in (1.4.36). Since now P is, in general, of rank N 
we use the formula (cf. Lemma B.5) 

[1 + P ,~ «(fr" ')1/1, + R Tl = [1 + Rr1 - p "~1 {1 + P«(fr, [1 + Rr11/1)}i/,1 . 

. ([1 + R*r1 (fr", .) [1 + Rr1l/l" (1.4.38) 

where P E C, (fr" 1/1, E £, R, [1 + Rr1 E al'(£) for some separable Hilbert space 
£ and the existence of the inverse matrix of {bw + P«(fr" [1 + Rr1 1/1,,)} denoted 
by {1 + P«(fr, [1 + Rr11/1)}i/.1, 1, l' = 1, ... , N, is assumed. Using Pu = 0 and identi
fying P = 1, (fr, = J" 1/1" = tA·, R = e[P + T]B1(k)P = -eA.'(O)P we again infer that 
e[l + B.(k)r1 is analytic in e near e = 0 since 

(1.4.39) 

is analytic in e near e = O. The expansion coefficients on the right-hand side of 
(1.4.31) now follow by a straightforward calculation. 

Case IV: The proof is identical to that of case III up to the point that now, similar 
to case II, R = e[P + T]B1(k)P has to be used. Analyticity of e[l + B.(k)r1 in e 
near e = 0 now follows from that of 

e{l + (J, [1 + e(P + T)Bl(k)prl~)}i/.l 

= -[(ik/4n)l(v, ~lWbl1bl'1 + A.'(0)r1bll' + O(e). (1.4.40) 

• 
Given Lemma 1.4.1 we are able to expand the off-shell scattering amplitude 

f.,,(k, p, q) with respect to e near e = 0: 

Theorem 1.4.2. Let e2al 'IV E R for some a > 0 be real-valued and assume 
2'(0) =f. 0 in cases III and IV. Assume (1.2.84) and let lei < eo be small enough. 
Then f.,,(k, p, q), 1m k > -a/eo, 11m pI, 11m ql < a/eo, y E 1R3, is analytic 
in e near e = 0 and 

-47te iY(P-q1.,y(k, p, q) = 6(V, (1 + uGOV)-lU) - 62(ik/47t)(v, (1 + uGOV)-lU)2 

+ 622'(0)(v, (1 + uGovt2u) 

- i62(p(')v, (1 + uGOV)-lU) 

+ i62«1 + vGout1 v, q(' )u) + 0(63 ) 

in case I, (1.4.41) 

-47te1y(p-q)f.,y(k, p, q) = -47te 1Y(P-q)/..,,(k, p, q) 

+ e2'(O) [(ik/47t)I(v, ~)12 + 2'(0)r1 1(v, ~)12 

+ e[2'(0)]2[(ik/47t) I (v, ~)12 + A.'(0)r2 . 

· (v, (1 + uGovt1 u) - e[(ik/47t)I(v, ~)12 + 2'(0)r2. 

'I(v, ~W(~, B2(k)~) - ie[(ik/47t)I(v, ~W + 2'(0)r1 • 

· (~, v)(p(· )v, ~) + ie[(ik/47t) I(v, ~W + A.'(0)r1 • 

· (v, ~)(~, q(' )v) + 0(e2 ), 

(J( = -2'(0)I(v, ~)1-2, k =f. 0 if 2'(0) = 0 in case II, (1.4.42) 
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N 

+ e2[X(0)r1 L (p(')v, ,p,)(,p" q(')V) 
'=1 

- ie2(p(. )V, Tu) + ie2(T*v, q(. )u) + 0(e3 ) 

in case III, (1.4.43) 

-4neiY(P-qlJ.. y(k, p, q) = -4neiy(p-Q)/ajk, p, q) 

+ eX (0) [(ik/4n) I(v, ,p1W + A,'(O)]-11(v, ,p1W 

+ e[A,'(O)]2[(ik/4n)l(v, ,p1W + X(0)r2(v, Tu) 

N 

- el(,plo vW L (~, B1(k),p),}(~, B2(k),p,,)' 
1,"=1 

. (~, B1 (k),p}j:" 1 
N 

- ie(,p1' v) L (p(')v, ,p,)(~, B1(k),p)ii1 
1=1 
N _ 

+ ie(v, ,pd L (,p, B1 (k),p),}(,p" q(. )v) + 0(e2), 
1=1 

IX = -X(O)I(v, ,pdl-2 in case IV. (1.4.44) 

PROOF. By a translation x -+ x + y and a scaling transformation x -+ ex using 
(1.2.15) we obtain 

J.jk, p, q) = -(4n)-1 e-iy(p-q)A(e)(ue i,PX, e[l + B,(k)r1veiEqx'), (1.4.45) 

where in obvious notation x, x' E [R3 denote integration variables. The above results 
now directly follow by inserting Lemma 1.4.1 into (1.4.45) and expanding A(e), ei'Px, 
ei,qx' with respect to e. • 

It remains to derive the corresponding expansion for S.,y(k) near e = 0: 

Theorem 1.4.3. Let e2a!'!V E R for some a > 0 be real-valued, A,'(O) =F 0 in 
cases III and IV and assume (1.2.84). Then S.,y(k), k ~ 0, Y E 1R3, is analytic 
in e near e = 0 and for lei small enough we get 

S.,y(k) = 1 + (2nit1ek(v, (1 + uGovt1u)(e- ik(')Yyoo, . )e-ik(')YYoo 

where 

- (8n2t1(ek)2(v, (1 + uGovt1u)2(e-ik(')YYoo, . )e-ik(')YYoo 

+ (2nit1e2kA,'(0)(v, (1 + uGovt2u)(e-ik(')YYoo, . )e-ik(')YYoo 

- (ek)2(e- ik(')YYoo, . )e-ik(')YY1 + (ek)2(e- ik(')YY1, . )e-ik(')YYoo 

in case I, (1.4.46) 

Y1(W) = (4n 3/2)-1 r d3 x wxv(x)«1 + uGOV)-1 U)(X), 
J~3 
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S.jk) = ~jk) + (2ni)-1 ekJe'(O) [(ik/4n) I (v, t,6W + A.'(0)r1 • 

. I (V, t,6W(e- ik(')YYOO , • )e-ik(')YYOO 

+ (2ni)-1 ek[A'(0)]2 [(ik/4n) I(v, t,6W + A'(0)r2(v, (1 + uGovt1u)' 

- (2ni)-1 ek[(ik/4n) I(v, t,6W + A.'(0)r21(v, t,6W(~, B2(k)t,6)· 

· (e-ik(')YYoo , . )e-ik(')YYoo - ek2 [(ik/4n) I(v, t,6W + A.'(0)r1 . 

· (t,6, v)(e-ik(')YYoo , . )e-ik(')YYl + ek2[(ik/4n)l(v, t,6W + A.'(0)r1 • 

· (v, t,6)(e- ik(')YY1, . )e-ik(')YYoo + 0(e2), 

IX = -A.'(O)I(v, t,6)1-2, k =F 0 if A'(O) = 0 in case II, (1.4.48) 

where 

Yl (w) = (4n3/2t 1 r d3 x wxv(x)t,6(x), WE S2. 
J~3 

(1.4.49) 

S •. y(k) = 1 + (2nifl ek(v, Tu)(e-ik(')YYoo , . )e-ik(')YYoo 

- (8n2t 1(ek)2(v, Tu)2(e- ik(')YYoo, . )e-ik(')YYoo 

+ (2nifl e2kJe'(0)(v, T 2u)(e- ik(')YYoo, . )e-ik(')YYoo 
N 

+ 2ne2k3[A.'(0)r1 L (e- ik(')YY1,1> ')e- ik(')YY1,1 
1=1 

- (ek)2(e- ik(')YYoo, . )e- ik(')Yf1 

+ (ek)2(e- ik(')Yfl' ')e-ik(')YYoo + 0(e3) in case III, (1.4.50) 

where 

f 1(w) = (4n3/2)-1 r d3 x wxv(x)(Tu)(x), WE S2. (1.4.51) 
J~3 

S.,y(k) = ~,,(k) + (2nitl ekA'(O) [(ik/4n) I(v, t,61W + A'(0)r11(v, t,6dI 2 • 

· (e-ik(')YYoo , . )e-ik(')YYoo 

+ (2ni)-1 ek[A.'(0)J2 [(ik/4n) I (v, t,6d1 2 + A'(0)r2(v, Tu)· 

· (e-ik(')YYoo , . )e-ik(')YYoo 
N ~ ~ ~ 

- (2nifl ekl(v, t,6d1 2 L (t,6, B1(k)t,6)1}(t,61> B2(k)t,6I')(t,6, B1(k)t,6)I'1' 
1,1'=1 

· (e-ik(')YYoo , . )e-ik(')YYoo 
N 

- ek2(t,61' v) L (~, Bl (k)t,6)i11(e~ik(')YYoo, . )e-ik(')YY1,1 
1=1 

N 

+ ek2(v, t,61) L (~, B1(k)t,6)1}(e- ik(')YY1,1, • )e-ik(')YYoo + 0(e2), 
1=1 

IX = -A'(O)I(v, t,6dl- 2 in case IV, (1.4.52) 
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where 

(1.4.53) 

PROOF. Theorem 1.4.3 is an immediate consequence of(1.4.28) and Theorem 1.4.2 . 

• 
Finally, we would like to add some comments concerning the above results. 

First of all, the expansion coefficients in Theorem 1.4.3 have been written 
in such a way that the results are particularly simple for y = O. Next, we 
emphasize that only in cases II and IV (i.e., if H = - A + V has a zero-energy 
resonance) the limits of f..,y and S.,y as e -+ 0 are nontrivial and coincide with 
Ia,y and ~,y with IX given by (1.2.53). The coefficients (4nfl(v, (1 + uGovflu) 
and (4nfl(v, Tu) in f..,y in cases I and III just represent the scattering length 
of H = -A + V [11]. In the special case where V is spherically symmetric 
(cf. the discussion before Lemma 1.2.4) we have YI = YI = 0 and fl' fl,l are 
nonzero only if ¢J (resp. ¢Jl' 1= 1, ... , N) have angular momentum one (i.e., 
p-waves). The expansions in Theorems 1.4.2 and 1.4.3 clearly illustrate the fact 
that scattering near threshold is largely independent of the detailed shape of 
the interaction. 

As in Sects. 1.1 and 1.2 the above results immediately extend to complex 
point interactions with 1m IX < O. In this case ~jk) and S.jk) become 
contractions in L 2(S2). 

Notes 

Section 1.1.1 
The one-center point interaction Hamiltonian in three dimensions seems first 
to have been studied by Bethe and. Peierls in 1935 [86] in the study of 
the "diplon," i.e., the system consisting of a proton and a neutron. (Wigner 
[497] had shown that the interaction between a proton and a neutron is 
of very short-range which makes it reasonable to try to define a zero-range 
interaction, i.e., a delta potential.) The manner in which they treat this singular 
interaction resembles in some way the rigorous study we have given here. 
First, they argue that it is only necessary to study s-waves, i.e., the subspace 
corresponding to I = 0 in (1.1.9) because "the centrifugal force makes the wave 
function very small for distances small compared with the wave length and 
the potential at still small distances will not matter." By physical arguments 
they deduce that the logarithmic derivative at zero of the radius times the 
wave function should be a constant which is directly related to the energy. 
Inspecting the boundary condition (1.1.12) which we imposed for s-waves we 
see that it is indeed equivalent to 

d 
dr (In(r'P))lr=o+ = 4nlX, 
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where rjJ(r) = r'¥(r) E ~(ho,a)' Thomas [485], also studying the neutron-proton 
system, gave in addition the form V(r) ~ e- 2f(r/e) with e ~ 0 for the point 
interaction. This point of view is studied in detail in Sect. I.1.2. 

Fermi, in 1936, used a similar procedure as Bethe and Peierls when he 
studied the motion of neutrons in hydrogenous substances [179]. Indirectly, 
he proposed to replace b(r) by 

1 0 I -a- b(r)-r , 
or r=O+ 

what has later been called the Fermi pseudopotential and was made more 
explicit by Breit in 1947 [110]. The reasoning they used was essentially the 
following (see [93]): The Schrodinger equation for the proton-neutron system 
with the center of mass motion removed is 

Ha'¥ = -A'¥ = E'¥, 

where'¥ = '¥(x, y, z) and (x, y, z) are the relative coordinates. The interaction 
is given by the boundary condition above. Integrating the boundary condition 
yields 

In(r'¥) = 4nar 

or 

e41tar 1 + 4nar + !(4narf + ... [ (4nar1 J 
'¥=-= = 1 + rjJ, 

r r r 

where rjJ is regular at r = 0 (i.e., rjJ(O + ) is finite). This yields for small r 

r2 o'¥ ~ -(4nar1 o(r'¥). 
or or 

Integrating this over the surface of a small sphere we obtain that the left-hand 
side is equal to 

f r2 dn °o~ = f dS V'¥' n = f dVA'¥ 

and the right-hand side equals 

where we used 

o(r'¥) ~ rjJ 
or 

for r small enough. This implies that the integrands of the right- and left-hand 
sides are equal in the limit when r tends to zero, i.e., 

A'¥ = -oc-1b(r)o(r'¥) I ' 
or r=O+ 
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which is small except near the origin while Ha is small near the origin. Adding 
the two expressions for .1 'P we finally obtain 

Ha'P = -.1'P - ex-1~{r)~r'Pi = E'P. or r=O+ 

For recent treatments of the Fermi pseudopotential see [62J, [229J, [427J, 
[428J, [472J, [490]. Following Gr.ossmann and WU [229J we can use the 
above heuristic formula for Ha to obtain its Green's function. The Green's 
function Ga,k satisfies 

(-.1 - k2 )Ga,k{X, x') - ex-1~{X) ~ 0
1 

Ilx l Ga,k{X, XI)i = ~(x - x'). 
u x Ixl=O 

Hence 

(-.1 - k2 )Ga,k{X, x') = ~(x - x') + Aa<X')~{X), 
where 

This implies 

Ga,k{X, x') = Gk{x - x') + Aa{x')Gk{x), 

where Gk is the free Green's function, i.e., 

eiklxl 

Gk{X) = 4nlxl' 

Aa is now determined by inserting the expression for Ga,k into the definition 
of A a, and we find (cf. (1.1.21» 

Ga,k{X, x') = Gk{x - x') + (ex _ ;~) -1 Gk{X)Gk{X' ). 

Other studies of ~-interactions appeared in [277J, where the N-center 
problem is also treated, and in [464J, [509]. An extensive study of applications 
to atomic physics appeared in the monograph by Demkov and Ostrovskii 
[151]. Applications to hadron spectroscopy can be found in [87]. 

The rigorous study of point interactions was started in the early 1960s by 
Berezin and Faddeev [81J in an attempt to study the three-body problem 
rigorously. This work is reviewed in [184]. Berezin and Faddeev use both the 
method of self-adjoint extensions of symmetric operators and a method which 
uses a renormalization of the coupling constant in front of the ~-function. 
We will return to this technique in the N-center case, Ch. 1 of Part II. 

The method using Dirichlet forms was introduced by Albeverio, H0egh
Krohn, and Streit [32J, [33J (cf. Appendix F for an extensive discussion). 

Methods of nonstandard analysis were started by Nelson [355J using 
(standard) results by Friedman [187J, [188J who showed how to obtain point 
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interactions as strong resolvent limits of Schrodinger operators with charac
teristic functions of decreasing support as the potential. This was subsequently 
generalized by Alonso [37] and Albeverio, Fenstad, and H0egh-Krohn [12] 
where the N-center case is also studied using nonstandard analysis. See also 
[14] and Appendix H. 

As the last method to define the point interaction Hamiltonian rigorously 
we mention that we can simply start with the resolvent (1.1.18) and show 
that this is the resolvent of a self-adjoint operator. This point of view was 
advocated by Grossmann, H0egh-Krohn, and Mebkhout [226] using scales 
of Hilbert spaces (cf. Appendix G). Complex point interactions were studied 
in [226] and [114]. Generalized pointlike interactions appeared in [369], 
[370], [400b], [427], [428],[430],[431], [446]. 

More general systems of the type -Ll + V + "AJ" are discussed in [167], 
[171], [209], [211], [269], [416], [420], [512]. 

Electric and magnetic fields in connection with -Ll~,y are studied in [147], 
[148], [472]. 

Section I.1.2 
In the special case of a square well potential V strong resolvent convergence 
of HE to -Ll~,y (resp. to -Ll) has been discussed by Friedman [187], [188] (cf. 
also [37], [355]). The general local case where V E Rand (1 + 1'1) V E U ([R3) 

is due to Albeverio and H0egh-Krohn [24]. Theorem 1.2.5 is a slightly 
improved version of corresponding results in [16], [17] and [22] which yield 
norm resolvent convergence of HE to -Ll~,y (strong resolvent convergence if 
A' (0) = 0 in cases III and IV is also discussed in [17]). For previous discussions 
of Lemma 1.2.3 and of cases I-IV under different hypotheses on V we refer 
to [272], [298], [357], [504]. Strong resolvent convergence in the context of 
Dirichlet forms has been obtained in [33], [35]. 

Special approximations by means of separable interactions appeared in 
[81], [112], [129], [512]. A detailed treatment of nonlocal interactions can 
be found in [98] (cf. also [200], [358]). Theorem 1.2.10 appears to be new. 

Various approximation results in connection with more general systems of 
the type -Ll + V + "AJ" can be found in [171], [414], [416], [420]. 

Section 1.1.3 
Most of the results ofthis section are new (some ofthem have been announced 
in [17]). Our definition of resonances of H = -Ll + V, e2a!'!V E R for some 
a> 0, as poles of (1 + uGkvt1 in the strip 0 > 1m k > -a follows the treat
ment in [21], [26], [28] and [200] (these papers also contain an extensive 
list of references on this subject). For references on perturbation theory 
of resonances using similar techniques see [385], [386]. Since, by relation 
(1.2.11), every bound state kE of HE,y corresponds to a bound state k(8) = 8kE of 
H(8) = - Ll + A(8) V and vice versa, we recover the results of [298] concerning 
the absorption of negative bound states into the continuous spectrum at 
so-called critical potential strengths. In fact, Theorem 1.3.1 extends their 
three-dimensional results insofar as our Fredholm determinant approach 
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allows us to calculate the leading order coefficients explicitly (it suffices to 
take ;'(e) = 1 + eA.'(O), ;"(0) =F 0 and to replace all kz,. in Theorem 1.3.1(b)-(d) 
by ekz,., I = 1, ... , N). Theorem 1.3.2 finally extends the whole treatment to 
resonances of H(e) by using the same type of substitution k. -+ k(e) = ek •. 
A unified treatment of bound states and resonances of H(e) along these lines 
appeared in [204J. 

The whole discussion of this section extends to nonlocal interactions in 
a straightforward manner. The only changes needed in Theorem 1.3.1 are the 
following: 

e2al ' IV E R -+ eal'la l , eal'I~2 E U(1R3) (\ L2(1R3) for some a> 0, 

(v, ,p) -+ (vl,,p) in case II, 

(v, ,pl) -+ (Vl' ,pl) in case IV, 

C(x, x') = -(8ntl u(x) Ix - x/lv(x /) 

-+ C(x, x') = -(8ntl f d 3 x" d 3 x lll • 

JH;!6 

In Theorem 1.3.2 one simply replaces e2al ' IV E R for all a> 0 by 
eal'la l , eal'I~2 E U(1R3) (\ L2(1R3) for all a> 0 in addition to the last three 
substitutions stated above. 

Section 1.1.4 
Scattering theory for point interactions from various points of view have been 
studied in [81J, [87J, [114J, [184J, [200J, [252J, [277J, [369J, [370J, [483J, 
[509J, [512]. Stationary scattering theory for SchrOdinger operators of the 
type H = -Ll + V, e2al ' IV E R for some a > 0 can be found in [434J, Ch. V, 
[390J, Ch. X1.6. For the general formalism of scattering theory we also refer 
to [39J, [360J,. [480]. Low-energy scattering for three-dimensional systems 
has been discussed in [16J, [17J, [272J, [357J, [358J (see also [351J). A 
systematic way of calculating the expansion coefficients for the transition 
operator t(k), as k -+ 0 by the use of recursion relations, has been developed 
in [101]. 

Low-energy parameters in connection with a detailed investigation of scat
tering near threshold appeared in [llJ. Theorem 4.1 is taken from [17J where 
a slightly different proof can be found. In particular, this paper also contains 
a complete discussion of the case ;"(0) = 0 in cases III and IV without the 
simplifying assumption (1.2.84). 

If one is interested in asymptotic expansions for !.(k, w, w') and S.,,(k) near 
e = 0 instead of analytic expansions, the assumptions on V can be drastically 
reduced. In fact, as long as 8. (\ (0, eo) = 0 for all 0 < e < eo, the conditions 
V E R, (1 + Ixlm)V E L l (1R3 ) for suitable mEN yield asymptotic expansions 
in Theorems 1.4.2 and 1.4.3, the order of which depends on m. 

Again Lemma 1.4.1-Theorem 1.4.3 extend to nonlocal interactions (cf. [98J 
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for a detailed treatment of low-energy parameters and scattering near thresh
old). Here it suffices to note that the on-shell scattering amplitude associated 
with (1.2.65) reads 

J..y(k, w, w') = -(4nr1(cI>:'y(ke), t.(k)cI>;'y(kw')), 

e, k > 0, k2 rI S" w, W' E S2, Y E 1R3 

where now 

m- ( ) i d3 , W ( ') ipx' W.,y p, X = X 2,. x, x e , 
[J;l3 

m+ ( ) i d3 , w: (' ) ipx' w.,y p, X = X 1,. x, X e , 
[J;l3 

e > 0, p E ([;3, 11m pi < a, 

t.(k) = e- 2 ;'(e) [1 + e- 2 ;'(e) W2,.Gk W1,.rl, 
° < e < eo, 1m k > - a/eo, PriG., 

S. = {k2 E Cj;'(e) W2 G.k Wl~' = -~. for some ~. E L2(1R3), 

~. =1= 0, 1m k > -a/eo}, 0< e < eo, 

e > 0, j = 1, 2, Y E 1R3 



CHAPTER 1.2 

Coulomb Plus One-Center Point Interaction 
in Three Dimensions 

1.2.1 Basic Properties 

In this section we extend the analysis of Sect. 1.1 to include the Coulomb 
potential in addition to the point interaction both centered at a fixed point 
y E 1R3. Following very closely the approach in Sect. 1.1 we again concentrate 
on the methods of self-adjoint operator extensions. 

In the Hilbert space L2(1R3) we consider the operator 

Y E 1R3, 'Y E IR, (2.1.1) 

and denote by Hy.y its closure in L2(1R3)(i.e., £!C(Hy,y) = HJ,2(1R3 - {y})). Then 
its adjoint is given by [274], [276] 

(Hy,y)* = -Ll + 'YI' - yl-l, 

£!C((Hy,y)*) = {g E Hl~~2(1R3 - {y}) (') U(1R3)1( - Llg + 'Y I' - yl-l g) E L 2(1R3)}, 

Y E 1R3, 'Y E IR. (2.1.2) 

By inspection, one infers that 

ljIy(k, x) = Ix - yl-l1Y-iy/2k;1/2( -2iklx - yD, 

1m k > 0, 'Y E IR, x E 1R3 - {y}, (2.1.3) 

where ~;v(·) denotes the Whittaker function [1], is the unique solution of 

(Hy,y)*IjI(k) = k2 1j1(k), ljI(k) E £!C((Hy,y)*), PEe - IR, 1m k > O. (2,1.4) 

52 
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Thus Hy,y has deficiency indices (1, 1) and applying Theorem A.l all self
adjoint extensions Hy,6,y of Hy,y are given by the one-parameter family 

!!2(Hy,6,y) = {g + at/ly+ + ae i6 t/1y_lg E !!2(Hy,y), a E C}, 

H ( ./, i6./, ) H' .• /, . i6./, y,6,y g + a'l'y+ + ae 'l'y- = y,yg + w'l'y+ - we 'l'y-' (2.1.5) 

() E [0, 2n), y E 1R3, 

where 

t/ly±(x) = Ix - YI~_iY/2(±i)112;1/2(-2i(±i)1/2Ix - yl), 

Im(±i)1/2>0, YEIR, xEIR3_{y}. (2.1.6) 

Next, we introduce spherical coordinates like those in Sect. 1.1 since Hy,y is 
obviously spherically symmetric around y E 1R3. With respect to the decom
position (1.1.9), Hy,y then equals the direct sum 

Hy,y = 7;,-1 {~V-1hy,/V ® I} 7;" y E 1R 3, Y E IR, (2.1.7) 

where 7;, implements translations x --+ x + y in £1(1R3), (7;,g)(x) = g(x + y), 
gEL 2(1R3), Y E 1R3, and 

h. _ d 2 1(1 + 1) Y 
y,/ - - dr2 + -r-2 - + -;:' Y E IR, 1= 0, 1,2, ... , r > 0, 

!!2(hy,o) = {rjJ E £1((0, oo»lrjJ, rjJ' E AC)oc((O, (0»; W(rjJ, rjJy±)o+ = 0; 

_rjJ" + yr-1rjJ E £1((0, oo))}, (2.1.8) 

!!2(hy,/) = {rjJ E L2((0, oo»lrjJ, rjJ' E AC)oc((O, (0»; _rjJ" + 1(1 + l)r-2rjJ 

+ yr-1 rjJ E £1((0, oo»}, 1 = 1,2, ... , 

where 

rjJy±(r) = ~-iY/2(±i)112;1/2( -2i(±i)1/2r) and W(f, g)x = f(x)g'(x) - f'(x)g(x) 

denotes the Wronskain of f and g . . As in the case y = 0, hy" are self-adjoint 
for 1 ;;::: 1 ([389J, Ch. X) whereas hy,o has deficiency indices (1.' 1). By the 
discussion in Appendix D all self-adjoint extensions hy,o,a of hy,o may be 
parametrized by 

d2 y 
hy 0 a = --d 2 + -, , , r r Y E IR, r > 0, 

!!2(hy,o,a) = {rjJ E L2((0, oo»lrjJ, rjJ' E AC1oc((0, (0»; -4nIY.rjJo + rjJ1 = 0; (2.1.9) 

_rjJ" + yr-1rjJ E L2((0, oo»}, 

where rjJo and rjJ1 are defined as 

-00 < IY. ::; 00, 

rjJo = lim rjJ(r), rjJ1 = lim r-1{rjJ(r) - rjJo[1 + yr In(lylr)J}, 
r-l-o r-l-o 

rjJ E !!2(h~,o), y E IR. (2.1.10) 
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By an analogous calculation to (1.1.13) one infers that 

H~.IJ.Y = 1',-1 {[ U-1hy.o ... U ~ ~ U-1i1y.,uJ ® I} 1'" y e 1R3, y e IR, 

(2.1.11) 

where 

0( = (4nf1(1 + eiIJ f1 ([iy«'1'(l + (iy/2(i)1/2» - '1'(1) - 'I'(2»/2(i)1/2) - !] . 
. (- 2i(i)1/2) + eilJ [iy«'I'(l + (iy/2( - i)1/2» - '1'(1) 

- 'I'(2»/2( - i)1/2) - !] ( - 2i( _ i)1/2)}, 

(± i) 1/2 = (± 1 + i) cos n/4, y e IR, (2.1.12) 

and again 0( varies in IR (0( = +00 if (J i n) if (J varies in [0, n) u (n, 2n). Here 
'1'(.) = r'(, )/r(') denotes the digamma function and r(.) the gamma function 
[1]. Thus we get 

Theorem 2.1.1. All self-adjoint extensions of 1Iy,y are given by 

Hy .... y = 1',-1 {[ U-1hy.o ... U ~ ~ U-1i1:.,uJ ® I} 1'" 

-00 < 0( ~ 00, ye 1R3, y e IR. (2.1.13) 

The special case 0( = 00 leads to the ordinary Coulomb Hamiltonian Hy.y (the 
Friedrichs extensions of 1Iy,y) in L2(1R3) 

Hy.y = -i\ + yl' - yl-1, ~(Hy.y) = H 2 •2 (1R 3 ), ye 1R3, ye IR. (2.1.14) 

If 10(1 < 00, H y .... y describes the Coulomb interaction plus an additional 
point interaction both centered at y e 1R3. In particular, H y .... y differs from the 
Coulomb Hamiltonian Hy•y only in the subspace of angular momentum zero, 
i.e., the point interaction in Hy ... ,y is again an s-wave (l = 0) interaction. 

Next we introduce 

with integral kernel [260] 

Imk>O, k# -iy/2n, n= 1,2, ... , yelR, 
(2.1.15) 

Gy,k,y(X, x') = r(1 + (iy/2k»(4n Ix - x'l)-l . 

. [(dd -'ddp) JI -iy/2k; 1/2(0()1f"-iy/2k; 1/2(P>JI .. = -i.kx_' 
0( p= -.kx+ 

Imk>O, k# -iy/2n, n= 1,2, ... , yelR, 

x± = Ix - yl + Ix' - yl ± Ix - x'l, x, x', y e 1R3, x # x' (2.1.16) 

(here Jlp.;v(·), ~;v(·) denote Whittaker functions [1].) 
Basic properties of Hy, .. ,y are described in 
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Theorem 2.1.2. Let -00 < IX ~ 00, Y E [R3, Y E [R. The resolvent of Hy,l1.,y is 
given by 

(Hy,I1.,y - k2r 1 = Gy,k,y + [IX - (yF(iy/2k)/4n)]-1(gy,k(' - y), . )gy,k(' - y), 

k2 E p(Hy,a.,y), 1m k > 0, (2.1.17) 

where 

gy,k(X) = r(1 + (iy/2k))(4nlxlr1if"-iY/2k;1/2( -2iklxl), 

and 

x =I 0, (2.1.18) 

F(iy/2k) = '1'(1 + (iy/2k)) -In(ilyl/2k) + (ikjy) - '1'(1) - '1'(2), 

k > ° or 1m k > 0, k =I -iy/2n, n = 1,2,.... (2.1.19) 

The domain E0(Hy,a.,y) consists of all elements of the type 

l/J(x) = ¢Jk(X) + [IX - (yF(iy/2k)j4n)]-1¢Jk(y)gy,k(x - y), (2.1.20) 

where ¢Jk E E0(Hy,y) = H2,2([R3) and k2 E p(Hy,a.,y), 1m k > O. The decomposi
tion (2.1.20) is unique and with l/J E E0(Hy,a.,y) of this form we obtain 

(Hy,a.,y - k2)l/J = (Hy,y - k2)rA. (2.1.21) 

Next, let l/J E E0(Hy,a.,y) and assume that l/J = 0 in an open set U S [R3. Then 
Hy,a.,yl/J = 0 in U. 

PROOF. Equation (2.1.17) follows from Theorem A.2 except for the factor 
[IX - (I'F(il'/2k)/4n)]-1. In order to determine this factor one can follow the proof of 
Theorem 1.1.2 by projecting to the subspace of angular momentum zero and 
replacing go(k, r, r'), k-1 sin kr and eikr by the corresponding s-wave Coulomb 
quantities. The remaining assertions directly follow from Theorem 1.1.3 after 
replacing Gk, -,1., -d.,y by Gy,k,y, Hy,y, Hy,.,y, etc. • 

Spectral properties of Hy,a.,y are characterized by 

Theorem 2.1.3. Let -00 < IX ::; 00, y E [R3. 

If Y ~ 0, then Hy,II.,y has precisely one negative bound state if IX < 
-y['I'(1) + 'I'(2)]/4n. The eigenvalue Eo < ° is determined by the equation 

4nIX = yF(y/2( -Eo)1/2), Y ~ 0, (2.1.22) 

with 

(2.1.23) 

The corresponding strictly positive (unnormalized) eigenfunction is given by 
gy,i(-Eo)'/2(X - y). If IX ~ -y['I'(1) + 'I'(2)]/4n the point spectrum of Hy,a.,y 
is empty. 

If y < 0, then for all -00 < IX ~ 00 there are always infinitely many simple 
negative eigenvalues associated with the s-wave (l = 0) given by solutions of 
the equation 

4nIX = yF(y/2( - E)1/2), y < O. (2.1.24) 
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For angular momenta I ~ 1 we get the usual Coulomb levels 

n = 2, 3, ... , y < O. (2.1.25) 

For all y E ~ the essential spectrum of Hy,a.,y is purely absolutely continuous 
and covers the nonnegative real axis 

(2.1.26) 
-00 < at:::;; 00. 

PROOF. Given (2.1.17) the first part of assertions in (2.1.26) then immediately 
follows from Weyl's theorem ([391], p. 112) and Theorem Xm.20 of [391]. To derive 
the statements about (J'p(Hy,a.,y) n ( -00,0) we note the integral representation ([1], 
p.259) 

(2.1.27) 

implying 

F(O+) = -00, F( 00) = - '11(1) - '11(2), F'(~) > 0, ~ > O. (2.1.28) 

Together with (2.1.17) this proves the assertions for}' ;:::: O. For ~ < 0, F(~) is strictly 
increasing from -00 to +00 in each interval (-n - 1, -n), n = 0,1, ... (cf. Figure 
1) which proves the assertions in connection with (2.1.24) and (2.1.25) for}' < O. The 
absence of nonegative eigenvalues follows exactly along the lines of the proof of 
Theorem 1.1.4. • 

Figure 1 From Albeverio et al., 1983, [22]. 

Finally, we sketch some properties of complex point interactions. Let at E C 
and define Hy,a.,y by (2.1.13) (i.e., let at E C in (2.1.9». Then, obviously, Hy,a.,y is 
continuous with respect to at in norm resolvent sense. In addition, we have 

Theorem 2.1.4. For all y E ~3, Y E ~, iHy,a.,y (resp. - iHy,a.,y) generates a 
contraction semigroup e-itH, .•. y (resp. eitH, .•. y), t ~ 0, in L2(~3) if 1m at :::;; 0 
(resp. 1m at ~ 0). 
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PROOF. From 

PJ(Hy.a.,} = {g + al/ly+ + aewl/ly_lg E PJ(Hy.y), a E q, 
(2.1.29) 

Hy.a.y(g + al/ly+ + ae i8 1/1y_) = Hy.yg + ial/ly+ - iae i8 1/1y_, 

where IX and () are related by (2.1.12), one infers by a straightforward computation 

Im([g + al/ly+ + ae i8 1/1y_], Hy.a.y[g + al/ly+ + ae i8 1/1y_]) 

= lal 2 I/I/Iy± 1/ 2 (1 - e- 2Im8). (2.1.30) 

Consequently, Im(h, Hy.a.yh) ~ 0 for all h E PJ(Hy.a.,} is equivalent to 1m () ~ 0 and 
hence to 1m IX ~ O. Thus iHy.a•y is accretive ([389], p. 240) and hence maximal 
accretive iff 1m IX ~ O. • 

1.2.2 Approximations by Means of Scaled Coulomb-Type 
Interactions 

A possible approximation scheme to obtain Hy,a,y as the norm resolvent limit 
of scaled Coulomb-type Hamiltonians is derived in this section. We closely 
follow the corresponding treatment in Sect. 1.2. 

In the following 

Gy,k,y = (Hy,y - k2tl, k2 E p(Hy,y), 1m k > 0, y E 1R 3, Y E IR, (2.2.1) 

will play the role of an unperturbed resolvent and V: 1R3 -+ IR is assumed to 
be a measurable function belonging to the Rollnik class R. Let u and v be as 
in Sect. 1.2 (cf. (1.2.3)). Then we have 

Lemma 2.2.1. Let Y E 1R3, Y E IR, and assume e2al ' IVE R for some a> 0. 
Then V is form compact with respect to Hy,y, i.e., 

E>O, (2.2.2) 

and 

(2.2.3) 

where 

IIy,a = {k E Cllm k > -a, k i= -iy/2n, n = 1,2, ... }. (2.2.4) 

PROOF. It suffices to prove (2.2.3). For that purpose we recall the explicit 
expression [99] 

Gy.kjx, x') = (4n Ix - X'J)-l {2(x+ - X_fl(X+Lfl F~~6(k, x_/2)G~?6( - k, x+/2) 

- rl(k2 + (y2/4))F~~1(k, x_/2)G~?6( -k, x+/2) 

+ 3F~~6(k, L/2)G~?H -k, x+/2)} 

= (4nlx - X'J)-1{2(x+ - L)(X+X_)-l F~~6(k, x_/2)G~?6(k, x+/2) 

- rl(k2 + (y2/4))F~~Hk, x_/2)G~?6(k, x+/2) 
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+ 3F~?Mk, x_/2)G}?Uk, x+/2)} 

+ (4nlx - x'l)-ly['J'(l + (iy/2k)) -In(iIYI/2k) + (ik/y)]' 

. {2(x+ - x_)(X+X_)-l F~?6(k, L/2)F~~6(k, x+/2) 

- rl(F + (y2/4))[F~?{(k, L/2)F~?J(k, x+/2) 

- F~?6(k, x_/2)F~?{(k, x+/2)]}, 

k E IIy• oo , x =P x', x± = Ix - yl + Ix ' - yl ± Ix - xii, (2.2.5) 

where 

F~??(k, r) = rl+leikrlFl(l + 1 +(iy/2k); 21 + 2; -2ikr), 

G~?l( - k, r) = r(21 + 2r1 r(l + 1 + (iy/2k))(2ie- i"k)21+1 r1+1 eikr . 

. U(l + 1 + (iy/2k); 21 + 2; 2ie-i"kr), (2.2.6) 

G~?l(k, r) = G~?l( -k, r) - 221r(21 + 2r1 1r(1 + (iy/2k))I- 11r(1 + 1 + (iy/2k)W' 

'ykll['J'(l + (iy/2k)) -In(iIYI/2k) + (ikjy)]F~??(k, r); 1 = 0,1, 

and 1 Fl (IX; P; .), (U(IX; P; .)) denotes the (ir)regular confluent hypergeometric func
tion [1]. In fact, the bound [96], [99] 

IH~?/(k, r)1 ~ const(g, y, Ko, Ro) exp{(l + g}Ko(r - Ro) + (IYI/2Ko) In(r/Ro)}, 

g > 0, Y E~, Ko > 0, Ikll ~ K~, r ~ Ro > 0, 1 = 0, 1, (2.2.7) 

where H~?l denotes Fi??, (J/J(kl))Fi??, G~?l, or (J/J(kl))G~?I, 1 = 0, 1, together with 
the second equality in (2.2.5) proves that UGy,k,yV E i?81(U(~3)) for k E IIy,a, Ikl < a. 
The asymptotic behavior [lJ 

F~??(k, r) I:i-: e-ikr{riy/2kcl(l, y, k) + O(r-1 )} + eikr{r-iy/2kcl(/, y, k) + O(r-l)}, 

(2.2.8) 

for appropriate coefficients cj ' j = 1, 2, 3, together with the first equality in (2.2.5) 
and with (2.2.7) then proves UGy,k,yV E 862(L2(~3)) for k E IIy,a' For 1m k > ° this 
also directly follows from the bound (4.1) of [231] 

I Gy,k,y(X, x')1 ~ Cy(k} Ix - x ' I-1e-(Imk)lx-x'I[1 + Ix _ x'lr9(-y)ylmk/2 Ik I2, 

Next we recall 

v(x) = v(x - e-1 y), 

and introduce 

il(x) = u(x - e -1 y), 

'8(e, y e In e, k) = ),,(e, y e In e)ilGE1,k.Y/EV, 

where ),,( " . ) is real analytic near the origin with 

00 

),,(e, ye In e) = L )"mnem(ye In et, 
m,n=O 

x =P x'. (2.2.9) 

• 

e > 0, y E 1R3, (2.2.10) 

e > 0, k E IIy,o, (2.2.11) 

;'00 = 1. (2.2.12) 
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Because of (2.2.3), B(e, ye In e, k) extends to a Hilbert-Schmidt operator for 
k E IIy,a' Moreover, by (2.2.2) and the discussion in Appendix B the form sum 

H.y,y/.(e) = -.1 + ey Ix - e-l yl-l ..... ;'(e, ye In e) V(· - e-l y), 

e > 0, y E 1R3, (2.2.13) 

is well defined and the resolvent equation 

(H.y,y,.(e) - k2r l 

= G.y,k,y/. - ;'(e, ye In e)G.y,k,y/.v[1 + B(e, ye In e, k)Tl uG.y,k,y/., 

e > 0, P E p(H.yje)), k E II.y,o, y E 1R3, (2.2.14) 

holds. Following Sect. 1.2 we define 

v.,y(x) = ;'(e, ye In *-2 V«x - y)/e), e > 0, 
(2.2.15) 

where U. denotes the unitary scaling group (1.2.10) in L2(1R3). Since we are in
terested in the limit e t 0 of Hy,.,y we first introduce Hilbert-Schmidt operators 
Ay,.(k), By,.(k) = ;'(e, ye In e)uG.y,Bkv, Cy,.(k), 0 < E < eo, with integral kernels 

Ay,.(k, x, x') = GY,k(X - y, ex')v(x' ), k E IIy,o, (2.2.16) 

By,.(k, x, x') = ;'(e, ye In e)u(x)G,y"k(X, X')V(X' ), k E IIy,a/.o' (2.2.17) 

Cy,.(k, x, x') = u(X)Gy,k(EX, x' - y), 

where we abbreviate 

Gy,k,O(X, x') = Gy,k(X, x'), 

From the scaling behavior 

(2.2.18) 

x =F x'. (2.2.19) 

Il > 0, k E IIy,o, y E 1R3, (2.2.20) 

we infer from (2.2.14) after a translation x --+ x + (ylll), Il > 0, 

(Hy,.,y - pr l = e2 U.[H.y,y/.(Il) - (llk)2Tl U.- l 

= Gy,k,y - ;'(e, ye In Il}A y,.(k)e[1 + By,.(k)rl Cy,.(k), 

e > 0, k2 E p(Hy,.,y), k E IIy,o, y E 1R3. (2.2.21) 

Lemma 2.2.2. Let y E 1R3, Y E IR, and define rank-one operators Ay(k), Cy(k), 
and the Hilbert-Schmidt operator uGov with integral kernels 

Ay(k, x, x') = Gy,k(X - y, O)v(x' ), k E IIy,o, x =F y, 

uGov(x, x') = u(x)(4nlx - xll)-lV(X'), x =F x', 

(2.2.22) 

(2.2.23) 

Cy(k, x, x') = u(X)Gy,k(O, x' - y}, k E IIy,o, x' =F y. (2.2.24) 

Then, for fixed k E IIy.o, Ay .• (k), By .• (k), Cy .• (k) converge in Hilbert-Schmidt 
norm to Ay(k), uGov, Cy(k), respectively, as E t o. 
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PROOF. Using the bound (2.2.9) [231] one can follow the proof of Lemma 1.2.2 
step by step. • 

As in the short-range case y = 0, it remains to determine the limit of 
e[l + By.,(k)rl as e! O. Because ofn-lim,-l-o [1 + By,,(k)] = (1 + uGov) again 
the zero-energy properties of H = - d + Venter at this point. We first 
formulate 

Lemma 2.2.3. Let y E IR and e2al ' l V E R for some a > O. Then By,,(k), 
o < e < eo, k E ny,a/,o' is (norm) analytic with respect to (e, yeln e) near the 
origin 

00 

By,,(k) = L: Bmn(y, k)em(yeln e)n. (2.2.25) 
m,n=O 

The coefficients Bmn(y, k), m, n = 0, 1, ... , are Hilbert-Schmidt operators and 
the first few of them explicitly read 

Boo = uGov, 

BlO(y, k) = AlOUGOV + y(4n)-l F(iy/2k)(v, ')u 

+ y(4n)-lu In(lylx+/2)v, 

BOl = AOlUGOV + (4nfl(v, ')u, 

where u In(lylx+/2)v has the integral kernel 

u(x)ln[lyIUxl + Ix'i + Ix - x'IV2]v(x'). 

PROOF. By the first equality in (2.2.5) and the series expansions [1] 

lFl(l + 1 + (iyj2k); 21 + 2; -iekL) 

00 f'(n + 1 + 1 + (iyj2k))f'(21 + 2)( - iekx_}" 

= Jo r(l + 1 + (iyj2k))f'(n + 21 + 2)f'(n + 1) , 

U(1 + 1 + (iyj2k), 21 + 2; ie-i"ekx+) 

(2.2.26) 

(2.2.27) 

(2.2.28) 

(2.2.29) 

= f'(21 + 2)-1 f'( -1 + (iyj2k))-1 {IFl (I + 1 + (iyj2k); 21 + 2; - iekx+) In(ie-i''ekx+) 

+ f f'(n + 1 + 1 + (iyj2k))f'(21 + 2)( - iekx+)n . 

n=O r(l + 1 + (iyj2k))f'(n + 21 + 2)f'(n + 1) 

. [\I'(n + 1 + 1 + (iyj2k)) - \I'(n + 21 + 2) - \I'(n + 1)]} 

f'(21 + 1) . . + lFl( -1 + (zyj2k); -21; -zekx+hl+l; 
r(l + 1 + (iyj2k)) 

k E TIy,oo' 1 = 0, 1, (2.2.30) 

one infers that the integral kernel of G,y,£k 

G£y,£k(X, x') = f Gmo(Y, k, X, x')em + (ye In e) f Gml (y, k, x, x')em, 
m=O m=Q 

k E TIy,a)' X of. x', (2.2.31) 
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is analytic in (e, ye In e) near (0, 0) and that Ix - x'IGmn(y, k, x, x'),m = 0,1, . .. ,n = 0 
or 1, are polynomially bounded in Ixl and Ix'i. Thus taking matrix elements with 
Cg'([R3) functions we get analyticity of UG,y"kV and hence of By,,(k) in (e, ye In e) near 
the origin. • 

Given the case distinction I-IV of Sect. 1.2 (and the ordering (v, rfJd ¥- 0, 
(v, rfJI) = 0, I = 2, ... , N, in case IV) we have 

Lemma 2.2.4. Let e2al ' IVE R for some a> 0, 0< e < eo small enough 
and assume case I (i.e., P = 0). Then e[l + By.e(k)rl, Y E IR, is analytic in 
(e, ye In e) near the origin and we get the norm convergent expansion 

e[l + By,e(k)r1 = e[(l + uGOV)-l - e(l + uGovrl B10 (y, k)(l + uGovrl 

- (ye In e)(l + uGovtl B01 (1 + uGOV)-l + O((e In ef)], 

k E ny,a/eo' (2.2.32) 

PROOF. Since (1 + uGovfl E ~(L 2([R3)), (2.2.32) immediately follows from 

e[l + By.,(k)Tl 

= e{l + (1 + uGovfl [eBlO + (ye In e)BOI + O((e In e)2)]} -1(1 + uGovfl. (2.2.33) 

• 
Lemma 2.2.5. Let e2al 'l V E R for some a > 0, ° < e < eo small enough and 
assume case II (i.e., P = -(~, . )rfJ, (v, rfJ) ¥- 0). 

(i) If AOl = -I(v, rfJW/4n we get the norm convergent expansion 

e[l + By,e(k)r1 

= (BlO)-l(~, ·)rfJ + sT 

- s(B10 > -1 [(T* Bro~, ·)rfJ + (~, .) TB10 rfJJ 

- (ys In e)(Bl0>-1[(T*B61~' ·)rfJ + (~, ')TBolrfJJ 

- (B10 > -2 [e(B20 > + (ye In e) (Bll > + e(y In e)2(B02 > J (~, ·)rfJ 

+ (B10 > -2 {e(B10 TB10 > + (ye1n e) [(B10 TB01 ) + (BOI TB10 > J 

+ s(y In 1'.)2 (BOI TBOI > } (~, ·)rfJ + O(e2(1n e)3), 

k E ny,a/eo' y E IR. (2.2.34) 

(ii) If AOl ¥- -I(v, rfJW/4n we get the norm convergent expansion 

1'.[1 + By,e(k)r1 = (y In srI (B01 > -1(~, ·)rfJ 

- (y In et2 (BOI > -2 (B10 > (~, ·)rfJ + O((1n Sr3), 

k E ny,a/eo' y E IR - {O}. (2.2.35) 

Here we used the notation (B> = (~, BrfJ) for bounded operators BE 
~(L2(1R3» and suppressed the y and k dependence in Bmn(y, k). 
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PROOF. Define 

B(y, e, k) = By .• (k) - Boo, k E n y•a/.o ' (2.2.36) 

and let Jl. E C - {OJ, 1Jl.1 small enough. Then (1.2.35) implies 

e[l + By .• (k)r 1 = e{l + (1 + Boo + Jl.)-l[B(e) - Jl.]}-1(1 + Boo + Jl.)-1 

= e{PB(e) + Jl. - Jl.P + Jl.TB(e) + O(Jl.2)} -1 [P + Jl.T + O(Jl.2)] 

= e{l + Jl.(PB(e) + Jl.)-1 [ - P + TB(e) + O(Jl.)]} -1 . 

. [PB(e) + Jl.r1 [P + Jl.T + O(Jl.2)]. (2.2.37) 

From P = -(J, '),p we get 

Jl.[PB(e) + Jl.r1 = 1 - ([B(e) + Jl.])-l(B(e)*J, '),p (2.2.38) 

and thus 

e[l + By .• (k)r1 = e{l + TB(e) - (B(e» -l(B(e)*T*B(e)*J, '),p + O(Jl.)} -1 . 

. [(B(e» -l(J, '),p + T - (B(e» -l(T*B(e)*J, '),p + O(Jl.)]' 
(2.2.39) 

Since Jl. ¥- 0 was arbitrary we get 

e[l + By .• (k)r1 = {1 + TB(e) - (B(e» -l(B(e)*T*B(e)*J, . ),p} -1 . 

. e[ (B(e» -l(J, '),p + T - (B(e» -l(T* B(e)*J, . ),p] 

= {1 - TB(e) + (B(e» -l(B(e)*T* B(e)*J, '),p + O(e2 (ln e)3)}. 

'e[(B(e»-l(J, '),p + T - (B(e»-l(T*B(e)*J, '),p]' (2.2.40) 

Now assume A.Ol = -I(v, ,pW/411: which is equivalent to (B01 ) = O. Then 

(B(e»-l = e-1(B10 )-1{1 - (B10 )-1[e(B20 ) + (ye In e)(B11) 

(2.2.41) 

and we obtain (2.2.34). If A.Ol ¥- -I(v, ,p)1 2 /411: (i.e., (B01 ) ¥- 0) then 

(B(e» -1 = (ye In e)-l (B01 ) -1 [1 - (y In e)-l (B01 ) -1 (BlO) + O((ln e)-2)] (2.2.42) 

implies (2.2.35). • 
Lemma 2.2.6. Let e2al ' l V E R for some a > 0, 0 < e < eo small enough and 
assume case III (i.e., P = - If=1 (fA, . )f/J" (v, f/J,) = 0, I = 1, ... , N). 

(i) If A.01 = 0 and the matrix (~" BlO (y, k)f/J,,), I, I' = 1, ... , N, is nonsingular 
we get the expansion valid in norm 

N 

= I «BlO»U}(~'" ')f/J, + eT 
'."=1 
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N __ 

-(yBln 6) L (BlO»U,1[(T*B~l~'" .)~ + (~'" ')TBol~,] 
1,1'=1 

N 

+ L (B10 ) )U,l [6 (Bfo )1',1" 
1,1',1",1"'=1 

N 

. (B10 ) )""}",(~,,,,, • )~, + L (BlO) )U'~ [6(B20 )'"I''' 
1,1',1",1"'=1 

+ (Y6In 6)(Bl1 ),,,I,,, + 6(y In 6)2 (B02 ),"I"'] . 

. (B lO ) )z;.~"(~,,, . )~, + O(62 (In 6)3), k E IIy,a/to' y E IR. 

(ii) If .,1.01 1= 0, we obtain the expansion valid in norm 

6[1 + By,t(k)r1 

N 

= (y In 6t1 L (B01 ) )U,l(~", . )~, 
1,1'=1 

N 

(2.2.43) 

- (y In 6t2 L (B01 ) )u'~ (BlO),,,I,,,( (B01 ) )z;.~"(~,,, . )~, 
1,1',1",1"'=1 

k E IIy,a/to' y E IR - {O}. (2.2.44) 

Here we used (B)II' = (fA, B~,) and (B) )U,l the inverse matrix of (B)II' 
for some B E 81(L2(1R3». 

PROOF. Inserting 

N 

Jl[PB(e) + Jlr1 = 1 - L «B(e) + Jl) );;} (B(e)*tft" , '),p, (2.2.45) 
1.1'=1 

into (2.2.37) one arrives after some manipulations at 

e[l + By,.(k)r1 = {I - TB(e) + "~1 «B(e» )u,l (B(e)* T*B(e)*tft", . )tP, 

+ O(e2 (ln e)3)}{"~1 «B(e» )U,l(tft", . )tP, + T 

- "~1 «B(e» )u,l(T* B(e)*tft" , '),p, J. (2.2.46) 

Now assume ,t01 = 0 and <B10 )//, to be nonsingular. Then 

N 

e«B(e» )U,l = «B10 ) )u,l - I «B10 ) )U'~ [e<B20 )'"I''' + (')Ie In e)<Bll )'"1''' 
1",/"'=1 

+ e(')I In e)2 <B02 ),,,,,,,] «BlO) );;-}" + O(e2 (ln e)3) 

and (2.2.43) follows. On the other hand, if ,t01 "* 0, then 

(2.2.47) 
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N 

- (y In e)-2 I «BoI ) )i/,! <BlO )I"I'''( <BoI ) )f}1' + O((ln et 3 ), 

1",1'''=1 

which proves (2.2.44). 
(2.1.48) 

• 
Lemma 2.2.7. Let e2al ' IVE R for some a> 0, 0< 8 < 80 small enough and 
assume case IV and (1.2,84) (i,e., P = - IJ=l (~I' . ) ifJI , (v, ifJd # 0, (v, ifJI) = 0, 
1 = 2, ' " , N), 

(i) If A.Ol = -I(v, ifJ,W/4n we get the expansion valid in norm 

8[1 + By,e(k)r1 

N 

= <BlO)1"/(~l' ')ifJl + (A.OI yIn 8t1 L: (~I' . )ifJI 
1=2 

N 

- (A.Ol yIn 8t1 <B10 )1"/ L: [<B10 )1l(~1' . )ifJl + <B10 )11 (~1' . )ifJIJ 
1=2 

N 

+ (A.Ol yIn 8t1<B10 )1"12 L: I<Blo>1l12(~1' . )ifJl + O((ln 8t2 ), 
1=2 

k E IIy,aleo' Y E IR - {O}. (2.2.49) 

(ii) If A.Ol # -I(v, ifJIW/4n we get the expansion valid in norm 

8[1 + By,e(k)r1 

N 

= (y In 8t1 L: «BOl»)li,1(~I" ')ifJI 
1,1'=1 

N 

- (y In 8)-2 L «Bo1 ) )i/,! <B10 )l"l'" ( <B01 ) )r}I'(~I" . )ifJI 
1,/',/",1"'=1 

k E IIy,aleo' Y E IR - {O}. (2.2.50) 

PROOF. From (2.2.46) we get 

N ~ 

e[l + By,e(k)r l = I «BIO + (y In e)BoI) )i/,I(r/JI" . )r/JI + O(e(ln e)2). (2.2.51) 
1,1'=1 

If the matrix <B01 )1I' is singular, or equivalently if AOI = -I(v, r/JdI 2/4n, then 

«BlO + yIn eBoI ) )i/,1 

= <B1o)lfbl1 bl'1 + (AOI yIn etl [bll' - bl1 bl'1J 

- (AOI yIn e)-l <BlO )lf[bl1 <B10 )II'(l - bl'd + (1 - bl1 ) <BlO )l1 bl'1J 

N 

- (AOlY In et l <BlO )lt I I<BlO\I',12bl1bl'l + O((ln et2 ) (2.2.52) 
1"=2 
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and (2.2.49) follows. If <B01 >11' is nonsingular, i.e., if ,to 1 =f. -I(v, tP1W/4n, then 

«BIO + (yIn e)BOl »,/ = (yIn ef1«Bol »u} 
N 

- (yIn e)-2 L «B01 »il'~ <BIO >1"1..,«Bol »;;}I' 
1".1"'=1 

(2.2.53) 

and (2.2.50) results. • 
For an explicit determination of the first few of the coefficients (Bmn> see 

the next section. 
Given Lemmas 2.2.2 and 2.2.4-2.2.7 we are able to state the main result of 

this section (cf. Theorem 1.2.5 for the corresponding statements if y = 0). 

Theorem 2.2.8. Let Y E 1R3, Y E IR - {O}, e2al ' l V E R for some a> 0 be real
valued and assume (1.2.84). Then, if P E p(Hy,IZ,y) we get k2 E p(Hy,.,y) for 
e > 0 small enough and Hy,.,y converges to Hy,lZ,y in norm resolvent sense 

n-li~ (Hy,.,y - pr1 = (Hy,IZ,y - k2 )-l, 
.,.0 

k2 E p(Hy,IZ,y), Y E 1R3, Y E IR - {O}, (2.2.54) 

where ex is given by 

00 in case I, 

00 in case II if 201 i= -I(v, ~W /4n, 

- [210 + y(~, v In(IYI x+/2)v~)/4nJ/I(v, ~W 

in case II if 201 = -I(v, ~W /4n, 

ex = 00 in case III if 201 i= 0 or 201 = 0 and (2.2.55) 

(~Io B10(y, k)~,,) is nonsingular, 

00 in case IV if 201 i= -I(v, ~lW/4n, 

- [210 + Y(~l' v In(lyl x+/2)v~1)/4nJ/I(v, ~1)12 

in case IV if 201 = -I(v, ~lW /4n. 

PROOF. Denoting the limit e ~ 0 of e[l + By,.(k)r1 by Dy(k) we obtain from the 
resolvent equation (2.2.21) and from Lemmas 2.2.2 and 2.2.4-2.2.7 that 

n-lim (Hy,.,y - k2fl = Gy.k,y - Aik)Dy(k)Cik), 
• .!-o 

k2 E p(Hy,IZ,y), 1m k > O. (2.2.56) 

The explicit form of Dy(k) and a comparison with (2.1.17) then completes the proof. 

• 
At this point remarks similar to that after Theorem 1.2.5 apply. In addition, 

we would like to mention that the convergence to point interactions can 
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be viewed as a variant of Klauder's phenomenon [292J: In fact, assume 
e2alxl V E R for some a > 0 and let V be continuous and monotonously 
decreasing for Ixl ~ Ro for some fixed Ro > O. Then, in cases II and IV for 
y = 0 and in case II with AO 1 = -I (v, ~W /4n and in case IV with Ao 1 = 
-I(v, ~lW/4n for y =1= 0, we obviously get 

lim A(e, ye In *-2 V«x - y)/e) = 0 for all x =1= y (2.2.57) 
• .).0 

but 

n-li~ (Hy,.,y - k2r 1 = (Hy,a,y - k2r 1 =1= (Hy,y - k2rl, 
.... 0 

k2 E C - IR . 
(2.2.58) 

1.2.3 Stationary Scattering Theory 

In analogy to Sect. 1.4 we develop scattering theory for Coulomb-plus point 
interactions and prove that scattering quantities corresponding to Hy,.,y 
converge to those of Hy,a,y as e ! O. 

We start with stationary scattering theory for the pair (Hy,a,y, Hy,y)' Again 
we first exploit the rotational symmetry of the problem and mainly treat the 
case I = 0 because of the s-wave nature of the point interaction in Hy,a,y' The 
analog of (1.4.1) now reads (cf. (2.2.6» 

I/Iy,o,a(k, r) = e-ny/4kr(1 + (iy/2k» {F~?J(k, r) 

+ [41t(x - yF(iy/2k)rl G~?M - k, r)}, 

k > 0, -00 < a ~ 00, r ~ 0, y E IR, (2.3.1) 

where F(iy/2k) has been defined in (2.1.19). The functions I/Iy,O,a(k, r) fulfill (cr. 
(2.1.9) and (2.1.10» 

-4na(I/Iy,o,a(k»0 + (I/Iy,O,a(k»l = 0, 

-I/I;,o,a(k, r) + yr-1l/ly,o,ik, r) = Pl/ly,o,a(k, r), r > 0, 

lim lim e-i(k+i.)r'+(iY/2k)ln[2(k+i.)r'l[h - (k + ie)2J-l(r r') = ./, (k r) 
1',0,(1 ,Y'y, O,a: , , 

e.J..O r'~oo 

r ~ 0; k > 0, -00 < a ~ 00, y E IR. (2.3.2) 

Hence I/Iy,o,a(k, r) are generalized eigenfunctions of hy,o,a' For I ~ 1 we obtain 
(cf. (2.2.6» 

I/Iy,l(k, r) = e-ny/4k(r(21 + 2)tl r(l + 1 + (iy/2k»(2k)1 F;??(k, r), 

k, r > 0, y E IR, I = 1, 2, ... , (2.3.3) 

as generalized eigenfunctions associated with hy,l' 1= 1,2, .... The asymptotic 
behavior of I/Iy,o,a(k, r) as r -+ 00 then reads 

I/Iy,o,ik, r) r~<Xl k-leiiy.o .• (k) sin[kr - (y/2k) In(2kr) + Oy,o,a(k)], 

k > 0, -00 < a ~ 00, y i IR, (2.3.4) 
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where the total phase shift Oy,O,a(k) splits up into 

Oy,o,a(k) = Dy,o(k) + o~~o,a(k), 
Here 

k > 0, -00 < rx ::;; 00, y E IR. (2.3.5) 

Dy,o(k) = arg r(1 + (iy/2k)), k > 0, y E IR, (2.3.6) 

denotes the pure Coulomb s-wave phase shift and the Coulomb modified phase 
shift o~~o,a(k) is given by 

e2iO~~o."(k) = 1 + 2niy(e"y/k - 1)-1 [4nrx - yF(iy/2k)rl, 

k > 0, -00 < IX ::;; 00, y E IR. (2.3.7) 

For 1 2:': 1, we obtain the ordinary Coulomb phase shifts 

Dy,l(k) = arg r(l + 1 + (iy/2k)), 

1 = 1,2, .... 

k> 0, Y E IR, 1 = 1,2, ... , 
(2.3.8) 

At this point it is again instructive to compare with the Coulomb modified 
effective range expansion for real-valued spherically symmetric potentials V 
obeying 

IX> dr re2ar J V(r)J < 00 for some a > 0. (2.3.9) 

This low-energy expansion reads (cr., e.g., [95], [96]) 

I 

k21 n [1 + (y/2km)2J{ ny(e"y/k - 1)-1 [cot D~~l(g, k) - i] 
m=1 

+ y[\}'(1 + (iy/2k)) -In(iJyJ/2k) + (ik/y)]} 

= -(a~~,(g)fl + rlr~~I(g)k2 + O(k4), 

k 2:': 0, y, g E IR, 1 = 0, 1, ... , (2.3.10) 

where the right-hand side of (2.3.10) is real analytic in P near k2 = ° and 
D~~,(g, k) represents the Coulomb modified phase shift associated with the 
Schrodinger operator -d2/dr2 + l(l + 1)/r2 + y/r + gV(r). In analogy to the 
short-range case y = 0, the coefficients a~~l(g) and r~~l(g), 1 = 0, 1, ... , are called 
Coulomb modified partial wave scattering lengths and effective range param
eters, respectively. 

The fact that 

ny(e"y/k - lrl[cot o~~o,a(k) - i] + y[\}'(1 + (iy/2k)) -In(iJyJ/2k) + (ik/y)] 

= 4nrx + y [\},(1) + \}'(2)], (2.3.11) 

1 = 1,2, ... 

for the Coulomb-plus point interaction Hamiltonian Hy,a,y shows that the . 
Coulomb modified effective range expansion for this interaction is already 
exact in zeroth order with respect to k2• In particular, the s-wave Coulomb 
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modified low-energy parameters read 

o;~~o, .. = -{4noc + y['I'(1) + 'I'(2)]}-1, 

~~~o, .. == 0, 
(2.3.12) 

and all low-energy parameters vanish identically in higher partial waves 1 = 1, 
2, .... This proves that the point interaction in Hy, .. ,y is a zero-range as well 
as s-wave (1 = 0) interaction. 

Next we introduce the scattering wave function associated with Hy, .. ,y 

'I'y, .. ,y(kw, x) = eikwY'l'y(kw, x - y) + [4noc - yF(iy/2k)rl . 

'e-ny/4kr(1 + (iy/2kWe ikwY lx - yrl 1f"_iY/2k;I/2(2ie-ink lx - yl), 

k> 0, WE S2, -00 < ex :::;; 00, x, y E ~3, x "I: y, (2.3.13) 

where 'I'y(kw, x) denotes the pure Coulomb scattering wave function 

'I'y(kw, x) = e-ny/4kr(1 + (iy/2k»e ikWX IFI « -iy/2k); 1; i(k Ixl - kwx», 

k > 0, WE S2, Y E~. (2.3.14) 

A comparison of (2.3.13) with (2.3.1) and (2.3.3) then shows that 

e-ikwY'l'y, .. ,y(kw, x) = 4nlx - yl-ll/1y,O, .. (klx - yI)Yoo(w)Yoo(wJ 

00 1 

+ 4nlx - yrl L L i'l/ly,,(klx - yl)Y;m(w)Y;m(wx), 
1=1 m=-I 

k > 0, -00 < OC :::;; 00, y E~, x "I: y, Wx = x/lxi, (2.3.15) 

which follows from the well-known partial wave expansion 

<Xl 1 

'I'y(kw, x) = 4n Ixl-l L L i'l/ly,,(k, r) Y;m(w) Y;m(wx), 
1=0 m=-I 

k > 0, y E~. 

(2.3.16) 

The Coulomb modified on-shell scattering amplitude It~~jk, w, w') correspond
ing to the pair (Hy, .. ,y, Hy,y) is then defined by 

./sc (k w w') = lim Ixle-iklxl+(iY/2k)ln(2klxl). 
T"I,a.,y , , 

Ixl-+oo 
Ixl-1x=w 

. ['I' (kw' x) - eikw'Y'l' (kW' x - y)] 
)"a,Y' "I' 

= e-ny/2kr(1 + (iy/2k»2[4noc - yF(iy/2k)rl eik(w'-w)y, 

k > 0, w, w' E S2, w"l: w', -00 < ex :::;; 00, y E ~3, Y E~. (2.3.17) 

The unitary on-shell scattering operator g;" .. jk) in L2(S2) finally reads 

g;" .. ,y(k) = Syjk) + 2ike-ny/2kr(1 + (i'l'/2k»2[4noc - 'l'F(i'l'/2k)rl . 

. (e-ik(o)y Yoo , . )e-ik(o)y Yoo , 

k > 0, -00 < ex :::;; 00, y E ~3, Y E~, (2.3.18) 
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where ([480], p.198) 

Sy,y(k) = 'fy-1(k) [r(t + (L 2 + *)1/2 - (iy/2k))r 1 r(t + (U + *)1/2 

+ (iy /2k)) 'fy(k) 

00 00 

= 'fy-1 (k) EB EB arg r(l + 1 + (iy/2k)) 'fy(k), 
1=0 m=-l 

k > 0, y E ~3, Y E~, (2.3.19) 

denotes the pure Coulomb on-shell scattering operator in L2(S2) (with L2 the 
square of the angular momentum operator and ('fy(k)!fo)(w) = e-ikWY!fo(w), 
!fo E L 2(S2)). 

Next we briefly describe stationary scattering theory associated with the 
Coulomb-type Hamiltonian By,e,y. Assume V to be real-valued and 

for some a> ° 
for the rest of this section and introduce in L 2(~3) 

<I>;,.jkw, x) = u.(x)'I'y(kw, x), 

(2.3.20) 

<I>;'.jkw, x) = v.(x)'I'y( - kw, x); e, k > 0, WE S2, Y E ~3, Y E ~, 
(2.3.21) 

where we recall that 

u.(x) = u((x - y)/e), v.(x) = v((x - y)/e), e > 0, yE ~3. (2.3.22) 

The transition operator ty,.(k) then reads 

ty,.(k) = e- 2 A(e, ye In e)[1 + e-2 A(e, ye In e)u.Gy,kV.rl, 

0< e < eo, 1m k > -a/eo, k2 ¢ Iffy,.. y E~, (2.3.23) 

where A(', .) has been introduced in (2.2.12) and the exceptional set Iffy,. is 
given by 

Iffy,. = {P 2:: 0IA(e, ye In e)uG.y,.kv!foy,. = -!foy,. for some 

!foy,. E L2(~3), !foy,. "# 0, k ~ O}, e > 0, y E~. (2.3.24) 

Due to condition (2.3.20) Iffy,. is discrete and a compact subset of Lebesgue 
measure zero [11]. The Coulomb modified on-shell scattering amplitude 
h~~jk, w, w') corresponding to (By,.,y, By,y) is then defined as 

fy~~jk, w, w') = -(4nt1(<I>;'.jkw), ty,.(k)<I>;'.jkw')), 

e, k > 0, k2 ¢ Iffy,.. w, W' E S2, Y E ~3, Y E~, (2.3.25) 

and the unitary on-shell scattering operator Sy,.jk) in L2(S2) associated with 
By,.,y then reads 

(Sy,.,y(k)!fo)(w) = (Sy,y(k)!fo)(w) - (k/2ni) [ dw' g~jk, w, w')!fo(w'), JS2 
!fo E L2(S2), e, k > 0, k2 ¢ Iffy,.. WE S2, Y E ~3, Y E~. (2.3.26) 

Now we are in a position to derive the main results of this section. 
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Theorem 2.3.1. Let e2al 'IVE R for some a > ° be real-valued and assume 
case I. Then for e > ° small enough 

-4ne1ty/2k r(1 + (iy/2kn-2eik«()J-()J')Yh~~,y(k, w, w') 

= e(v, (1 + uGOV)-lU) + O(e2 In e), 

k > 0, y E 1R3, Y E IR. (2.3.27) 

PROOF. The expansion (2.3.27) immediately follows from Lemma 2.2.4 and 

'I'.~(ekw, x) = e-ny/4kql ± (iy/2k)){1 + iekwx + [ey(lxl =+= wx)/2] + O(e2 )}, 

e ~ 0, k > 0, Y E IR, (2.3.28) 

since after a translation x ..... x + y and a scaling transformation x ..... ex, using 
(2.2.20), (2.3.25) takes on the form 

fy~~jk, w, w') = -(4nr1 e-ik(w-w')Y }.(e, ye In e)' 

(2.3.29) 

• 
Theorem 2.3.2. Let e2al 'l V E R for some a > ° be real-valued and assume 
case II. 

(i) If A.01 = -I(v, tfoW /4n we get for e > ° small enough 

-4ne"y/2k r(1 + (iy/2kn-2eik«()J-()J')Yfy~~,y(k, w, w') 

= -4ne1tY/2kr(1 + (iy/2kn-2eik«()J-()J')Yfy~~,y(k, w, w') 

+ (eA.10 + (ye In e)A.01 ) <B10 ) -ll(v, tfoW + e(v, Tu) 

+ iek<BlO ) -1 [(v, tfoHtfo, w' xv) - (wxv, tfoHtfo, v)] 

+ ey<B10)-1[(v, tfo)(tfo, (lxl - w'x)v) + ((Ixl + wx)v, tfo)(tfo, v)]/2 

- e<B10)-1[(v, tfo)(~, B10Tu) + (v, TB1otfo)(tfo, v)] 

- (yein e) <B10 ) -1 [(v, tfo)(~, B01 Tu) + (v, TBo1 tfo)(tfo, v)] 

- <B10 ) -21(v, tfoW [e<B20 ) + (ydn e) <Bll ) + e(y In e)2 <B02 )] 

+ <B10 )-21(v, tfoW{e<B10 TB10 ) 

+ (ydne)<[BlO TBo1 + B01 TB10J) 

+ e(y In ef<Bo1 TBo1 )} + O(e2(ln e)3), 

k > 0, !Y. = -A.1ol(v, tfoW 2, y E JR3, Y E JR, (2.3.30) 

where 

<B10(Y, k) = A.10 + [yF(iy/2k) I (v, tfoW /4n] + [y(tfo, v In(lylx+/2)vtP)/4n], 
(2.3.31) 
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+ [A10I'(tP, v In(ll'lx+/2)vtP}/4n] 

+ [1'2 In(2k/ill'l)(tP, v(x+ + x_)vtP}/16n] 

+ [1'2(tP, v In(11'1 x+/2)(x+ + x_)v<fo}/16n] 

- [k2 {(1 + (il'/2k))(il'/2k) ['1'(3) - '1'(1) - t 

- (1 + (iy/2k)fl] - i} (tP, v x~~:_ vtP) /2n ] 

- {k2{[ -(iy/2k)2 ['1'(1 + (iy/2k))- '1'(1)- 'I'(2)+t]/2] 

+ i + (iy/2k)} (tP, v x+ ~ L vtP )/2n} 

- {P{[(iY/2k)2['I'(2 + (iy/2k)) - '1'(2) - '1'(3)]/2] 

+ (iy/4k) ['1'(1) - '1'(3) + (1 + (iy/2k)fl] + i}' 

(2.3.32) 

(Bll (y, k) > = All + [y(tP, v(x+ + x_ )vtP}/16n] + [A10 I (v, tPW /4n] 

+ [AOl y(tP, v In(IYI x+/2)vtP}/4n] 

+ [AOl yF(iy/2k)l(v, tPW/4n], (2.3.33) 

(B02 > = A02 + [A011(v, tPW/4n], (2.3.34) 

and vH(x+, x_)v denotes a Hilbert~Schmidt operator with integral kernel 

v(x)H(x+(x, x'), x_ (x, X'))V(X'), 

x±(x, x') = Ixl + Ix'l ± Ix - xii. (2.3.35) 

(ii) If AOl "# -I(v, tP)1 2/4n we get for B > 0 small enough 

-4ne"y/2k r(1 + (iy/2k)f2eik("'-"")Yfy~~jk, w, Wi) 

= (y In Brl (BOl > -ll(v, tPW - (y In B)-2(Bol > -2(B10> I(v, tPW 

+ O((1n Br3), k > 0, y E [R3, Y E [R - {O}, (2.3.36) 

where 

(2.3.37) 

PROOF. Follows directly from Lemma 2.2.5, (2.3.28), and (2.3.29). • 
Theorem 2.3.3. Let e2al ' l V E R for some a > 0 be real-valued and assume 
case III. If AOl "# 0 or. AOl = 0 and (~l' BlO (y, k)tPd, I, I' = 1, ... , N, is 



72 1.2 Coulomb Plus One-Center Point Interaction in Three Dimensions 

nonsingular we get for e > 0 small enough 

-4ne"y/2kr(1 + (iy/2kn-2eik(ru-ru')Yfy~~jk, w, w') 

= e(v, Tu) + O((e In e)2), k > 0, y E [R3, I' E [R - {O}. (2.3.38) 

PROOF. A straightforward consequence of Lemma 2.2.6, (2.3.28), (2.3.29), and 
Pu=O. • 

Theorem 2.3.4. Let e2al 'l V E R for some a > 0 be real-valued and assume 
case IV and (1.2.84). 

(i) If AOl = -I(v, tPIW/4n we get for e > 0 small enough 

-4ne"y/2k r(1 + (iy/2kn-2eik(ru-ru')Yfy~~jk, w, w') 

= -4ne"y/2k r(1 + (iy/2kn-2eik(ru-ru')Yly~~jk, w, w') 

N 

+ (Aol yIn etl<Blo)lll(v, tPIW L I<BIO )1I1 2 + O((ln et2), 
1=2 

where 

<BIO(y, k)ll = AlO + [yF(iy/2k)l(v, tPdl 2/4nJ 

+ [y(tPl' v In(lylx+/2)vtPd/4nJ, (2.3.40) 

<BlO(y, k)l1 = y(tPl' v In(lyl x+/2)vtPI)/4n, I = 2, ... , N. 

(ii) If AOl -=I- -I(v, tPIW/4n we get for e > 0 small enough 

-4ne"y/2k r(1 + (iy/2kn-2eik(ru-ru')Yfy~~,y(k, w, w') 

= (yIn e)-l( <BOI > )It 1 (v, tPIW 
N 

- (yIn et21(v, tPIW L «BOl ) )'ll <BIO)ll'( <BOl»)ft 
1.1'=1 

k > 0, y E [R3, I' E [R - {O}. (2.3.41) 

PROOF. Again an immediate consequence of Lemma 2.2.7, (2.3.28), (2.3.29), 
(v, tPl) #- 0, (v, (M = 0, 1 = 2, ... , N. • 

By looking at Theorems 2.3.1-2.3.4 one observes that the w-dependent 
terms are suppressed by a factor of e. 

Finally, we summarize the corresponding expansion for the on-shell scatter
ing operator Sy, •. y(k): 

Theorem 2.3.5. Let e2al ' l V E R for some a > 0 be real-valued and assume 
(1.2.84). Then, for e > 0 small enough, we obtain the norm convergent 
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expansions 

Sy,e.y(k) = Sy,y(k) 

+ (ek/2ni)e-"y/2kr(1 + (iy/2k))2(V, (1 + uGovt1 u)' 

'(e-ik(')YYoo , ')e-ik(')YYoo + O(e2 ln e) in case I, 

k > 0, y E 1R3, Y E IR. (2.3.42) 

Sy,IZ,y(k) = ~'IZ,y(k) + O(e(ln e)2) in case II if A01 = -I(v, tPW /4n, 

k > 0, IX = - AlO I(v, tPW2, y E 1R3, Y E IR, (2.3.43) 

Sy,.,,(k) = Sy,y(k) 

+ (y In et1(k/2ni)e-"y/2kr(1 + (iy/2k))2(Bo1 > -ll(v, tPW· 

. (e-ik(.)y Yoo , . )e-ik(')Y Yoo + O((ln et2) 

incasellif A01 #- -1(v,tPW/4n, 

k > 0, y E 1R3, Y E IR - {O}. (2.3.44) 

Sy,.,,(k) = Sy,,(k) 

+ (ek/2ni)e-"Y/2kr(1 + (iy/2k))2(v, Tu)(e-ik(')Y Yoo , . )eik(')Y Yoo 

+ O((e In ef) in case III if A01 #- 0 or A01 = 0 and 

(~Io B10(y, k)tP,,), I, I' = 1, ... , N, is nonsingular, 

k > 0, y E 1R3, Y E IR - {O}. (2.3.45) 

Sy,.,y(k) = ~,IZ,y(k) + O((ln e)-l) in case IV if A01 = - I(v, tP1W/4n, 

k > 0, IX = -A lO l(v, tP1W2, y E 1R3, Y E IR - {O}. (2.3.46) 

Sy,.,y(k) = Sy,y(k) 

+ (y In e)-1(k/2ni)e-"y/2kr(1 + (iy/2k))2( (B01 > )It I(v, tP1W, 

'(e-ik(')YYoo , ')e-ik(')YYoo + O((ln e)-2) 

in case IV if A01 #- -I(v, tPdI 2/4n, 

k > 0, y E 1R3, y E IR - {O}. (2.3.47) 

Again the expansion coefficients in Theorem 2.3.5 become particularly 
simple by choosing y = O. We also emphasize that only in cases II and IV 
(i.e., if H = - A + V has a zero-energy resonance) if, in addition, A01 = 

-I(v, tPW/4n(resp. A01 = -I(v, tP1W/4n) the limits e!O of h~~,Y and S1,"Y are 
nontrivial and coincide with 11,IZ,y and ~,IZ,y with IX given by (2.2.55). The 
coefficients (4nt1(v, (1 + uGOV)-lU) and (4nt1(v, Tu) infy,e.y in cases I and III 
represent the scattering length of the short-range Hamiltonian H = - A + V 
[11]. 
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As in Sects. 2.1 and 2.2 the above results extend to complex point inter
actions with 1m ex < O. 

Notes 

Section 1.2.1 
Most of the material of this section is taken from Albeverio, Gesztesy, H0egh
Krohn, and Streit [22]. The operator hy•o •a has first been discussed by ReIlich 
[392] (cf. also Appendix D). In particular, the boundary values ¢lo, ¢l1 in (2.1.10) 
and the determination of (}'(hy,o,a) for y < 0 are due to [392]. The resolvent 
equation (2.1.17) first appeared in Zorbas [512]. 

Section 1.2.2 
The estimates needed for the Coulomb Green's function can be found in [96], 
[99], and [231]. The rest of this section is entirely taken from [22], Sect. 3. 
Approximations for other long-range + "A.!5"-systems appeared in [420]. 

Section 1.2.3 
The first part of this section concerning stationary scattering theory for 
Coulomb plus point interactions extends Sect. 2 in [22]. Stationary scattering 
theory for Coulomb-type Hamiltonians can be found in [11], [99], and [199]. 
Theorems 2.3.1-2.3.5 are again taken from [22]. For applications concerning 
the relation between low-energy parameters for charged and neutral particles, 
cf. [15], [22], [207], [350]. Applications concerning level shifts in mesic atoms 
appeared in [22]. 



CHAPTER 1.3 

The One-Center d-Interaction in 
One Dimension 

1.3.1 Basic Properties 

There are several ways of introducing the quantum Hamiltonian describing 
a <>-interaction in one dimension. Following our treatment in Sect. 1.1, we 
mainly discuss the approach based on self-adjoint extensions of densely 
defined symmetric operators. 

For that purpose we define the closed and nonnegative operator By in the 
Hilbert space L2(1R) as 

. d2 • 22 
Hy = - dx2 ' ~(Hy) = {g E H ' (1R)lg(y) = O} for some y E IR, (3.1.1) 

and note that by the general theory of ordinary differential operators ([158J, 
Ch. XIII.2; [353J, Ch. V.17) its adjoint is given by 

Y E IR, (3.1.2) 

where Hm,lI(n) denote corresponding Sobolev spaces. By inspection the 
equation 

1m k > 0, (3.1.3) 

has the unique solution 

I/I(k, x) = eiklx-yl, 1m k > O. (3.1.4) 

75 
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Thus fly has deficiency indices (1, 1) and by Theorem A.1 all self-adjoint 
extensions H8.y of fly are given by the one-parameter family 

H ( ./, i8./,) H' .. /. . i8./. 8,y g + C'l'+ + ce '1'_ = yg + IC'l'+ - Ice '1'_, e E [0, 2n), y E JR, 
(3.1.5) 

l/I + (x) = _i_eiJ±!lx-yl, - 2J±i ImJ±i >0. (3.1.6) 

Equations (3.1.5) and (3.1.6) imply f0(H8,y) ~ H2,l(JR). Moreover, a simple cal
culation using (3.1.1) and (3.1.6) yields (we define t,b(y±) = lim • .(.ot,b(y ± e)) 

(g + cl/l+ + ceiBl/I_),(y+) - (g + cl/l+ + ce i8 l/1_)'(y-) = -c(l + ei8 ) 

where we abbreviated 

(3.1.8) 

If e varies in (0, 2n), a varies in JR (e i 2n corresponds to a i +(0) and from 
now on we parametrize all self-adjoint extensions of fly with the help of a. 
Thus we get 

Theorem 3.1.1. All self-adjoint extensions of fly are given by 

d2 

-AIl,y = - dx2 ' 

f0( -AIl,y) = {g E H2,l(lR) n H2,2(1R - {y} )Ig'(y+) - g'(y-) = ocg(y)}, 

-00 < a ::s; 00. (3.1.9) 

The special case Q( = ° just leads to the kinetic energy Hamiltonian -A in 
L 2 (JR), viz. 

(3.1.10) 

whereas the case a = 00 yields a Dirichlet boundary condition at y and hence 
decouples ( -00, y) and (y, (0), viz. 

f0( -Aoo,y) = {g E H2,l(JR) n H2,2(JR - {y} )Ig(y) = o} 

= H5,2(( -00, y)) EEl H5,2((y, (0)), 

-Aoo,y = (-AD-) EEl (-AD+)' 

(3.1.11) 

(3.1.12) 

where -AD ± denotes the Dirichlet Laplacian on (y, ±oo) (see [391], p. 253) 

f0( -AD ±) = H5,2((y, ±oo)). (3.1.13) 
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PROOF. By the arguments sketched above one infers 

Ho,y S;; -~.,y (3.1.14) 

with ex given by eq. (3.1.8). But -~.,y is easily seen to be symmetric, which completes 
the proof. • 

By definition - Ll",y describes a b-interaction of strength a centered at y E !R. 

In other words, eq. (3.1.9) is the precise formulation of the formal expression 
-d2/dx2 + ab(x - y) used in the physics literature. This is seen as follows: 
Let formally V(x) = ab(x - y) and "integrate" the Schrodinger equation 
-1jI"(x) + ab(x - y)ljI(x) = EIjI(x) from x = y - B to X = Y + B to obtain 
-1jI' (y + B) + 1jI' (y - B) + aljl(y) = E g~~ dx ljI(x). If etends to zero we obtain 
1jI' (y + ) - 1jI' (y - ) = aljl(y) which is precisely the boundary condition in (3.1.9). 
A careful physical interpretation of (3.1.9) exhibits characteristic differences 
to the three-dimensional case (cf. Ch. 1) since now a represents the coupling 
constant of the b-interaction whereas in three dimensions -4najust describes 
the inverse scattering length. 

In the following we summarize basic properties of -Ll",y: 

Theorem 3.1.2. The resolvent of - Ll",y is given by 

(- Ll",y - k2r 1 = Gk - 2ak(ia + 2kr1(Gk(- - y), . )Gk(' - y), 

P E p( -Ll",y), 1m k > 0, -00 < a ~ 00, y E!R, (3.1.15) 

with integral kernel 

(-Ll",y - k2r 1(x, x') = (i/2k)eiklx-x'l + a(2krl(ia + 2krleik[ix-yl+ly-x'll, 

k2 E p( -Ll",y), 1m k > 0, x, x' E!R, (3.1.16) 

where 

Gk(x - x') = (i/2k)eiklx-x'l, 1m k > 0, (3.1.17) 

is the integral kernel of( -,:1 - k2)-1 in L2(!R). 

PROOF. From (3.1.17) we obtain the general structure of (3.1.15) by (3.1.6) and 
Theorem A.2. To be more precise, we want to verify Krein's formula (A.4) with 
B = -~.,y, C = -~, and 1(k2) = 2kex/(iex + 2k) (we already know that ¢i(k2, x) = 
(i/2k)eiklx-yl). To this end, let g E L2(1R) and define 

h.(x) = (( - ~ - k2r 1 g)(x) + iex ~ex2k (¢i(k2), g)¢i(k2, x) = ;k t dx' eiklx-x'lg(x') 

+ ex r dx' eikly-x'lg(x')eiklx-yl 
2k(iex + 2k) JR ' 1m k > 0, k oF -iex/2. 

(3.1.18) 

Clearly, h. E H2, 1(1R) n H 2,2(1R - {y}) and by a straightforward computation 

h~(y+) - h~(y-) = (iex : 2k) t dx' eikly-x'lg(x') = exh.(y). (3.1.19) 
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Equation (3.1.19) then implies that h. e Pfi( -~.,y) and from 

«-~.,y - k2 )h.)(x) = -h;(x) - k2 h.(x) = g(x), 

we obtain (3.1.15). 

x e IR - {y}, (3.1.20) 

• 
As in the three-dimensional case we add additional domain properties of 

- .1.,y and point out the locality of the one-center b-interaction: 

Theorem 3.1.3. The domain ~( - .1.,y), -00 < a ::;; 00, y E IR, consists of all 
elements t/I of the type 

(3.1.21) 

where ~ E ~(-.1) = H2,2(1R) and k2 E p( -.1.,y), 1m k > 0. The decomposi
tion (3.1.21) is unique and with t/I E ~(-.1.,y) of this form we obtain 

( - .1.,y - k2)t/I = ( -.1 - k2)¢Jk' (3.1.22) 

Next, let t/I E ~(- .1.,y) and suppose that t/I = 0 in an open set U ~ IR. Then 
-.1.,yt/l = 0 in U. 

PROOF. Since the proof is analogous to that of Theorem 1.1.3 we omit the details . 

• 
Finally, we discuss spectral properties of - .1.,y: 

Theorem 3.1.4. Let -00 < a ::;; 00, y E IR. Then the essential spectrum of 
- .1.,y is purely absolutely continuous and covers the nonnegative real axis 

O"sJ - .1.,y) = 0. (3.1.23) 

If -00 < a < 0, -.1.,y has precisely one negative, simple eigenvalue, i.e., its 
point spectrum O"p( - ~<x,y) reads 

-00 < a < 0, (3.1.24) 

with 

-00 < a < 0, (3.1.25) 

its strictly positive (normalized) eigenfunction. If a ~ 0 or a = +00, -~.,y 

has no eigenvalues, 

a ¢ ( -00,0). (3.1.26) 

PROOF. Since one can follow the proof of Theorem 1.1.4 step by step we omit any 
details. • 

The pole structure (ia + 2ktl of (3.1.16) with respect to k not only deter
mines the point spectrum but also gives the existence of resonances for the 
b-interaction Hamiltonian - .1.,y: If a ~ 0, then - .1.,y has a simple resonance 
at ko = - ia/2 with corresponding resonance function t/lko(x) = e·lx-yl/2, a ~ ° 
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(note that for 0( =F 0 the apparent first-order pole at k = 0 actually cancels in 
(3.1.16». 

An alternative way of introducing !5-interactions of strength 0( centered at 
y can be obtained from the theory of quadratic forms. The form Q .. ,y in L2(1R) 
defined as 

Q .. jg, h) = (g', h') + O(g(y)h(y), 2)(Q .. ,y) = H2,l(IR), 0(, Y E IR, (3.1.27) 

is easily seen to be densely defined, semibounded, and closed. The unique 
self-adjoint operator associated with Q .. ,y is just given by - ~ .. ,y (see, e.g., [389], 
p. 168, [41], [188], [510], [511], [512]). Note that this approach does not 
work in three dimensions since there is no appropriate closable form in this 
case. Another possibility of defining !5-interactions is provided by the use of 
local Dirichlet forms as developed in [32], [33] (cf. Appendix F): Consider in 
U(IR; tP:',y dx) the energy form 

B .. ,y(g, h) = t dx tP:'y(x)g'(x)h'(x), 2)(B .. ,y) = CJ(IR), (3.1.28) 

where 

tP .. ,y(x) = e .. !X-yI!2, 0(, y E IR. (3.1.29) 

It follows that BlZ,y is closable and that tP;,!( - ~ .. ,y + (0(2/4»tP .. ,y is the unique 
self-adjoint operator associated with its closure. As shown in Sect. 1.1 and 
Appendix F this method is also applicable in the three- and two-dimensional 
cases. 

We finally note that the above results are not confined to self-adjoint 
extensions (0( E IR) of iIy, but easily generalize to accretive extensions of iiIy 
(1m 0( < 0) and thus to complex !5-interactions. 

1.3.2 Approximations by Means of Local Scaled 
Short-Range Interactions 

In this section we show how to approximate - ~ .. ,y by means of scaled 
short-range Hamiltonians in the norm resolvent sense. We first introduce 
some notations. Let 

(3.2.1) 

G (x X ') = ~eik!X-X'! 1m k > 0 x x' E IR 
k' 2k' '" 

(3.2.2) 

denote the "free" resolvent and its integral kernel. If V E L1(1R) is real-valued 
(which we assume from now on) we define 

v(x) = W(x)1 1/2 , u(x) = I V(x) I 1/2 sgn[V(x)] (3.2.3) 

such that uv = V. Then we note 
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Lemma 3.2.1. Let VE U(IR). Then V is form compact with respect to -A, 
i.e., 

E >0. (3.2.4) 

In particular, 

1m k ~ 0, k # 0, (3.2.5) 

and 

1m k > 0. (3.2.6) 

If, in addition, (1 + 1·1)1 +.l V E U (IR) for some J > 0, then 

1m k ~ 0, k # 0. (3.2.7) 

PROOF. Equations (3.2.4) and (3.2.5) follow from 

41~12 t2 dx dx'lV(x)le-2Imklx-x'llV(x')1 < 00, 1m k 2 0, k"# O. (3.2.8) 

Equation (3.2.6) is discussed in [391], p. 384, and (3.2.7) is proved in [438], p. 72. 

• 
Next we introduce 

v(x) = v(x - 6-1y), u(x) = u(x - 6-1y), 6 > 0, y E H, (3.2.9) 

and 

1m k > 0, (3.2.10) 

where A is real-analytic near the origin with 2(0) = 0. By the estimate (3.2.8), 
13(6, k) extends to a Hilbert-Schmidt operator for 1m k ~ 0, k # 0, and due 
to (3.2.4) the form sum 

Hy(6) = -A + A(6)V(' - 6-1y), 6> 0, y E IR, (3.2.11) 

is well defined (cf. Appendix B). Moreover, from Theorem B. 1 (b) we infer the 
resolvent equation 

(Hy(6) - k2r 1 = Gk - A(6)Gk v[1 + 13(6, k)r1uGk , 

k2 E p(Hy(6)), 1m k > 0. (3.2.12) 

In addition, we introduce the unitary scaling group 

(3.2.13) 

and the family He,y of self-adjoint operators 

He,y = 6-2UeHy(6)Ue-1 = -A + A(6)6-2V((. - Y)/6), 

6 > 0, y E IR. (3.2.14) 

In order to discuss the limit of He,y as 6! ° it is convenient to define Hilbert-



1.3.2 Approximations by Means of Local Scaled Short-Range Interactions 81 

Schmidt operators A,(k), B,(k), C,(k), 8 > 0, with integral kernels 

A,(k, x, x') = Gk(x - y - 8X I )V(X' ), 1m k > 0, (3.2.15) 

B,(k, X, x') = 8-1 A(8)U(X) Gk(8(X - X'))V(X ' ), 1m k ;:::.: 0, k =f. 0, (3.2.16) 

C.(k, X, x') = u(X)Gk(8X + y - x'), 1m k > 0. 

Then a translation x --+ x + (yi8), 8> 0, together with 

82 U, Gk U,-1 = Gk/, 

leads to 

(H"y - k2r1 = 82 U,[Hy(8) - (8k)2r1 U.- 1 

= Gk - 8-1 A(8)A,(k) [1 + B,(k)r1 C,(k), 

(3.2.17) 

(3.2.18) 

8 > 0, k2 E p(H.,y), 1m k > 0, y E IR. (3.2.19) 

Convergence properties of A., B" and C, are summarized in 

Lemma 3.2.2. Define rank-one operators A(k), B(k), C(k), through their 
integral kernels 

A(k, x, x') = Gk(x - y)v(x' ), 1m k > 0, (3.2.20) 

B(k, x, x') = A'(O)Gk(O)U(X)v(x' ), 1m k ;:::.: 0, k =f. 0, (3.2.21) 

C(k, x, x') = u(x)Gk(y - x'), 1m k > 0. (3.2.22) 

Then, for fixed k, 1m k > 0, A.(k), B,(k), C.(k) converge in Hilbert-Schmidt 
norm to A(k), B(k), C(k), respectively, as 8 t 0. 

PROOF. Clearly, 

w-lim A,(k) = A(k), w-lim B,(k) = B(k), w-lim C,(k) = C(k) (3.2.23) 
• .1.0 ..1.0 • .1.0 

by dominated convergence. By Theorem 2.21 of [438] it suffices to prove 

lim IIA,(k)112 = IIA(k)lb lim IIB.(k)112 = IIB(k)1Iz, lim IIC.(k)112 = IIC(k)1I2, 
,.1.0 ,.1.0 • .J.o 

(3.2.24) 

which is obviously true. • 
Now we are prepared for the main result of this section and state 

Theorem 3.2.3. Suppose VEL 1 (IR) is real-valued and y E IR. Then, if k2 E 

p( - i\~,y), we get P E p(H"y) for 8 > ° small enough and H.,y converges to 
- i\~,y in norm resolvent sense 

n-lim (H - k2)-1 = (-i\ _ k2)-1 B,Y ~,Y' 
e+O 

Y E IR, (3.2.25) 

where 

oc = A'(O) t dx V(x). (3.2.26) 
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PROOF. From (3.2.19) and Lemma 3.2.2 we conclude 

n-lim (H.,y - k2)-1 = Gk - A.'(O)A(k)[l + B(k)r1 C(k), 
d·o 

FEe -~, 1m k > O. (3.2.27) 

Now 

B(k) = A.'(O)Gk(O)(v, ')u (3.2.28) 

implies 

[1 + B(k)r1 = 1 - A.'(O) Gk(O) [1 + A.'(O)(v, u)Gk(0)r1(v, . )u, (3.2.29) 

and insertion of (3.2.29) into (3.2.27) gives (3.1.15) with ex = A.'(O) J n;! dx V(x). • 

In particular, H"y converges to - A as e! 0 if and only ifA'(O) J ~ dx V(x) = 0, 
i.e., if the J-interation at the point y has vanishing strength. We would like 
to emphasize that this kind of approximation scheme automatically yields 
interactions with finite strength, lal < 00. The case a = +00, corresponding 
to a Dirichlet boundary condition which completely separates IR into (-00, y) 
and (y, (0), is thereby excluded. 

In contrast to the three-dimensional case no zero-energy properties of 
H = - A + Venter into the above discussion. 

We now note that Theorem 3.2.3 has a simple interpretation in terms of 
"J-sequences": For smooth functions V the potential term in H"y may be 
written as 

[2'(0) + O(e)J~ vG(X - y)). (3.2.30) 

which converges to [2'(O)J~dx' V(x')]J(x - y) in the sense of distributions 
([197J, Ch. I.2J) as e! O. 

Of course, 2(e) need not be real-valued, The proof of Theorem 3.2.3 extends 
in a straightforward manner to the case of complex J-interactions (cf. the end 
of Sect. 3,1). We also remark that the above proof indicates another possibility 
of defining bound states or resonances of - Aa.y in terms of (simple) zeros of 
the Fredholm determinant 

det[1 + B(k)J = 1 + Tr[B(k)J = 1 + ;k 2'(0) t dx V(x) = 1 + (ia/2k) 

(3.2.31) 

(note that by (3.2.28) B(k) is of rank one). 
Consequences of Theorem 3.2.3 concerning convergence of eigenvalues 

and resonances and convergence of the scattering matrix are discussed 
in the following two sections. Here we only note that (3.2.25) implies 
strong convergence of the evolution groups e-itH"y to e-it(-A"y) uniformly 
with respect to t for t varying in compact intervals ([283J, p. 504) as 
e to. 
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1.3.3 Convergence of Eigenvalues and Resonances 

In this section we go one step further and prove convergence of eigenvalues 
and resonances of H.,y towards that of - Aa,y as 8! 0, First, we note that 
Theorem B. 1 (b) applied to Hy(8) and H.,y immediately yields 

8 > 0, y E JR, (3,3.1) 

By Theorem 3,1.4 the same results hold in the limit 8! 0, 

O"ess( - Aa,y) = O"ess( - A) = [0, 00), -00 < IX ::;; 00, y E JR, (3.3.2) 

Having located the essential spectrum we now turn to a discussion of the 
discrete spectrum. 

A detailed analysis of B.(k) yields 

Theorem 3.3.1. Assume e2a!'! VEL 1 (JR) for some a > ° is real-valued and let 
y E JR. 

(a) If n-lim • .).o (H.,y - k2r 1 = ( - Aa,y - prt, k2 E p( - Aa,y) with IX < 0, 
- Aa,y has the simple eigenvalue Eo = k6 < 0, ko = - ilX/2 = 
-(i/2)A'(0) J II;! dx V(x) and for 8 > 0 small enough, O"(H.,y) n (-00,0) 
consists precisely of one simple eigenvalue E. = k; < 0 which is analytic 
in 8 near 8 = 0 

k. = iJ -E. = ko - ~).1I(0)8 t dx V(x) 

_~A'(0)28 t2 dx dx' V(x)!x - x'! V(x') + 0(82). 

(3.3.3) 

(b) If n-lim • .).o(H.,y - k2)-1 = (-Aa,y - k2)-1, k2 E p(-Aa,y) with IX = 
A' (0)$ II;! dx V(x) > 0, - Aa,y has no eigenvalues and for 8 > 0 small 
enough H.,y also has no negative eigenvalues. 

(c) If n-lim • .).o (H.,y - k2)-1 = Gk , k2 E p( -A), or equivalently, if IX = 
)"(0)$ II;! dx V(x) = 0, then as 8! 0, H.,y has at most one negative eigen
value E. = k; < 0 analytic in 8 near 8 = ° which is absorbed into the 
essential spectrum 

k. = iJ -E. = - ~).II(o)e t dx V(x) 

_~A'(0)2e t2 dx dx' V(x)!x - x'! V(x') + 0(e2 ). 

(3.3.4) 

PROOF. We first note that due to (3.2.19) and Theorem B.1(c), H.,y has an eigen
value E. = k; < 0 if and only if B.(k) has an eigenvalue -1, i.e., if 

B.(k.)¢>. = - ¢>., (3.3.5) 

and also the corresponding (geometric) multiplicity remains preserved. 
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Next, following [435], we decompose 

B.(k) = L.(k) + M.(k), k i= 0, 1m k > -a/eo, 0 S e < eo, (3.3.6) 

with 

i 
L.(k, x, x') = 2k e- I A(e)u(x)v(x'), kE IC - {O}, (3.3.7) 

M.(k, x, x') = 2ik e- I A(e)u(x) [ei.klx-x'i - l]v(x'), 1m k > -a/eo. (3.3.8) 

Obviously, M.(k) is analytic in (e, k) for lei small and 1m k > -a/eo, and one infers 
the (norm convergent) expansion 

1m k > -a/eo, 

N(x, x') = -tA'(O)u(x) Ix - x'i v(x') 

(3.3.9) 

(3.3.10) 

uniformly in kif k varies in compact subsets oflm k > -a/eo. Equation (3.3.9) and 
the formula ([438], p. 49) 

det(1 + A + B + AB) = det(1 + A) det(1 + B) (3.3.11) 

imply 

det[1 + B.(k)] = det[1 + M.(k)] det{1 + [1 + M.(k)rl L.(k)}. (3.3.12) 

One then concludes that k2 < 0 is an eigenvalue of H •. y if and only if 

det{1 + [1 + M.(k)r l L.(k)} = 1 + Tr{[1 + M.(k)rl L.(k)} 

Since [1 + M.(k)rl L.(k) has rank one and is analytic in e and k for lei small and 
1m k > -a/eo, k i= 0, det{1 + [1 + M.(k)r l L.(k)} is analytic with respect to e and 
k in the same domain [261]. The fact that ko is a simple zero of the Fredholm 
determinant 

det[1 + Lo(k)] = 1 + ~A'(O) r dx V(x) 
2k J~ 

(3.3.14) 

and 

det[1 + Lo(ko)] = 0, (3.3.15) 

proves by the implicit function theorem that in a neighborhood of (0, ko), 

det{1 + [1 + M.(k)r 1 L.(k)} has precisely one simple zero k. which is analytic in e 
near e = 0 

k. = ko + O(e). (3.3.16) 

By Theorems B.1(c) and B.2, E. = k; < 0 is a simple eigenvalue of H •. y" Inserting 

[1 + M.(k)rl = 1 - eN - [M.(k) - eN] + M.(W[1 + M.(k)rl (3.3.17) 

into (3.3.13), solving for k as a function of e yields (3.3.3). Since any solution k. of 
(3.3.13) obeys (3.3.16) part (a) is proved. 
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If ex = Ai (0) J IR dx Vex) > 0 then, for e small enough, any solution k. of (3.3.13) has 
1m k. < 0 which proves part (b). 

To prove (c) we multiply det[1 + Lo(k)] and det{1 + [1 + M.(k)T 1 L.(k)} by k. 
Then 

{k det[1 + Lo(k)]}lk=o = 0, 
o 

ok {k det[1 + Lo(k)]} = 1 (3.3.18) 

and analyticity of k det{1 + [1 + M.(k)T 1 L.(k)} near e = k = 0 again proves 
by the implicit function theorem that in a neighborhood of e = k = 0, 
k det{(1 + [1 + M.(k)T 1 L.(k)} has one simple zero k. which is analytic in e 

(3.3.19) 

and k; is a negative eigenvalue of H.,y iff 1m k. > 0 for e > O. The rest follows from 
the proof of part (a). • 

If, e.g., in Theorem 3.3,1(c) 2'(0) =f 0, J IR dx V(x) = 0, or if 2'(0) = 0, 
J IR dx V(x) =f 0,2"(0) =f 0, then kl =f 0 in (3.3.19)(J 1R2 dx dx' V(x) Ix - x'i V(x') 
is strictly negative if J IR dx V(x) = 0 [435J). 

Theorem 3.3.1 (a) and (c) describe the convergence of eigenvalues of He,y to 
those of -Lla,y. For resonances (contained in Theorem 3.3.1(b» the corre
sponding result reads 

Theorem 3.3.2. Let y E ~ and assume that e2al ' l VEL 1 (~) for all a > 0 
is real-valued. If n-limei-o (He,y - Pr1 = ( - Lla,y - P)-l with Q( = 
2'(0)JlR dx V(x) > 0, then -Lla,y has the simple resonance ko = -iQ(/2 = 
-(i/2)2'(0)J lR dx V(x) and, for e > 0 small enough, He,y has precisely one 
simple resonance ke' 1m ke < 0, near ko which is analytic in e near e = 0 and 
fulfills (3.3.3). Similarly, if Q( = 2'(0) J IR dx V(x) = 0, then, for e > 0 small 
enough, He,y has at most one simple resonance ke which is analytic in e near 
e = 0 and fulfills (3.3.4). 

PROOF, Starting with (3.3.6) the proof is identical to that of Theorem 3.3. 1 (a) and 
(c) with the only exception that now 1m k. < O. • 

In sharp contrast to the corresponding three-dimensional results in 
Sect. 1.3 zero-energy properties of H = - Ll + V played no role in Theorems 
3.3.1-3.3.3. In addition, there are no eigenvalues of He,y approaching infinity 
as e! O. 

1.3.4 Stationary Scattering Theory 

Finally, we develop scattering theory for J-interactions and prove conver
gence of the scattering matrix associated with He,y to that ofthe J-interaction 
Hamiltonian - Lla,y as e ! O. 

We start with the scattering wave functions of -Lla,y. Define 

'I' (k (1 x) = eikax - iQ(2k + iQ()-l eikay eiklx-yl GI.P , , , 

k :? 0, (1 = ± 1, -00 < Q( $; 00, x, Y E~. (3.4.1) 



86 1.3 The One-Center o-Interaction in One Dimension 

Then by inspection 

'l'a.y(k, (1, Y + ) = 'l'ajk, (1, Y - ), 

'I'~jk, (1, Y + ) - 'I'~.y(k, (1, Y -) = ct'l'a.y(k, (1, y), 

- 'I';.y(k, (1, x) = k2 '1'a.y(k, (1, x), x E IR - {y}, (3.4.2) 

lim lim (2k/i)e±i(k+i8)X'[ -~a.y - (k + is)2r1(x, x') = 'l'ajk, ± 1, x), 
8.l.0X'--++OO 

x E IR; k 2': 0, 

which shows that 'l'a.y(k, (1) are generalized eigenfunctions ([353], Ch. VI) 
associated with - ~a.y corresponding to left «(1 = + 1) and right «(1 = -1) 
incidence. The corresponding transmission and reflection coefficients from the 
left and right are then defined by 

~l.y(k) = lim e-ikx'I'a.y(k, + 1, x), 
X-'+OO 

x-+-oo (3.4.3) 

x-+-oo 

&£r (k) = lim e-ikX['I' (k -1 x) - e -ikx] 
Cl,y a,y'" 

x-++co 

where ~ljk) equals ~:y(k) because of time reversal invariance. Explicitly, we 
get 

~r (k) = (2k + ict)-12k = :!Ir (k) a,Y I%,Y , (3.4.4) 

(3.4.5) &£~jk) = - (2k + ictf1 icte2iky, 

9l~jk) = -(2k + ict)-l icte- Ziky ; k ~ 0, -00 < IX :s; 00, y E ~. (3.4.6) 

The unitary on-shell scattering matrix ~.y(k) in (;2 which is defined by 

[ :!I: y(k) 9l~jk)J 
~.y(k) = &£~:y(k) ~:y(k) , k 2': 0, -00 < ct :s; 00, y E IR, (3.4.7) 

then simply reads 

. -1 [ 2k ~ y(k) = (2k + lct) . 2'k . -uxe'y 
- icte- 2ikYJ 

2k ' 

k 2': 0, -00 < ct ~ 00, Y E IR. (3.4.8) 

We note that in the low-energy limit k -+ ° (resp. in the high-energy limit 
k-+oo) 

~jk) k--+Ol [_~ -~l Y E IR, -00 < ct·~ 00, ct =1= 0, 

ct, Y E IR. 
(3.4.9) 
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Obviously, ~,y(k) has a meromorphic continuation to all of C such that the 
pole of ~,y(k) coincides with the bound state (IX < 0) or resonance (IX> 0) of 
-L\/l,y" 

For an illustration of l~jkW == 1~~~)(kW, cf. Figure 40(a) [397] in 
Sect. 111.2.3, p. 275. 

The above approach is an entirely stationary one, the relation to time
dependent scattering theory is described in Appendix E. 

Next, we briefly discuss stationary scattering theory associated with H.,y" 
Let u and v be as in Sect. 3.2 and introduce in L 2(1R) the states 

CIl;'y(k, (1, x) = u.(x)eikaX, 

CIl+ (k (1 x) = v (x)e ikax . t,Y " £ , B > 0, k ~ 0, 
(3.4.10) 

where 

u.(x) = u«x - Y)/B), v.(x) = v«x - Y)/B), B > 0, Y E IR. (3.4.11) 

The transition operator t.(k) is then defined as 

t.(k) = B- 2 A(B) [1 + B-2 A(B)U.GkV.rl, 

B > 0, 1m k ~ 0, k =ft 0, k2 ¢ 8., (3.4.12) 

where A( . ) has been introduced in Sect. 3.2, 

8. = {k 2 E C - {O}IA(B)uG.kV<P. = -<P. for some <P. E L2(1R), <P. =ft 0, 1m k ~ O}, 

B > 0, (3.4.13) 

and the on-shell scattering amplitude J.,y,aa.(k) reads 

J.,y,aa.(k) = (2ik)-1(CIl: y(k, (1), t.(k)CIl;'y(k, (1'», 

B, k > 0, (1, (1' = ± 1, Y E IR. (3.4.14) 

(Using Jost function techniques one can show that 8. n (0, 00) = 0 (cf., 
e.g., [122], Ch. XVII).) The unitary on-shell scattering matrix S.,y(k) = 
[S.,y,aa.(k)]a,a'= ±1 in C2 associated with H.,y is then simply defined as 

S.,y,aa·(k) = (jaa' + J.,y,aa·(k), B, k > 0, (1, (1' = ± 1, Y E IR. (3.4.15) 

In particular, the transmission and reflection coefficients ([122], Ch. XVII) 
corresponding to H.,y are given by 

r.~ik) = S.,y, ++(k) = S.,y, __ (k) = r.:y(k), 

R~.ik) = S.,y,_+(k), R~jk) = S.,y,+_(k); B, k > 0, Y E IR. 
(3.4.16) 

Mter these preliminaries we are able to state our main result concerning 
the expansion of the on-shell scattering matrix S.,y(k) around its limit ~,y(k) 
aSB-O: 

Theorem 3.4.1. Assume VE Ll(lR) to be real-valued and let IX = 
A'(O) J ~ dx V(x), Y E IR. Then S.jk), k > 0, converges to ~jk) as B! 0. If, in 
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addition, e2al ' l VEL 1 (IR) for some a > 0, then S.,y(k) is analytic in 8 near 8 = 0 
and we obtain the expansion 

S.jk) .:'0 ~jk) + 8S~1)(k) + 0(82), a = 2'(0) t dx V(x), k > 0, 

(3.4.17) 

where 

S2~,++(k) = S2~, __ (k) = (2k + iafl{(2k + ia)-12ikA'(0)(v, Nu) 

-(2k + ia)-1(aj2)2"(0)(v, u) - (i/2)2"(0)(v, u) 

+ kA'(O) [(v, ux') - (vx, u)]}, 

S2~,+±(k) = (2k + ia)-le±2ikY {(2k + iaf12ikA'(0)(v, Nu) 

-(2k + ia)-1(aj2)2"(0)(v, u) - (ij2)2"(0)(v, u) 

± k2'(O) [(v, ux') + (vx, u)]}. 

(3.4.18) 

(3.4.19) 

Here the kernel of the Hilbert-Schmidt operator N has been defined in 
(3.3.10), and + or - on the right-hand side of (3.4.19) corresponds to the 
reflection coefficient from the left or from the right, respectively. 

PROOF. It suffices to treat the transmission coefficient T.:y(k) = T.~y(k) == T.jk). 
By a translation x -+ x + y and a scaling transformation x -+ ex, using (3.2.18) we get 

T.jk) = 1 + (2ikfl(<I>:y(k, + 1), t.(k)<I>;'ik, + 1)) 

= 1 + (2iekfl l(e)(vei•kx, [1 + l(e)uG.kvr l ue iekx'), e, k > 0, (3.4.20) 

where in obvious notation x and x' denote integration variables. Assume that 
e2al ' l VE U(~) for some a> O. Then . 

l(s)uGekv = (i/2k),l.'(0)(v, ')u - eN + e(i/4k)(v, ')u + 0(e2 ), k > 0, (3.4.21) 

is analytic in Hilbert-Schmidt norm around e = 0 (cf. the discussion following 
(3.3.6)). Applying formula (1.3.47) we immediately infer that [1 + l(s)uGekvrl and 
hence the right-hand side of (3.4.20) is analytic in e near e = O. The result (3.4.18) 
then simply follows by a straightforward Taylor expansion of all quantities in 
(3.4.20) with respect to e near e = O. Similarly, if VEL I (IR), one proves by dominated 
convergence that 

Thus 

lim Ill(e)uG.kv - (i/2k)X(0)(v, ')uI12 = 0, 
"'.0 

n-lim [1 + A(e)uG.kvrl = [1 - (i/2k)X(0)(v, . )url 
• .1-0 

k> O. (3.4.22) 

= 1 - [-i2k(l'(0)(1 + (v, U)]-l(V, ')u (3.4.23) 

by applying (1.3.47) again. Inserting (3.4.23) into (3.4.20) finally yields 

lim T.jk) = 1 + (2ikf 1X(0)(v, {I - [-2ik(X(0)(1 + (v, U)]-l(V, ')u}u) 
... 0 

= g;;,y(k), 

with a = X(O) S ~ dx V(x). 

k > 0, (3.4.24) 

• 
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We note that, in analogy to our considerations in Sect. 3.2, S.,,(k) converges 
to 1 as 8! 0 if and only if a = .A.'(O) J iii dx V(x) = 0, i.e., if the c5-interaction at 
the point y actually disappears. 

As in Sects. 3.1 and 3.2 the above results directly extend to the case of 
complex c5-interactions with 1m a < O. In this case Y..,y(k) and S.,y(k) become 
contractions in (:2. 

Notes 

Section 1.3.1 
The one-center point interaction in one dimension has been studied, e.g., in 
[21J, [41J, [47J, [106J, [107J, [112J, [133J, [172J, [177J, p. 28, [187J, [188J, 
[220J, [371J, [510J, [511J, [512]. Self-adjoint extensions of symmetric opera
tors, particularly in the context of point interactions, are treated in [184J, 
[512]. The quadratic form approach to defining Hamiltonians is extensively 
discussed in [283J, Ch. VI; [389J, Ch. X; [434J, Ch. II. The reformulation of 
Schrodinger dynamics in terms of local Dirichlet forms has been reviewed in 
[462J (see also [25J, [106J, [107J, [495J, [496J and Appendix F). We also 
mention another possibility of introducing c5-interactions in L2(1R). Let 

where 

Then 

d 
Ay = dx + (a/2)8y, ~(Ay) = H 2 ,1 (IR), 

{ 
1, 

8y(X) = -1, 
x> y, 

x < y. 

a, y E IR, 

d 
A* + ( /2) rM(Ay*) -_ H 2 • 1 (1Tl» y = - dx a 8y,::U 11\\ 

and by a simple computation 

AyA; = -Il.a,y + (a2/4), A;Ay = -Il.-a,y + (a2/4). 

Finally, we note that an appropriate Laplace transform of (3. 1.16) explicitly 
yields the semigroup integral kernel associated with - Il.a,y: 

e-Z(-&",)(x, x') 

= (4nzr1/2e-lx-x'12/4z - (a/2) exp{(a2z/4) + (a[lx - yl + lx' - YIJ/2)}' 

. {[1 - 4>(2-1 Z1/2[1X + z-1(lx - yl + lx' - yl)J)] + ()( -IX)}, 

where 4>(') denotes the error function [1J and 

{
1, 

(}(JJ.) = 0, 
JJ.>O, 

JJ.~O. 

Rez > 0, 
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The corresponding unitary group e-it(-.1.,y) is obtained after the substitution 

z -+ it, (it) 1/2 = 1 t 11/2 .' {
e i1t/4 

e- I1t/4 , 
t > 0, 

t < O. 

An integral representation for the above integral kernel has been derived in 
[195J (cf. also [412J). 

A Feynman path integral approach to -A~,y appeared in [218]. 
The Stark effect in connection with - A~,y is considered in [36]. 

Section 1.3.2 
This section closely follows [21J, where the first proof of norm resolvent 
convergence towards point interactions in one dimension has been derived. 
For earlier results on strong resolvent coIivergence using local interactions 
we refer to [187J, [188]. Separable interactions are discussed in [112J, [129J, 
and [512]. For recent approximation results for more general systems of the 
type -d2/dx2 + V(x) + IXJ(X), cf. [171J, [415J, [417]. 

Section 1.3.3 
Here the whole treatment is taken from Albeverio, Gesztesy, H0egh-Krohn, 
and Kirsch [21]. Since by eq. (3.2.14) 8 2 H.,y is unitarily equivalent to Hy(8), 
and the latter is unitarily equivalent to - A -l- A(8) V(·) (just by translations), 
and A(8) = 0(8) as 8 -+ 0, the results on bound states of H.,y could have been 
derived directly from the detailed analysis of Klaus [293J and Simon [435J 
on weakly coupled Schrodinger operators in one dimension. In particular, 
our main tool for using Fredholm determinants is taken from [435J. If the 
potential is not exponentially decreasing at infinity, analyticity of k. around 
8 = 0 in (3.3.3) and (3.3.4) is lost. Instead, one obtains asymptotic expansions 
(the order of which depends on the decrease of Vat infinity) as shown in [293J, 
[294J, [296]. 

Section 1.3.4 
Scattering theory in connection with J-interactions has been discussed, e.g., 
in [47aJ, [156J, [173J, [200J, [218J, [314J, [315J, [347J, [379J, and [387]. Our 
brief summary of stationary scattering theory for Schrodinger operators on 
the line is taken from [lOOJ, [142J, and [359]. The first part of Theorem 3.4.1 
appeared in [379]. We also remark that the assumption (1 + Ixlm)VE U(IR) 
for suitable mEN turns the analytic expansion for S.,y(k) around 8 = 0 into 
an asymptotic one, the order of which depends On m. 



CHAPTER 1.4 

The One-Center d' -Interaction in 
One Dimension 

While there is one kind of point interaction in two and three dimensions, we 
will show in this chapter that there are more possibilities in one dimension. 

First, we have the point interaction corresponding to a <5-function, i.e., 
similar to the two- and three-dimensional cases which we exhibited in Ch. 3. 
In addition, we will now derive the existence of a four-parameter family of 
self-adjoint extensions of a symmetric operator with boundary conditions at 
a particular point in ~. However, here we will treat only the one-parameter 
family corresponding to a <5'-interaction. 

We briefly describe basic properties of the <5'-interaction in one dimension. 
Since the technical tools needed in the proofs are identical to those in Sects. 
3.1 and 3.4 we essentially skip the details. 

In the Hilbert space L2(~) we define the closed and nonnegative operator 
iiyas 

fi}(iiy) = {g e H2,2(~)lg(y) = g'(y) = O} = H5,2(~ - {y}) 

whose adjoint is given by 

d2 

iii = - dx2 ' 

for some y e~, (4.1) 

ye ~. (4.2) 

A straightforward calculation shows that the equation 

t/I(k) e fi}(iii), k2 e C -~, 1m k > 0, (4.3) 

91 
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has the solutions 

x > y, {a, x > y, 
1jJ2(k, x) = 'k( _ ) 1m k > 0. (4.4) 

x < y, e' Y x, X < y, 

Thus By has deficiency indices (2,2) and hence it has a four-parameter family 
of self-adjoint extensions. We are particularly interested in a special one
parameter family of self-adjoint extensions 8 p,y defined by 

d2 

Bp,y = 

~(8p,y) = {g E H2.2(1R - {y} )Ig'(y +) = g'(y-), g(y+) - g(y-) = pg'(Y)}, 

-00 < P ~ 00. (4.5) 

The special case p = ° leads to the kinetic energy Hamiltonian - A in L 2 (IR). 
The case p = 00 leads to a Neumann boundary condition at y and decouples 
( -00, y) and (y, 00), viz. 

~(8oo,y) = {g E H2,2(1R - {y} )Ig'(y+) = g'(y-) = o} 

= ~(-AN-)EB~(-AN+)' 

8 oo ,y = (-AN-)EB (-AN+)' 

where -AN± denotes the Neumann Laplacian on (y, ±OO), 

(4.6) 

(4.7) 

~(-AN+) = {g E H 2,2((y, ±oo))lg'(y±) = a}. (4.8) 

By definition, 8 p,y describes a (j'-interaction centered at y E IR. The resolvent 
of 8 p,y is described in 

Theorem 4.1. The resolvent of 8 p,y is given by 

(8 p,y - k2r 1 = Gk - 2Pk2(2 - ipk)-l(""C-k(-· ---y-), . )c;k(' - y), 

k2 E p(8p,y), 1m k > 0, -00 < p ~ 00, Y E IR, (4.9) 

with integral kernel 

(8p,y - k2r 1(x, x') 

= (i/2k)eiklx-x'l 

x> y}.{eik(X.'-Y)" x' > y}, 
x < y _e,k(y-x), x' < y 

k2 E p(8p,y), 1m k > 0, x, x' E IR, 

where 

- {e~~-~ 
Gk(x - y) = (i/2k) ik(Y~X) 

-e , 

x> y, 

x < y, 1m k > 0. 

(4.10) 

(4.11) 
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PROOF. Krein's formula (cf. Theorem A.3) implies 

2 

(8p,y - Ffl = Gk - (4F)-1 I Azm(k)(I/Im( -k), . )I/Iz(k). (4.12) 
l,m=l 

By taking the adjoint of (4.12) one infers 

Next, let g E L2(1R) and define 

hp(x) = « -~ - k2 flg)(X) - All(k)(4k2)-leik(x-y) fO dx' eik(x'-Y)g(x') 

_A12(k)(4k2)-leik(X-Y) f~oo dx' eik(y-x')g(x'), x> y, 

hp(x) = « -~ - F)-lg)(X) - A22(k)(4k2)-leik(Y-x) foo dx' eik(Y-X')g(x') 

- A2l (k)(4k 2 )-le ik(Y-X) LOO dx' eik(x'-Y)g(x'), 

After imposing the boundary conditions 

one obtains 

h;h+) = hp(Y-), 

A(k) = - 2f3k2 (2 - if3kfl [ 1 -1J. 
-1 1 

x <yo 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Note that det[A(k)] == 0 (cf. the discussion in the Notes). In fact, by inserting (4.16) 
into (4.12) the expression (4.12) reduces to (4.9). • 

Further information about '8p,y is contained in 

Theorem 4.2. The domain gc('8p•y ), -00 < f3 ::; 00, y E ~, consists of all 
elements tjJ of the type 

tjJ(x) = (A(x) - 2if3k(2 - if3k)-l ,p~(y)Gk(X - y), (4.17) 

where,pk Egc( - Ll) = H2, 2(~) and k2 E p('8p,y), 1m k > O. The decomposition 
(4.17) is unique and with tjJ E gc(Ep,y) of this form we obtain 

(4.18) 

Next, let tjJ E gc(Ep,y) and suppose that tjJ = 0 in an open set U £ ~. Then 
Ep,ytjJ = 0 in U, i.e., Ep.y describes a local interaction. 

PROOF. Identical to that of Theorem 3.1.3. • 
Spectral properties of '8p,y are summarized in 
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Theorem 4.3. Let -00 < P :::;; 00, y E IR. Then the essential spectrum of Sp,y 
is purely absolutely continuous and covers the nonnegative real axis 

(4.19) 

If -00 < P < 0, Sp,y has precisely one negative, simple eigenvalue, i.e., its 
point spectrum O"p(Sp,y) reads 

with 

{
e(2/P)(X-Y) 

( - P/8) 1/2 (2/fJ)(Y~X) 
-e , 

-00 < P < 0, 

x>y, 

x<y, 
-00 < P < 0, 

(4.20) 

(4.21) 

its (normalized) eigerifunction. For P ~ 0 or P = 00, Sp,y has no eigenvalues 

P rt (-00,0). (4.22) 

PROOF. Analogous to that of Theorem 3.1.4. • 
Again the pole structure of (4.10) determines bound states and resonances 

ofSp,y: For P > 0, Sp,y has a simple resonance at ko = -2i/P with resonance 
function 

x> y, 

x<y, 
p>o. 

For all -00 < P < 00, Sp,y has, in addition, a simple zero-energy resonance 
(in contrast to -L\,.,y, the first-order pole in (4.10) at k = 0 does not cancel) 
with resonance function I/Io(x) = 1. For P = 00, Sp,y has a zero-energy 
resonance of multiplicity two with corresponding resonance functions 

I/I01(X) = {t, x> y, 
0, x <yo 

I/I02(X) = {O, x > y, 
1, x < y. 

It remains to discuss stationary scattering theory associated with the pair 
(Sp,y, - L\). The generalized eigenfunctions of Sp,y are given by 

'I' (k 0" x) = eikax + iPkO"(2 - iPkt1 eikay .' {
eik(X-y) 

p,y , , _e,k(y-x), 
x> y, 

x <y, 

k ~ 0, 0" = ± 1, -00 < P :::;; 00, x, y E IR. (4.23) 

They fulfill 

'I'pjk, 0", y+) = 'I'p,y(k, 0", y-), 

'I'p,y(k, 0", y+) - 'I'p,y(k, 0", y-) = P'I'pjk, 0", y), 

-'I'pjk, 0", x) = k2'1'pjk, 0", x), x E IR - {y}, (4.24) 

lim lim (2k/i)e±i(k+i£)x,[Sp,y - (k + ie)2r1(x, x') = 'Pp,y(k, ± 1, x), 
£+0 x'-+-oo 

x ER; k ~ o. 
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The corresponding transmission and reflection coefficients from the left and 
right then read 

.OfJjk) = lim e-ikx'Ppjk, + 1, x) = 2(2 - i{3ktl, (4.25) 
x-+oo 

.Of;jk) = lim eikX'Ppjk, -1, x) = 2(2 - i{3ktl, (4.26) 
x-+-oo 

x-+-oo 

{Rpjk) = lim e-ikx['Ppjk, -1, x) - e- ikx ] = - (2 - i{3kt1 i{3ke-2iky; 
x-+co 

k ~ 0, -00 < (3 ~ 00, Y E IR. (4.28) 

The unitary on-shell scattering matrix Yp,,(k) in C 2 is then given by 

Y'. k - [§il"(k) {Rp"(k)J 
p,,( ) - {Rl (k) .Ofr (k) p,y p,y 

= (2 _ i{3k)-l [2 - i{3ke-2ikYJ 
- i{3ke2ikY 2 ' 

k ~ 0, -00 < (3 ~ 00, Y E IR. (4.29) 

In the low-energy limit k --+ 0 we get 

Ypjk) k->O' [~ 

9"oojk) k->O' G 
~l 
IJ o . 

-00 < (3 < 00, 

(4.30) 

Obviously, Ypjk) has a meromorphic continuation in k to all of C such 
that for k i= 0 the pole of Ypjk) coincides with the bound state ({3 < 0) or 
resonance ({3 > 0) of Sp,y' 

Notes 

The existence of <5'-interactions and their local nature has been pointed out 
by Grossmann, H0egh-Krohn, and Mebkhout [226]. The first extensive 
treatment including infinitely many centers appeared in Gesztesy and Holden 
[205]. The fact that det[A(k)] = 0 in the proof of Theorem 4.1 indicates that 
By is not the maximal common part ofSp,y and - L\ (cf. Theorem A.3). Indeed, 
their maximal common part fI; is a proper extension of By with deficiency 
indices (1, 1) given by 

. d2 

H; = - dx2 on ~(H;) = {g E H2,2(1R)lg'(y) = O}. 
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The deficiency subspace of Ii; corresponding to k 2 E C - IR is spanned by 

x>y, 
x<y, 1m k > 0, 

and thus Ep,y, -00 < p ::;; 00, are all self-adjoint extensions of Ii;, Self-adjoint 
extensions of ily are considered in [418]. 

Complex b'-interaction can be treated in the same way, 
Approximations of Ep,y in the strong resolvent sense by means of scaled 

rank-one interactions appeared in [419]. 
More general boundary conditions corresponding to powers of the b

interaction are studied in [398J, [399]. 



CHAPTER 1.5 

The One-Center Point Interaction in 
Two Dimensions 

Following Sects. 1.1, 1.4,2.1, and 2.3 we briefly discuss the point interaction 
in two dimensions. 

Let y E 1R2 and consider in L2(1R2) the nonnegative operator 

-L\lco(H;l2-{Y}l (5.1) 

with Hy its closure in L2(1R2) (i.e., f0(Hy) = HJ·2(1R2 - {y})). Then its adjoint 
H: reads 

H* = -L\ Y , f0(H*) = {g E H~~2(1R2 - {y}) n U(1R2)IL\g E U(1R2)}, 

y E 1R2. (5.2) 

A direct calculation shows that the equation 

H;IjJ(k) = k2 1jJ(k), 

has the unique solution 

ljJ(k) E f0(H;), k2 E IC - IR, 1m k > 0, (5.3) 

ljJ(k, x) = (i/4)H&ll(k Ix - yi), X E 1R2 - {y}, 1m k > 0, (5.4) 

where H&ll(.) denotes the Hankel function of first kind and order zero [1]. 
As a consequence Hy has deficiency indices (1, 1). In order to determine all 
self-adjoint extensions of Hy we decompose L2(1R2) with respect to angular 
momenta 

(5.5) 

where Sl denotes the unit sphere in 1R2. Using the unitary transformation 

0: U«O, (0); r dr) -+ L2([0, (0); dr), (5.6) 
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and the fact that {Ym(w) = (2ntl/2e imB lm E 7L, ° < e < 2n, W = (cos e, sin e)} 
provides a basis for L 2(SI), we can rewrite (5.5) as 

00 

L2(~2) = E8 a-1L 2((0, 00); dr) ® [Ym ]. 
m=-oo 

With respect to this decomposition Hy equals the direct sum 

Hy = T,-1 L~oo a-I hm a ® 1} T" 

where (T,g)(x) = g(x + y), g E L2(~2), and 

r > 0, mE 7L, 

£&(ho) = {t/J E L2((0, oo))lt/J, t/J' E AC1oc((0, (0)); W(t/J, t/J+)o+ = 0; 

- t/J" - 4-1r-2t/J E L2((0, oo))}, 

£&(hm ) = {t/J E L2((0, (0))1t/J, t/J' E AC1oc((0, (0)); 

-t/J" + (m2 - i)r-2t/J E £1((0, oo))}, mE 7L - {O}. 

(5.7) 

(5.8) 

(5.9) 

Here AC1oc((a, b)) denotes the set of locally absolutely continuous functions 
on (a, b), W(j, g)x = f(x)g'(x) - f'(x)g(x) denotes the Wronskian of f and g, 
and t/J+(r) = rl/2 H&IJ(( ± i)I/2r). As is well known (e.g., [389], Ch. X) hm, 
mE 7L =- {O}, are self-adjoint whereas ho has deficiency indices (1, 1). All self
adjoint extensions of ho may be parametrized by (cf. Appendix D) 

d 2 1 
hO•1l = - dr2 - 4r2' r > 0, 

-t/J" - 4-1r-2t/J E L2((0, oo))}, 

where t/Jo and t/Jl are defined as 

-00 < IX ::; 00, 

t/Jo = lim [rl/2 In r r 1 t/J(r), 
r4-o 

t/Jl = lim r-1/2 [t/J(r) - t/Jorl/2 In r], 
r4-o 

t/J E £&(h~). (5.11) 
Thus we get 

Theorem 5.1. All self-adjoint extensions of Hy are given by 

- L11l • y = T,-1 {[ a-I hO•1l a Ee m~oo a-I hm a ] ® 1} T" 
m7"O 

-00 < IX ::; 00, y E ~2. (5.12) 

The special case IX = 00 leads to the kinetic energy Hamiltonian - L1 (the 
Friedrichs extension of Hy) in L2(~2), viz. 

- L1oo.y = -L1, £&( -L1) = H2.2(~2). (5.13) 
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If Icxl < 00, -~",y describes a point interaction centered at y E [R2. It will 
turn out later that ( - 2ncxr1 represents the scattering length of - ~"'Y" 

Next, we note that the integral kernel Gk(x - x') of the free resolvent in 
L2([R2), i.e., 

1m k > 0, (S.14) 

reads 

Gk(x - x') = (i/4)Hh1l(klx - x'l), 1m k > 0, x, x' E [R2, X #- x'. (S.1S) 

We have 

Theorem 5.2. The resolvent of -~",y is given by 

(-~",y - k2r 1 

= Gk + 2n[2ncx - 'P(1) + In(k/2i)r1(Gk(' - y), . )Gk(' - y), 

k2 E p( -~",y), 1m k > 0, -00 < cx ~ 00, Y E [R2, (S.16) 

with integral kernel 

(-~",y - k2r 1(x, x') = (i/4)Hh1l(klx - x'l) 

-(n/8) [2ncx - 'P(1) + In(k/2i)rlHhll(klx - yl)Hhll(klY - x'l), 

P E p( -~",y), 1m k > 0, x, x' E [R2, X #- x', x#- y, x' #- y. (S.17) 

PROOF. By the decomposition (5.12) it suffices to consider the s-wave (m = 0). Let 
'1 E L2«0, 00)) and define 

X,,(r) = I'''' dr' go(k, r, r')'1(r') 

- (n2/4) [2mx - '1'(1) + In(k/2i)r1 I'''' dr' (r,)1/2 Hlll(kr')'1(r')r1/2 Hlll(kr), 

1m k > 0, -00 < IX ~ 00, (5.18) 

where 

r ~ r', 
r ~ r', 

(5.19) 

is the Green's function corresponding to ho."" (the Friedrichs extension of ho). 
Clearly, X,,, X~ E A~oc«O, 00)) and X" E L 2«0, 00». A somewhat lengthy but straight
forward calculation then shows that 

(S.20) 

and 

which proves (5.16). • 
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Further information on ~(- .1""y) and the fact that the one-center point 
interaction is local is contained in 

Theorem 5.3. The domain ~(-.1""y), -<Xl < IX ~ <Xl, Y E 1R2, consists of all 
elements t/J of the type 

t/J(x) = rAe(x) + 2n[2nlX - 'P(1) + In(k/2i)rl~(y)Gk(x - y), x :f:.y, 
(5.22) 

where rAe E ~(-.1) = H2,2(1R2) and k2 E p( -.1""y), 1m k > O. The decom
position (5.22) is unique and with t/J E ~( - .1""y) of this form we obtain 

(-.1""y - k2 )t/J = (-.1 -k2 )(A. (5.23) 

Next, let t/J E ~(-.1",y) and assume that t/J = 0 in an open set U £; 1R2. Then 
- .1",yt/J = 0 in U. 

PROOF. Identical to that of Theorem 1.1.3. 

Concerning spectral properties we have 
• 

Theorem 5.4. Let -<Xl < IX ~ <Xl, Y E 1R2. Then the essential spectrum of 
- .1",y is purely absolutely continuous and covers the nonegative real axis 

For all IX E IR, -.1",y has precisely one negative, simple eigenvalue, i.e., its 
point spectrum is given by 

(1 (-.1 ) = {_4e21 - 2""H'(1)]} p a:,y , IX E IR, (5.25) 

with 

G2iexpl-2,,"'+'l'(1)](X - y) = (i/4)H&1) [2ieI - 2",,,+'l'(1)] Ix - yl], x =f. y, (5.26) 

is strictly positive (unnormalized) eigenfunction. 

PROOF. Similar to that of Theorem 1.1.4. • 
The pole structure of (5.17) determines bound states and resonances of 

-.1",y: In fact, (-.1",y - k2r 1(x, x'), x :f:. x', has a merom orphic continua
tion to the entire logarithmic Riemann surface. In the cut plane 
{k E C - {O}I-n < arg k < n}, -.1",y has only the above-mentioned bound 
state at ko = 2iel - 2",,+'l'(1)] but no resonance. 

Finally, we tum to stationary scattering theory for the pair ( - .1""y, - .1). 
Since - .1",y is invariant under rotations in 1R2 with center y we start with the 
partial wave decomposition (5.12). Let 

k > 0, -<Xl < IX ~ <Xl, r;?: 0, (5.27) 
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then 

2nrx(t/lo,,.(k))o + (t/lO,,.(k))l = 0, 

-t/l~,,.(k; r) - (4r2r 1t/lo,,.(k, r) = k2t/1o,,.(k, r), r > 0, 

lim lim [2(k + is)/nr/2 e-i(k+iB)r' e-i"/4[ho,,. - (k + is)2rl(r, r') 
£+0 r'-+oo 

= t/lo,,.(k, r), r ~ 0; k > 0, -00 < rx ~ 00. (5.28) 

Thus t/lo,,.(k) are g~neralized eigenfunctions of ho,,.. For m 1= ° the generalized 
eigenfunctions of hm read 

k, r ~ 0, mE 7L - {o} (5.29) 

(we recall that Lm(z) = (-1r Jm(z)). The asymptotic behavior of t/lo,,.(k, r) as 
r ~ 00 is then given by 

t/lo,,.(k, r)rZoo (2/nk)1/2 e iiJo .• (k) sin[kr + (n/4) + oo,,.(k)], 

k > 0, -00 < rx ~ 00, (5.30) 

and 

9'o,,.(k) = e2iiJo •• (k) 

= [2nrx - '1'(1) + In(k/2) - (in/2)r1 [2nrx - '1'(1) + In(k/2) + (in/2)J, 

k> 0, -00 < rx ~ 00, (5.31) 

denotes the (on-shell) s-wave scattering matrix (and oo,,.(k) the s-wave scatter
ing phase shift). For m 1= 0, we obtain 

mE 7L - {O}. (5.32) 

Again it is useful to compare with the effective range expansion for spherically 
symmetric real-valued potentials V satisfying 

for some a > 0. (5.33) 

If (jm(g, k) denote the phase shifts associated with the SchrOdinger operators 
-d2/dr2 + (m2 - *)r-2 -+ gV(r) this low-energy expansion reads (cf., e.g., 
[95J, [96J) 

r(1 + Iml)-2(k/2)2Iml[(n/2) cot (jm(g, k) -In(k/2) + '1'(1)] 

k > 0, g E IR, mE 7L, (5.34) 

where the right-hand side of (5.34) is real analytic in k2 near k2 = 0. The 
coefficients am(g) and rm(g) are called partial wave scattering lengths and 
effective range parameters, respectively. 

The explicit relations 

[(n/2) cot oo,,.(k) - In(k/2) + 'I'(1)J = 2nrx, 

om(k) = 0, mE 7L - {O}, 
(5.35) 
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for the point interaction then show that 

ao,cz = ( - 2ncxf1, -00 < CX ::; 00, cx"# 0, ~o,cz = 0, (5.36) 

and all low-energy parameters vanish identically in higher partial waves 
mE Z - {o}. We emphasize again that by (5.35) the effective range expansion 
for m = 0 is already exact to zeroth order with respect to P. This illustrates 
the fact that - .1cz,y describes an s-wave interaction of zero range. 

Now we turn to the scattering wave function of -.1cz,y 

'Pcz,,(kw, x) = eikrox + (in/2) [2ncx - 'P(1) + In(k/2i)r1 e ikroy H~1)(k Ix - yl), 

k > 0, WE S1, -00 < CX ::; 00, x, y E jR2, x"# y. (5.37) 

A comparison of (5.37) with (5.27) and (5.29) yields 

e-ikroY'Pcz,ikw, x) = 2n Ix - yl-1/2ifto,cz(k Ix - yl) Yo(w) Yo(wJ 

<Xl 

+ 2n Ix - yr1/2 L imiftm(k Ix - yl) Ym(w) Ym(wx), 
m=-ao 
m#O 

k > 0, -00 < cx ::; 00, x"# y, Wx = x/lxi, (5.38) 

by using 
<Xl 

eikrox = 2n L im Jm(k I x I) Ym( w) Ym( wJ, k~O. (5.39) 
m=-co 

The on-shell scattering amplitude Icz,,(k, w, w') corresponding to - .1cz,y is then 
given by 

Icz,,(k, w, w') = lim IxI1/2e-ikIXI['Pcz,y(kw', x) _ eikro'x] 
Ixl .... <Xl 

Ixl-1x=ro 

= ei7t/4 (n/2k)1/2[2ncx - 'P(1) + In(k/2i)r1eik(ro'-ro)y, 

k > 0, w, W' E s1, -00 < cx ::; 00, y E 1R2. (5.40) 

The unitary on-shell scattering operator Ya,,(k) in L2(S1) finally reads 

Ya,,(k) = 1 + in[2ncx - 'P(1) + In(k/2i)r1(e- ik(')YYo, ')e-ik(')YYo, 

k > 0, -00 < cx ::; 00, y E jR2. (5.41) 

The explicit representation (5.41) shows that Ya,y(k) has a meromorphic 
continuation in k to the entire logarithmic Riemann surface such that its pole 
in the cut plane {k E C - {O} 1-n < arg k < n} coincides with the bound state 
of -.1cz.Y' 

Finally, we emphasize that the e-expansion for the resolvent, eigenvalues, 
resonances, scattering amplitude, and the on-shell scattering operator derived 
in the three-dimensional case works as well in two dimensions. To illustrate 
these facts its suffices to consider the resolvent. 

Let V: jR2 -+ jR be measurable and 

r d2 xlV(x)1 1H < 00 
J~2 

for some ~ > O. (5.42) 
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Again we introduce 

v(x) = I V(x) I 1/2, u(x) = I V(x) I 1/2 sgn[V(x)J (5.43) 

and note that 

1m k;;::: 0, k # 0. (5.44) 

Let A: (0, eo) -+ IR, eo > ° and 

A(Jl) = A1Jl + A2Jl2 + O(Jl2). (5.45) 
Then the form sum 

e > 0, y E 1R2, (5.46) 

in U(1R2) is well defined (cf. Appendix B) and we define the scaled short-range 
Hamiltonian H." as 

H." = e-2 U.H,(e)U.-1 = -.1 + v.", 
V.,,(x) = A((ln ef1 )e-2 V«x - y)/e), e > 0, y E 1R2, 

(5.47) 

where now 
(5.48) 

Then the resolvent of H." can be written as (cf. (1.2.16)) 

(H." - Pf1 = Gk - A((ln ef1 )A.(k) [1 + B.(k)r1 C.(k), P E p(H.,,), 

1m k > 0, (5.49) 

where A.(k), B.(k), C.(k), e > 0, are Hilbert-Schmidt operators with integral 
kernels 

A.(k, x, x') = Gk(x - y - ex')v(x'), 1m k > 0, (5.50) 

B.(k, x, x') = A((ln ef1 )u(x)G.k(x - x')v(x'), 1m k ;;::: 0, k # 0, (5.51) 

C.(k, x, x') = u(x)Gk(ex + y - x'), 1m k > 0. (5.52) 

If we introduce rank-one operators A(k), C(k) with integral kernels 

A(k, x, x') = Gk(x - y)v(x'), 1m k > 0, (5.53) 

C(k, x, x') = u(x)Gk(y - x'), 1m k > 0, (5.54) 

then as in Lemma 1.2.2 

lim IIA.(k) - A(k) II 2 = 0, lim IIC.(k) - C(k)II2 = 0. (5.55) 
.'\'0 .'\'0 

Up to now there is no difference to our three-dimensional treatment. Due to 
the logarithmic singularity in B.(k) near k = 0, the analysis of B.(k) needs some 
care. First, we note that by the mean-value theorem (cf. (1.2.43)) 

B.(k) = -(2nf1 A1 (v, ')u 

- (2n In ef1 {[A1 (- '1'(1) + In(k/2i)) + A2J (v, ')u + A1 C} + o((ln ef1), 
(5.56) 

where C is a Hilbert-Schmidt operator in L2(1R2) with integral kernel 

C(x, x') = u(x) lnlx - x'lv(x'), x # x', (5.57) 
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and the expansion (5.56) is valid in Hilbert-Schmidt norm (the coefficients 
in (5.56) follow from (5.45) and the expansion of (i/4) H&1) (ek Ix - xiI) [1]). 
Now we have to distinguish several cases. Applying formula (1.3.47) we 
get: 

(a) If Al = 0, then, as 8 t 0, 

[1 + Be(k)r 1 = 1 + O((ln 8)-1). 

(b) If (v, u) = 0, then (v, ')u is nilpotent and hence 

(5.58) 

[1 + Be(k)r 1 = 1 + (2nrl Al (v, ')u + O«(In 8)-1) (5.59) 

asdO. 

(c) If (v, u) #- ° and Al #- 2n/(v, u), then, as 8 t 0, 

[1 + Be(k)r 1 = 1 + (Ad2n) [1 - (AI (v, u)/2n)]-1(v, ')u + O((ln 8rl). 
(5.60) 

(d) If (v, u) #- ° and Al = 2n/(v, u), then, as e t 0, 

[1 + Be(k)r1 = -2n (In 8){2n(v, u)[ -'1'(1) + In(k/2i)] + A2(v, uf 

+ (2n(v, Cu)/(v, u)) }(v, ')u + 0(1). (5.61) 

Thus we obtain 

Theorem 5.5. Let y E 1R2 and assume that V is real-valued and (1 + 1'12H) V, 
WI 1H E U(1R2) for some () > 0. Then, if k2 E p( -L1a.y), we get k2 E p(He,y) 
for 8 > ° small enough and He,y converges to - L1a,y in norm resolvent 
sense 

where a is given by 

a = {[A2(V, u)j(2n)2] + [(v, Cu)j2n(v, U)2] if (v, u) #- 0, Al = 2n/(v, u), 

00, otherwise. (5.63) 

In particular, He,y converges in norm resolvent sense to - L1 as e t ° if 
(v, u) = fIR2d2x V(x) = ° or if Al #- 2n/(v, u). 

PROOF. Equation (5.49) together with (5.55) and (5.58)-(5.60) proves that 

II(He,y - k2)-1 - Gkll = O((1n erl) 

as e lOin cases (a)-(c). In case (d), (5.61) shows that 

n-lim (He,y - k2r 1 

e,j,O 

= Gk + 2n{ - '1'(1) + In(k/2i) + [(A'2(V, u)j2n) + (v, Cu)/(v, U)2)]} -1. 

k2 E C -~, 1m k > O. 

(5.64) 

(5.65) 

• 
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Notes 

The point interaction iIi two dimensions is shortly discussed in Grossmann, 
H0egh-Krohn, and Mebkhout [226] where its local nature has also been 
pointed out (cf. also [253J). The treatment based on the boundary condition 
in (5.10) and, in particular, the final part containing scattering theory is 
taken from Albeverio, Gesztesy, H0egh-Krohn, and Holden [19J (for a short 
summary, see also [200J). The e-expansion described at the end is also taken 
from [19]. For properties of the Birman-Schwinger kernel uGkv in two 
dimensions we refer to [248J, [298J, and [435]. Scattering theory near thresh
old is studied in [97J. 

External electromagnetic fields in connection with - Ll .. ,y are discussed in 
[381]. 



PART II 

POINT INTERACTIONS WITH A FINITE 
NUMBER OF CENTERS 



CHAPTER 11.1 

Finitely Many Point Interactions in 
Three Dimensions 

11.1.1 Basic Properties 

The aim of this section is to give a rigorous meaning to the formal operator 

N 

H = -L\ - L P.jb(· - Yj), (1.1.1) 
j=l 

where Yl' . .. , YN are N distinct points in ~3. 
One possible way is to employ the techniques from Sect. 1.1.1 using self

adjoint extensions of symmetric operators. Here, however, we will advocate 
another method which, in addition to providing new insight into why the 
operator (1.1.1.16) is the rigorous formulation of (1.1.1) with N = 1, also has 
a flavor of renormalization techniques used in quantum field theory. 

To explain the basic idea, we start with a formal manipulation when 
N = 1. Let, therefore, 

(1.1.2) 

where for the moment V is an appropriate potential. Expanding the resolvent 
we obtain 

00 

= Gk + L (p.Gk V)"Gk, Imk > o. (1.1.3) 
"=1 

If we now formally insert V(x) = b(X) and consider the integral kernel, we 

109 



110 II.l Finitely Many Point Interactions in Three Dimensions 

obtain 

(1.1.4) 

(H - k2tl(X, x') = Gk(x - x') + flGk(X) [~o (flGk(O)tJ Gk(x') 

= Gk(x - x') + flGk(X) [1 - flGk(0)r1Gk(x') 

= Gk(x - x') + Gk(x) [fl-1 - Gk(0)r1Gk(x'), 1m k > 0, 

which easily follows by considering, e.g., the term (flGk V)2Gk: 

((flGkb)2Gd)(x) = fl2 f f t9 d3Xl d3x2 d3x' Gk(x - x1)b(x 1 )' 

. Gk(X l - x2)b(X2)Gk(X2 - x')f(x') 

= fl2 r d3x' Gk(X)Gk(O)Gk(x')f(x'). (1.1.5) J ll;l3 

From the explicit expression Gk(x) = eiklxl/4nlxl (cf. (1.1.1.19» we see that of 
course (1.1.5), and therefore also (1.1.4), does not make sense because Gk(O) 
does not exist. However, we still have the possibility of choosing fl. In partic
ular, we see that if we formally write 

fl- 1 = Go(O) + a (1.1.6) 

with a E IR arbitrary and interpret Go(O) - Gk(O) as 

1 - eiklxl ik 
lim [Go(x) - Gk(x)] = lim = -- (1.1.7) 
x-o x-o 4nlxl 4n 

we obtain precisely the correct expression (1.1.1.20) from Part I. We also 
observe that the coupling constant fl in front of the b-function has to be zero 
in a "suitable way" in order to make the final expression well defined. 

One way to make the above rigorous is the following: 
First we introduce a formal Fourier transform of the ill-defined operator 

H, i.e., let 

ff: L2(1R3) -+ L2(1R3), 

(fff)(p) -= j(p) = s-lim (2nt3/2 r d3x e-iXPf(x) (1.1.8) 
R-oo Jlxl:S;R 

(see, e.g., [389], Sect. IX.2) and define 

fJ = ffHff-l, (1.1.9) 

where 

(ff-lf)(x) -=!(x) = s-lim (2nt3/2 r d3p eipXf(p). 
R-oo Jlpl:S;R 

(1.1.10) 

Now the Laplacian -.1 transforms into the multiplication operator with the 
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function p2 (see, e.g., [389], Sect. IX.7) while we formally have 

(ff J(' - y)ff-1J)(p) = (ff J(' - y)f)(p) = (2nr3/2e-iPYf(y) 

= (2nr 3e- iPY r d3q eiqYJ(q) = «(A,j)t/Jy(p), (1.1.11) Jj;!3 
where we abbreviated 

t/Jip) = (2nr3/2e-iPY. (1.1.12) 

Thus H can be written formally as 

(1.1.13) 

The idea is now to introduce a momentum cut-off and make the coupling 
constant J-lj explicitly dependent on the cut-off. More precisely, let 

and define 

X",(p) = {1, Ipl:::; W, 
0, Ipi >W, 

with an interaction given by a rank N perturbation. 

(1.1.14) 

(1.1.15) 

It remains to choose J-lj(w) in such a way that H'" has a reasonable and 
nontrivial limit as we remove the cut-off, i.e., as W tends to infinity. From 
Theorem B.1 we obtain that 

N 

(H'" - k2r 1 = (p2 - k2r 1 + L [r",(k)J;/(X",F_k,y .. , ·)x",Fk,y., 
j,j'=l J J 

1m k > 0, Re k #- 0, (1.1.16) 

where 

1m k > 0, (1.1.17) 

and 
-ipy 

_ (2 )-3/2 e Fk,y(p) - n p2 _ k2' P E [R3, 1m k > 0. (1.1.18) 

While the quantity 

(,J,'" (p2 _ k2)-1,J,"') = (2n)-31 d3p eip(Yj-yj') 
'l'Yj' 'l'Yj' 2 k2 ' 

Ipl";,,, p-
1m k > 0, (1.1.19) 

diverges as w tends to infinity when j = j', the off-diagonal elements nicely 
converge since 

1 eiPY eiklyl 
(2nr3 d3p 2 k2 ~ 4-1 I = Gk(y), 

Ipl";,,, p - n Y 
1m k > 0, Y #- 0. 

(1.1.20) 



112 11.1 Finitely Many Point Interactions in Three Dimensions 

(See [389], p. 58f.) If we now choose 

-1 -3 i d 3p W 
fJj (W) = (2n) -2 +!Xj = -2 2 + !Xj 

Ipl!>w P n 
(1.1.21) 

with !Xj E ~ arbitrary, we have for w -+ 00 

fJj-l(W) - (rfJ:;, (p2 - prlrfJ:;) = (2nr 3 r d3p (p12 - p2 ~ k2) + !Xj 
Jlpl!>w 

ik 
--+!X.-
w .... oo) 4n' (1.1.22) 

A short computation shows that the rank-one operator (XwF-ii,y" . )XwFk,y 
converges in Hilbert-Schmidt norm to the operator (F-ii,y" . )Fk,y as w -+ 00 

when 1m k > 0, i.e., 

1m k > O. (1.1.23) 

To conclude that, for 1m k > 0 sufficiently large, 

R(k2 ) == n-lim (flW - k2r l 

(1.1.24) 

is the resolvent of a closed operator, it is now sufficient to prove that the limit 
is injective ([283], Theorem VIII.1.3). Here 

r .. ,y(k) = [(!Xj - ;~)c5jr -Gk(Yj - Yj,)J:r=t' (1.1.25) 

;'lk(X) = {Gk(X), x # 0, 
II (1.1.26) 

0, x =0, 

!X = (!Xl' ... , !XN), Y = (Yl' ... , YN)' (1.1.27) 

To this end assume R(k2)f = 0 for some f E L2(~3). Using the explicit ex
pression for R(P) we see that this is equivalent to 

N i eiqYif(q) 
f(p) = (2nr3 L e-iPYJ[r .. ,y(k)}i} d3q 2 k2 ' 

j,j'=l 1J;l3 q-
(1.1.28) 

which cannot be in L2(~3) unless f = O. We can thus write R(k2) = 

(-AII,y - k2rl. From the explicit expression for R(P) we see that R(P)* = 
R(P) which implies that the domain ~( - A .. , y) is dense: Let g .1 ~( - A,.. y). 
Then (g, R(k2)f) = 0 for all f E L2(~3), hence (R(P)g, f) = 0 for all f, im
plying that g = O. Furthermore, -A,.,y = R(prl + k2 (which is indepen
dent of k 2 from the resolvent identity) is self-adjoint because 

(-A:,y - Prl = [( -A,.,y - k2)*rl 

= [( -A .. ,y - k2r l ]* 

= (-A .. ,y - Pr\ k2 E p( -A,.,y). (1.1.29) 

We have thus proved the following theorem. 
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Theorem 1.1.1. Let flw be the self-adjoint operator in L2(1R3) given by 
(1.1.15) with 

r:t.j E IR, j = 1, ... , N. (1.1.30) 

Then flw converges in norm resolvent sense to a self-adjoint operator - J.a, y, 
i.e., 

for 1m k > ° sufficiently large, where - J.a, y has the resolvent 

N 

(1.1.31) 

(-J.a,y - k2r 1 = (p2 - P)-l + L [ra,y(k)}i/(F_k'YF" )Fk,Yj' 
j,j'=l 

2 ~ . 
k Ep(-Aa,y), Imk>O, r:t.jEIR, YjEY, }=l, ... ,N, (1.1.32) 

and where ra,y(k), Fk,y, and Gk are defined by (1.1.25), (1.1.18), and (1.1.26), 
respectively. 

Taking now the inverse Fourier transform we finally obtain the resolvent 
of the point interaction Hamiltonian -Aa,y with N centers, viz. 

N 

(-Aa,y - k2)-1 = Gk + L [ra , y(k)]';} (Gk(' - Yr), ·)Gk(· - Yj), 
j,r=l 

We remark that when N = 1 (1.1.33) of course reduces to the operator 
(I. 1. 1.20) of Part I. 

We allow r:t.jo = 00 for some jo in the sense that - Aa , y = - Aa,Y where a. and 
Yequal r:t. and Y, respectively, with the jo th component removed. 

For completeness we include a theorem showing how to construct the 
Hamiltonian with a finite number of point interactions using self-adjoint 
extensions of symmetric operators. However, in contrast to the one-center 
case, Theorem 1.1.1.1, we meet a family of operators in which the centers Yl' 
... , YN are not necessarily independent although the operators are local (cf. 
Appendix G). 

Theorem 1.1.2. The closed symmetric operator 

fIy = -AI£&y' 

where Y = {Yl' ... , YN} and 

f0y = {~E H2,2(1R3)1~(Yj) = 0, Yj E Y,j = 1, ... , N} 

has deficiency indices (N, N) and the deficiency subspaces read 

• . ,1 
Jf'± = Ran(Hy ± I) = [GJ±i{- - Yl)' ... , GJ±i(' - YN)], 

(1.1.34) 

(1.1.35) 

1m hi > 0. (1.1.36) 
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PROOF. Since, for ¢ E !0y 

(GJ±i(' - yJ, (Hy ± i)¢) = ¢(YJ = 0 (1.1.37) 

we i~mediately infer that [GJ±i(' - Yl), ... , GJti(· - YN)] ~ %±. Let I/I± E 

Ran(Hy ± i).l and ¢ E!0( -L1). Then there exist numbers Cl , ... , CN independent of 
¢ such that 

N 

(I/I±, (-,1 ± i)¢) = I clI/J(yJ. (1.1.38) 
j~l 

In fact, let 

(1.1.39) 

where YJj E CO(~3), YJiyJ = 1, and supp YJj n supp YJp = 0, j, j' = 1, ... , N, j #- j'. 
Then J E !0y, and using 1/1+ E Ran(Hy ± i).l we infer that (1.1.38) is satisfied with 
cl = (I/I±, (-,1 ± i)YJj). On-the other hand, the constants cj=, ... , cN are uniquely 
determined by I/I± from the following computation: Assume also 

~ N + 
(I/I±, (-L1 ± i)¢) = I cr¢(yJ· 

j~l 

Then 

«I/I± - ~±), (-L1 ± i)¢) = 0 

for all ¢ E!0( -,1), which implies that 1/1+ = ~+. 
Finally, we observe that --

N 

(1.1.40) 

(1.1.41) 

I/I± = I clGJ±i(' - Yj) (1.1.42) 
j~l 

satisfies (1.1.38), thereby proving %± ~ [GJ±i(' - Yl), ... , GJ±i(' - YN)]. • 

From the general theory of operator extensions it then follows that there 
exists an N 2-parameter family of self-adjoint extensions of -LlI~y' The re
solvents of these operators are explicitly given by Krein's formula, Theorem 
A.3. However, we will only study the N -parameter family with resolvent given 
by (1.1.33). 

As it is not possible to write - Ll~, y in the form - Ll + V for any function 
V, we have to work with the resolvent (1.1.33). It is therefore worthwhile to 
note some more properties of the operator - A~, y. 

Operators of the type H = - A + V where V is a multiplication operator 
are local in the sense that if t/J = 0 in some open domain of 1R3 , then also 
Ht/J = 0 in the same domain. From the nature of the point interaction it is 
reasonable to expect locality of - A~, y. This and an explicit characterization 
of the domain and action of - A~, y is the content of the next theorem which 
generalizes Theorem I. 1. 1.3. 

Theorem 1.1.3. The domain E&( -A~,y), Yj E Y, -00 < rt.j:S; oo,j = 1, ... , N, 
consists of all functions t/J of the type 

N 

t/J(x) = (Mx) + L aPk(x - Yj), (1.1.43) 
j=l 
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where 

j= t, ... ,N, (1.1.44) 

and ifJk E f'fi( -Ll) = H 2,2(1R3) and k2 E p( -Ll~,y), 1m k > O. This decomposi
tion is unique, and with IjJ of this form we have 

(1.1.45) 

Furthermore, let IjJ E f'fi( -Ll~,y) and assume IjJ = 0 in an open set U ~ 1R3. 

Then -Ll~,yljJ = 0 in U. 

PROOF. Assume, without loss of generality, that IlXjl < oo,j = 1, ... , N. Then we 
have 

~(-Ll.,y) = (-Ll •. y - k2)-l L 2([R3) = (- Ll •. y - P)-l( -Ll - k2)~( -Ll) 

={1 + jJl [r.,y(k)]j}Gk (· -Yj)(Gk (' -Yj'),(-Ll-k2)')}~(-Ll), 
P E p( -Ll.,y), 1m k > 0, (1.1.46) 

which proves (1.1.43) and (1.1.44). Let t/I = O. Then 

N eiklx-Yjl 

¢>,.(x) = - L aj . 
j=l 4nlx - yjl 

But this function can only be continuous if a l = ... = aN = 0 which implies unique
ness. Furthermore, we have 

N 

= Gk ( -Ll - k2)IA + L [r.,y(k)]j}(Gk (· - Yr), (-Ll - k2)IA)Gd' - Yj) 
j,j'=l 

N 

=¢>,.+ L aPk(' -y)=t/I, (1.1.47) 
j=l 

which is equivalent to (1.1.45). 
Finally, to prove locality, let t/I be of the form (1.1.43), and assume that t/I = 0 in 

an open set U £ [R3. Then 

N 

¢>,.(x) = - L ajGk(x - Yj), 
j=l 

XE U. (1.1.48) 

If U n {Yl, ... , YN} = 0, then we have « -Ll - k2 )Gk(' - Yj»(x) = 0 for x E U and 
for all j = 1, ... , N, which implies that 

N 

-Ll~,yt/l = k2t/1 + (-Ll - k2)ljJk = - L ai -Ll - k2)Gk(' - Yj) = 0 (1.1.49) 
j=l 

in U. If, however, say Yl E U, we know from (1.1.48) that a l = 0 since IjJ is continuous, 
so again we can use the same argument on Gk (' - Yj) for j = 2, ... , N (for a more 
general argument, see also Lemma C.2). • 

Observe that f'fiy ~ f'fi( - Ll~, y) and that 

(1.1.50) 
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which proves that - ~", y is among the self-adjoint extensions of Theorem 
1.1.2. 

In general, one expects Schrodinger Hamiltonians H of the above type to 
have no singular continuous spectrum, O'sc(H) = 0, and no positive embedded 
eigenvalues, i.e., O'p(H) ~ ( -00, 0). This is also correct for point interactions 
as the next theorem shows. In addition, we show that eigenvalues and eigen
functions can be determined explicitly up to the computation of the zeros of 
the determinant of an N x N matrix. 

Theorem 1.1.4. Let Yj E Y, -00 < r:t.j ~ oo,j = 1, ... , N. Then the essential 
spectrum of the operator - ~", y is purely absolutely continuous and equals 

O'ess( -~",y) = O'ac( -~",y) = [0, (0), 

Moreover, 

O'sc( -~",y) = 0· (1.1.51) 

(1.1.52) 

and -~",y has at most N (negative) eigenvalues counting multiplicity. Let 
1m k > O. Then 

P E O'p( -~",y) iff 

det[r",y(k)] = det [( r:t.J - :~) OJ}' - Gk(YJ - YJ')] = 0 (1.1.53) 

and the multiplicity of the eigenvalue k2 equals the multiplicity of the eigen
value zero of the matrix r",y(k). Moreover, let Eo = k~ < 0 be an eigenvalue 
of -~",Y' Then the corresponding eigenfunctions 1/10 are of the form 

N 

I/Io(x) = L CPko(X - Yj), 1m ko > 0, (1.1.54) 
j=l 

where (c 1, .•. , cN ) are eigenvectors with eigenvalue zero of the matrix r", y(ko)' 
If - ~", y has a ground state it is nondegenerate and the corresponding 
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen
vector (c 1 , ••• , CN) fulfills CJ > O,j = 1, ... , N). 

PROOF. Without loss of generality we may assume IlXjl < 00, j = 1, ... , N. The 
statements concerning the essential, absolutely continuous, and singularly con
tinuous spectrum all follow in the same way as in the one-center case, Theorem 
1.1.1.4. It is evident from the explicit expression for the resolvent that poles of the 
resolvent for k2 < 0 can only occur when the matrix r",y(k) is noninvertible, Le., 
when it has zero determinant. Let Re k = O,lm k > 0, and define K = - ik > O. Then 
the matrix r",y(iK) has the derivative 

_dr_",-,y_(iK_) = [~e-K'YrYj"r ' 
dK 47t ',J'=l 

(1.1.55) 

which is strictly positive definite (one can follow [437], Lemma 4.4). Therefore the 
N eigenvalues Y1(K), ... , YN(K) of r",y(iK) are all strictly increasing with respect to 
K, and hence there can be at most N points K l' ... , KN such that one of the eigen-
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values ')'j(K), j = 1, ... , N, of r •. y(iK) is zero. This proves the statement about the 
total number of negative eigenvalues. (This is also a consequence of the fact that 
(-~ •. y - k2)-1 - Gk> 1m k2 i= 0, is of rank N.) 

Now let Eo = k5 be an eigenvalue of -~ •. y with corresponding eigenfunction 1/10' 
i.e., 

Then 1/10 is of the form 

1/10 E !Z)( - ~ •. y). 

N 

I/Io(x) = IA(x) + I aPk(X - Yj) 
j=l 

(1.1.56) 

(1.1.57) 

for some FE p( -~ •. y), 1m k > 0, and ¢Jk E!Z)( -~) where aj is given by (1.1.44). 
From the eigenvalue equation (1.1.56) and (1.1.45) it follows that 

Hence 

fA,. = (k5 - k2)GkI/lO' 

Inserting (1.1.57) into (1.1.59) we obtain 

¢Jk = (k5 - k2{ Gk¢Jk + jt apkGk(' - y)J 
From this equation it follows that 

N 

(-~-k5)¢Jk=(k5-k2) I apd' -Yj)' 
j=l 

(1.1.58) 

(1.1.59) 

(1.1.60) 

(1.1.61) 

If Eo = k5 2': 0, then this equation has no nontrivial solutions. This can be seen as 
follows. By making a Fourier transform of eq. (1.1.61) we obtain 

" N e-iPYj 

(p2 - k6)rA(p) = (2n)-3/2(k6 - F) j'f aj p2 _ k2' (1.1.62) 

which proves that Jk' and therefore ¢Jk' cannot be in L 2([R3) unless it is identically 
zero. Hence 1/10 = 0 (recall that a1 = ... = aN = 0 if ¢Jk = 0), which proves the absence 
of nonnegative eigenvalues. 

However, if Eo = k5 < 0, we can apply Gko on each side of (1.1.61). Using the 
resolvent equation we then obtain 

N 

fA,. = I aj[Gko(' - Yj) - Gk(' - Yj)], 
j=l 

which implies that 1/10 has the form 

N 

I/Io{x) = I aPko(X - y). 
j=l 

By evaluating (1.1.63) at x = Yj we find that 

(1.1.63) 

(1.1.64) 

1 N 
¢J(Yj) = -(iko - ik) + I ap[Gko(Yj - Yj') - Gk(Yj - Yj')], j = 1, ... , N, 

4n j'=l 

(1.1.65) 
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(recall that <'ik(x) = Gk(x) if x :j: 0 and zero if x = 0) which can be written as 

N 

t/J(Yj) = L [ra,y(k) - ra,y(ko)]jj·aj., j = 1, ... , N. (1.1.66) 
j'=l 

Equation (1.1.44) is equivalent to 

N 

t/J(Yj) = L [ra, y(k)]jj,aj' , j = 1, ... , N, (1.1.67) 
j'=l 

which implies by (1.1.66) that 

N 

L [ra,y(ko)]jj,a)' = 0, j = 1, ... , N. (1.1.68) 
)'=1 

Hence (a1' ... , aN) is an eigenvector of ra,y(ko) with eigenvalue zero. 
On the other hand, if 

N 

t/lo(x) = L aPko(x - Yj), Imko>O, (1.1.69) 
j=l 

and (a1, ... , aN) is an eigenvector ofra,y(ko) with eigenvalue zero, we can prove that 
t/lo satisfies 

(1.1.70) 

as follows. First, we wish to establish that t/lo E!')( -~a,y). To this end, let 

rA = (k~ - k2)Gko t/lo (1.1.71) 

for some k2 E p( -~a,y), 1m k > O. Then t/J E!')( -~) and we have the following 
computation 

N N 

rA=(k~-k2) L aPkGko(' -Yj)= L aj[Gko(' -Yj)-Gk(' -Yj)]' (1.1.72) 
j=l j=l 

which implies that 

N N 

rA + L aPk(' - Y) = L aPko(' - y) = t/lo· (1.1.73) 
j=l j=l 

To prove that aj,j = 1, ... , N, satisfy (1.1.44) we evaluate (1.1.72) at Yj. Then 

1 N_ 

rA(Yj) = -(iko - ik) + L aj,[Gko(Yj - Yj') - <'ik(Yj - Y)')] 
4n j'=l 

N 

= L [ra,y(k) - ra,y(ko)Jn·aj. 
)'=1 

N 

= L [ra,y(k)]jj,aj" j = 1, ... , N, (1.1.74) 
j'=l 

which proves (1.1.44), and hence t/lo E!')( -~a,y). Finally, we observe that 

-~a,yt/lo = (-~ - k2)rA + k2t/10 = (k~ - k2)t/lo + k2t/10 = k~t/lo. (1.1.75) 

The assertions about the ground state follow from the monotone increase of all 
eigenvalues of ra,y(iK) for K > 0 and the fact that ra,y(iK) generates a positivity 
preserving semigroup e-,r •. r(iK), t ;;::: 0, K E IR, in eN since all otT-diagonal elements in 
r a, y(iK) are negative ([391], p. 210). Thus the smallest eigenvalue ofra,y(iK) is nonde-
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generate and we may choose a corresponding nonnegative eigenvector (c l , ... , CN)' 
Cj ~ O,j = 1, ... , N. Since Cjo = ° for some jo would imply IXjo = 00 we actually infer 
cj > O,j = 1, ... , N (cf. also the discussion in Appendix F). • 

Before we give an example to illustrate the results in a simple case, we note 
the following elementary result. 

Proposition 1.1.5. Let N(P, 1X1' ... , IXN) denote the number of eigenvalues 
(counting multiplicities) of - ~", y less than or equal to P < O. Then 

where 
ex = max (lXj), 

l:5.j:5.N 
~ = min (lXj ). 

1 :5.j:5.N 

(1.1.76) 

(1.1.77) 

PROOF. Observe from (1.1.25) that the eigenvalues of r., y(k), 1m k > 0, Re k = 0, 
are increasing in each of the components IXj of IX, which proves (1.1.76). • 

One virtue of point interactions is, as we have already seen in the one-center 
case, that eigenvalues and resonances can be treated on an equal footing. We 
define resonances of -~",y as follows. ko E C, 1m ko ::;; 0, is a resonance of 
-~",y iff 

det[r",y(ko)] = de{ (lXj - ~;) (jjj' - Gko(Yj - yj')] = O. 

The multiplicity of the resonance ko equals the multiplicity of the zero of 
det[r",y(k)] at k = ko' 

We end this section with an example illustrating some of the ideas in this 
chapter, namely the study of the two-center problem with equal strength, i.e., 
N = 2, IX1 = IXz = IX, in eq. (1.1.33). 

The eigenvalue/resonance equation is (with L = IY1 - Yzl) 

det 

i.e., 

[ 

ik 
IX--

4n 

Gk(L) 

(1.1.78) 

(1.1.79) 

Now let Lk = x + iy. Separating the real and imaginary part we obtain the 
two equations 

4nIXL + Y = ±e-Y cos x, 

-x = ±e-Y sin x. 

Eigenvalues correspond to x = 0 and Y > 0, i.e., 

Y = ±e-Y - 4nlXL. 

(1.1.80) 

(1.1.81) 
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From Figure 2 we see that if 4nIXL < - 1 we have two simple eigenvalues, if 
1 > 4nIXL ~ -1 we have one simple eigenvalue, and finally, if 4nIXL ~ 1 there 
are no eigenvalues. 

To study the resonances we have to look for solutions of (1. 1.80) with y < ° 
and x arbitrary. First, we observe that if (x, y) is a solution of (1.1.80) then 
(-x, y) is also a solution, i.e., we have a reflection symmetry with respect to 
the imaginary axis. So we only have to study what happens when x> 0. We 
can rewrite (1.1.80) as 

(1.1.82) 

and 

y = -x cot x - 4nlXL. (1.1.83) 

Let <fJ be the monotone decreasing function on ((2n - 1)n,2nn) 

I sin x I <fJ(x) = In -x- + x cot x + 4nlXL. (1.1.84) 

As x H2n - 1)n, <fJ(x) -+ +00, and as x i 2nn, <fJ(x) -+ -00, n E N, which implies 
that for each interval ((2n - l)n, 2nn), n E N, there is precisely one simple 
resonance kn such that Re kn E ((2n - 1)(nIL), 2n(nIL)). Similarly, there is 
exactly one simple resonance kn such that Re kn E (2n(nIL), (2n + 1)(nIL)). On 
the interval [0, n) we have that as x! 0, <fJ(x) -+ 1 + 4n1XL, while as xi n, 
<fJ(x) -+ -00. Thus if 4nIXL > -1 we have, as before, exactly one simple re
sonance kl with Re kl E (0, (niL)). If 4nIXL < -1 we have exactly one simple 
resonance on the negative imaginary axis, which we have already encountered 
in Figure 2. When IX varies in IR, we see that we can always satisfy eq. (1.1.83), 
thus we have the resonance curves as shown in Figure 3. 

fl 
fl \ 

f2 
fl f2 

\ 
\ \ // 

\ 

f2/ / 
/ 

/ 
/ ~Y 

f4 
f4 Y 

Y 

I 
f3 f3 If3 

(a) 4mxL < -1 (b) -1:::; 4mxL < 1 (c) 4mxL ;:::.: 1 

Figure 2 fl(Y) = e-Y - 4mxL; f2(Y) = Y; f3(Y) = -e-Y - 4mxL;f4(Y) = -47t1XL. 



n.l.2 Approximations by Means of Local Scaled Short-Range Interactions 121 

y 

l 
I I I I j I I I I I! ! pi ~ I I I 1,1 I j t J> x 

/' 1 , 

r\ r-\(~V/ 1 \r\r\ ~ 
\tf )'jf !! i j r It! Y '\/ I 1 , I ! 

I 1 

I sin x I Figure 3 y = In -x- . 

Finally, we note that the asymptotic behavior of the resonances kn is given 
by 

n i 
kn ~ (n + t):L -:L In[(n + t)n] 

as n ~ 00. 

We will return to this example in Sect. 1.4. 

11.1.2 Approximations by Means of Local Scaled 
Short-Range Interactions 

(1.1.85) 

Having defined the point interaction Hamiltonian -Lla,y, it is reasonable to 
ask in what sense this Hamiltonian is approximated by Hamiltonians with 
more realistic and less singular short-range interactions. 

Let 
N 

H"y = Ll -i- e- 2 L Aie) Jj«' - y)je), e > 0, (1.2.1) 
j=t 

where Jj E R,j = 1, ... , N (recall that the Rollnik class R consists offunctions 
V: 1R3 -. C with J~;pd3X J[q3d 3y lV(x) I lV(y) I Ix - yl-2 < (0) are real-valued 
and Aie) are assumed to be real-analytic in a neighborhood of zero with 

AiO) = 1, j = 1, ... ,N. (1.2.2) 

The set Y = {Yl, ... , YN} of N distinct points Yj E 1R3,j = 1, ... , N, forms the 
set where we want to localize the point interactions. (We will use Y to denote 
both the set {Yl, ... , YN} C 1R3 and the n-tuple (Yt, ... , YN) E 1R3N when no 
confusion can arise.) He,y is well defined as a sum of quadratic forms by 
Appendix B. 

Recall from Sect. LLl the unitary scaling group U, in L2(1R3) given by 

(1.2.3) 

which connects H"y to the self-adjoint operator Hy(B) defined by 
N 

Hy(B) == B2ue-tHe.yUe = -Ll -i- L Aj(B)Jj(' - B-1y), 
j=l 

B > 0. (1.2.4) 
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We will also need the operators 

Hi= -A+ lj, j= 1, ... ,N. (1.2.5) 

Then we have the following theorem. 

Theorem 1.2.1. Let lj: 1R3 -+ IR fulfill (1 + 1·1)2lj ERn L 1 (1R3), j = 1, ... , 
N. Assume, in addition, that Aj(O) =F 0 if Hi = - A + lj is in case III or IV 
for some j = 1, ... , N. Then the operator H.,y defined by (1.2.1) converges 
in strong resolvent sense to the operator -AIl,y defined by (1.1.33) where 
IX = (1X 1, ... , IXN) is given by 

00 in case I, 

- Aj(O) I (vi' ~i)I-2 in case II, 

lXi = 00 in case III, (1.2.6) 

-Aj(O) {~ I(vi' ~il)12}-1 in case IV. 

Here ~i (resp. ~il' 1= 1, ... , !V.i) denote eigenvectors of uPOvi to the eigen
value -1 with (cf Sect. 1.1.2) 

(~, ~i) = -1, I, I' = 1, ... ,!V.i, j = 1, ... , N. 
(1.2.7) 

Remark. As remarked earlier, lXio = 00 for some jo means that the point 
(lXio' Yio) should be removed from the definition of - All, y, i.e., we obtain - Ali, i 
where a. = (lXI' ... , lXio- l ' lXio+l' ... , IXN) and r = (Yl' ... , Yio-l' Yio+l' ... , YN), 
etc. 

PROOF. The proof of the theorem is divided into two lemmas. 

Lemma 1.2.2. The resolvent of H., y reads 

N 

(H.,y - k2)-1 = Gk - e L A.)k)[1 + B.(k)]jj~C',j,(k), 
j,},=l 

k2 E p(H.,y), 1m k > 0, e> 0, (1.2.8) 

where A.,j(k), B.(k) = [B.,jr(k)]f,r=l' and C.)k) are Hilbert-Schmidt operators with 
integral kernels 

A.jk)(x, x') = .A.j(e)Gk(x - Yj - ex')vix'), 

B (k)( ') - {.A.j(e)Uj(X)G.k(X - x')vj(x'), j = j', (1 29) 
.,jj' x, x - e.A.j(e)uj(x)Gk(e(x _ x') + Yj _ Yj')vj'(x'), j =I- j', .. 

C.jk)(x, x') = Uj(x)Gk(ex + Yj - x'); j,j' = 1, ... , N, 1m k ~ 0, e ~ 0. 

PROOF OF LEMMA 1.2.2. Using Theorem B.l we have 

N 

[Hy(e) - (eWrl = G.k - L .A.j(e)G.kvj[l + B.(ek)]jj~aj,G'k' 
}.},=l 

(ek)2 E p(Hy(e», 1m k > 0, (1.2.10) 
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where 

Vj(X) = Vj(x - e-lYj), 

and 

e> 0, j = 1, ... , N, (1.2.11) 

(1.2.12) 

In addition to the scaling operator U. given by (1.2.3) we also need the unitary 
translation operators 

Ty: L 2(1R3) --+ L 2(1R3), 

Recall that 

(Tyg)(X) = g(x + Y), 

e > 0, 1m k > 0. 

With all this we can compute the resolvent of R.,y. 

(R.,y - k2r l 

= e2 U.[Ry(e) - (eWrlU.-l 

N 

= Gk - e- 2 L A)e)GkUA[1 + B.(ek)]j}uj'U.-lGk 
j,j'=l 

N 

(1.2.14) 

= Gk - e-2 L A.j(e)GkU.vjTyJ!TyJ,.[1 + B.(ek)]j}Ty~f.TyJ",uj'U.-lGk 
j,j'=l 

N 

= Gk - e L A.)k)[1 + B.(k)];}C.,j,(k), 
j,j'=l 

k2 E p(R.,y), 1m k > O. (1.2.15) 

• 
As in the one-center case the problem is now reduced to the study of the limit of 

the operators A.,j(k), [1 + B.(k)]jj!, C',J,(k) as e ~ O. As in Lemma 1.1.2.2 we obtain 
convergence of 

A •. j(k) -;ro+ Ao,j(k) = (vj , . )Gk(' - Yj), 

C',J(k) -;ro+ Cojk) = (Gk(' - Yj), . )Uj' j = 1, ... , N, 1m k > 0, (1.2.16) 

in Hilbert-Schmidt norm where we observe that Ao)k) and Co)k), j = 1, ... , N, 
are rank-one operators. 

The limit of e[1 + B.(k)rl is much more delicate. We split the operator B. == 
[B',JJ,(k)]7,j'=l in the diagonal and otT-diagonal elements, i.e., 

where D. = [D',Jj'J7.J'=l and E. = [E.,jj,]7,J'=l have integral kernels 

D',Jj'(x, x') = bjj'A.ie)uj(x)Gek(x - x')vJ(x'), 

E',JJ'(x, x') = (1 - bjj, )A.j(e)uj(x) Gk(e(x - x') + Yj - Yj' )vj'(x'), 

From this decomposition it follows that 

(1.2.17) 

(1.2.18) 
e ~ O. 

e[1 + B.rl = e[1 + D. + eE.rl = {1 + e[1 + D.rlE.}-le[1 + D.rl, (1.2.19) 

which implies that we have to find the limit of e[1 + D.rl and E. as e tends to zero. 
Now the limit of the operator e[1 + D.rl corresponds to the limit of the operator 
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8[1 + B.(k)r l in the one-center case which was computed in Lemma 1.1.2.4., i.e., 

Fjj == n-lim 8(1 + D •. jjr l = 
.J.o 

o 

N· 

- [Aj(O)r l t (¢11' . )¢Jjl 
l~l 

N· t [(411:)~lik(¢11' u)(Vj' ¢Jjl') 
l.l'~l 

where [ . r l denotes the inverse matrix in case IV. 

in case I, 

in case III, 

in case IV, 
(1.2.20) 

So far we only needed the conditions fj E Rand (1 + ,.,) fj ELl ([R3), Aj(O) 'I- 0 in 
cases III and IV,j = 1, ... , N, but to control the limit of E. we use (1 + ,.1)2 fj ERn 
L 1 ([R3). 

Lemma 1.2.3. If fj: [R3 --> [R satisfies (1 + ,.1)2fj ERn U([R3), j = 1, ... , N, then 
IIE.II is uniformly bounded and 

s-lim E. = Eo = [(1 - bjj,)Gk(Yj - Yr)(Vj', ·)UJ7.r~l 1m k > O. (1.2.21) .-0 
PROOF OF LEMMA 1.2.3. To simplify the notation we assume Ai8) == 1. First, we 
show that liE. II is uniformly bounded by estimating IIE.,jj' 112' j 'I- j' (see [250]) as 
follows 

1 
IIE.,jr - Eo,jj'"~ ~ 4 21 12 {11(1 + 1'12)fjIIRII(1 + 1'1 2)fj,IIR 

11: Yj - Yr 

+ 211 fj Ilu(~3) II fj, IIL1(~3)}. (1.2.22) 

Let f E CO'([R3). Using the fact that f has compact support and that (1 + 1'1) fj E 
L 1([R3), one can prove (see [250], Lemma 2.4) that 

II (E •. jr - Eo,jr)f II --> 0 as 810, j,j' = 1, ... ,N, 1m k > O. (1.2.23) 

The uniform bound on IIE.II then completes the proof. • 
Using the resolvent identity we now obtain 

{1 + 8[1 + D.rl E.} ~l = [1 + FEorl + {I + 8[1 + D.rl E.} ~l. 
'{8[1 + D,rlE, - FEo}[l + FEorl-;i-o+ [1 + FEorl. 

(1.2.24) 
Together with (1.2.16) and (1.2.20) this implies that 

8[1 + B,r l ,10' [1 + FEorl F, 1m k > O. (1.2.25) 

We are now in possession of the limits of all operators involved in (H" y - k2)~1. 
By a tedious but straightforward calculation [247] we obtain the result stated in 
the theorem, viz. 

N 

s-lim (H"y - k2)~1 = Gk - L Ao,ik)[[l + FEorlF]jj,Co,r(k) 
.J.o j,r~l 

N 

= Gk + L [r.,y(k)Ii.i~(G(· - Yr), ')Gk(' - Yj), (1.2.26) 
j,j'~l 

where ex = (ex l , ... , exN ) is given in (1.2.6). • 
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We can also obtain norm resolvent convergence in the N-center case, but 
then we need stronger decay on the potential. 

Theorem 1.2.4. Let Jj E R be real-valued and supp Jj compact, j = 1, ... , 
N. Assume, in addition, that 2}(0) :F 0 if Hi is in case III or IV for some j = 
1, ... , N. Then H., f converges in norm resolvent sense to - A", f where IX is 
given by (1.2.6). 

PROOF. As Rollnik functions with compact support are in L 1(/R3) ([434], Theorem 
1.7) the only thing we have to prove, when compared with the preceding theorem, 
is that 

liE. - Eo II ..... 0 as e ~ O. (1.2.27) 

Since the potentials have bounded support we can assume that the variables x, x' 
in the definition (1.2.18) of E. satisfy lxi, Ix'i < e, when we estimate the Hilbert
Schmidt norm of E. - Eo which implies that le(x - x') + Yj - Yj'1 ;::: IYj - Yj'1 -
2ee > 0 for all e sufficiently small. Using the dominated convergence theorem (1.2.27) 
readily follows. • 

11.1.3 Convergence of Eigenvalues and Resonances 

Using the convergence results from the previous section we now deduce results 
concerning the convergence of dgenvalues and resonances. 

Theorem 1.3.1. Let Jj E R be real-valued, supp Jj compact, j = 1, ... , N, 
and suppose (1.1.2.84). Moreover, if Hi = -A -+ Jj is in case III or IV for 
some j we assume, in addition, 2}(0) :F O. Assume that k~, 1m ko > 0, is a 
negative eigenvalue of - A", f (the norm resolvent limit of H., f as e ! 0) with 
multiplicity M. Then there exist functions hz, I = 1, ... , m, analytic near the 
origin, h,(O) = 0, and integers ml E {1, 2}, I = 1, ... , m, such that 

kf,. = k~ + hl (e 1/m,) 

00 

= k2 + '" a er/m, o L...J l,r , 
r=1 

m 

I = 1, ... , m, L ml = M, 
1=1 

(1.3.1) 

are all the eigenvalues of H.,f near k~ for e > 0 sufficiently small. If m, = 2 
for some I, both square roots should be used such that the total multiplicity 
of all eigenvalues of H.,f near k~ is exactly M. Furthermore, 

(1.3.2) 

where kl = k1 is a solution of (1.3.33) if m, = 1 and of (1.3.36) if m, = 2. 

Remark. Since cases I and III do not give rise to any interaction in the limit 
e ! 0, we have implicitly assumed in the above that Hi = - A -+ Jj is in case 
II or IV for at least one j. 
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PROOF. From the analysis of Appendix B we know that k; < 0 is an eigenvalue 
of H,.r iff -1 is an eigenvalue of B,(k,), 1m k, > 0, where B,(k,) is given by (1.2.9), 
and hence iff 

(1.3.3) 

But since the operator B,(k) does not depend on k when e = 0, we cannot use the 
implicit function theorem in (1.3.3) directly. Instead we expand the operator B.(k) 
in norm in powers of e, viz. 

B,(k) = B + eB(k) + o(e), (1.3.4) 

where 

B = [8jj,upovj Jf.j'=t, 
(1.3.5) 

B(k) = {[,1,j(O)UPOVj + ~(Vj, . )Uj] 8j j' + Gk(Yj - Yj')(vj" . )Uj}N . 
4n j,j'=t 

We know that Ker(1 + B) = {II> E £'1(1 + B)II> = O}, with £' = Et>f=t L2(1R3), con
sists of vectors of the form 

where 

if Hj = - ~ -i- T-j is in case I, 

if Hj = - ~ -i- T-j is in case II, 

if Hj = - ~ -i- T-j is in case III orIV; 

(1.3.6) 

(1.3.7) 

j = 1, ... , N. 

We now want to decompose the Hilbert space £' as follows. Let P = [8j j'lj] be the 
projection 

and let 

Using 

in case I, 

in case II, 

in case III or IV; 

.it' = Ker(l + B) = Ran P, 

£'2 = Ran(1 + B). 

Ker P = Ker(1 + B*).l 

j = 1, ... ,N, 

and the Fredholm alternative ([494], p. 136) we infer that 

£'2 = Ker P. 

Thus £' can be written as a direct sum 

(1.3.8) 

(1.3.9) 

(1.3.10) 

(1.3.11) 

(1.3.12) 

The space .it' so far consists of all eigenvectors of B with eigenvalue -1, while the 
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limit operator - L\«. y is only affected by the eigenvector in case II and the one 
eigenvector in case IV which gives rise to the zero-energy resonance (with our 
convention this is ¢j1 in case IV, cf. (1.1.2.84)). Because of this we put all these 
eigenvectors in a space £'0 and let £'1 be the complement, thus 

(1.3.13) 

Define 

BlO = (1 - Po)BPo, 

B11 = (1 - Po)B(l - Po) 
(1.3.14) 

and similarly for B(k) and o(e). Here Po is the part of P projecting onto .#'0. Then 
Boo = - Po and B01 = B10 = 0 which implies that B.(k) can be written as 

[ -1 + eBoo(k) + ooo(e) eB01(k) + oOl(e) J 
B,(k) = ~ ~, 

eB10(k) + olO(e) B11 + eB11 (k) + 0 11 (e) 
e> 0, 1m k > 0, 

(1.3.15) 

where the decomposition is with respect to .#'0 and (£'1 -+ £2). Now let 

B,(k) = 

e > 0, 1m k > O. (1.3.16) 

With these definitions we infer 

[1 + B.(k)] [1/10 J = e[l + B.(k)] [l/IoJ. 
el/l2 1/11 

(1.3.17) 

By relabeling, if necessary, we can assume that Hj = - L\ -+ lj,j = 1, ... , no, no :::;; N, 
are all in case II or IV. In addition, we also write ¢j for ¢j1 if Hj is in case IV. With 
all this at hand, a typical element \{Io and £'0 looks like 

(1.3.18) 

and hence 

(Boo(k)\{Io)j = (¢j' v)¢j j%l [( ocj - ~:}5jj' -Gk(Yj - Y/)}/. (1.3.19) 

Furthermore, we observe that 

B10(k)\{Io + (1 + B11 )\{I1 = 0 (1.3.20) 

can always be solved with respect to \{I1 E £'1 -+ £'2 for any \{Io E.#'o since BlO(k)\{Io E 

£'2 and [1 + BJIJf'2 is bijective from (1.3.12). 
Hence 

-1 E (J(Bo(k)) iff Ker Boo(k) of. {O}. (1.3.21) 

What we have obtained so far is to replace the operator B,(k), which contains no 
information on k when e = 0, by the operator B.(k) which is directly related to the 
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point interaction Hamiltonian - L\a, y at e = O. Let 

d(e, k) = det2 [1 + B,(k)], (1.3,22) 

which is analytic in e and k near e = 0 and in 1m k > O. Then 

= det2[Boo(k)] det2[1 + BllJ 

= det[Boo(k)]e-Tr[Boo(k)-I] det2(1 + Bll ) (1.3.23) 

using the relations (Yf being a separable Hilbert space) 

det2 {[I + AJ [1 + BJ} = det2[1 + AJ det2[1 + BJ exp( - Tr AB), 

A, B E f!l2 (Yf), (1.3,24) 

det2[1 + AJ = det[1 + AJe-TrA, A E f!l1 (Yf). (1.3.25) 

None of the terms on the right-hand side of(1.3.23) can be zero except the first, and 
we can conclude that the multiplicity of the eigenvalue k5 of - L\a, y equals the 
multiplicity of the zero of d(O, k) at k = ko. 

Using the implicit function theorem we obtain that H" y has exactly M eigenvalues 
(counting multiplicities) kJ., converging to k5, and that kJ., can be expanded in a 
convergent Puiseux series. From Lemma B.4(a) we infer that this Puiseux series can 
have at most square root branch points and hence we obtain the expansion (1.3.1). 
To find the first coefficient in expansion (1.3.1) we proceed as follows. Let 

(1.3.26) 

Then kl ,. and hence B,m(k.) (we suppress the I dependence in the notation) are 
analytic in e near e = O. By first reducing the problem to a finite dimensional space 
by standard means ([391J, Sects. XII.l and XII.2) and using a theorem by Baum
gartel [60J, [61J we can find an eigenvector 11>, near e = 0 for B,m(k.) such that e --> 11>. 
is analytic and 

(1.3.27) 

Let 11>, = (I/JI", ... , I/JN,.)· Using (1.3.17) we can choose I/Jj,O = 0, j = no + 1, ... , N, 
and 

j = 1, ... , no, (1.3.28) 

where I/Jj,j = 1, ... , no, are defined as in (1.3.18) and (c I, ... , cn) is an eigenvector of 
the matrix ra,y(ko), i.e., 

I [((Xj - ~)(jjr - Gko(Yj - Yr)Jcr = 0, 
j'=1 4n 

j = 1, ... , no' (1.3.29) 

(Recall that, by assumption, Hj belong to case I or III for j = no + 1, ... , N, and 
therefore do not contribute to the limit, or equivalently, (Xj = 00 for j = no + 1, ... , 
N.) Because of the resonances (Theorems 1.3.3 and 1.3.4) we will not use that 
mE {I, 2}, but consider the general case mEN. By first taking the derivative m times 
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with respect to e at e = 0 we obtain after a short computation denoting 

that 

fiJ]'l = ar fiJj,. I, r = 2, ... , m + 1, j = 1, ... , N, 
aer ,=0 

fiJ; = afiJj" I ' j=1, ... ,N, ae .=0 

(1.3.30) 

no 

+ m! L U/lko(Yj - Yj,)cr = 0, j = 1, ... , no. (1.3.31) 
j'=l 

m= 1: 
By taking the inner product with ~ = fiJj sgn lj we obtain of course (1.3.29). 

From (1.3.31) we deduce that 

NJ 

== ajfiJj + L aj/fiJj / + Xj' j = 1, ... , no, 
/=2 

(1.3.32) 

where 1Jdenotes the reduced resolvent(cf. (1.1.2.37)) with V replaced by lj,j = 1, ... , 
no, and where a 1 , .•. , ano are constants to be determined later and ajl> 1 = 2, ... , ~, 
j = 1, ... , no, are constants which will drop out of the subsequent calculations. By 
calculating the second derivative of (1.3.27) in e = 0 and taking the inner product 
with ~ we finally obtain 

;'j(O)(Vj' fiJX1Cj - k5 f r d3x d3x' fiJix)Vj(x) Ix - X'IVj(x')fiJix')(Vj, fiJX1Cj 
4n JR. 

+ (fiJj , vj);'j(O)lXjCj + ;'j(O)aj - ;'j(O)(~, Xj) 

no 

+ 2 L Gko(Yj - Yj' )(fiJj , Vj) [(Vj' , fiJj , )aj' + (Vj" Xj')] 
j'=l 

+ j~l f L. d3x d3x' fiJj(x)Vj(x)VGko(Yj - Yj')' 

. (x - x')Vj'(x')fiJj,(x')(vj" fiJj'r1cj' = 0, j = 1, ... , no. (1.3.33) 

This is a system of no equations with no + 1 unknowns (k 1 and a1 , ... , ano )' How
ever, there is still one overall constant left undetermined, namely the normaliza
tion of <1>, (or the eigenvector (c1 , ... , cn)). This reduces the number of unknowns 
to no. 
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m> 1: 
First, we observe that 

and hence 
Nj 

l/l; = ajl/lj + I aAjl, 
1=2 

j = 1, ... , no 

(1.3.34) 

(1.3.35) 

for some constants (a1 , ••• , a.o) to be determined later (the constants ajl, 1 = 2, ... , 
~, j = 1, ... , no, will cancel). By computing the (m + 1)th derivative of (1.3.27) in 
e = 0 we obtain, after taking the inner product with ~, that 

iko 2 I ~ ?< 
4n I(l/lj, v)1 aj + Aj(O)aj + (l/lj, Vj) jf;;l Lrko(Yj - Yj')(Vj" l/lj')aj' 

ik ·0. 
+ ~(A.. v.) " e,koIYrYj·lc . = 0 

4 'f'J' J L... J" n j'=l 
j = 1, ... , no. (1.3.36) 

Again this is a system of no equations with no + 1 unknowns (k1 , a1 , ••. , a.o) which 
is still solvable due to the one extra degree of freedom contained in the normalization 
of <II.. • 

Turning the situation the other way around we can start with the negative 
eigenvalues of He,y which remain bounded and do not get absorbed in the 
continuous part of the spectrum as G t O. This is the set-up for the next theorem. 

Theorem 1.3.2. Let Jj E R be real-valued, supp Jj compact, j = 1, ... , N, 
and suppose (U.2.84). Moreover, if Hj = -d + Jj is in case III or IV for 
some j we assume, in addition, Aj(O) =I O. Let Ee be a negative eigenvalue of 
He, y such that 

(1.3.37) 

for G > 0 small enough. Suppose {en} is a positive sequence decreasing to zero, 
and denote by k~ (1m ko > 0) any accumulation point for {EeJ. Then k~ is 
an eigenvalue of -dlX,y, Let M be the multiplicity of the eigenvalue k~ of 
- d lX , y. Then the conclusion of Theorem 1.3.1 holds, i.e., there exist m analytic 
functions hi' 1= 1, ... , m, with h,(O) = 0 such that for m, E {1, 2}, 1= 1, ... , m, 

k~e = k~ + h,(e1/m,) 

m 

1= 1, ... , m, L m, = M, (1.3.38) 
1=1 

are all the eigenvalues of He.y near k6. k,.e can expanded as in (1.3.2). In 
particular, 2-1a" 1 = k1 is given by (1.3.33) if m, = 1 and by (1.3.36) if m, > 1. 

PROOF. The proof is almost a direct consequence of the proof of Theorem 1.3.1. 
In the notation of that proof the analytic function 

d(e, k) = det2 [1 + Be(k)] (1.3.39) 

is zero iff k2 is an eigenvalue of He,y when e > 0, and of -~.,y if e = 0, From the 



11.1.3 Convergence of Eigenvalues and Resonances 131 

assumptions we know that 

en!O, 

and that E'n -+ k~. Hence 

d(e., ..JE:.) = 0, Im..JE:. > 0, 

d(O, ko) = 0, 1m ko > 0, 

(1.3.40) 

(1.3.41) 

and we are in the situation covered by Theorem 1.3.1 for obtaining the stated form 
ofk,... • 

In the proofs of Theorems 1.3.1. and 1.3.2 we did not use in an essential way 
that k; was an eigenvalue of H., y per se, but only the equivalent statement 
that B.(k.) had - 1 as an eigenvalue. But in the "unphysical half-plane" (i.e., 
in 1m k < 0) this is by definition equivalent to k. being a resonance of H.,y. 
Thus we can immediately state the analogous results of Theorems 1.3.1 and 
1.3.2 for resonances. 

Theorem 1.3.3. Let lJ E R be real-valued, supp lJ compact, j = 1, ... , N, 
and suppose (1.1.2.84). Moreover, if Hj = -A + lJ is in case III of IV for 
some j we assume, in addition, Aj(O) :F O. Let ko, 1m ko < 0, be a resonance 
of - All, Y of multiplicity M. Then H., y has exactly M resonances which are 
branches of one or more multivalued analytic functions with at most an 
algebraic branch point at e = 0, such that 

k". = ko + h,(e1/m,) 
00 m 

= k + '" a e'lm, ° L., ',' , 
1= 1, ... , m, L m, = M, (1.3.42) 

.=1 '=1 

are all the resonances of H., y near ko for e > 0 sufficiently small. Furthermore, 
a',1 = k1 is given as a solution of (1.3.33) if m, = 1 and of (1.3.36) if m, > 1. 

Remark. We cannot infer that m, E {t, 2} in this case as we could for the 
eigenvalues, because we no longer have the constraint that k. E ilR for e > 0 
small enough. 

PROOF. As in the proof of Theorem 1.3.1 we define 

d(e, k) = det2 [1 + n.(k)], 

and from the assumption we have 

d(O, ko) = 0, d(O,·) ¢ 0 

(1.3.43) 

(1.3.44) 

which, using the implicit function theorem, implies (1.3.42). The expansion is ob
tained as in Theorem 1.3.1. • 

Theorem 1.3.4. Let lJ E R be real-valued, supp lJ compact, j = 1, ... , N, 
and suppose (1.1.2.84). Moreover, if Hj = -A + lJ is in case III or IV for 
some j we assume, in addition, Aj(O) :F O. Let k., 1m k. < 0, b~ a resonance of 
H., y such that 

(1.3.45) 
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for e small enough. Suppose {en} is a positive sequence decreasing to zero. 
Then any accumulation point ko of {keJ is a resonance of -Lla• y. Let M 
denote the multiplicity of ko. Then there exist m analytic functions hi' 1= 
1, ... , m, with hl(O) = 0 such that 

k/,e = ko + h/(e1/m,) 

00 m 

= k +" a erlm, o L..,.; I,r , I = 1, ... , m, L ml = M, (1.3.46) 
r=l 1=1 

are all the resonances of He, y near ko. al,l = k1 is given by (1.3.33) if ml = 1 
and by (1.3.36) if m/ > 1. 

PROOF. The proof is essentially equal to that of Theorem 1.3.2. • 

11.1.4 Multiple Well Problems 

By the multiple well problem we mean the asymptotic study of eigenvalues 
and resonances of the operator 

N 

Hy(e) = -Ll -+- L Jij(' - e-1Yj), e > 0, (1.4.1) 
j=l 

as e! O. Assuming that the potentials Jij are localized around the origin, the 
operator Hy(e) corresponds to the situation where the centers yde, ... , YN/e, 
around which the potentials V1 (' - e- 1yd, ... , VN(' - e- 1YN) are concen
trated, move apart. 

The reason why we can study this problem in the context of point interac
tions is, of course, the scaling relation we have noted and employed earlier, 
viz., if 

then 

N 

He,y = -Ll -+- e- 2 • L Jij(e- 1 (. - Yj)), 
j=l 

e > 0, (1.4.2) 

(1.4.3) 

where Ue is the unitary scaling group given by (1.2.3). We will begin with what 
we would like to call the critical multiple well problem, i.e., where we, in 
addition, assume that 

j= 1, ... ,N, (1.4.4) 

is in case II, i.e., Hj has a simple zero-energy resonance. In the preceding section 
we treated the case when 

(1.4.5) 

where k;is an eigenvalue of He,y. From the unitary equivalence (1.4.3) we infer 
that if k2(e) (1m k(e) > 0) denotes an eigenvalue of Hy(e), we have the relation 

(1.4.6) 
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which implies that we have studied eigenvalues of Hy(e) approaching zero as 
0(e2 ). For the critical double well (N = 2, Yl = 0, Y2 = Y, in (1.4.1)) we can 
immediately state the following theorem. 

Theorem 1.4.1. Let 

(1.4.7) 

where Jj E R, j = 1, 2, are real-valued and of compact support. Moreover, 
assume that Hj = - A + Jj,j = 1,2, are in case II. Then Hy(e) has, for e > 0 
sufficiently small, a simple eigenvalue k2 (e), 1m k(e) > 0, tending to zero as 

k(e) = eko + e2kl + 0(e2 ), (1.4.8) 

where ko is the unique solution with 1m ko > 0 of 

ikolYI = _eikolyi. (1.4.9) 

In addition, Hy(e) has an irifinite sequence of simple resonances kn(e) tending 
to zero and 

kn(e) = eko.n + e2kl,n + 0(e2 ), 

where ko.n is a solution with 1m ko.n < 0 of 

ik lyl = +eiko.nlyl. 
O.n -

kl and k l •n are solutions of (1.3.33). Asymptotically, we have 

IIi 1 
ko.n ~ lYT(n + z)n -IYT In[(n + z)n] as n ~ 00. 

Remark. The numerical values of the solutions of 

with Re Zn ~ 0, for the first few n, are given in Table 1. 

(1.4.10) 

(1.4.11) 

(1.4.12) 

(1.4.13) 

PROOF. Since now, according to our notation, A/e) == 1, which implies that !Xl = 

!X2 = 0, we combine the computations from the example in Sect. 1.1 with Theorems 
1.3.1 and 1.3.2 to obtain the result. • 

For completeness we state a similar result in the N-center case. 

Theorem 1.4.2. Let 
N 

Hy(e) = -A + L Jj(' - e-lYj), e > 0, 
j=l 

where Jj E R are real-valued and have compact support for j = 1, ... , N. In 
addition assume that Hj = - A + Jj is in case II for j = 1, ... , N. Then we 
have: 

(a) If Hy(e) has a continuous eigenvalue k2 (e) (resp. resonance k(e)) such that 

0< Ml ~ 11m k(e)le- l ~ Ik(e)le-l ~ M2 < 00 (1.4.14) 
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for e small enough, then k(e) is a multivalued analytic function and we 
have the expansion 

k(e) = eko + e(m+1)/mk1 + o(e(m+l)/m), (1.4.15) 

where ko, 1m ko > 0 (resp. 1m ko < 0), is a solution of 

[ ikO;! ] det 4n Ojj' + Uko(Yj - Yj') = 0 (1.4.16) 

and kl is a solution of (1.3.33) if m = 1 and of (1.3.36) if m > 1. (If 
1m ko > 0, then 1 ~ m ~ 2.) 

(b) If ko is a solution of (1.4.16), then there exists an eigenvalue k2(e) of 
Hy(e) if 1m ko > 0 (resp. a resonance k(e) if 1m ko < 0) with the expan
sion (1.4.15). 

PROOF. The theorem is a direct consequence of Theorems 1.3.1-1.3.4 by noting 
that (1.4.16) is equivalent to the statement that k~ is an eigenvalue (resp. ko is a 
resonance) of -do•y. • 

Table 1 

n 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 
-Rezn 
n 

o 
0.425655 
1.392665 
2.415536 
3.430203 
4.440171 
5.447408 
6.452924 
7.457284 
8.460827 
9.463770 

10.466259 
11.468394 
12.470248 
13.471876 
14.473317 
15.474603 
16.475759 
17.476803 
18.477753 
19.488621 
20.479416 
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0.567143 
-0.318132 
-1.533913 
-2.062278 
-2.401585 
-2.653192 
-2.853582 
-3.020240 
-3.162953 
-3.287769 
-3.398692 
-3.498515 
-3.589263 
-3.672450 
-3.749243 
-3.820554 
-3.887116 
-3.949523 
-4.008262 
-4.063742 
-4.116305 
-4.166242 

The topic of this section is the study of scattering quantities for the Schrodinger 
operator with point interactions at a finite number of points in 1Il3 and their 
naturale-expansions. We start with stationary scattering theory for the pair 
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(-d",y, -d). Let 

N eiklx-Yjl 
'I'",y(kw, x) = eikwx + L [r",y(k)]j}eikwyj' 4 I I' 

j,j'=l n x - Yj 

det[r",y(k)] =I- 0, k,2: 0, !Xj E IR, Yj E Y, j = 1, ... , N, x t$ Y, WE S2. 
(1.5.1) 

Then 'I'",y is formally of the form (1.1.43) with (A(x) = eikwx which is not in 
L 2(1R3) but satisfies 

in the distributional sense. Furthermore, 

(-d'l'",y)(kw, x) = k2'1'",y(kw, x), 

and 

lim lim 
,.),0 Ix'l-+oo 

-lx'I- 1x'=w 

(1.5.2) 

x t$ Y, (1.5.3) 

det[r",y(k)] =I- 0, k,2: 0, !Xj E IR, Yj E Y, j = 1, ... , N, x t$ Y. 
(1.5.4) 

Hence the functions 'I'",y constitute the generalized eigenfunctions of -d",y 
or, in other words, the scattering wave functions. With this at hand the on-shell 
scattering amplitude la, y(k, w, w') associated with - d", y equals 

Ia,y(k, w, w') = lim Ixle-iklxl['I'",y(kw', x) - eikw'x] 
Ixl-+oo 

Ixl-1x=w 
N 

= (4ntl L [r",y(k)]j}eik(Yj'W'-YjW), 
j,j'=l 

det[r",y(k)] =I- 0, k,2: 0, !Xj E IR, Yj E Y, j = 1, ... , N, w, W' E S2. 
(1.5.5) 

Hence the off-shell extension la, y(k, p,q) of la, y(k, w, w') reads 

N 
la, y(k, p, q) = (4n)-1 L [r", y(k)]jj~ei(Yj,q-YjP), 

j,j'=l 

det[r",y(k)] =I- 0, k E C, !Xj E IR, Yj E Y, j = 1, ... , N, p, q E C3, 

(1.5.6) 

so as to make 

Ia,y(k, w, w') = Ia,y(k, p, q)llpl=lql=k' 

p, q E 1R3, W = Ipl-lp, W' = Iql-lq. (1.5.7) 

Thus the unitary on-shell scattering operator Y:,y(k) in L2(S2) equals 

(Y: y(k)~)(w) = ~(w) - 2k. f d 2w' ~ y(k, w, w')~(w'), , nl 8 2 To, 
~ E L2(S2), 

(1.5.8) 
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or after insertion of (1.5.5) 

N 

Y:,y(k) = 1 - (k/8n2i) L [r~,y(k)]j/(e-ikYj'(·),. )e-ikYj(') 
j,j'=1 

det[r~,y(k)]=f.O, k~O, rtjEIR, YjEY, j=I, ... ,N. (1.5.9) 

The low-energy limits ofla,y(k, w, w') and Y:,y(k) can easily be obtained from 
(1.5.5) and (1.5.9), respectively. Namely, we have 

n-lim Y:,y(k) = 1, 
k-O 

N 

-limla,y(k, w, w') = -(4nt1 L [r~,y(O)l;:/ = .a.~,y, 
k-O j,j'=1 

where .a.~,y is the scattering length. Finally, we observe that Y:,y has a mero
morphic continuation in k to C with poles exactly at the eigenvalues and 
resonances of - .1~, y. 

We now turn to the question of how the scattering amplitude Ia,y and the 
on-shell scattering operator Y:, yare approximated by the corresponding 
quantities for the operator He, y. First, let 

where 

%+ -+ -+ 
l.jJo,e(P, x) = ((Pe-;Yl (p, x), ... , (Pe-;YN(P, x)), 

;. + ( ) _ - () ipx 'l'e'Yj p, X - Ue,j X e , ~e~Yj(P' x) = Ve,j(x)e iPX, 

Ve,j(x) = Vj((x - Yj)/e); 

(1.5.11) 

e > 0, x E 1R3, P E C3, j = 1, ... , N, (1.5.12) 

and uj and Vj are defined by (1.2.11) and J.j E R are real-valued with supp J.j 
compact,j = 1, ... , N. The transition operator [e,yCk) for He,y then reads 

- - N - -2 -1 te,y(k) = [te,jj'(k)]j,j'=1: .Ye -~ .Ye, te,jj'(k) = e A/e) [1 + B(e, k)]jj' 

e > 0, 1m k ~ 0, k2 ¢ tffe' j,j' = 1, ... , N, (1.5,13) 
where 

B(e, k) = [Bjj,(e, k)Jf.j'=1: .Ye --+ .Ye, 

Bjj,(e, k) = e- 2 A/e)ue,Pkve,j" e > 0, 1m k ~ 0, j, j' = 1, .. " N, 
(1.5.14) 

and 

tffe = {P E C - {O}I-l E O'p(B(e, k)), 1m k ~ O} (1.5.15) 

which is a discrete, compact set of zero Lebesgue measure. 
Then the on-shell scattering amplitude fe, y(k, w, w') of He, y reads 

fe,y(k, w, w') = -(4nt1(<l>ojkw), te,y(k)<l>ci".e{kw')) 

N 

= - (4nt1 L (~e~y)kw), te,jj'(k)~e+'y) 
j,j'=1 

(1.5.16) 
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with its off-shell extension h,y(k, p, q) given by 

h,y(k, p, q) = -(4nrl(<I>;;jp), te,y(k)<I>~,e(q)) 

(1.5.17) 

such that 

h,y(k, w" w') = h,y(k, q, p)llpl=lql=k' 

B > 0, k2 ¢; Iff., p, q E [R3, W = Ipl-Ip, w' = Iql-Iq. (1.5.18) 

Finally, the unitary on-shell scattering operator Se,y(k) for He.y equals 

(Se y(k)~)(w) = ~(w) - 2k. r d2w' h y(k, w, w')~(w'), 
, 1tl J S2 ' 

~ E U(S2), B, k > 0, k2 ¢; Iffe' WE S2. (1.5.19) 

With all these definitions at hand we will start studying their relations in 
the B ~ ° limit. By performing the usual scaling, we transfer the difficult B 

dependence from <l>~,e to the transition operator te,y(k), so that the B depen
dence essentially enters the explicit function Gk(x). 

Theorem 1.5.1. Let lj E R be real-valued with compact support for j = 1, 
... , N and suppose (1.1.2.84). If Hj = -A + lj is in case III or IV for some 
j, assume, in addition, that Aj(O) # 0. Then h,y(k, p, q) is analytic in B near 

B = ° and 

h,y(k, p, q) = Ia,y(k, p, q) + O(B), 

with IX given by (1.2.6). 

k ~ 0, p,q E (:3 

(1.5.20) 

PROOF. Using the unitary scaling group Ue defined by (1.2.3) and the unitary 
group oftranslations 7;,j" defined by (1.2.13) we see that f., y(k, p, q) can be written as 

f.,y(k, p, q) 

N 

= -(4nfl I (U.- l 7;,j,.k,y/p), U.- l 7;,J,J.,jj,(k) 7;,~,~, u. U.- l 7;,J.,.J.\(q)) 
j,j'=l 

N 

= -(4nfl I (¢(y/p), t',jj'(k)r/Je~Yj.(q)) 
j,j'=l 

Here 

and 

r/J.~y/p, x) = uj(x)eiP(,x+YJ), 

r/J.~y/p, x) = vj(x)eiP(ex+Yj); 6 > 0, X E [R3, P E 1[3, j = 1, ... , N, 

(1.5.21) 

(1.5.22) 

(1.5.23) 
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and, finally, 

te(k) = [te,jj'(k)]7,j'=1: .Yt ~.Yt, te,jj' = .A)e) [1 + Be(k)};}, (1.5.24) 

where Be(k) is defined in (1.2.9). Hence fe,y(k, p, q) is analytic in e near e = 0, and 
using (1.2.25) we obtain the limit (1.5.20). • 

Remark. The next order in (1.5.20) can be computed explicitly (cf. [252]). 
We also emphasize our convention that thejo th line and row should be deleted 
in the matrix ra,y(k) if a'jo = 00 for somejo. 

Applying this theorem to the scattering operator, we immediately infer the 
following result. 

Theorem 1.5.2. Let Vi E R be real-valued with compact support for j = 1, 
... , N and suppose (1.2.84). If Hj = - d + Vi is in case III or IV for some j, 
assume, in addition, that Aj(O) =F O. Then Sf, y(k) is analytic in 8 near 8 = 0 and 

S"y(k) = !I;,.y(k) + 0(8), 

with a given by (1.2.6). 

k ;;::: 0, (1.5.25) 

PROOF. Applying the definition (1.5.19) and Theorem 1.5.1 the result immediately 
follows. • 

Notes 

Section 11.1.1 
The N-center point interaction appears in the physics literature in [80], [132], 
[149], [151], [277], [363], [380]. In the mathematics literature the operator 
(1.1.33) was first studied by Albeverio, Fenstad, and H0egh-Krohn [12] using 
nonstandard analysis. Nonstandard analysis provides a justification of the 
heuristic computations made at the beginning of this chapter, see Appendix 
H. Our proof of Theorem 1.1.1 is essentially taken from Grossmann, H0egh
Krohn, and Mebkhout [226], see also [227]. Theorem 1.1.2 is due to Zorbas 
[512J, see also [129], while Theorem 1.1.3 is contained in [227] and Theorem 
1.1.4 is an extension of some of the corresponding results in [227] (cf. also 
[363]). Proposition 1.1.5 is taken from Thomas [482], [483], where one can 
also find more detailed estimates on N(P, a l , ... , aN)' The final example, the 
two-center problem, has been studied by [62], [146J, [445], [463], [464], 
while our presentation closely follows Albeverio and H0egh-Krohn [26] 
where the regular three-center problem is also solved (cf. also [380J). Reson
ances in the N-center problem are also discussed in [432]. 

Apart from the proof in nonstandard analysis and the proof used here in 
order to define the Schrodinger operator with a finite number of point interac
tions, there are also other possibilities: One can simply start with the explicit 
expression (1.1.33) for the resolvent, and prove that this is the resolvent of a 
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self-adjoint operator. This point of view has been used in Grossmann, Heegh
Krohn, and Mebkhout [227]. 

Another possibility is to use Theorem 1.1.2 as a starting point. This has 
been discussed by Zorbas [512] and, in particular, by [129]. In the latter, 
point interactions corresponding to other self-adjoint extensions are studied. 

Finally, one can obtain the Schrodinger operator with point interactions 
as limits of SchrOdinger operators with less singular short-range interactions. 
This is the content of Sect. 11.1.2. 

For generalized pointlike interactions, cf. [369], [370], and [430]. 
External electric fields in connection with - !J.rt. yare studied in [2]. 
Resonances in arrays as N ~ 00 are discussed in [228], [503]. 

Section IT.I.2 
The first result on the approximations of point interactions by local scaled 
short-range interactions in the N-center case was given by Albeverio and 
Heegh-Krohn [24]. Their result has been improved by Holden, Heegh
Krohn, and Johannesen [250] and the presentation here is a slight improve
ment on the latter. 

Section IT.I.3 
The first results on the short-range expansion of eigenvalues and resonances 
in the N-center case appeared in Holden, Heegh-Krohn, and Johannesen 
[250]. The presentation here is an improvement on [250]. The location of 
resonances is also studied in [380]. 

Section IT.I.4 
The multiple well, and in particular the double well, has been studied for a 
long time in mathematical physics. Theorem 1.4.1 is due to Heegh-Krohn and 
Mebkhout [244], [245]. But the eigenvalue part was noted earlier by Klaus 
and Simon [297]. Klaus [295] obtained stronger results for the ground state 
of the symmetric double well, H = -!J. + V + V(' - y). In [245] the asymp
totic behavior of eigenvalues, resonances, and eigenvectors of the operator 
Hie) is studied. 

Section IT.I.5 
The short-range expansion for the scattering amplitude and scattering opera
tor was first discussed by Holden, Heegh-Krohn, and Mebkhout [252] where 
the next order terms are also explicitly computed. Furthermore, in the generic 
case, i.e., in case I, the third-order term is also calculated. Scattering from point 
interactions has been treated in [483]. 



CHAPTER 11.2 

Finitely Many t5-lnteractions in 
One Dimension 

11.2.1 Basic Properties 

The purpose of this section is to generalize Sect. 1.3.1 to the case of finitely 
many 15-interactions on the real line. 

Let N E N and introduce the set Y = {Yl' ... , YN} c IR. The minimal oper
ator fIy in L2(1R) is then defined by 

22(fIy) = {g E H 2•2(1R)lg(Yj) = 0, Yj E Y,j = 1, ... , N}. 

(2.1.1) 

fIy is closed and nonnegative and its adjoint reads 

(2.1.2) 

By an explicit computation the equation 

I/I(k) E 22(fIn k2 E C - IR, 1m k > 0, (2.1.3) 

has the solutions 

I/Iik, x) = eiklx-Yjl, 1m k > 0, Yj E Y, j = 1, ... , N, (2.1.4) 

which therefore span the deficiency subspace of fIy. Thus fIy has deficiency 
indices (N, N), and hence all self-adjoint extensions of fIy are given by an 
N 2-parameter family of self-adjoint operators. Here we restrict ourselves to 

140 
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the case of so-called separated boundary conditions at each point Yj' j = 1, 
... , N. Thus we introduce the following N-parameter family of closed exten
sions of fIy 

.@(-A,.,y) = {g E H 2,l(lR) n H2,2(1R - Y)lg'(Yj+ )-g'fYj-) = (Xjg(Yj), 
j = 1, ... , N}, 

(X = «(Xl, ... , (XN), -00 < (Xj ~ 00, j = 1, ... , N. (2.1.5) 

A simple integration by parts proves that - A,., y is symmetric. Moreover, since 
fIy has deficiency indices (N,N) and the N boundary conditions in (2.1.5) are 
symmetric and linearly independent, -A,.,y is self-adjoint ([158], Theorem 
XII. 4.30). The special case (X = 0 (i.e., (Xj = 0, j = 1, ... , N) again leads to the 
kinetic energy operator - A on H2,2(1R). The case (Xjo = 00 for some jo leads 
to a Dirichlet boundary condition at the point Yjo (i.e., g(Yjo + ) = g(y jo - ) = 0). 
By definition - A,., y describes N <5-interactions of strength (Xj centered at the 
points Yj E Y,j = 1, ... , N. 

We now summarize some of the basic properties of -A,.,y: 

Theorem 2.1.1. Let (Xj =F 0, j = 1, ... , N. Then the resolvent of - A,., y is 
given by 

N 

(-A,.,y - k2)-l = Gk + L [r,.,y(k)].i.i~(Gk(· - Yj')' ')Gk(' - Yj), 
j,j'=l 

k2 Ep(-A,.,y), Imk>O, -oo<(Xj~oo, YjEY, j=I, ... ,N, (2.1.6) 

where 

(2.1.7) 

PROOF. One can follow the corresponding proof of Theorem 1.3.1.2. Let gEL 2(1R) 
and define 

h«(x) = (i/2k) L dx' eiklx-x'lg(x') 

- (1/4k2) j,tl [r«,y(k)};} L dx' eiklx'-YJ,lg(x')eiklx-YJI, 1m k > 0, (2.1.8) 

where k is chosen such that det[r«,y(k)] =F O. Then, obviously, h« E H2,l(lR) n 
H2,2(1R - Y) and by inspection 

h~(Yj + ) - h~(Yj - ) = cxjhbj), j = 1, ... , N. (2.1.9) 

Thus h« E !'}( - A«, y) and 

X E IR - Y, (2.1.10) 

which proves (2.1.6). The explicit structure of (2.1.6) then shows that ( - A«,y - k2)-l 
has a first-order pole in 1m k > 0 iff det[r«,y(k)] = O. • 



142 11.2 Finitely Many b-Interactions in One Dimension 

If some of the t:l.j equal zero, one extends the definition of -!lIZ, Y as usual by 
deleting the corresponding lines and rows in ra,y(k). 

Locality and additional domain properties of -!lIZ, yare described in 

Theorem 2.1.2. Let -00 < t:l.j ~ 00, t:l.j "# 0, Yj E Y, j = 1, ... , N. Then the 
domain !?iJ( -!lIZ, y) consists of all elements t/I of the type 

(2.1.11) 

where rPk E ~(-!l.) = H2,2(~) and k2 E p( -!lIZ,y), 1m k > 0. The decomposi
tion (2.1.11) is unique and with t/I E ~( -!lIZ, y) of this form we obtain 

(2.1.12) 

Next let t/I E !?iJ( -!lIZ, y) and suppose that t/I = ° in an open set U s;;; ~. Then 

-!l.IZ,yt/l = ° in U. 

PROOF. Since one can follow the proof of Theorem 1.1.3 step by step, we omit the 
details. • 

It remains to discuss spectral properties of -!lIZ,Y: 

Theorem 2.1.3. Let t:l.j "# 0, Yj E Y, j = 1, ... , N. Assume that at most one 
t:l.jo = 00. Then -!lIZ,Y has at most N eigenvalues which are all negative and 
simple. If t:l.j = 00 for at least two different valuesj E {1, ... , N}, then -!lIZ,Y 
has at most N negative eigenvalues (counting multiplicity) and irifinitely 
many eigenvalues embedded in [0, (0) accumulating at 00. In particular, 

1m k > 0, (2.1.13) 

and the multiplicity of the eigenvalue k2 < ° equals the multiplicity of the 
eigenvalue zero of the matrix rlZ,y(k). Moreover, if Eo = k~ < 0 is an eigen
value of -!l.IZ,y, the corresponding eigerifunctions are of the form 

N 

t/lo(x) = L cjGko(x - Yj), 
j=l 

1m ko > 0, (2.1.14) 

where (Cl' ... , cN ) are eigenvectors of the matrix rlZ,y(ko) to the eigenvalue 
zero. If -!l.IZ, y has a ground state it is nondegenerate and the corresponding 
eigenfunction can be chosen to be strictly positive (i.e., the associated eigen
vector (Cl' ... , cN ) fulfills Cj > O,j = 1, ... , N). 

The remaining part of the spectrum is absolutely continuous and covers the 
nonnegative real line 

0' ••• ( -!lIZ, y) = O'ac( -!lIZ, y) = [0, (0), 

-00 < t:l.j ~ 00, j = 1, ... , N. (2.1.15) 

PROOF. Since By ~ 0 and By has deficiency indices (N, N), -!l..,y has at most N 
negative eigenvalues counting multiplicity ([494], p. 246). Relations (2.1.13) and 
(2.1.14) then follow as in Theorem 1.1.4 and all statements in (2.1.15) can be proved 
as in Theorem 1.3.1.4. The remaining facts about the point spectrum are proved as 
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follows: Without loss of generality assume 

Yl < Yz < ... < YN' (2.1.16) 

If allllXJI < oo,j = 1, ... , N, one can follow [106] and define 

X ~Yl' 

Ym ~ X ~ Ym+1' 1 ~ m ~ N - 1, (2.1.17) 

x ~ YN; 1m k ~ 0, k # 0, 

where am+l and bm+l are unique (nontrivial) solutions of 

(2.1.18) 

a l = a, bl = b, a, b e IR. 

Then IjIk(X) obeys 

,MYi+) = IjIk(Yi-)' j = 1, ... , N. (2.1.19) 

In addition, by the uniqueness of the coefficients am+1' bm+1' 1 ~ m ~ N, IjIk is the 
unique solution (up to multiplicative constants) of 

xelR-Y, (2.1.20) 

obeying the boundary conditions (2.1.19). If kZ > 0, then IjIk e LZ(IR) iff a = b = 0, 
implying IjIk = 0. Since the same argument (replace e±ikx by 1, x) applies for k = ° 
we obtain ITp( -A«.y) c: (-00,0) in this case. For kZ < 0, we get a = ° and the 
above-mentioned uniqueness proves the simplicity of the eigenvalue. (Actually 
k2 < ° corresponds to an eigenvalue of -A«.y iff bN+1 = 0.) 

Next, consider the case where precisely one of the lXi say lXio = 00 and N ~ 2 (for 
N = 1, cf. Theorem 1.3.1.4). Then the boundary condition at YJo reduces to g(Yio ±) = 
o (with no conditions on g'(y}o±»' i.e., it becomes a Dirichlet boundary condition 
and hence divides IR into two independent intervals ( -00, Y}o) and (Yio' 00). It suffices 
to consider (Yio' 00). If necessary, we renumber Yio < Yio+1 < ., . < YN to get j\ < 
Yz < ... < jiM for some M ~ N. Then we introduce 

jil < X < Yz, 

Ym ~ X ~ Ym+1' 2 ~ m ~ M - 1, (2.1.21) 

x ~ YM; 1m k ~ 0, k # 0, 

where now iim+l and bm+1 are unique (nontrivial) solutions of 

iim+1 eikYm + bm+1 e- ikYm = iimeikYm + bme-ikYm, 

iim+1 eikYm[ik - IXm] - bm+1 e-ikYm[ik + IXm] = ikiimeikYm - ikbme-ikYm, 3 ~ m ~ M, 

ii3eikY2 + b3e-ikY2 = iik-l sin[k(jiz - Yl)], 

ii3eikY2(ik - 1(2 ) - b3e-ikY2(ik + 1(2 ) = ii cos[k(yz - yd]' (2.1.22) 

Then IjIk e AC1oc«Ylo 00», 1jI~ e AC1oc«Yl, 00) - {Yz,"" YM}), 

IjIk(Yl +) = 0, 

j = 2, ... , M, (2.1.23) 
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and (up to multiplicative constants) t/lk uniquely solves 

(2.1.24) 

and the boundary conditions (2.1.23). If k2 > 0, then t/lk E L2((Yl' 00)) would imply 
aM+1 = bM+1 = 0 and hence t/lk = O. The same argument works for k = O. Since an 
analogous construction works in the interval (-00, Yjo) and -L\ •. y is the direct sum 
of the corresponding operators in U(( -00, Yjo)) and L2((Yjo' 00)), we also obtain 
O'p( -L\ •. y) C (-00,0) in this case. Simplicity of negative eigenvalues then follows 
from the above-mentioned uniqueness of t/lk' 

It remains to show that if aj = 00 for at least two different values ofj E {1, ... , N}, 
then - L\ •. y has infinitely many eigenvalues embedded in [0, 00) accumulating at 
00. Let, e.g., ajo = ail = 00, Yjo < Yil' Then by the arguments above, -L\.,y can be 
written as a direct sum of the corresponding operators in L 2(( -00, Yjo))' L 2((Yjo' Yj,)), 
and L 2 ((Yil , 00)) with Dirichlet boundary conditions at Yjo and Yil' respectively. But 
since (Yjo' Yil) is a bounded interval, the essential spectrum of the corresponding 
operator in L 2((Yjo' Yj,)) is empty implying that its discrete spectrum accumulates 
at 00. All properties ofthe ground state are shown as in Theorem 1.1.4 (cf. Appendix 
F for a detailed treatment). • 

As in the one-center case the pole structure in (2.1.6) determines bound 
states as well as resonances of -Aa,y, In particular, any solution kl of 
det[ra,y(kl)J = 0 with 1m kl < 0 defines a resonance of -Aa,y whose multi
plicity by definition coincides with the multiplicity of the zero of det [ra, y(k)J 
at k = k l . At k = 0 one has to investigate directly [ra,y(k)r l as k --+ 0 since 
r a, y(O) does not exist. 

Similar to Sect. 1.3.1 we remark that for !Y.j E IR, j = 1, ... , N, - Aa, y can be 
obtained from the theory of quadratic forms as follows: The form 

N 

Qa,y(g, h) = (g', h') + L !Y.jg(Yj)h(Yj), 
j=l 

Yj E Y, j = 1, ... , N, 

(2.1.25) 

is densely defined, semi bounded, and closed and the unique self-adjoint opera
tor associated with Qa,y is given by -Aa,y (cf. [512J). 

Finally, we present a more detailed discussion ofthe two-center D-interaction: 
Fix !Y. l '!Y.2 E IR - {O}, Yl' Y2 E IR. Then 

[ 
!Y.il + (i/2k) (i/2k)eikIY2-YlIJ 

ra.y(k) = - (i/2k)eikIY2-Yti !Y.ll + (i/2k) , 

and hence 

+ (e2ikIY2-Yll/4k2)}-l [!Y.t + (i/2k) 
e .k1Y2 - Y tI/2ik 

k E C - {O}, (2.1.26) 

eikIY2-Yll/2ikJ 
!Y.il + (i/2k) (2.1.27) 

as long as det [ra, y(k)] #- O. For k --+ 0 we obtain 

[ra,y(k)r l k~O - [all + !Y.ll + IY2 - Yll + O(k)rl {[ _! 
!Y.Il + !Y.ll + 1Y2 - Yll #- O. (2.1.28) 
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In fact, for (XII + (XlI + IY2 - YII of- 0 one can easily show that the first-order 
pole i/2k in Gk actually cancels in the resolvent (2.1.6) of -Aa,y. 

The case (XII + (XlI + IY2 - YII = 0 implies a zero-energy resonance of 
- Aa, y as can be seen as follows. Let C I of- 0 and assume without loss of 
generality I(XII < 00 and YI < Y2' Define 

x ~ YI' 

YI ~ X ~ Y2' 

X :?: Y2' 

(2.1.29) 

for appropriate constants Cm E C, m = 1, ... , 4. Then 1/10 fulfills 

I/IO(Yi + ) = 1/I0(Yi - ), 

if and only if 

in which case 

(the case (X2 = 00, i.e., C4 = 0, is included). 

j = 1,2, (2.1.30) 

(2.1.31) 

In general, the eigenvalues and resonances of - Aa, yare given by the 
equation 

det[ra,y(k)] = - [(XII + (i/2k)] [(XlI + (i/2k)] - (e2ikIY2-YII/4P) = O. 
(2.1.33) 

In the Dirichlet case (Xl = (X2 = 00 we get, in particular, 

(e2ikIY2-Y.I - 1)/4k2 = 0 (2.1.34) 

and hence infinitely many positive eigenvalues En, n = 1, 2, ... , accumulating 
at 00 (cf. Theorem 2.1.3) 

En = k; = [nn/lY2 - YII]2, n = 1,2,.... (2.1.35) 

11.2.2 Approximations by Means of Local Scaled 
Short-Range Interactions 

We now intend to generalize Sect. 1.3.2 to finitely many a-interactions. For 
this purpose we introduce real-valued potentials J.j E LI(IR),j = 1, ... , N, and 
define 

uix) = I J.j(x)I 1/2 sgn[J.j(x)], j = 1, ... , N. (2.2.1) 

In addition, we consider 

Be(k): L2(IR)N -+ L2(lRt, 

(2.2.2) 
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where 

e > 0, 1m k > 0, j,j' = 1, ... , N, (2.2.3) 

and .Ai' ) are real-analytic near the origin with Aj(O) = 0, and 

j = 1, ... , N. (2.2.4) 

By Lemma I.3.2.1, iJ.,jj,(k),j,j' = 1, ... , N, extend to Hilbert-Schmidt opera
tors for 1m k ~ 0, k =F 0. 

Using the theory of quadratic forms (cr. Appendix B) we then define the 
Hamiltonian Hy(e) in U(IR) 

N 

Hy(e) = -~ + L Aj(e)fj(' - e-1Yj), 
j=l 

with resolvent given by 

N 

e > 0, Y c IR, 

[Hy(e) - pr1 = Gk - L (Gk v)[1 + iJ.(k)]j} (uj'Gk ), 
j,j'=l 

(2.2.5) 

e > 0, P E p(Hy(e», 1m k > 0. (2.2.6) 

Next we use the unitary scaling group U. of(I.3.2.13) to define the Hamiltonian 
H.,y in L2(1R) 

N 

H.,y = e-2U.Hy(e)U.-1 = -~ + e-2 L: Aj(e)fj((' - Yj)/e), 
j=l 

e > 0, Y c IR. (2.2.7) 

Since we are interested in the limit e t ° of H •. y we introduce Hilbert-Schmidt 
operators A.,ik), B.,jj,(k), C.,j(k), e > 0, with integral kernels 

1m k > 0, (2.2.8) 

B.,jj,(k, X, x') = e-1 Aj(e)uix) Gk(e(x - x') + Yj - Yj' )Vj'(X'), 

1m k ~ 0, (2.2.9) 

Then (1.3.2.18) and suitable translations imply 

(H.,y - k2r1 = e2U.[Hy(e) - (ek)2r 1U.-1 

N 

1m k > 0. 

= Gk - e-1 L A.,ik) [1 + Be(k)]j} Aj'(e)Ce,j'(k), 
j,j'=l 

(2.2.10) 

e > 0, k2 E p(H.,y), 1m k > 0, Y c IR. (2.2.11) 

Again we have 
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Lemma 2.2.1. Define ra~k-one operators Aj(k), Bjj.(k), Cj(k),j,j' = 1, ... , N, 
through their integral kernels 

1m k > 0, 

1m k > 0. 

(2.2.12) 

1m k ~ 0, k ¥- 0, (2.1.13) 

(2.2.14) 

Then, for fixed k, 1m k > 0, A.jk), B.,jj.(k), C.jk) converge in Hilbert
Schmidt norm to Aj(k), Bjj'(k), Cj(k),j,j' = 1, ... , N, respectively, as I:! 0. 

PROOF. Identical to that of Lemma 1.3.2.2. • 
Thus we get our main result 

Theorem 2.2.2. Suppose lj E L 1 (IR), j = 1, ... , N, are real-valued and 
Y c IR. Then, as I: ! 0, H., y converges to - All, y in norm resolvent sense, i.e., 
if k2 E p( -AIl,y), then 

where 

n-lim (H.,y - k2r 1 = (-AIl,y - prl, 
.-1.0 

Y c IR, 

r:l.j = Aj(O) t dx lj(x), j = 1, ... , N. 

(2.2.15) 

(2.2.16) 

PROOF. From (2.2.11) and Lemma 2.2.1 we obtain 

N 

n-lim (H.,y - k2)-1 = Gk - I Aj(k)[1 + B(k)]J.i~Aj.(O)Cj'(k), 
.+0 j.j'=l 

k2 E C - IR, 1m k > 0, (2.2.17) 

where B(k) is defined by 

B(k): L2(IR)N -+L2(IR)N, 1m k ~ 0, k #- 0, 

N (2.2.18) 
[B(k)(gl' ... , gNn = I Bjj.(k)gj' , gj E L2(1R), j = 1, ... , N. 

j'=l 

But 

(2.2.19) 

implies 

N 

[1 + B(k)]J.i~ = 1bjj• - ;'j(O) I Gk(Yj - Ym)[f.,y(k)];;;}(vj" . )Uj' (2.2.20) 
m=l 

where 

f.,y(k) = [bjj' + Aj(O)(Vj, Uj)Gk(Yj - Yj')]7,J'=l' 1m k > O. (2.2.21) 

If ;'j(O)(vj , Uj) #- 0 for allj = 1, ... , N, then a comparison with (2.1.7) shows that 

[f«,y(k)]J.i~;'j.(O)(vJ" Uj') = -[r«,y(k)]J.i~, (Xj = ;'j(OHvj, Uj), j,j' = 1, ... , N, (2.2.22) 
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which by (2.1.6) completes the proof after inserting (2.2.22), (2.2.12), and (2.2.14) into 
(2.2.17). If, e.g., ll}o(O)(vjo' ujo ) = 0 for some jo, then insertion of (2.2.22), (2.2.12), and 
(2.2.14) into (2.2.17) shows that all terms withj = jo or j' = jo in (2.2.17) are zero and 
hence disappear on the right-hand side of (2.2.17). • 

Again HE, Y converges to - d as a ! 0 if and only ifAj(O) J ~ dx fj(x) = 0 for all 
j = 1, ... , N and similarly to the one-center case the above approximation 
scheme automatically yields b-interactions at the points y I, ... , YN with finite 
strengths !Xl' ... , !XN' Moreover, the above proof immediately extends to the 
case of nonreal Aia) to yield complex point interactions. 

Formulas (2.2.17), (2.2.20), and (2.2.22) also show that bound states (resp. 
resonances) of -d".y are given by the zeros of the Fredholm determinant 
det[1 + B(k)] in the upper (resp. lower) k half-plane. 

11.2.3 Convergence of Eigenvalues and Resonances 

Having proved norm resolvent convergence of HE, y to - d", y as at 0 in the 
preceding section, we now extend this analysis to include a detailed description 
of how the corresponding eigenvalues and resonances of HE, y converge to 
those of -d",y in the same limit. On the basis of Theorem B.1(b) we first state 
that 

O'ess(HE,y) = O'ess(Hy(a)) = O'ess( -Ll) = [0, 00), 

By Theorem 2.1.3 this continues to hold at a = 0 

a> 0, Y c IR. (2.3.1) 

O'ess( - d". y) = O'ess( - d) = [0, 00), -00 < !Xj ~ 00, Yj E Y, j = 1, ... , N. 
(2.3.2) 

For the discrete spectrum of HE,y a detailed study of BE(k) yields 

Theorem 2.3.1. Let Y c IR, Yj E Y, and suppose that fj ELI (IR), j = 1, ... , 
N, are real-valued and have compact support. 

(a) If n-limE-l-o(HE.y - k2r l = (-d",y - k2)-I, k2 E p( -d",y), such that 
- d", y has 1 ~ M ~ N (necessarily simple) negative eigenvalues Em = 
k;' < 0, m = 1, ... , M, then, for a> 0 small enough, HE.y has M simple 
eigenvalues EE,m = k;.m < 0 which are analytic in a near a = 0, and 

kE,m = iJ - EE,m = km + O(a), m= 1, ... ,M. (2.3.3) 

Moreover, EE,m are the only eigenvalues of HE, y near Em, m = 1, .. " M. 
(b) Ifn-limE-l-o(HE,y-k2rl =(-d",y-k2r\ k2 Ep(-d",y), such that 

- d", y has no negative eigenvalues, then all negative eigenvalues of HE, y 
tend to zero, i.e., are absorbed into the essential spectrum as a ! O. 

PROOF. By Theorem B.1(c) any negative eigenvalue E, = k; < 0 of H"f is deter
mined through solutions of 

(2.3.4) 
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and the corresponding (geometric) multiplicities are preserved. In order to isolate 
the dominant term in B.(k) we define the operator B.(k) in L 2(lRt with entries 

B •. ii.(k) = e- l ),j(e)(i/2k)eikIYOil(vr, . )Uj' 

e ~ 0, kE C - {O}, j,j' = 1, ... , N. (2.3.5) 

In particular, Bo(k) = B(k) (cf. (2.2.13) and (2.2.18)). Since J.j, j = 1, ... , N, have 
compact support, B.(k) is analytic in (e, k) for lei small enough and k E C - {O}. 
Expanding B.(k) with respect to e yields 

B •. ii.(k, x, x') = Bii.(k, x, x') + eJ.j(eO(e))Bjr(k, x, x') 

- (e/2)),j(0)Uj (X) [(x - x') sgn(Yj - Yj.)eiklyrYj'+.O(.)(x-x')I]Vj'(x'), 

e ~ 0, k E C - {O}, j,j' = 1, ... , N, (2.3.6) 

for appropriate 0 ::; O(e), O(e) ::; 1, where we define sgn(O) = 1. Thus 

IIB.(k) - B.(k)1I = O(e) (2.3.7) 

uniformly in k if k varies in compact subsets of C and 

IIB.(k)1I = O(lkl- l ) as Ikl-> 00, 1m k ~ 0, (2.3.8) 

uniformly in e, lei small enough. Applying formula (1.3.3.11) then shows that for lei 
small enough 

det[l + Be(k)] = det[l + B.(k) - B.(k)] det{l + [1 + B.(k) - B.(k)T1B.(k)} 
(2.3.9) 

vanishes for some k E C - {O} if and only if 

det{l + [1 + B.(k) - Be(k)T1Be(k)} (2.3.10) 

vanishes. Now assume that det[l + B(km)] = 0 for some km' 1m km > 0, or equiva
lently, suppose that Em = k~ < 0 is an eigenvalue of - ~ •. y. Then by the simplicity 
of Em (cf. Theorem 2.1.3) and the analyticity of B.(k), B.(k) in (e, k) for lei small enough 
and k E C - {O}, we infer by the implicit function theorem that in a neighborhood 
of km (2.3.10) has a unique and simple zero k •. m analytic in e near e = 0 such that 
(2.3.3) holds. By Theorem B.1(c), Ee•m = k;.m < o corresponds to a simple eigenvalue 
of H •. y. Since H •. y converges to - ~ •. y in norm resolvent sense as e ~ 0, remaining 
eigenvalues of H •. yare forced to converge to zero or to -00 as e ~ O. By (2.3.8) 
eigenvalues running to -00 are excluded. • 

The fact that no eigenvalues of H'. f run off to -00 as e L 0 (due to the fact 
that A(e) = O(e) as e L 0) is in sharp contrast to the corresponding case in three 
dimensions. 

Concerning resonances we state 

Theorem 2.3.2. Let Y c IR, Yj E Y, and assume that J.j E U (IR), j = 1, ... , 
N, are real-valued and have compact support. Suppose that 

n-lim (H - k2)-1 = (_~ _ P)-l 
£,Y a,Y' 

.'\'0 

and that ko, 1m ko < 0, is a resonance of -da,f with multiplicity M. Then, 
for e > 0 small enough, there exist M (not necessarily distinct) resonances 
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k"., 1m k"• < 0, I = 1, ... , m, of H.,y such that k"• have convergent Puiseux 
expansions in 8 near 8 = 0, i.e., 

<Xl m 

k = k + h (8 1/ml ) = k +" a 8'/ml I,. 0 I 0 L.- I,' , 
,=1 

1=1, ... ,m, Lm,=M, 
1=1 

(2.3.11) 

where hi are analytic near the origin, h,(O) = 0, 1= 1, ... , m.ln particular, k"• 
are the only resonances of H.,y near ko. 

PROOF. The only difference to the preceding proof concerns the fact that now the 
multiplicity of the zero of det[1 + B(k)] at k = ko is not necessarily one and hence 
yields Puiseux expansions for k.. • 

11.2.4 Stationary Scattering Theory 

In analogy to Sect. 1.3.4 we first develop stationary scattering theory for 
a-interactions and then show convergence of the scattering matrix corre
sponding to He, y to that of - Ll", y as 8! 0. We start discussing stationary 
scattering theory for the pair (-Ll",y> -Ll). Let 

det[r",y(k)] =1= 0, k > 0, a = ± 1, -00 < (Xj ~ 00, (Xj =1= 0, Yj E Y, 

j = 1, ... , N, x E IR, (2.4.1) 

with r",y(k) defined in (2.1.7). Then, for k > 0, 

'I'",y(k, a, Yj+) = 'I'",y(k, a, Yj-)' 

'I'~,y(k, a, Yj+) - 'I'~,y(k, a, Yj-) = (Xj'l'",y(k, a, Yj), 

- '1':, y(k, a, x) = k2'1'", y(k, a, x), 

lim lim (2k/i)e±i(k+i£),,'[ -Ll .. ,y - (k + ie)2r1(x, x') 
£+0 "'-++00 

= 'I'",y(k, ± 1, x), 

j = 1, ... , N, 

j= 1, ... ,N, 

xEIR-Y, (2.4.2) 

X E IR, 

and hence 'I' .. ,y(k, a) are generalized eigenfunctions associated with -Ll",y 
corresponding to left (a = + 1) and right ind.dence (a = -1). The corre
sponding transmission and reflection coefficients from the left and right are 
defined by 

ff,.l,y(k) = lim e-ik"'I' .. ,y(k, + 1, x) 
.x-~oo 

- l' ikXUJ ('k 1 ') - w-r (k) - 1m e T .. , Y ,- ,x - 5", y , 
X-+-CX) (2.4.3) 

ail (k) = lim e ikX ['I' {k + 1 x) _ e ik"] CI,Y ot:,Y\'" 
x-+-oo 

PAr Ik) = lim e-ikx['I' lk -1 x) _ e-ikX] 
/I,f\ a,Y'" 

x- +00 
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and thus 
N 

~~y(k) = 1 - (2ikfl L e-ikYJ[r",y(k)]jjfeikYJ' = ~:y(k), 
J,j'=l 

(2.4.4) 

N 

~~,y(k) = -(2ik)-1 L eikYJ[r",y(k)Jll~eikl'J', 
j,J'=l 

(2.4.5) 

N 

~~,y(k) = -(2ikfl L e-ikYJ[r",y(k)]ll~e-ikYJ'; 
J,j'=l 

det[r",y(k)J i= 0, k > 0, -00 < IXJ ~ 00, IXj i= 0, Yj E Y, j = 1, ... , N. 
(2.4.6) 

The unitary on-shell scattering operator ~,y(k) in C2 is then defined as usual 
by 

'k - [~~y(k) ~~,y(k)J 
~,y( ) - 9l~,y(k) .r~,y(k) , 

det[r",y(k)] i= 0, k > 0, -00 ~ IXj ~ 00, IXj i= 0, Yj E Y, j = 1, ... , N. 
(2.4.7) 

Again ~,y(k) has a meromorphic continuation in k to all of C such that poles 
of ~,y(k) in C-{O} coincide with bound states or resonances of -d",y. 

For illustrations of transmission probabilities in the N = 2, 4, 8, and 20 
center case with equally spaced b-interactions (of mutual distance n), see 
Figure 40(b)-(e) [397J in Sect. lIl2.3, p. 275. 

Next we summarize stationary scattering theory associated with H.,y. Let 
uj ' Vj be as in Sect. 2.2. We introduce in L2(~t 

+ + + <1>..-y(k, (1, x) = (tfJ.--;y, (k, (1, x), ... , tfJ.--;YN(k, (1, x)), (2.4.8) 
where 

,/,- (k ) - () ik<7X "'.'YJ ,(1, X - u.,j x e , 

,/,+ (k ) - (). ik"" "'.,l'j ,(1, X - V.,j x e , e > 0, k ~ 0, (1 = ± 1, 
(2.4.9) 

and 
V.)x) = Vj((x - Yj)/e), 

e > 0, Yj E Y, j = 1, ... , N. (2.4.10) 

The elements t.,JJ.(k),j,j' = 1, ... , N, in U(~) of the transition operator t.(k) 
in L 2(~t are then defined by 

where 

t.,Jj.(k) = e- 2 Aj'(e)[1 + B.(k)]j?, 

e > 0, 1m k ~ 0, k i= 0, k2 f. 8., j,j' = 1, ... , N, (2.4.11) 

B.(k): L2(~)N ~ L2(~t, 

N 

[B.(k)(91 ' ... , 9N)Jj = L B.,ii·(k)gj' , 
j'=1 (2.4.12) 

B.,jj'(k) = e- 2 Aj(li)u.,JGkv.,i" 

e > 0, 1m k ~ 0, k i= 0, j, j' = 1, ... , N, 
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and 

$£ = {k2 E I[: - {O}IB£(k)<l>£ = -<l>£for some <l>e E L2(~t,Im k ~ O}. (2.4.13) 

Here B£(k) is defined as 

B£(k): L2(~)N -+ L2(~t, 

N 

[B£(k)(gl"'" gN)]j = L Be,jj,(k)gj" 
j'=l 

with B£,jj'(k) given in (2.2.9). Again $e n (0, 00) = 0 by Jost function techniques. 
The on-shell scattering amplitude f., y,aa,(k) is then given by 

f.,y,aAk) = (2iktl(<l>~y(k, 0'), t£(k)<l>;'y(k, 0")) 

N 

= (2iktl L (A~y/k, 0'), te,jj'(k)¢J£~y)k, 0")), 
j,j'=l 

e, k > 0, 0',0" = ± 1, Y c~. (2.4.15) 

The unitary on-shell scattering matrix Se,y(k) = [Se,y,aAk)]a,a'=±l in 1[:2 then 
reads 

e, k > 0, 0',0" = ± 1, Y c~, (2.4.16) 

and the transmission and reflection coefficients corresponding to H£,y are 
defined by 

r.~y(k) = Se,y,++(k) = S£,y, __ (k) = r.:y(k), 
(2.4.17) 

R~,y(k) = Se,y,+-(k); e, k > 0, Y c ~. R~,y(k) = S£,y,_+(k), 

Given the above notions we are in a position to describe in what sense Se, y(k) 
approaches y:', y(k) as e! 0: 

Theorem 2.4.1. Let ~ E U (~) be real-valued and let (Xj = 2j(0) J G;l dx ~(x) 
and Yj E Y, j = 1, ... , N. Then S£,y(k), k > 0, det[ra,y(k)] #- 0 converges to 
y:', y(k) as e! O. If, in addition, ~,j = 1, ... , N, have compact support then 
S£, y(k) is analytic in e near e = 0 and we obtain the expansion 

S£, y(k) £~o y:', y(k) + 0(6), 

(Xj = 2](0) t dx ~(x), 

k > 0, 

Yj E Y, j = 1, ... , N. 

PROOF. Let V; E L1(1R),j = 1, ... , N. We first rewrite (2.4.15) to get 

N 

(2.4.18) 

I' (k) = (2ik)-1 " 6-1k (e)(v.eiku(£x+Yj) U-IT. [1 +8 (k)]-:-.IT. U u. eiku'(£X'+YJ'») 
Je.Y,aa' i..J;') '£. Yj £. Ji -Yj' £ l' ' 

j.j'=l 

(2.4.19) 

where x, x' are just integration variables and I;" y E IR, denotes the unitary transla
tion group in L2(1R), viz. 

(I;,g)(x) = g(x + y), (2.4.20) 
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Using 

U.-1-z;,p + B.(k)J.i} LYj' u. = [1 + B.(k)]j./, j,j' = 1, ... , N. (2.4.21) 

we end up with 

N 

!..y,uu.(k) = (2ik)-1 I e-1Aj'(e)(vjeikU(.X+Yj), [1 + B,(k)]j}uj'eiku·(.X·+Yj')). (2.4.22) 
j,j'=l 

Since by dominated convergence vjeikU.('l, uje ikU"(') are strongly continuous in e, 
Lemma 2.2.1 immediately implies 

N 

lim!"y,uu.(k) = (2ikrl I Aj.(O)e-ikUYJ(Vj, [1 + B(k)]j}uj')eikU·Yi. (2.4.23) 
• .J,o j,j'=l 

Assuming Aj(O)(Vj, u) =1= 0, j = 1, ... , N, an application of (2.2.20) and (2.2.22) then 
shows 

N 
lim i" • = -(2ik)-1 " e-ikuYj[r (k)]-:,~eiku'Yj' 

Je,Y,u(J L.. IZ,Y JJ ' 
• .J,o j,j'=l 

(2.4.24) 

where r.,y(k) is given by (2.1.7) with 

!Xj = Aj(O)(Vj, uj ), j = 1, ... , N. (2.4.25) 

If Ajo(O)(Vjo' ujo ) = 0 for some jo, then all terms withj = jo or j' = jo in (2.4.23) vanish 
and hence do not appear in (2.4.24). Thus r.,y(k) contains precisely those !Xj which 
are nonvanishing. If J.j,j = 1, ... , N, have compact support, then analyticity of B,(k) 
in e for lei small enough and fixed k E C, k =1= 0 (cf. Sect. 2.3), proves analyticity of 
S.,y(k), k > 0, near e = O. • 

Again S,(k) converges to 1 as dO if and only if !Xj = Aj(O)J IR dx J.j(x) = 0, 
j = 1, ... , N, i.e., if all b-interactions have vanishing strength and hence 
disappear. 

Notes 

Section 11.2.1 
This section represents an extended version of some of the results in [21]. 
Further theoretical background for the one-dimensional N-center case can be 
found in [106J, [107J, [226J, [512]. For the two-center case, cr. [7J, [121J, 
[123J, [190J, [191J, [395]. The relation between point interactions and self
adjoint extensions of fIy different from -~.,y (i.e., a choice of boundary 
conditions which connect different points in Y) has been considered in [129]. 

Sections 11.2.2 and 11.2.3 
All results are taken from [21]. 

Section 11.2.4 
Scattering theory for N-center b-interactions has been treated in [285J (see 
also [176J), [308J, [316J, [317J, [379J, [387J, [397J. The first half of Theorem 
2.4.1 has been derived in [379]. 



CHAPTER 11.3 

Finitely Many ~'-Interactions in 
One Dimension 

In this chapter we extend the concepts of Ch. 1.4 to finitely many 
()' -interactions on the real line. 

Let N EN and introduce the set Y = {Yl' ... , YN} C ~. We first introduce 
the closed and nonnegative minimal operator By in L2(~) 

.. {22 , . } fi2(Hy) = g E H . (~)lg(Yj) = g (Yj) = O,J = 1, ... , N 

(3.1) 

whose adjoint is given by 

.. d 2 

H: = - dx2 ' (3.2) 

Since the equation 

t/I(k) E fi2(Bn PEe -~, 1m k > 0, (3.3) 

has the solutions 

{O, x> Yj' 
t/lj2(k, x) = ik(y.-x) < 

e J , X Yj' 

1m k > 0, Yj E Y, j = 1, ... ,N, (3.4) 

the operator By has deficiency indices (2N,2N). As in Ch. 1.4 there exists 
an intermediate minimal operator fI~ in U(~) which is a proper symme
tric extension of By (cf. the Notes to Ch. 1.4). In fact, the closed operator fI~ 
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defined by 

• d2 

H~ = - dx2 ' ~(Ii~) = {g E H 2•2(1R)lg'(Yj) = 0, Yj E Y,j = 1, ... , N} 

(3.5) 

has deficiency indices (N, N) and hence is more convenient for the following 
treatment. We note that the adjoint of Ii~ is given by 

Ii'* _ d2 
y - - dx2 ' 

(3.6) 
~(Ii~*) = {g E H2.2(1R - Y)lg'(Yj+) = g'(Yj-), Yj E Y,j = 1, ... , N} 

and that 

Ii~*,p(k) = k2,p(k), 

has the solutions 

,p(k) E ~(Ii~*), k2 E C - IR, 1m k > 0, (3.7) 

{
eik(X-YJ) x> Yj' 

,pj(k, x) = ik(yJ~X) < 
-e ,x Yj' 

1m k > 0, Yi E Y, j = 1, ... , N. (3.8) 

As a consequence all self-adjoint extensions of Ii~ are given by an N 2_ 

parameter family of self-adjoint operators. Similar to Ch. II.2 we restrict our
selves to separated boundary conditions at each point Yi,j = 1, ... , N. Hence 
we introduce the following N-parameter family of closed extensions of Ii~: 

d2 

;::'P.y = - dx2' 

~(Sp.y) = {g E H2.2(1R - Y)lg'(Yi+) = g'(Yi-)' 

g(Yi + ) - g(Yi -) = Pjgj(Yi)' j = 1, ... , N}, 

P = (Pi' ... , PN), -00 < Pi :s; 00, j = 1, ... , N. (3.9) 

The special case P = ° (i.e., Pi = 0, j = 1, ... , N) leads to the kinetic energy 
Hamiltonian -/1 on H2•2(1R). The case Pio = 00 for some jo leads to a Neumann 
boundary condition at the point Yio (i.e., g'(Yio +) = g'(Yio -) = 0). Clearly, 
Sp,y is symmetric by a simple integration by parts. In addition, Sp,y is 
self-adjoint since Ii~ has deficiency indices (N, N) and the N boundary condi
tions in (3.9) are symmetric and linearly independent ([158J, Theorem 
XIII.4.30). By definition Sp,y describes N £5'-interactions centered at Yi E Y, 
j = 1, ... , N. 

In the following we summarize basic properties of Sp. We start with 
describing its resolvent. 

Theorem 3.1. Let Pi =F O,j = 1, ... , N. Then the resolvent of Sp. y is given by 

N 

(Sp - k2r l = Gk + L [rp.y(k)]j/(~k(· - Yj'), ')~k(' - Yj), 
j.},=l 

k2 E p(Sp), 1m k > 0, -00 < Pj:S; 00, Pi =F 0, Yj E Y, j = 1, ... , N, 
(3.10) 
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where 

and 

(;k(X - y) = (iI2k) ik(Y~X) {
eik(X-Y) 

-e , 
X>y, 
x <y, 

1m k > O. (3.12) 

PROOF. One can follow the analogous proof of Theorem 2.1.1 step by step. • 

Clearly, the above characterization of Sp, y extends to the case where some 
ofthe Pi equal zero. For example, if Pio = 0 then one simply omits thejoth line 
andjoth row in the definition ofrfJ,Y(k). 

Additional domain properties and locality of SIl, yare discussed in 

Theorem 3.2. Let -00 < Pi ~ 00, Pi 1= 0, Yj E Y, j = 1, ... , N. Then the 
domain ~(SIl, y) consists of all elements t/! of the type 

N 

t/!(x) = ~(x) + (ilk) L [rp,y(k)]j}<P~(Yj')(;k(X - Yj), (3.13) 
j,j'=l 

where <Pk E ~(-A) = H2,2(~) and P E p(SfJ,Y)' 1m k > O. The decomposition 
(3.13) is unique and with t/! E ~(SfJ,Y) of this form we obtain 

(Sp,y - k2)t/! = (-A - k2)<Pk' (3.14) 

Next let t/! E ~(Sp, y) and suppose that t/! = 0 in an open set U s;;; ~. Then 
Sp,yt/! = 0 in U. 

PROOF. Identical to that of Theorem 2.1.2 since 

(Gk(' - y), ( - ~ - k2 ),p) = (i/k),p'(y), 

Spectral properties of Sp, yare given in 

(3.15) 

• 

Theorem 3.3. Let Pj 1= 0, Yj E Y, j = 1, ... , N. Assume that at most one 
Pjo = 00. Then Sp,y has at most N eigenvalues which are all negative and 
simple. If Pj = 00 for at least two different values j E {I, ... , N}, then Sp,y 
has at most N negative eigenvalues (counting multiplicity) and infinitely many 
eigenvalues embedded in [0, 00) accumulating at 00. In particular, 

1m k > 0, (3.16) 

and the multiplicity of the eigenvalue k2 < 0 equals the multiplicity of the 
eigenvalue zero of the matrix rp,y(k). Moreover, if Eo = k~ < 0 is an eigen
value of Sp,y, the corresponding eigenfunctions are of the form 

N 

t/!o(x) = L Cj(;ko(X - Yj), 1m ko > 0, (3.17) 
j=l 
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where (cl , ... , cN ) are eigenvectors of the matrix fll.y(ko) to the eigenvalue 
zero. 

The remaining part of the spectrum is absolutely continuous and covers the 
nonnegative real line 

O"ess(8I1,y) = O"ac(811,y) = [0, (0), O"sc(811,y) = 0, 

-00 < Pi:s;; 00, j = 1, ... , N. (3.18) 

PROOF. Since I:i~ ;:::: 0 and I:i~ has deficiency indices (N, N), Bp,y has at most N 
negative eigenvalues counting multiplicity ([494], p. 246). Moreover, (3.16) and 
(3.17) then follow as in Theorem 1.1.4 and all assertions in (3.18) follow as in 
Theorem 1.3.1.4. It remains to prove the statements concerning the point spectrum. 
We closely follow the analogous treatment in Theorem 2.1.3. Without loss of 
generality assume 

Yl < Y2 < .. , < YN' 

IfalllPjl < oo,j = 1, ... , N, we define 

(3.19) 

x < Yl, 

Ym < X < Ym+l, 1::;; m::;; N - 1, (3.20) 

x > YN; 1m k > 0, k # 0, 

where am+l and bm+1 are unique (nontrivial) solutions of 

a,beiR. (3.21) 

Then "'t(x) obeys 

"';'(Yj + ) = t/I;'(Yr ), j = 1, ... , N. (3.22) 

In addition, by the uniqueness of the coefficients am +1 , bm+1' 1 ::;; m ::;; N, "'t is the 
unique solution (up to multiplicative constants) of 

xelR-Y, (3.23) 

obeying "'k e Hi!~2(1R - Y) and the boundary conditions (3.22). If k2 > 0, then "'k e 
L 2(1R) iff a = b = 0 implying "'k = O. Since the same argument applies for k = 0 
(replace e±ikx by 1, x in (3.20» we obtain O"p(Bp,y) c (-00,0) in this case. For P < 0 
we get a = 0 and the above-mentioned uniqueness proves the simplicity of the 
eigenvalue. (In fact, k2 < 0 corresponds to an eigenvalue of Bp,y iff bN+1 = 0.) 

Next consider the case where precisely one of the Pj' say Pjo = 00 and N ;:::: 2 (for 
N = 1, cf. Theorem 1.4.3). Then the boundary condition atYjo reduces to g'(Yjo±) = 

o (with no condition on g(Yjo±»' i.e., it becomes a Neumann boundary condition 
and hence decouples IR into (-00, Yjo) and (Yjo' 00). It suffices to consider (Yjo' 00). 
If necessary we renumber Ylo < Ylo+1 < ... < YN to get j\ < Y2 < ... < YM for some 
M ::;; N. Then we introduce 

Yl < X < Y2, 

Ym < X < Ym+1' 2::;; m::;; M - 1, (3.24) 

x > YM; 1m k ;:::: 0, k # 0, 
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where now am+1 and bm+1 are unique (nontrivial) solutions of 

3 :::;; m :::;; M, (3.25) 

a3eikV2 - b3e-ikV2 = iii sin [k(Y2 - yd], 

a3eikV2[1 - ikP2] + b3e-ikV2[1 + ikP2] = a cos [k(Y2 - yd]' 

Then o/k fulfills o/k E AC1oc«Yl, (0) - {Y2' ... , YM}), 0/;' E AC1oc«Yl' (0» and 

o/;'CVl +) = 0, 

o/;'(Yi+) = o/;'(Yi-)' 

Hence o/k uniquely solves (up to multiplicative constants) 

j=2, ... ,M. 
(3.26) 

(3.27) 

and the boundary conditions (3.26). If k2 > 0, then o/k E L2«Yl' (0» implies aM+1 = 
bM+1 = 0 and hence o/k = O. The same argument works for k = O. Since the ana
logous construction applies for the interval (-00, Yio)' and 8 p•y is the direct sum of 
the corresponding operators in L2« -00, Yio» and L2«Yio' (0)) we obtain again 
O"p(8p• y) c ( -00, 0). Simplicity of negative eigenvalues then follows by the unique
ness ofo/k • 

That 8 p, y has infinitely many eigenvalues embedded in [0, (0) accumulating at 
00 if Pi = 00, for at least two different values ofj E {I, ... , N}, follows exactly by the 
arguments in the proof of Theorem 2.1.3. • 

As in the one-center case the pole structure in (3.10) determines bound states 
as well as resonances ofS,B, y. In particular, any solution kl of det[r,B, y(kdJ = 
o with 1m kl < 0 defines a resonance of S,B, y whose multiplicity by definition 
coincides with the multiplicity of the zero of det [rp,r(k)J at k = k 1 • At k = 0, 
rll.y(O) does not exist and hence one is forced to consider [rll, y(k)r1 as k --+ O. 

It remains to discuss stationary scattering theory for the pair (S,B,y, -.1). 
The generalized eigenfunctions of S,B, yare given by 

N 

'Pp,r(k, (1, x) = eikax - L (1[rll,y(k)].i.i~eikaYj·Gk(X - Yj), 
j,j'=l 

(1 = ± 1, -00 < {3j ~ 00, {3j"# 0, Yj E Y, j = 1, ... , N, x E IR. (3.28) 

By inspection they fulfill 

'P//,Y(k, (1, Yj + ) = 'Pp, y(k, (1, Yj - ), 

'PfI,Y(k, (1, Yj+) - 'P,B,y(k, (1, Yj-) = {3j'Pp,y(k, (1, Yj), 

- 'PP. y(k, (1, x) = k2'PfI,Y(k, (1, x), x E IR - Y, 

lim lim (2k/i)e±i(k+i.)X'[Sp,y - (k + ie)2rl(x, x') = 'Pp,y(k, ± 1, x), 
.-l.o x'-+oo 

X E IR; k > O. (3.29) 

The corresponding transmission and reflection coefficients from the left and 



right then read 

ff"j, y(k) = lim e-ikx'Pp.r(k, + 1, x) 
X-Jo-l-C'() 

N 

= 1 + (2ik)-1 L e-ikYj[f/l.y(k)J.;'/eikYi', 
j.j'=l 

X--+-oo 

N 

= 1 + (2iktl L eikYj[rfJ,Y(k)Jjj~e-ikYj' = .'TI,r(k), 
j.j'=l 

x--oo 

rJ1I.r (k) = lim e-ikx['P (k -1 x) - e- ikx ] /l.y /l.Y' , 
x--++oo 

N 
= -(2iktl L e-ikYj[rfJ,Y(k)J.jj~e-ikYj'; 

j,j'=l 
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(3.30) 

k > 0, -00 < {3j ::;: 00, (3j =F 0, Yj E Y, j = 1, ... , N. 

The unitary on-shell scattering operator Y'p. y(k) in 1[2 is then defined as 

/7, k - [.o7pI, y(k) 9I!h(k)] 
p.r( ) - rJ1I.l (k) ff"r (k) , 

{I,y, P.y 

k > 0, -00 < (3j ::;: 00, rt =F 0, Yj E Y, j = 1, ... , N, (3.31) 

and obviously gp,y(k) has a meromorphic continuation in k to all of I[ such 
that poles of .Y'p, y(k) in I[ - {O} coincide with bound states or resonances of 

::::'P.y· 

We end up with a few remarks concerning the definition of a mixture of b
and b'-interactions in the N-center case (N ~ 2). The self-adjoint extension 
H~,p.Y of Ry 

d 2 
H ---

7,P,y - dx2' 

~(H7.fJ,Y) = {g E H2.2(1R - Y)lg(Yj+) = g(Yj-), g'(Yj+) - g'(Yj-) = !Xjg(y), 

-00 <!Xj ::;: oo,j EN,; g'(YI+) = g'(YI-), 

g(YI + ) - g(Yl- ) = (3lg'(YI), -00 < {31 ::;: 00, 1 E Np}, (3.32) 

where N" U NfJ = {l, ... , N}, N" n NfJ = 0, N ~ 2, represents <5-interactions at 
the points Yj,j EN", and <5'-interactions at YI' 1 E NfJ. Clearly, one can analyze 
H'1.p,y along the lines of Ch. 2 and the present one. 

Notes 

The results of this chapter are taken from [205]. 



CHAPTER 11.4 

Finitely Many Point Interactions in 
Two Dimensions 

Finally, we generalize the content of Ch. 1.5 to finitely many point interac
tions in two dimensions. 

Let N E I\J and introduce the set Y = {Yl, ... , YN} C ~2. We consider in 
L2(~2) the nonnegative operator 

- Alcg'(lJ;l2_y) (4.1) 

with fIy its closure in L2(~2) (i.e., p}(fIy) = HJ,2(~2 - Y». The adjoint oper
ator of fIy then reads 

fI: = -A, 

Since the equation 

"'(k) E p}(fIn k2 E C -~, 1m k > 0, (4.3) 

has the solutions 

1m k > 0, Yj E Y, j = 1, ... , N (4.4) 

(we recall that H&l)(.) denotes the Hankel function of first kind and order zero 
[1]), By has deficiency indices (N, N). Thus all self-adjoint extensions of By 
are given by an N 2-parameter family of self-adjoint operators. In order to 
find the two-dimensional analog of our N-center c5-interactions in one and 
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three dimensions we proceed as follows: In general, self-adjoint extensions 
Hu,y of Hy are given by 

::0(Hu,y) = {g + t cj[l/Ij+ + .f ~j·l/Ij·-Jlg E ::0(Hy), cj E e,j = 1, ... , N}, 
J=1 /=1 

Hu,y {g + t C~[l/Ij+ + .f ~j'l/Ij'-J} 
J=1 /=1 

(4.5) 

where ~j" j, j' = 1, ... , N, denotes a unitary matrix in eN and 

l/Ij±(x) = l/Ij(yf±i, x) = (i/4)H61)(yf±i Ix - Yjl), 

x E 1R2 - {Yj}, 1m yf±i > 0, (4.6) 

provide a basis for Ker[H: + i], respectively. Obviously, the special case 
U = -1 leads to the kinetic energy operator in U(1R2) 

H_l,y = -~, (4.7) 

(since l/Ij+ - l/Ij- E H 2,2(1R2), j = 1, ... , N). Applying now Krein's formula 
(cf. Theorem A.3) we get 

N 

(Hu,y - k2r 1 = (-~ - k2r 1 + L A (k)jj' (l/Ij' ( -k), . )l/Iik), 
j,j'=1 

k2 E p(Hu,y), U"# -1, (4,8) 

where 

1m k > 0, 1m k' > 0, (4.9) 

and 

[A(k)]jj~ - [A(k')]jj~ 

= _(k2 - k,2)(l/Ij' ( -k), l/Ij(k'» 

= l/Iik', Yj') - l/Ij'(k, Y) 

{ (2nr1 In(k/k'), 

- (i/4)[H61)(k'IYj - Yj'1) - H61)(k1Yj - Yj'I)], 
j =j', 

j"# j', 

k2, k'2 E p(Hu,y), 1m k > 0, 1m k' > 0. (4.10) 

The second equalities in (4.9) and (4.10) follow from the first resolvent 
formula 

1m k > 0, 1m k' > 0, (4.11) 
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where 

1m k > 0, (4.12) 

denotes the free resolvent with integral kernel 

1m k > 0, x, X' E [R2, X ¥= x'. (4.13) 

From 

(Hu,y - k2 {l/Ij+ + jt1 ~j'I/Ij'- ] = (i - P)I/Ij+ - (i + k2 ) jt1 ~j'I/Ij'_' 
j = 1, ... , N, (4.14) 

we infer 

(HU,y + it1l/1j+ = (2it1 [I/Ij+ + jt1 ~j'I/Ij'- ] 

implying 

N 

= (-A + it1l/1j+ + L )"(j"=i)j'r(l/Ir+,l/Ij+)I/Ij'
j',r=l 

N 

= (2i)-l(l/Ij+ -I/Ij-) + L )"(j"=i)j'r(l/Ir+,l/Ij+)I/Ij'-' 
j' ,j"=l 

j = 1, ... , N, (4.15) 

j, j' = 1, ... , N, (4.16) 

since I/Ij'-' j' = 1, ... , N, are linearly independent. (Here MIj' = Mj'j' j, j' = 1, 
... , N, denotes the transposed matrix in eN.) Clearly, relation (4.16) is valid 
in general since in deriving it we only used (4.5) and Krein's formula for the 
pair (Hu, y, H_l,y), Now we utilize the symmetry of (I/Ij+, I/Ir+) with respect to 
j andj" (i.e., (I/Ij+, I/Ir+) = (1/Ij"+,l/Ij+),j,j" = 1, ... , N) to get 

N 

~j' = -bjj' + L {[)"(j"=it 1JL" - [)"(ji)-lJL,,}[)"(j"=i)]J,.j' 
r=l 

(4.17) 

or equivalently, 

U = _[)"(ji)Tr1)"(j"=i)T. (4.18) 

Since Krein's formula (4.8) implies 

)"(k)* = )"(-k), P E p(Hu,y), 1m k > 0, (4.19) 

unitarity of U is equivalent to the fact that )"(ji) (resp. )"(j"=i)) is normal. 
In analogy to one and three dimensions we now define (cf. also the discussion 
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in the Notes) 

[A(k)J.i/ = [r .. ,y(k)]jj' 

= (2nr1[2n(Xj - '1'(1) + In(k/2i)]bjj, - cik(lYj - Yj'I), 

(Xj E~, j,j' = 1, ... , N, (4.20) 

where 

1m k > 0, 
(4.21) 

and '1'(.) denotes the digamma function [1J. (Actually it would have been 
sufficient to define A(Ji)-l since then A(krl follows from (4.10).) The N
center point interaction Hamiltonian - A .. , y in two dimensions is thus de
fined by 

N 

(-A .. ,y - k2 r 1 = Gk + L [r .. ,y(k)Jj/(Gk(· - Yj')' ')Gk(' - Yj), 
j,j'=l 

PEp(-A .. ,y), Imk>O, (XjE~, YjEY, j=1, ... ,N. (4.22) 

As usual, we may extend the above definition to the case where some of the 
(Xj equal 00. For example, if (Xjo = 00 one simply deletes the jo th line and jo th 
row in the definition of the matrix r .. ,y(k). 

Next we describe further domain properties of - A .. , y and point out its 
locality: 

Theorem 4.1. Let (Xj E ~, Yj E Y, j = 1, ... , N. Then the domain ~( - A .. , y) 
consists of all elements I/J of the type 

N 

I/J(x) = ~k(X) + L [r .. ,y(k)].i.i~~(Yj')Gk(X - Yj), (4.23) 
j,j'=l 

where ~ E 2)( -A) = H2,2(~2) and k2 E p( -A .. ,y), 1m k > O. The decom
position (4.23) is unique and with I/J E ~(-A .. ,y) of this form we get 

(-A .. ,y - P)I/J = (-A - P)~. (4.24) 

Next let I/J E 2)( - A .. , y) and assume I/J = 0 in an open set U s; ~2. Then 
-A .. ,yI/J = 0 in U. 

PROOF. Identical to that of Theorem 1.1.3. • 
Spectral properties of - A .. , yare summarized in 

Theorem 4.2. Let (Xj E ~, Yj E Y, j = 1, ... , N. Then the essential spectrum 
of - A .. , y is purely absolutely continuous and equals 

O'ess( -A .. ,y) = O'ac( -A .. ,y) = [0, (0), O'sc( -A .. ,y) = 0. (4.25) 
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In addition, 
(4.26) 

and -A",y has at least one and at most N (negative) eigenvalues counting 
multiplicity. In particular, 

1m k > 0, (4.27) 

and the multiplicity of the eigenvalue k2 equals the multiplicity of the eigen
value zero of the matrix r",y(k). If Eo = k~ is an eigenvalue of -A",y, the 
corresponding eigenfunctions are of the form 

N 

t/lo(x) = L cjGko(x - Yj), 
j=l 

1m ko > 0, (4.28) 

where (c l , ... , cN ) are eigenvectors of the matrix r",y(ko) to the eigenvalue 
zero. The ground state of - A", y is nondegenerate and the corresponding 
eigerifunction can be chosen to be strictly positive (i.e., the associated eigen
vector (Cl' ... , CN) fulfills Cj > O,j = 1, ... , N). 

PROOF. That - L\", y has at most N negative eigenvalues follows from the fact that 
fIy ::?: 0 and def(fIy) = (N, N) ([494], p. 246). To prove the existence of a ground 
state of - L\", y for all (J.j E JR, j = 1, ... , N, we observe that 

(4.29) 

and 

r" y(iIC) = (2n)-1 N In(IC/2)P + O((ln ICr1), 
, K.j.O 

(4.30) 

where P is a self-adjoint projection in (f 

P = [!5j/N-1 ]7,/=1 (4.31) 

with simple eigenvalue 1 and eigenvector (1, ... , 1). Expansions (4.29) and (4.30) 
show that all eigenvalues of r",y(iIC) tend to +00 like (2n)-1 In(IC/2) as IC --+ 00 and 
that r", y(iIC) has a simple eigenvalue converging to -00 like (2n)-1 N In(IC/2) as 
IC 1 o. By the monotone increase of all eigenvalues of r",y(iIC) with respect to IC > 0 
(cf. Appendix F) we obtain at least one ICo > 0 such that r",y(iICo) has the eigenvalue 
zero. The rest of the proof is analogous to that of Theorem 1.1.4. • 

As in all cases discussed before, the pole structure in (4.22) determines 
bound states as well as resonances of -A",y, Similarly to the one-center case, 
the discussion of resonances is more involved than in one or three dimensions 
since (-A",y - P)-l(X, x'), x # x', has a meromorphic continuation to the 
entire logarithmic Riemann surface. 

Finally, we turn to stationary scattering theory associated with the pair 
(-A",y, -A). Let 

N 

'P",y(kco, x) = eikwx + (i/4) L [r",y(k)]il~eikwYj'H&l)(klx - Yjl), 
j,j'=l 

det[r",y(k)] # 0, k > 0, co E S1, !Xj E [R, X E [R2 - Y, j = 1, ... , N, 
(4.32) 
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then 'P",y(kw, x) are the scattering wave functions of -~",y and 

X E [R2 - Y, 

lim lim ei1t/4 [8n(k + iB)r/2Ix'1 1/2e- i(k+ie)lx'l[ -~",y - (k + iB)2rl(x, x') 
e.j,O Ix'I~C() 

-lx'l-l x'=w 

X E [R2 - Y, k > 0, WE Sl. (4.33) 

The on-shell scattering amplitude Ia. y(k, w, w') corresponding to - ~", y then 
reads 

Ia.y(k, w, w') = lim Ixll/2e-iklxl['P",y(kw', x) - eikw'x] 
Ixl~C() 

Ixl- 1x=w 
N 

= ei1t/4 (8nkrl/2 L e-ikwYi[r",y(k)]j}eikW'YJ', 
j,j'=l 

det[r",y(k)] =F 0, k > 0, w, W' E sl, aj E [R, Yj E Y, j = 1, ... , N. (4.34) 

The unitary on-shell scattering operator ~,y(k) in L 2(Sl) is finally given by 

N 

~,y(k) = 1 - (4ni)-1 L [r",y(k)]j/(e-ik(')YJ',' )e-ik(')Yi, 
j.j'=l 

det[r",y(k)] =F 0, k > 0, aj E [R, Yj E Y, j = 1, ... , N. (4.35) 

Formula (4.35) shows that ~,y(k) has a merom orphic continuation in k to 
the entire logarithmic Riemann surface. 

Notes 

The derivation offormula (4.16) has been taken from [129] where particular 
attention has been paid to introducing point interactions in L2([Rn), 1 :-0:; n :-0:; 

3, with general boundary conditions connecting different points in Y. The rest 
of this chapter appeared in [19]. We emphasize that the approach used to 
define the two-dimensional, N -center, b-interaction presented there works as 
well in one and three dimensions. To illustrate this fact it suffices to note that 

[r". y(k)]jj' = - aj- 1bjj' - Gk(Yj - Yj') = - [aj- 1 + (i/2k)] bjj' - Gk(Yj - Yj') 

{
-ail + lim [Go(x) - Gk(x)], 

= Ixl.j,o 

-Gk(IYj - Yj'I), 

j =j', 

j =F j', j,j' = 1, ... , N, 

in one dimension (where Go(x) = -lxl/2, x E [R), 

[r",y(k)]jj' = [aj - (2nrl'P(1) + (2nrl In(k/2i)]bj j' - Gk(Yj - Yj') 

{
aj + lim [Go(x) - Gk(x)], 

= Ixl.j,o 

-Gk(IYj - Yj'I), 

j =j', 

j =F j', j,j' = 1, ... , N, 
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in two dimensions (where Go(x) = -(2n)-1 lnlxl, x E ~2 - {O}) and 

[r .. ,y(k)]ii' = raj - (ik/4n)]bjj, - Gk(IYj - Yj'1) 

{
aj + lim [Go(x) - Gk(x)], 

= Ixl-l-o 

-Gk(IYj - Yj'I), 

j =j', 

j¥-j', j,j'= 1, ... ,N, 

in three dimensions (where Go(x) = (4nlxlfl, x E ~3 - {O}) and 

Gk(x) = {Gk(X), x¥-O 
0, x = 0, 



PART III 

POINT INTERACTIONS WITH 
INFINITELY MANY CENTERS 



CHAPTER 111.1 

Infinitely Many Point Interactions in 
Three Dimensions 

111.1.1 Basic Properties 

Our starting point will be the point interaction Hamiltonian with a finite 
number of centers, and then the use of a limiting argument to show that the 
analogous expression is still valid when Y is infinite. 

For use in later sections we will discuss the operator both in x- and p-space. 
ConsiOer 

such that 

and let 

inf I Yj - Yp I = d > 0 
UP 

j,j' E f\J 

!X: Y --+ IR. 

(1.1.1) 

(1.1.2) 

(1.1.3) 

For convenience, we shall write!Xj instead of !XYj to simplify the notation. Then 
we can define - Ail, y as a strong resolvent limit of restrictions - A", y of - A .. , y 

to finite subsets Yof Y. This is the content of the following 

Theorem 1.1.1. Let Y = {Yj E 1R3 1j EN} be discrete in the sense that 

inf IYj - Ypl = d > 0 
Uj' j,p E f\J 

(1.1.4) 

169 
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and let cx: Y --+ R. Then the strong limit in L2(~3) 

s-~im (-A .. ,f - k2rt, PEe - ~, (1.1.5) 
YeY 
Ifl<oo 

over the filter of all finite subsets f of Y exists where fi. = cxl f and 
(-A",f - k2)-1 is given by (11.1.1.33). This limit equals the resolvent of a 
self-adjoint operator denoted by - A .. , Y which has the resolvent 

00 

(-A .. ,y - k2)-1 = Gk + L [r .. ,y(k)]Jj!(Gk (· - Yj')' ·)Gk (· - Yj), 
j,j'=1 

k2 E p( -A .. ,y), 1m k > 0, Yj E Y, IYj - Yj'1 ~ d, j =F j', j,j' EN, 
(1.1.6) 

where r .. ,y(k) is the closed operator in 12(y) given by 

r .. ,y(k) = [(CXj - ~~}5jj' - Gk(Yj - Yj')l.j,eN' 

on lo(Y) where 

1m k > 0 (1.1.7) 

lo(Y) = {g E F(Y)lsupp g finite}. (1.1.8) 

We have 

P E p( -A .. ,y), 

1m k > 0 large enough. (1.1.9) 

If cx is bounded, then r .. ,y(k) is analytic in k for 1m k > O. 
Let 

A -1 -A .. ,y = ~[-A .. ,y]~ . (1.1.10) 

Then 

2 A k E p( - A .. , y), 1m k > 0, CXj E~, Yj E Y, 

IYj - YJ,I ~ d, j =F j', j,j' E N, !. 0 E L2(~3), (1.1.11) 

where 

P E ~3, j EN. (1.1.12) 

PROOF. For each finite subset ¥of Ywehave that -.1,z",1i = IXI,has the resolvent 

00 

(-.1.,i - k2r 1 = Gk + L [rii.i'(kn:;!(Gk (· - Yj')' ')Gk (' - Yj), 
j,j'=l 

k2 E p( -.1.,,), 1m k > 0, (1.1.13) 
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where the matrix inverse is an operator in F(Y), i.e., a I YI x I YI-matrix. First, we 
observe that there exists a k~ < O,lm ko > 0, such that the resolvent (-~.,i' _ P)-l 
exists for all k2 > k~ and is increasing in r, i.e., 

for all r, Y ~ Y, I YI, I YI < 00, where k~ is independent of the subsets Yand Y. This 
can be seen as follows: We showed in the proof of Theorem 11,1.1.1 that the operator 
- ~., i' is approximated in norm resolvent sense by the operators 

By = p2 - .I }liw)(rpy~, . ) rp;; , }lj(w) = (IXj + 2W 2)-1, 
JEN n 
YjE Y 

j E N, (1.1.15) 

as W --> 00, Fot W > 0 large enough, }lj(w) is positive, thus making the operators By 
monotone decreasing in Y. Hence the resolvents of By are monotone increasing in 
Y whenever they exist. By letting W --> 00 we obtain the same property for the 
resolvents of - ~., i' and thus for the resolvents of - ~., i' whenever they exist. To 
prove the existence of such a k~ < 0 it is then sufficient to prove that the matrix 
r.,i'(k) is invertible for all subsets Yof Y and all k with 1m k > 0 sufficiently large, 
To this end, consider the bounded operator Gk on F(Y) with kernel Gk(Yj - Yr), i,e" 

Using Lemma C.3 we infer that in order to control the norm of Gk it suffices to 
bound the quantity 

(1.1.17) 

Since there is at most one point Yj' E Y inside each cube of size d/2 centered at 

d 3 
Yj + '21' , (1.1.18) 

we obtain that the right-hand side of (1.1.17) can be estimated by 

_1_ I e-Imklild/2 

4nd jEjI'3_{Oj 
(1.1.19) 

which can be made arbitrarily small by choosing 1m k > 0 sufficiently large, Thus 
Gk tends to zero in norm as 1m k --> 00, and hence r.,y(k) is invertible for all k with 
1m k > 0 sufficiently large and ik ¢ {4nIXjU EN}. But then the restrictions of the 
matrix r.,y(k) to arbitrary subsets of Yare also invertible. Using 

II(S - z)-lll = d(z, (J(S))-l (1.1.20) 

for self-adjoint operators S, where d(', ,) denotes the distance, we have proved 
that the increasing filter of operators ( - ~., i' - prl, Y ~ Y, I YI < 00, & = lXIi', is 
uniformly bounded, viz. 

II( -~.,i' - k2)-111 ::;; Ik2 - k~r1. 

From Vigier's theorem ([480], p. 51) we obtain that 

R(k2) = s-lim (-~. i' - k2)-1 
YeY , 

IYI<oo 

(1.1.21) 

(1.1.22) 
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exists and equals the unique supremum of the strong closure of the filter. By the 
explicit characterization of the resolvent of - 1\.,Y we see that R(k2 ) reads 

00 

(R(k2)f)(x) = (Gd)(x) + L [r.,y(k)];;!(Gk(· - Yj'),f)Gk(x - Yj), 
j,j'=l 

Re k #- 0, 1m k > 0, X E 1R3 - Y, f E U(1R3), (1.1.23) 

whenever the right-hand side exists and defines an element in L 2(1R3). The following 
argument implies that (1.1.23) is well defined for all f E L2(1R3). Let 

Then 
00 

(g, R(k2)f) = (g, Gd) + L [r., y(k)]j},l alg)aj' (f) 
j,j'=l 

= (g, Gd) + (a(g), [r.,y(k)r1a(f))12(y), f, g E L 2 (1R 3), (1.1.25) 

provided a(f), a(g) E [2(y). Hence, it is sufficient to prove that {h(y)LeN E [2(y) 
for all h E ~( - 1\) = H 2,2(1R3 ). Assume that h E ~( - 1\). Then h is continuous ([283], 
p. 301) and equals 

h(x) = f d3x' GiK(X - x')f(x'), K E (0, (0), (1.1.26) 

for some f E L2(1R3). It is sufficient to consider the case where Y = 7L 3 since Y is 
discrete. Writing 

1R3 = U (j' + Q), (1.1.27) 
j' eZ3 

where Q = [0, 1)3 C 1R3, we see that 

Ih(x)1 S L f .d 3 x' /~Klx-X'I'llf(X')1 
j'eZ3 j'+Q 11: X - X 

< L [f d3 x' e:2Klx-x'l 2J1/2[f d3 X'lf(X'WJ1/
2. (1.1.28) 

- j'eZ3 j'+Q 1611: Ix - x'i j'+Q 

Since 

(1.1.29) 

it suffices to prove that the matrix 

(1.1.30) 

is bounded. We have 

M .. , = d3 x' e < ce-2K1j-j'1 i -2Klj-j'-x'l 

)) Q 16n2 Ij-j'-x'1 2 -
(1.1.31) 

which proves (by Lemma C.3) that the Holmgren bound of M exists. • 
We end this section with a characterization of the domain f0( -A.,y) of 

- A", y and with the proof that - A", y is still local when Y is infinite. 
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Theorem 1.1.2. Let Yj E Y, IYj - Yj,1 ~ d > O,j =f. j', and let (Xj E lR,j,j' EN. 

Then the domain 2/)( - Aa. y) of - Aa. y is the set of all If; such that 

00 

If;(x) = (A(x) + L aj(k)Gk(x - Yj), 
j~l 

for some k with 1m k > 0, where 

00 

X E 1R3 - Y, 

rPk E 2/)( - A), aj(k) = L [ra.y(k)]j-:?rPk(Yj')' 
j'~1 

Furthermore, this decomposition is unique and 

and if If; = ° in an open set U c;: 1R3 , then also -Aa.ylf; = ° in U. 

(1.1.32) 

(1.1.33) 

(1.1.34) 

PROOF. Using that IjJ E f0( -~) implies that {1jJ(Yj)}jEIli E F(Y) (cf. the proof of 
Theorem 1.1.1) we infer that the proof of Theorem 11.1.1.2 still applies. • 

As in Part II, we extend our definition of - Aa. y to allow;:Yjo = 00 for some 
jo EN in the sense that -Aa.y = -Aa.f where fi and Y equal (X and Y, 
respectively, with the jo th component removed. 

111.1.2 Approximations by Means of Local Scaled 
Short-Range Interactions 

The operator - Aa. y of Sect 1.1 represents an idealization in the sense that the 
interaction at each center has zero-range. It is therefore natural to ask in what 
sense this idealization represents the asymptotic behavior when the range of 
the interaction diminishes. 

We will prove in Theorem 1.2.1 that -Aa.y is approximated in norm 
resolvent sense by operators with short-range interactions. Since our ultimate 
goal in this chapter is to model regular structures, e.g., crystals, we shall 
assume that the approximating operator has only a finite number of different 
potentials, viz. 

00 

H •. y = -A + B- 2 L AiB) Jj((' - Y)/B), B > 0, (1.2.1) 
j~l 

where 

j E N. (1.2.2) 

First, we derive an explicit expression for the resolvent of He.y. To this end, 
we need some definitions. Let 

00 

.Yf = EB L2(1R3) 
j~l 

(1.2.3) 
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and 
A.(k): .Yf ~ L2([R3), 

B.(k): .Yf ~ .Yf, 

C.(k): L2([R3) ~ .Yf, 

be bounded operators with integral kernels 

A.jk, x, x') = Gk(x - BX' - Yj)Vj(x'), 

(k ') _ {BAj(B)UAX)Gk(B(X - x') + Yj - Yj' )vp(x'), 
B.,jj' ,X, x - '() ()G " ( ') 

Aj B uj x .k(X - x )Vj x , 

j #j', 

j =j', 

(1.2.4) 

(1.2,5) 

1m k > 0, B ~ 0, j,j' E N. 

Theorem 1.2.1. Let ltj E R, supp ltj compact, be real-valued and let 
{LAB) = 1 + B{Lj(O) + O(B) as B! 0, j = 1, ... , N. Assume, furthermore, that 
Y={Yj EiR 3 IjEN} satisfies IYj-Yj'I~d>O,j#j',j,j'EN. Then the 
self-adjoint operator in L 2([R3) 

'to 

H.,y = -Ll + B- 2 L AAB) Vj«. - Yj)!B), 

where 

Aj E {{Ll' ... , {LN}' 

has the resolvent 

j=1 

(H.,y - pr1 = Gk - BA.(k) [1 + B.(k)T1C.(k), 

(1.2.6) 

(1.2.7) 

k2 E p(H.,y), 1m k > 0. (1.2.8) 

Assume that Aj(O) #- 0 if H j = -,:1 + Vj is in case III or IV. Then H.,y 
converges in norm resolvent sense to the operator -Ll""y defined by (1.1.6), 
i.e., 

k 2 E C - [R, (1.2.9) 

where rx = {rxJjEN and rxj equals 

00 in case I, 

- Aj(O) I(vj, ¢J)1- 2 in case II, 

rxj = 00 in case III, 

- Aj(O) {I I(vj, ¢Jj/W}-1 in case IV; jE N. 
/=1 

PROOF. Using Theorem CA we know that the self-adjoint operator 

CG 

Hy(e) = -~ + L Aie)lj(' - e-1Yj) 
j=J 

(1.2.10) 

(1.2.11) 
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has the resolvent 

where 

k2 E p(Hy(e», 1m k > 0, 
(1.2.12) 

A.(k): JIf ..... L2(1R3), A.(k) = [GkVj]jeN, 

B.(k): JIf ..... JIf, B.(k) = [lj(e)apkvj']j.j'eN' (1.2.13) 

C.(k): L 2(JR3) ..... JIf, C.(k) = [lj(e)apk]jeN; & > 0, 1m k > 0, 

are bounded operators with ai' Vi defined by (II. 1.2. H). Introducing the scaling 
operator U. (cf. (11.1.2.3» and the translation operator T, (cf. (II.1.2.13» as in the 
proof of Lemma 11.1.2.2 we obtain (1.2.8). Next we need the limits of the operators 
A.(k), C.(k), and e[1 + B.(k)r1 as e ~ 0. As in Theorem 11.1.2.1, A.(k) and C.(k) have 
natural candidates for their limits, while the limit of 6[1 + B.(k)r1 is more involved. 
Starting with the operator C.(k) (taking lie) == 1 for simplicity) we have that 

'" L II [C.)k) - Co)k)]fI12 
j=l 

where 

= f r d3XIJ.)(X)lli d3x'[ eiklex+Yrx'l , _ eiklyrx'I,]f(X')12 
j=l JUll D;l' 4nlex + Yj - x I 4nlYj - x I 

f co [1 I eiklex+Yrx'l eiklYrx'l 12 < d3 x W(x) L d3 x' - eImklyrx'l. 
- D;l' j=l D;l' 4nI6x+Yj-x'l 4nIYj-x'l 

. r d3x" e-ImkIYrX"llf(x")12 
JR' 

~ c [r d3 x W(x) r d3 x' 1 eikl,x-x'I, _ eikIX': 12 elmkIX'I] Ilf11 2, 
JD;l' JD;l' 4nlex - x I 4nlx I 

00 

c = sup L e-lmklYrxl and 
XE n:3 j::::l 

f E L2(JR3), (1.2.14) 

N 

W(x) = L I JoJ:j(x)l. 
j=l 

Using the dominated convergence theorem we see that the right-hand side is bounded 
by c(e) IIfl12 where c(e) ..... 0 as 6 ~ 0, proving the assertion for C.(k). Similarly, one 
shows that A.(k)* ..... Ao(k)* in norm as el 0. Writing 

1 + B.(k) = 1 + D.(k) + eE.(k), (1.2.15) 

where 

D.(k) = [Ojj,Aie)uPtVi]j,j'eN, 

E.(k) = [(1 - ojj,)e-1Be.JJ,(k)]j,j'eN' 
(1.2.16) 

we infer from 

that it suffices to determine the limits of e[1 + D.(k)r1 and E.(k) as e ~ 0. Estimating 
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IIEe(k) - Eo(k)11 using Lemma C.3 we only need to prove that 

This, however, follows using the dominated convergence theorem. The matrix 
e[l + De(k)r 1 is diagonal, and for each entry on the diagonal we know the limit 
from the one-center case, Lemma 1.1.2.4. Since we only have a finite number of 
different potentials, the limit is uniform on the diagonal and hence also exists in Yf. 
Thus 

(1.2.19) 

where 

o in case I, 

Nj 

[Aj(0)r 1 L (~I" . )t!>jl in case III, (1.2.20) 
1=1 

N· 

I (~j' Bj1(k)t!>X/(~I" ·)t!>jl in case IV, 
1.1'=1 

with (~, Bj1 (k)t!»l/ defined as in Lemma 1.1.2.4 with V replaced by fj and with 
rxj defined according to (1.2.10). Having found all the necessary limits, a similar 
computation as in the proof of Theorem 11.1.2.1 yields the assertions claimed. • 

111.1.3 Periodic Point Interactions 

One of the most interesting special cases of the model constructed in Sect. 1.1 
occurs when Yand IX are periodic. We then obtain the so-called one-electron 
model of a solid which is based on the following assumptions (A)-(E): 

(A) The solid is supposed to consist of a fixed number of heavy nuclei 
arranged in a regular lattice surrounded by core electrons. Each nucleus 
has the same number of core electrons such that the whole system is 
neutral. 

Although it is not proved from first principles that a neutral system con
sisting of heavy nuclei and electrons, interacting via the Coulomb interaction, 
forms a regular or approximately regular lattice as the ground state, it is 
nevertheless an observed fact in nature that solids consist of nuclei arranged 
in regular structures. This makes assumption (A) a reasonable starting point 
to investigate properties of solids. Hence the solid is assumed to consist of an 
electron gas immersed in a background of positive ions arranged in a regular 
lattice. 

(B) The electron-electron interactions are neglected, only interactions be
tween the electrons and the heavy nuclei are taken into account. 
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From an ideal point of view one would, of course, like to solve the many
body problem using only assumption (A). However, many-body problems of 
the above type are presently beyond the scope of an analytical treatment. The 
validity of assumption (B) can be further enhanced by replacing the atomic 
potential by an averaged potential, and the electron mass by an effective mass. 
In addition, it is experimentally verified that the electrons move nearly free in 
a metal thus making assumption (B) a reasonable one. 

(C) The solid is assumed to be infinitely extended, and each nucleus gives 
rise to the same potential. 

Assumption (C) is a mathematical device to obtain a strictly periodic, not 
only approximately periodic, interaction, and it is reasonable because the solid 
consists ofthe order of 1023 nuclei. Clearly, this assumption disregards surface 
effects. Furthermore, the complete periodicity does not allow one to study 
various defects, dislocations, and impurities. Nevertheless, by perturbing the 
periodic Hamiltonian we will be able to study various kinds of impurities, see 
Sects. 1.9 and 2.6 and Ch. 5. 

(D) All "higher-order" effects are neglected, e.g., relativistic effects, lattice 
vibrations, spin-orbit coupling, electron-phonon interactions ([332]). 

Clearly, all these effects playa role in realistic systems. Hypothesis (D) is 
the price one pays for a rigorous analytical treatment. 

From assumptions (A)-(D) it follows that we have to study the "usual" 
SchrOdinger operator which reads, in appropriate units, 

H = -.1 + V, (1.3.1) 

where the potential V is periodic, viz. 

V(X + A) = V(x), X E [R3, A E A, (1.3.2) 

A being the underlying lattice. By definition (1.3.1) and (1.3.2) constitute the 
one-electron model of an infinite, perfect solid. 

To obtain a solvable model we will introduce our last assumption, namely: 

(E) Assume that formally 

V(x) = - L J-lo(x - A). (1.3.3) 
leA 

The atomic potential is of Coulomb type and thus has a singularity at 
each point of the lattice and in particular is of long range. However, as we 
mentioned in the comments to assumption (B), the actual potential has to be 
replaced by an averaged potential which qualitatively looks like the one in 
Figure 4 in one dimension. Thus it has a singularity at each lattice point 
and is approximately constant in between. By replacing the singularity with 
a t5-function and the constant value by zero we obtain (1.3.3) which is a 
particular example of a so-called muffin-tin potential. 

We will also be able to solve the problem where we allow a finite number 
of different nuclei in each primitive cell r (for the definition of t, see the next 
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section), i.e., 
N 

V(X) = - I I }1jb(X - A. - y), (1.3.4) 
j=1 .l.EA 

where {Yl' ... , YN} c f. This provides a model of a multiatomic crystal or 
an ordered alloy. 

lYYYf 
Figure 4 

Finally, by allowing A to be one- or two-dimensional lattices embedded in 
1R3 we obtain the one-electron models of an infinite straight polymer and an 
infinite monomolecular layer, respectively. 

111.1.4 Crystals 

The first regular structure to be considered is the full infinite crystal in three 
dimensions. Before we start with explicit computations for the point inter
action Hamiltonian, it will be instructive to study on a formal level what sort 
of properties one should expect in general with a Schrodinger operator 

H= -d+ V (1.4.1) 

in L 2(1R3) where the real-valued potential V is a smooth periodic function, i.e., 

V(x + A.) = V(x), (1.4.2) 

and where A is a Bravais lattice, 

A = {n 1 a1 + n2a2 + n3a3 E 1R31(nl, n2, n3) E Z3} (1.4.3) 

and aI' a2, a3 is a basis in 1R3. This will also allow us to introduce the basic 
nomenclature. The basic periodic cell or primitive cell f is mathematically 

and can be identified with the Wigner-Seitz cell 

~ { 3 11· } r= slal+s2a2+s3a3EIR ISj E[-2'2)'] = 1,2,3 . 

Since V is periodic, it can be expanded in a Fourier series, i.e., 

V(x) = I Vye iYx, 
YEr 

where 

(1.4.4) 

(1.4.5) 

(1.4.6) 

(1.4.7) 
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and r equals the dual lattice (or orthogonal lattice or reciprocal lattice), 

r = {n1b1 + n2b2 + n3b3 E 1R31(n1' n2' n3) E £:3}, (1.4.8) 

where the dual basis b1, b2, b3 satisfies 

(1.4.9) 

It will be useful to consider H in p-space, thus we make a Fourier transform 
of H. We then obtain 

fJ = ffHff- 1 = p2 + (2nr3/2(l:7(p - .), .) 

which is a formal way of writing the operator 

(fJ!)(p) = p2!(p) + (2n)-3/2 r d3q ?(p _ q)!(q). 
JU;13 

Using the Fourier inversion formula 

V(x) = (2nr 3/2 r d3p ?(p)e iPX 

JU;13 

one formally would expect 

?(p) = (2n)3/2 L Vyb(p - y), 
yer 

since then 

(2n)-3/2 r d3p ?(p)e iPX = L Vy r d3p b(p _ y)e iPx 

JIR3 yer JIR3 

(1.4.10) 

(1.4.11) 

(1.4.12) 

(1.4.13) 

= L Vye iyx = V(x) (1.4.14) 
yer 

which is (1.4.6). 
Inserting (1.4.13) into (1.4.10) we see that fJ formally can be written 

fJ = p2 + L Vy(<5(p - y - .), .). (1.4.15) 
yer 

This makes it natural to decompose the Hilbert space L2(1R3) according to 

i:ft: L2(1R3) -+ L2(A, [2(r» == fAE9 d30 [2(r), 
(1.4.16) 

(i:ft!)(O, y) = !(y + 0), 0 E A, y E r, ! E L 2(1R3), 

where A is the dual group of A (or basic periodic cell or primitive cell of the 
dual lattice r), i.e., 

(1.4.17) 

By identifying A with the Wigner-Seitz cell of the dual lattice r (defined 
correspondingly to (1.4.5» we obtain the important concept of the Brillouin 
zone, namely 

A = {Sl bi + S2b2 + S3b3 E 1R31sj E [ -!, !),j = 1,2, 3}. (1.4.18) 
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Thus the decomposition simply corresponds to writing a vector p E 1R3 uniquely 
in the form 

p = () + 1', (1.4.19) 

This decomposition of L 2(1R3) will, of course, also decompose the Schrodinger 
operator H which we now write as 

I1lIHI1lI-1 = J~(j) d3 () H(()), (1.4.20) 

where H(()) acts on P(r) according to 

(H(())g)(y) = II' + ()12g(y) + L lIy,g(y - 1"), () E A, I' E r, g E [2(r). 

(1.4.21) 
Y'Er 

Thus (1.4.20) simply means 

(I1lIHI1lI- 1j)((), 1') = (H(())j((), . ))(1'), () E A, I' E r, j E L 2(A, [2(r)). 
(1.4.22) 

In order to study the spectrum of H, and hence of H, we have to study the 
spectrum of H(()). Since the free decomposed Hamiltonian -.1(()) (i.e., lIy = 0 
for all I' E r) has a purely discrete spectrum, namely 

(1.4.23) 

where 

(1.4.24) 

H(()) will also have a purely discrete spectrum consisting of isolated eigenvalues 
of finite multiplicity. As () varies in A, the Brillouin zone, the eigenvalues will 
broaden to form bands if the dependence in () is smooth. Hence 

a(H) = a(fl) = U a(H(())) 
8EA 

(1.4.25) 

which means that the spectrum of Schrodinger operators with periodic 
potentials consists of bands, which mayor may not be separated by gaps. 

We will now implement the point interaction Hamiltonian into this frame
work. There are essentially two ways of doing this. First, we could take the 
operator - .1(%. y from Sect. 1.1, make a and Y periodic and perform the direct 
integral decomposition (1.4.20). Second, we could start with the unperturbed 
decomposed Hamiltonian - .1(()) given by (1.4.21) with lIy = 0 for all I' E r 
and then perturb it with point interactions in the spirit of Theorem 11.1.1.1. 
This makes the approach independent of the technical Theorem 1.1.1, but 
raises the consistency problem (since we have to make a renormalization to 
pass from /ls to a's): Do the two approaches yield the same operator? We 
will follow the latter approach as this makes the presentation independent of 
Part II, but for completeness we will also prove that the two approaches lead 
to the same operator. 
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Our potential will then be, formally 

N 

V(x) = - L L f1.j~(x - Yj - .Ie), f1.j E IR, j = 1, ... ,N, (1.4.26) 
j=l AeA 

when we allow interactions at a finite number of points Y1"'" YN in the basic 
periodic cell t, 

(1.4.27) 

Then 

Yy = Itl-1 fA d3 v V(v)e- iyv = -ltr1 f f1.je-iYYJ, 
A )=1 

Y E r. (1.4.28) 

Inserting this into (1.4.21) we formally obtain 

N 

(11(9)g)(y) = Iy + 912g(y) - Itl-1 L L f1.je- iY'YJg(y - y') 
y' er j=l 

= Iy + 912g(y) -ltr1 f [f1.je-iYYJ L eiY'YJg(y')] , 
j=l y'er 

9 E A, y E r, 9 E loW). (1.4.29) 

As this of course does not define a self-adjoint operator in F(r) we introduce 
the operators 

N 

(11{J)(9)g)(y) = Iy + 912g(y) - Itl-1 .L f1.j(w)(t/J;;(9), g)t/J;;(9), 
)=1 

9 E A, y E r, 9 E loW), W > 0, (1.4.30) 

where (', .) is the inner-product in 12(r) and t/Jy~(9) equals the function 

t/Jy~(9, y) = X{J)(Y + 9)e-i(y+6)YJ, 9 E A, y E r, j = 1, ... , N, (1.4.31) 

and X{J)' as usual, denotes the characteristic function of the closed ball in 1R3 
with radius W > 0 and center at the origin. 

With this operator we can state the following 

Theorem 1.4.1. Let 11{J)(9) be the self-adjoint operator in F(r) given by 
(1.4.30) with domain 

~(11{J)(9» = ~(-A(9» = {g E F(r) IY~r Iy + 914 1g(yW < 00 }, 9 E A. 
(1.4.32) 

If 

(Xj E IR, j = 1, ... ,N, W > 0, (1.4.33) 

then 11{J)(9) converges for all 9 E A in norm resolvent sense as W -+ 00 to a self
adjoint operator which we denote by -AIl,A,y(9). The resolvent of -AIl,A, y(9) 
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reads 

where 

and 

and 

N 

= Gk(O) + Itl-1 L [r""A,y(k, O)li:(F-k,y ,(0), . )Fk'Yf(O), 
i,i'=1 J. 

k2 ¢!r + 01 2, 1m k ~ 0, det[r""A,y(k,O}] -:f= 0, 

o e J..., rxi e IR, Yi e Y, j = 1, ... ,N, (1.4.34) 

(1.4.35) 

r""A,y(k, 0) = [rxAr - gk(Yi - Yr' O)]fr=l' 

k 2 ¢ !r + 01 2, 1m k ~ 0, 0 e J..., (1.4.36) 

e i(y+6)x 

Itl-1 lim '" 
"'-+00 y~r Iy + 01 2 - k2 ' 

ly+6Is", 

[ J... ] (2 )-3 -i6x l' '" I I 4 n e 1m L.. I 1112 _ k2 - nco , 
"'-+00 yer y + u 

ly+6Is", 

k2 ¢ !r + 01 2 , 1m k ~ 0, 

X e 1R3 - A, 

xeA, 

o e J.... (1.4.37) 

If 1m k > 0, then gk(X, 0) also equals 

{ 
L Gk(x + A.)e- iO)., 

AeA 
gk(X, 0) = . 

L {ik(X + A.)e-i6A + ~, 
).eA 4n 

X E fIl3 - A, 

(1.4.38) 

xeA,OeJ..., 

(cf (111.1.26)). Furthermore, 
e- i(y+6)Yj 

Fk'YJ(O, y) = Iy + 01 2 _ k2 ' 

k2 ¢!r + 01 2, 1m k ~ 0, 0 e J..., j = 1, ... , N, (1.4.39) 

and Gk(O) is the multiplication operator in 12(r) with the function 
(Iy + 01 2 - prl, i.e., 

Gk(O): P(r) --+ 12(r), 

GiO)g)(y) = (Iy + 01 2 - k2r1g(y), 
(1.4.40) 
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PROOF. From Lemma B.5 we know that 

det[f'.,t',y(k, 0)] #- 0, k2 rI= If' + 01 2, 1m k > 0, 0 E A, 

f'X.y(k, (J) = [ltlJ.liWf1bjj' - (rfJ;;(O), Gk(O)rfJ;;,(Omf,r=l' (1.4.41) 

The jth diagonal entry of the matrix f'X. y(k, 0) equals 

It lJ.liw)-l - (rfJ;;(O), Gk(O)rfJ;;(O)) = It lJ.liWf 1 - Y~r Iy + 012 _ k2 ' 

ly+9I:;;", 

To estimate the divergence of this series as w ---> W is more difficult than to isolate 
the corresponding divergence in the finite center case, Theorem 11.1.1.1, since we 
are not able to obtain the partial sum of this series in a closed form. However, 
by applying the Poisson summation formula this sum can be controlled. Using 
Lemma 1.4.2, proved after this theorem, we infer that 

t -1 '\' 1 
I lJ.liw) - y7r /y+ 01 2 --f2 

ly+81:;;", 

converges as w ---> W to It I [aj - gk(O, 0)] where gdO, 0) is given by (1.4.37). The 
off-diagonal elements of the matrix converge, viz. 

e i(y+8)(Y;-Yj') 

(rfJ;;(O), Gk«(J)tfiy~ (0)) = Y~r Iy + 012 _ k2 ~ It I gk(Yj - Yj', 0), 
ly+81:;;", 

j #- j', e rI= If' + 01 2, 1m k ~ 0, (1.4.44) 

using Lemma 1.4.2 again. A straightforward computation shows that 

(1.4.45) 

Hence we conclude 

N 

n-lim (H"'(O) - k2 f1 = Gk(O) + Itl-1 I [f",A.y(k, 0nj!(F-k.yj«(J), . )Fk.y/O) 
w-+co j,j'=l 

(1.4.46) 

for e sufficiently negative. To conclude that the right-hand side of (1.4.46) is the 
resolvent of a self-adjoint operator - ~ •. A,Y(O) is similar to that of Theorem II. 1.1.1 
and hence will be omitted. The equivalence of (1.4.37) and (1.4.38) when 1m k > 0 
is precisely the content of Lemma 1.4.2. • 
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We did not use the full content of Lemma 1.4.2, but only the fact that (1.4.44) 
converges conditionally and that 

IAI I I tW _ k2 = 4nw + 0(1) as w --+ 00, 
YEr Y + 

ly+8l,,;w 

which also can be proved directly. However, for the consistency result in 
Theorem 1.4.3, we also need the alternative expressions for the sums which 
are contained in Lemma 1.4.2. 

Lemma 1.4.2 (Poisson Summation Formula). Let k2 E C, 1m k > 0, a E ~3, 
and e E A. Then 

ei(y+O)a 

1['1-1 lim '\' 
w~oo kr Iy + el 2 - k2 ' 

Iy+ol,,;w 

(2nr 3 e iOa lim [I I~I 2 - 4nw] _ ik , 
w~oo YEr Iy + el - k 4n 

Iy+ol,,;w 

a E ~3 - A, 

(1.4.47) 

aEA. 

PROOF. Formally eq. (1.4.47) is essentially the Poisson summation formula for 
the function Gk(x). However, due to the poor convergence (or actually divergence 
without renormalization when a E A), special care is needed. First, we treat the most 
singular case, i.e., when a E A. Due to the invariance modulo A it suffices to consider 
a = O. Let 

f(w) = ,~r Iy + lW - k2 ' 
w ~ 0, (1.4.48) 

ly+810;", 

(k2 E C, 1m k > 0, and 0 E A will be fixed during the calculations and are therefore 
omitted in the notation). Then f is a step function, f(w) -+ 00 as w -+ 00, f(O) = O. 
Define 

f. oo e -~ly+81 

F(I'/) = 0 e-~'" df(w) = ,~r Iy + 01 2 _ k2 ' 1'/ >0. (1.4.49) 

Applying now the Poisson summation formula ([94], Theorem 67 and eq. (19), 
p. 260) we obtain 



I1I.1.4 Crystals 185 

Hence 

- 100 
[ 4n(OJ 2n2 jk (2n)3 - . F(rJ) = e- qro d f«(O) - -~- = -~- + -~- I Gk(A)e- IOA + 0(1) (1.4.51) 

o IAI IAI IAI AeA 

implying 

[ IAI ] ~ [ 4n(OJ lim I 2 2 - 4n(O = IAI lim f«(O) - -~-
ro~oo yer Iy + 81 - k ro~oo IAI 

ly+OI $ro 

= IAI lim F(rJ) 

which equals (1.4.47) when a = O. Equation (1.4.47) for a E (R3 - A follows in the 
same way except that now the term for A = 0 needs no special treatment and the 
resulting series (over r) converges conditionally. • 

We now turn to the consistency problem mentioned at the beginning of 
this section, i.e., the proof that the operators -J.a.Y +A defined by (1.1.10) 
(with Yin (1.1.1) replaced by Y + A, where now Y is given by (1.4.27)) and 
Sf d 3 lJ[ -J.a,A,y(lJ)] are unitarily equivalent. 

For completeness we will also prove the decomposition of the x-space 
version of -J.a,Y+A' i.e., the operator -Lla,Y+A' Let 

qj: Y([R3) ~ U(A, IAI-1 d 3 lJ; L2(t)) == IAI-1 fA-Ell d 3 lJ L2(f'), 

(1.4.53) 
(qjf)(lJ, v) = L f(v + A)e- iOA, lJ E A, vEt, fE Y([R3), 

AEA 

and extend qj to all of L 2([R3) by continuity (denoting the closure by the same 
symbol qj). 

Theorem 1.4.3. Let -J.a,Y+A be a self-adjoint operator defined by (1.1.11) 
where Y = {Yl' ... , YN} c t and 

j = 1, ... ,N, A E A, (1.4.54) 

represents the strength of the D-interaction at the point Yj + A E Y + A. Then 

OU[ -J.a,Y+A]OU-1 = fA-Ell d3lJ[ -J.a,A,y(lJ)], (1.4.55) 

where -J.a,A,y(lJ) is given by (1.4.34) and OU is given by (1.4.16). 
Furthermore, let -Lla,Y+A be defined by (1.1.6) with Y and IX as above. Then 

qj[ -Lla,Y+A]qj-l = IAI-1 fA-Ell d3lJ[ -Lla,A,y(lJ)], (1.4.56) 
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where -.:l",A,Y(O) is the self-adjoint operator in U(t) with the resolvent 

(-.:l",A,y(O) - k2)-1 

N 

= gk(O) + IAI-1 L [r",A,y(k, O)]ij!(gk(' - yj" 0), . )gk(' - Yi' 0), 
i,i'=1 

det[r",A,y(k, 0)] :F 0, k2;' jr + 012, 1m k ~ 0, 0 E A, 
a.i E IR, Yi EYe t, j = 1, ... , N, (1.4.57) 

where 

gk(O): L2(t) --. L2(t), 

(gk(O)f)(v) = If d3 v' gk(V - v', O)f(v'), 
(1.4.58) 

k2;' jr + 01 2, 1m k ~ 0, 0 E A, fE L2(t), 

and gk(V, 0) is given by (1.4.37) (or alternatively by (1.4.38)). 

PROOF. Using Theorem XIII.87 in [391] it is sufficient, for (1.4.5), to prove that 

(1.4.59) 

for some k2 E C - IR, 1m k > O. By introducing the bounded operators 

N 
1" 2~2 EB2 AA,y(k): L (A, / (r)) -+ ~ / (A), 

j=1 
N N 

r.,A,y(k): EB /2(A) -+ EB /2(A), (1.4.60) 
j=1 j=1 
N 

A EB2 2~2 DA,y(k): ~ / (A) -+ L (A, / (r)), 
j=1 

with 

N 

k2 ¢ W + lW, 1m k > 0, e E A, /E L2(1R3), a E EB /2(A), (1.4.61) 
j=1 

we observe after identifying EBf=1/2(A) and /2(y + A) that 

(0, (-a.,Y+A - k2r 1/) = (0, (p2 - k2)-1j) + (<¥to, BA,Y(k) [r.,A,Y(k)r1 AA,y(k)<¥t/), 

k2 E p( -a.,A,y), 1m k > 0, j, 0 E L2(1R3), (1.4.62) 
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where, in obvious notation, p denotes an integration variable. Furthermore, let §" 
denote the Fourier transform, viz. 

N N 
§,,: Eij [2(A) ---> Eij L2(A., 1A.1-1 d3 8), 

j=l j=l (1.4.63) 
(§"aM8) = I aiA)e-V.8, 8 E A., j = 1, ... , N, 

le" 

§,,-1, its inverse, reads 

N N 

§;:1: Eij L2(A., 1A.1-1 d38) ---> Eij [2(A), 

Define 

j=l j=l 

AA.Y(k) = §"A",y(k), 

r.,A.Y(k) = §"r.,,,,y(k)§,,-l, 

BA.Y(k) = fJ",y(k)§,,-l. 

(1.4.64) 

A E A, j = 1, ... , N. 

(1.4.65) 

r •. ",y(k), being a convolution operator in Eijf=1[2(A), transforms into a multiplica
tion operator f.,,,,y(k, 8). In fact, we have 

f.,,,,y(k, 8) = [(IXj - 4ik) t5jj' - I Gk(Yj - Yj' + A)e-V.8]N , 
11: l e" },},=1 

1m k > 0, (1.4.66) 

which can be seen as follows: 

~. ffiN2 1m k > 0, 8 E A, ] = 1, ... , N, a E Q:)j=l[ (A), (1.4.67) 

where f.,,,, y(k, 8) is defined as above. Furthermore, we get by explicit computation 
that 

_ N e -i(y+8)y} 

(B",y(k)f)(8, y) = B",y(k, 8, y)f(8) = (211:)-3/2 j~ Iy + 81 2 _ k2 Jj(8), 

k2 ¢ jr + 81 2, 1m k > 0, f = (fl,'" ,IN) E Eijf=l L2(A.), (1.4.68) 

and 
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Hence, using (1.4.62), 

(g, (-,l.,MY - k2)-lj) = tEll d30{Wltg)(0), Gk(0)(Oltj)(0»Z2(r) 

+ «Oltg)(O), BA,Y(k, 0) [f., A, y(k, 0)]-1 AA.y(k, O)(Oltj)(O»P(r)}' 

k2 E C -~, 1m k > 0, j, g E L2(~3). (1.4.70) 

But (1.4.70) is equivalent to 

Olt(-,l.,Y+A - k2)-10lt-1 = tEll d30[Gk(0) + BA,y(k, 0) [f,.A,Y(k, O)]-IAA,y(k, 0)], 

k2 E C -~, 1m k > 0, (1.4.71) 

and by appealing to Lemma 1.4.2 we see that the integrand on the right-hand side 
exactly equals (-,l',A,Y(O) - k2tl, proving (1.4.55). To prove (1.4.56) we could 
decompose the resolvent directly as in the proof of (1.4.54), or alternatively combine 
(1.4.54) and the unitary equivalence of -~.,y+A and -,l.,Y+A' Here we will follow 
the latter approach. Thus 

(g, (-~.,Y+A - k2t l f) 

= (s.>g, (-,l.,Y+A - k2)-ls.>f) 

= (Olts.>g, tEll d30( -,l.,A,y(O) - k2t lOlts.>f) 

= ( Olts.>g, tEll d30 Gk(O)Olts.>f) 

+ j.~l t d3 8[r',A,y(k, 8n.rl (0lts.>g, Fk,Yj(8»(F-k,y/8), il/Ls.>f) 

= t d30{(#r(0)(0lts.>g)(0), #r(8)Gk- l (8)ffr - l (0)#r(0)(0lts.>f)(8» 

N 

+ L [r,.A,Y(k,O)]j.rl(#r(O)(Olts.>g)(O), 
j,r=l 

#r(O)Fk,y/O»(#r(O)F- k,Yj(O), #r(O)(Olts.>f)(O»} 

= jArl t d30 {«cfig)(O), gk(O)(cfif)(O» 

+ j'~l [r.,A,y(k, on.rl«cfig)(O), gk(' - YrO»(gk(' - Yr' 0), (0ltf)(0»} 

= (cfig, jArl tEll d30(_~.,A,Y(0) - k2)-lcfif ). 
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where #r(O) is the Fourier transform 

#r(O): [2(r) -> L 2(t), 

(#r(O)a)(v) = ,trl/2e i8v I aye iYV, 

YEr 

o E A, vEt, a E [2(1). (1.4.73) 

• 
Remark. gk(O) is, of course, the resolvent of the decomposed Laplacian 
- A(O), i.e., 

gk(O) = (-A(O) - Pt\ k2 E p( -A(O)), 1m k ~ 0, 0 E J.., (1.4.74) 

where -A(O) is the self-adjoint operator -(02/oxi + 02/0X~ + 02/oxD on 
£2([') with boundary conditions 

of . of 
f(v + a) = ei9ajf(v), -(v + aj ) = e,9aj_(v), 

oXj oXj 

0= (01 , O2 , ( 3 ) E J.., v, v + aj Eat, j = 1,2,3. (1.4.75) 

Having settled the consistency question we now turn to the detailed study 
of spectral properties of the operators -~a.Y+A and -~a.Y.A(O). First, we 
consider the case where Y consists of one point which, by translation invariance, 
can be assumed to be zero, i.e., Y = {O}. We then write -~a.A and -~a.A(O) 
for -~a.{O}+A and -~a.A.{O}(O), respectively, and we use oc instead of OCo. 
We can now state the following 

Theorem 1.4.4. The spectrum of -~".A(O) == -~".A.{O}(O), oc E IR, is purely 
discrete and consists of isolated eigenvalues of finite multiplicity for all 
o E J.., i.e., 

(1.4.76) 

More precisely, it can be characterized as follows: IR - ,r + lW consists of 
an infinite union of disjoint open intervals In(O), i.e., 

00 

IR - jr + 01 2 = U In(O). (1.4.77) 
n=O 

Here 10 = (-00, ( 2 ) and In(O), n E N, are bounded intervals. In each interval, 
In(O), -~a.A(O) has exactly one simple eigenvalue E~·A(O) with eigenfunction 

Furthermore, E~·A(O) is strictly increasing in oc for n E N, 0 E J... In addition, 
EA(O) E I r + 01 2 is an eigenvalue of - ~a.A(O) of multiplicity m ~ 1 iff there 
exist m + 1 points Yo, ... , Ym E r such that 

(1.4.79) 

The corresponding eigenspace is spanned by the eige1!functions 

Ul I/IEA(9)(Y) = {}YYj - {}YYO' y, Yj E r, j = 1, ... , m, (1.4.80) 

-~".A(O) has no other eigenvalues. 
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PROOF. Recall that the unperturbed operator - ~(O) has a purely discrete spectrum 
with eigenvalues 11' + 01 2, l' E f' (cf. (1.4.23)), i.e., u( -~(O)) = If' + 012. From the 
explicit expression (1.4.34) we see that there are two possibilities for eigenvalues of 
-~ •. A(O), namely 

(a) IX = gE1I2(0, 0), 
(b) E(O) = 11' + 012. 

For case (a) we observe the following properties of the function gk(O, 0) as a 
function of P: 

(i) The poles of gk(O, 0) are exactly the elements of 11 + 012. 

(ii) agk(O, 0) _ Itl-1 " 1 > 0 k2 " If' + 01 2, 1m k ;:::: O. 
a(k2) - kr (11' + 01 2 _ P)2' 'F 

(iii) gk(O, 0) -> -00 as k2 -> -00. 

Thus we obtain the graph of gk(O, 0) as in Figure 5, and writing 

(1.4.81) 
n=O 

where 10(0) = (-00,1012) is the unique unbounded interval, we see that there is 
exactly one eigenvalue E~·A(O) of - ~.,A (0) in each interval 1.(0), and this eigenvalue 
is in case (a). To find the corresponding eigenfunction and multiplicity we use 
([283J, p. 180) 

n-lim (E - z)(H - Zfl = P (1.4.82) 
z~E 

for self-adjoint operators H, when E is an isolated point of the spectrum of H, 

'" '" '" '" '" CD CD CD CD CD 

+ + + + 
,;:: '" '" ,:! ?- .3 

Figure 5 Qualitative behavior of gk(O, 0) as a function of P. 
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and P is the projection onto the eigenspace belonging to the eigenvalue E. Using 
the explicit form of the resolvent we get 

p:.A(O) = n-lim (£:.A(O) - z)( -!«.A(O) - Z)-l 
z_E~A(fJ) 

(1.4.83) 

where 1jJE;;"(8) is given by (1.4.78) and 11'11 denotes the norm in J2(r). 
In case (b) a more detailed analysis is required since EA(O) = 11' + 01 2 is a singularity 

in all terms of the resolvent. Assume that there are m + 1 points 1'0' ... , Ym e r 
such that 

EA(O) = 11'0 + 01 2 = .,. = IYm + W. (1.4.84) 

First, we observe that, as k2 -+ EA(O), 

because there are exactly m + 1 points, each of which gives rise to a simple pole 
of 9k(0,0) with residuum Ifrl . Furthermore, we decompose the function 
(11' + 01 2 - P)-l as follows 

(11' + 01 2 - k2)-1 = Cl>1.k(Y) + Cl>2.k(Y), l' e r, 0 e A, (1.4.85) 

where 

Cl>1.k(Y) = x{yo •...• ymJ(y)(ly + 01 2 - P)-l, 

Cl>2.k(Y) = (1 - x{yo •...• ymJ(y»(ly + 012 - k2)-1, 
~ (1.4.86) 

l' er, OeA. 

Here XA denotes the characteristic function of a subset A £; r. Then ( - !«.A(O) _ P)-l 
takes the form 

(-!«.,,(O) - k2t l = Cl>l.k + Cl>2.k - (m + 1)-I(EA(O) - k2 )(CI>I.k' • )CI>1,k 

+ [ -(m + 1)-I(EA(O) - k2) + O(EA(O) - k2)] . 

. [(CIIl,k' . )CI>2.k + (<I>2.k' . )<I>l.k + (CI>2.k' . )CI>2.k] 

+ O(EA(O) - k2)(CI>I.k' . )CI>l,k' (1.4.87) 

and hence 

pA(O) = n-lim (EA(O) - k2)( -!«.A(O) _ k2)-1 
k2_EA(8) 

= {X{yo •...• ymJ - (m + 1)-I(X{yo ..... ymJ' . )X{yo •...• ymJ' 
0, m=O, 

since 

(EA(O) - k2)CI>1,k - X{yo ..... ymJ k2_;A(8)' ° 
as a multiplication operator, and 

(1.4.88) 
m~ 1, 

(1.4.89) 

(EA(O) - k2)«EA(0) - k2)CI>I.k' . )CI>I.k k 2 _;A(8)' (X{yo •...• ymJ' . )X{yo ..... ym). (1.4.90) 

In particular, ifm = 0, then pA(O) = 0, i.e., there is no eigenvalue. Now, assume that 
m ~ 1, and define 

m 

tPh) = bYYj - (m + Itl L fJyy ." j = 0, ... , m. 
j'=O J 

(1.4.91) 
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Then 

(1.4.92) 

and hence pA(O) can be written 

m m 

(pA(O)f)(y) = L bn/(Yj) - (m + 1)-1 [f(yo) + ... + f(Ym)] L bnJ 
j=O j=O 

m 

= L bnJ{f(Yj) - (m + lf1[f(yO) + ... + f(Ym)]} 
j=O 

m 

= L (~j,f)I/Ij(Y), (1.4.93) 
j=1 

which proves that dim pA = m and that 1/11' ... , I/Im span the corresponding eigenspace . 

• 
Remarks. 1. The above proof shows that there is a natural one-to-one 
correspondence r --+ 0"( -~IX.A(O)) in the following sense, when 0"( -~IX.A(O» is 
considered with multiplicities: Namely, let Y E r. If Iy + 01 2 is no eigenvalue, 
we define E~·A(O) to be the largest eigenvalue of -~IX.A(O) smaller than 
Iy + 012. (This will necessarily be an eigenvalue in case (a), i.e., a solution of 
Q( = gEI/2(0, 0).) If Iy + 01 2 is an eigenvalue with multiplicity m, then there exist 
m + 1 points y = Yo, Y1' ... , Ym E r such that Iyo + 01 2 = ... = IYm + 01 2 and 
we let E~;A(O) be as above for onejo E {O, ... , m}, and E~(O) = Iy + 01 2 for all 
j"# jo. Henceforth we will use this correspondence. 

2. We remark that for the lowest eigenvalue one is always in case (a). 

Using the properties of the spectrum of -~IX.A(O) we will now study the 
spectrum of the full Hamiltonian - ~IX.A' 

Theorem 1.4.5. Let A be a lattice in the sense of (1.4.3) and let Q( E ~. Then 
the spectrum of the operator 

-~IX.A = 0/1-1 {fAEe d3 0 [ -~IX.A(O)]}0/1 (1.4.94) 

is purely absolutely continuous and equals 

0"( -~IX.A) = O"ac( -~IX.A) = [E~·A(O), E~·A(OO)J U [E~·A, (0), 

Q( E~, (1.4.95) 

where 

(1.4.96) 

and 

E~·A = min {EtA (0), ilb_12} = mi!l [EtA(O)], (1.4.97) 
8eA 
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j =~, 2, 3. (1.4.98) 

We have that 

IX E IR, (1.4.99) 

and 

(1.4.100) 

with 

(1.4.101) 

Furthermore, the spectrum is monotone increasing in IX in the sense that 

In addition, 

Eo,A(O) -+ {O, 
-00, 

YEr, ()EA, 

IX -+ 00, 

IX -+ -00, 

and hence there exists an 1X1,A E IR such that 

0"( -~a,A) = [EO,A(O), 00), 

8EIZ,A 
1 >0 a;-- . (1.4.102) 

IX -+ 00, 

IX -+ -00, 
(1.4.103) 

(1.4.104) 

PROOF. We now have to study in detail the behavior in () E A of the eigenvalues 
E~,A«(}) of -.1a ,A«(})' (We use the labeling of the eigenvalues introduced in the first 
remark after the preceding theorem.) The lowest band comes from the eigenvalue 
E'fiA«(}), i.e., with y = O. As remarked earlier, this eigenvalue is in case (a), i.e., a 
solution of 

1m El/2 ~ O. (1.4.105) 

To simplify the notation in this part of the proof we assume that A = 71. 3, thus 
r = 2n71.3 and A = [ -n, llY From (1.4.105) we infer (where V denotes the gradient 
with respect to ()) 

8gE1i2(0, (}) I 1% A 
VgJE~A(9)(0, (}) + 8 VEo' «(}) = 0, 

E E=~A(9) 
(1.4.106) 

which implies that the stationary points of gEl/2(0, (}) and EO,A«(}) (with respect to ()) 
coincide. We have 

(1.4.107) 

and by considering the first component (VgEl/l)l(O, ()) of VgE'/2(0, 9) and summing 
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the series (1.4.107) in this component we find 

(V )1(0 il) = __ 1_" sin[2nBy(E, 0)] sin 01 
gEl!2 , U 4 L... - - , 

64n ye2"Z2 By(E, 0){cos[2nBy(E, 0)] - cos Od2 

o = (01 , O2, 03 ), 0 = (0, O2, 03 ), By(E, 0) = J E - (y + 0)2, 

1m By(E, 0) ~ 0, Y E 2nZ2. (l.4.lOS) 

Since 

sin[2nBy(E, 0)] _ >0 
By(E,O) 

(1.4.109) 

as long as E < 1012 +!, we see that 

VgEl!2(O, 0) = 0 iff 0 E {O, -t(b1 + b2 + b3 )}. (1.4.110) 

Furthermore, we have that 0 = 0 gives a minimum and 0 = 00 gives a maximum, 
thus 

E~A(O) :s: E~A(O) :s: E~·A(OO)' 
Let Ei· A denote the bottom of the second band, i.e., 

Ei· A = min [E~·A(O)]. 
8eA -

From Theorem 1.4.4 we have 

and hence 

(1.4.111) 

(1.4.112) 

(1.4.113) 

(1.4.114) 

If Ei·A < tlb_12, then the above argument shows that Ei·A = E~·A(O). To prove that 
there are no gaps in the spectrum of -A«.A above Ei· A we first extend -A«.A(O) 
to all () E 1R3 by using the same expression (1.4.34) (with N = 1, Y1 = 0, 1X1 = IX) for 
the resolvent. Due to the periodicity we have 

U u( -A«.A(O» = U u( -A«.A(O». 
8eA 8eUi' 

(1.4.115) 

The definition of E;·A(O) for 0 E A, I' E r, can be extended continuously to all 0 E 1R3 
by the same procedure. Using (1.4.102), and the continuity of E;·A(O) for 0 E 1R3, 

we infer ([391], Theorem XIII.S5) 

u( -A«.A) = U u( -A«.A(O» = {E;·A(O)IO E 1R3, I' E q. (1.4.116) 
8eA 

Assume now that there is a gap in the positive part of the spectrum, say [a, b] s;; 
p( -A«.A), b > a > Ei· A • Then we can find 1', 1", 1''' E r, not on a line, and lJ E 1R3 
such that 

(1.4.117) 

We may assume that 

o E 1R3, (1.4. 11 S) 



as long as 

IY" + 81 2 ::; Iy + 81 2 ::; IY' + 81 2, 

However, we can always find a ii E ~3 such that 

IY" + iii = IY' + iii = Iy + iii· 
For this ii we have 

E~·A(ii) = E~:A(ii) 

and hence, E~·A(O) being continuous, 

[a, b] c [E~·A(e), E~:A(e)] ~ 0"( -~ •. A)' 
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(1.4.119) 

(1.4.120) 

(1.4.121) 

(1.4.122) 

which yields a contradiction to the assumption that there was a gap in the posi
tive part of the spectrum. The absolute continuity of the spectrum follows from 
Lemmas 10.14 and 10.15 in [85]. The monotonicity in IX of E~·A(O) follows by 
differentiating (1.4.1 05) with respect to IX. • 

In the general case, where Y consists of N points, we do not have that 
detailed information on the spectrum of -'& •. Y+A' except for the fact that the 
negative part of the spectrum consists of at most N bands, which is the content 
of the next theorem. 

Theorem 1.4.6. Let IY.j E IR, Yj E Y,j = 1, ... , N. Then 0"( - .& •. Y+A) n ( -00,0) 
consists of at most N disjoint, closed intervals where 

OU[ -'& •. Y+AJOU-1 == J~EB d3 0[ -'& •. A,Y(O)]. (1.4.123) 

PROOF. As in the proof of Theorem 11.1.1.4 we will first prove that r •. A.y(k, 0) is 
monotone decreasing in k2 for k2 < O. It is equivalent to proving the same property 
for q[6r •. A.y(k, 8)q[i 1 where q[x is the unitary operator 

X E ~3. (1.4.124) 

We have 

(1.4.125) 

which proves the monotonicity in k2 , k2 < O. Hence r •. A.y(k, 0) has at most N 
eigenvalues which are all strictly decreasing and each of which can give rise to at 
most one band in the negative part ofthe spectrum of -~ •. Y+A' • 

We will now study how -d •. Y+A can be approximated by scaled short-range 
Hamiltonians. The general Theorem 1.2.1 covers this situation. However, to 
obtain detailed properties of the behavior of the spectrum, we have to study 
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the decomposed operator -..1",A,Y(O). We start by decomposing the operator 
H.,y+A' 

Theorem 1.4.7. Let J.j E R, supp J.j compact, be real-valued and let Aie) = 
1 + eA}(O) + o(e) as e ~ O,j = 1, ... , N. Then the self-adjoint operator 

N 

H.,Y+A = -~ + e-2 L L Aj(e) J.j«. - Yj - A)/e) (1.4.126) 
j=1 leA 

in L2(iij3) can be decomposed 

d!iH.,Y+A .:¥i-1 = IAr1 fxEIl d3 0 H.,A,y(O), (1.4.127) 

where H.,A,Y(O) is the self-adjoint operator in L2(t) with the resolvent 

N 

(H.,A,Y(O) - k2r 1 = gk(O) - e L A.,ik, 0)[1 + B.(k, O)]Jj!C.,Ak, 0), 
j,j'=1 

2 ~ 

k E P(H.,A,y(O», 1m k ~ 0, 0 E A. (1.4.128) 

Here gk(O) is given by (1.4.58), while the Hilbert-Schmidt operators A.jk, 0), 
B.(k, 0), and C.jk, 0) are defined by 

A.,j(k, 0): L2(iij3) -+ L2(t), 

B.,jj'(k, 0): L 2(iij3) -+ L 2 (iij3), B.(k, 0) = [B',ii,(k, O)]f.j' =1 , 

C.,j,(k, 0): £2(t) -+ L 2 (iij3); e ~ 0, k2 ¢ W + 01 2 , 1m k ~ 0, 

e E A, j,j' = 1, ... , N, (1.4.129) 

with integral kernels 

A.,ik, e, v, x) = gk(V - ex - Yj' O)vix), 

B.,ii,(k, 0, x, x') = eAie)uix)gk(e(x - x') + Yj - Yj" O)vj'(x'), 

C.,j'(k, 0, x, v) = Aj,(e)uj,(x)gk(ex + Yj' - v, 0), 

e ~ 0, k2 ¢ W + 01 2, 1m k ~ 0, x, x' E iij3, 

vEt, 0 E A, j,j' = 1, ... , N. (1.4.130) 

PROOF. It suffices to prove 

<ji(H - k2)-1<ji-1 = 11\1-1 fEll d3 0(H (0) _ k2)-1 .,Y+A .,A,Y' 
A 

k2 E C - IR, (1.4.l31) 

where H.,A,Y(O) is introduced above. Having defined all necessary operators, one 
easily verifies that 

(1.4.l32) 
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and furthermore that 

o/jA.)k) = [IAI-1 tfB d 3 (} A.)k, (})]$', 

§"AB',ii.(k) = [IAI-1 tfB d 3 (} B',ii·(k, lJ)]§"A' 

§"AC.)k) = [IAI-1 tfB d 3 (} C.)k, (})]o/j; 

e > 0, k2 ¢: Ir + (}1 2, 1m k > 0, () E A, j,j' = 1, ... , N, (1.4.133) 

where FA is defined by (1.4.63) with N = 1, and A.,ik), B.,jj.(k), and C.,j.(k) are given 
by (1.2.4). Using (1.2.8) this proves the decomposition. • 

As one would expect the operator (H.,A,y((}) - pr1 converges to 
(-L\",A,y((}) - prl, the decomposition of (-L\",y+A - k2rl, as e! 0: 

Theorem 1.4.8. Let lJ E R, supp lJ compact, be real-valued and let Aie) = 

1 + eAj(O) + o(e) as e ! O,j = 1, ... , N. Assume that Aj(O) "# 0 if Hj = - L\ + lJ 
is in case III or IV. Then H.,A,y((}) converges in norm resolvent sense to 
-L\",A,Y((})' viz. 

n-li~ (H.,A,y((}) - k2r 1 = (-L\",A,y((}) - prl, 
.... 0 

k2 E C -~, 1m k > 0, () E A, (1.4.134) 

where 

00 in case I, 

-Aj(O) I (Vj' ¢jW2 in case II, 

(Xj = 00 in case III, (1.4.135) 

{NJ r1 
-Aj(O) I~ I(vj' ¢jlW in case IV. 

Remark. If (Xjo = 00 for some jo E {I, ... , N}, then the joth row and line 
should be removed in r",A,y(k, (}), i.e., there is no point interaction at Yjo' 

PROOF. Again our basic tool in proving (1.4.134) is to study the explicit expressions 
(1.4.128) and (1.4.57) for the resolvents of H.,A,y«(}) and -L\",A,y«(}), respectively. 
We have the asymptotic expansions 

B.,jj.(k, (}) = Djj. + eEii.(k, (}) + o(e) 

valid in Hilbert-Schmidt norm as e! ° where 

j,j' = 1, ... , N. 

The rest of the proof is identical to that of Theorem 11.1.2.4. 

(1.4.136) 

(1.4.137) 

• 
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This result will be applied to the analysis of the behavior of the spectrum 
of H •. A,y(O) in the limit e! O. The first result treats the case Y = {O}. 

Theorem 1.4.9. Let V E R, supp V compact, be real-valued and let A(e), 
).(0) = 1, be analytic in a neighborhood of zero. Assume H = - A + V to be 
in case II or IV and suppose (1.1.2.84) and X(O) -# 0 in case IV. Assume that 
E.(O),O E A, is an eigenvalue of H.,A(O) == H., A, {O}(O), chosen to be continuous 
in e, e > 0, which remains bounded for e > 0 small. Then 

Eo(O) = lim E.(O), 
.'\'o 

o E A, (1.4.138) 

exists and is an eigenvalue of -A .. ,A(O), -A .. ,A(O) being the norm resolvent 
limit of H.,A(O) as e! O. Assume this eigenvalue to be in case (a) of the proof 
of Theorem 1.4.4. Then 

(1.4.139) 

where 

o E A. (1.4.140) 

In case II 

A = tA"(O) + A'(0)2 + X(O)(~, X), 

B = (8nrl f t6 d3 X d3 x' tP(x)v(x) Ix - x'I tP(XI)V(X' ), 
(1.4.141) 

{ I }-l 
hA(Eo(O), 0) = It I Jr [Iy + 01 2 _ EO(O)]2 ' 

where X is gil)en by (1.4.146). In case IV, tP (resp. ~) should be replaced by tPl 
(resp. ~l)' E.(O) is analytic in e near e = 0 if Eo(O) < O. 

PROOF. If Eo(O) = lim,.\. 0 E.(O) (which exists due to the norm resolvent conver
gence and the discrete spectrum ofthe limit operator) is negative, we can follow the 
proof of Theorem II.1.3.1 to obtain the stated expansion. In fact, using (1.4.38) we 
see that B.(k, 0) is analytic in e and k and we can follow the analysis in the proof 
of Theorem 11.1.3.1 with Gk(x) replaced by gk(X, 0). Recall that by Theorem 1.4.4 
Eo(O) is a simple eigenvalue and N = 1 in the notation of Theorem 11.1.3.1. (Hence 
the analysis from Part I would also apply here.) If, however, Eo(O) ~ ° (which by 
assumption is still simple), we are not able to conclude that B.(k, 0) is analytic in e 
in a neighborhood of zero. But B.(k, 0) remains a Hilbert-Schmidt operator when 
k2 ~ 0, k2 ¢ Jr + 01 2 because 

_ ei(y+6)[t(x-X')] 

B (k 0 x x') = e(k2 - k2) 1f'1-1u(x) '" _ v(x' ) 
t , , , kr (Iy + 01 2 - k2 )(ly + 01 2 - k2 ) 

+ eu(x) L Gf«e(x - x') + l)e- i6l [l(x ' ) (1.4.142) 
lEA 

for any k E C, 1m k > 0, cf. Lemma 1.4.2, and in a similar way B.(k, 0) is easily seen 
to be two times continuously differentiable in Hilbert-Schmidt norm in e and k. 
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Hence E.(O) has the form 

(1.4.143) 

The projection p.(O) onto the eigenspace of the operator B.«E.(0))1/2,0) to the 
eigenvalue -1 can be chosen to be two times differentiable in norm with respect 
to Il (251]. Defining 

(MO) = p.(O),p, (1.4.144) 

where tP is an eigenvector of Bo «Eo (OW/2, fJ) = uGov with eigenvalue -1, we expand 
the equation 

[1 + B.«E.(OW/2, 0)],p.(0) = 0 (1.4.145) 

with respect to Il to obtain the stated form of E1(0) with 

x = T[A.'(O),p - IX(V, ,p)u], (1.4.146) 

T being the reduced resolvent of 1 + uGov, cf. (1.1.2.37). • 
Recall from Theorems 1.4.4 and 1.4.5 that each eigenvalue in case (a) gives 

rise to a band when () varies in A. The bands are connected at points E(O) 
where there exist at least three points Y1' Y2' Y3 E r with E(O) = IY1 + 01 2 = 
IY2 + 01 2 = IY3 + 012. From (1.4.140) we see that E1«() --+ 0 when () --+ O. Thus 
we see that in this sense the bands do not open up to first order in e. 

Our last result in this section concerns the behavior of the negative part of 
the spectrum in the case where Y consists of N points. 

Theorem 1.4.10. Let lj E R, supp lj compact, be real-valued and let Aie) 
be real analytic in a neighborhood of zero, AiO) = 1, j = 1, ... , N. Fix () E A 
and assume E.«() to be an eigenvalue of H.,A,Y«() such that 

(1.4.147) 

for e > 0 small enough. Let {en} be a positive sequence decreasing to zero, 
and let Eo«() be an accumulation point of {E.J()}. Then Eo«() is an eigent'alue 
of -[\/X,A,Y«()' -[\/X,A,y«() being the limit of H.,A,y«() in norm resoit'ent 
sense as e! O. Let M(() be the multiplicity of the eigenvalue Eo ((). Then 
there exist functions h,((), analytic near the origin, h,((), 0) = 0, and integers 
m,(lJ) E {1, 2}, 1 = 1, ... , m«(), such that 

E.(() = Eo(() + h,«(), e1/m,(8» 

00 m(8) 

= Eo(() + L a"r(()er/m,(8), I = 1, ... , m((), L m,(() = M«(), 
r=1 '=1 

(1.4.148) 

are all the eigenvalues of H.,A, y«() near Eo«() for e > 0 sufficiently small. If 
m,«() = 2 for some 1, both square roots should be used such that the total 
multiplicity of all eigenvalues equals M«(). 

PROOF. The proof is similar to that of Theorem 11.1.3.1 except that Gk(x) has to 
be replaced by gk(X, 0). • 
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111.1.5 Straight Polymers 

Replacing the three-dimensional lattice A from the preceding section by a 
one-dimensional lattice AI, viz. 

Al = {(O, 0, na) E 1R3 1n E Z}, a >0, (1.5.1) 

we obtain a one-electron model of an infinitely long straight polymer as 
explained in Sect. 1.3. 

Our basic tools in studying this operator will again be Fourier analysis and 
the direct integral decomposition. In contrast to the discussion of the crystal 
we will use Theorem 1.1.1 to define the operator, and then make the integral 
decomposition directly. 

The point interactions will be located at 

(1.5.2) 

where 

Y = {YI' .'" YN} C 1R3 (1.5.3) 

is such that the third component of each Yj E Y belongs to t l , i.e., 

Yj = (yl, yl, yJ) E Y, yJ E t l , j = 1, " . , N, (1.5.4) 

where 

(1.5.5) 

The dual lattice, rl> and the dual group, AI, read, respectively, 

Al = [-n/a, n/a). (1.5.6) 

Whenever convenient we shall identify Al and {na E IRln E Z} and similarly 
for r l . Furthermore, we will often write 

(1.5.7) 

The proper decomposition of L 2(1R3) for the polymer (cf. the operator o/i given 
by (1.4.16) in the crystal case), is now given by 

o/il :L2(1R3)--+L2(AI,L2(1R2 x rd)= f_Efi dOL2(1R2 x r l ), 

Al 

A l' ~ 2 ! 2 3 (1.5.8) 
(o/iJ)(O, p, y) = J(p, y + 0), 0 E AI, P E IR, Y E r l , E L (IR ). 

Decomposing the free Hamiltonian - A in p-space with respect to this decom
position we obtain for its resolvent the operator 

Gk(O): L2(1R2 x rd --+ L2(1R2 x r l ), 

(Gk(O)g)(p, y) = [I(p, y + OW - prlg(p, y), (1.5.9) 
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We will also need the function 

~~ - ei6x {~~ + 4:a In[2(cos(ka) - cos(Oa))]} , 

ei6x3 [ (X3) (nx3) 1 in ei(x3-1)t/2 -- 2P - cos - +- dt---
4na a a 2 (k-6)a sin(t/2) 

1 in e- i (X3+1)t/2] 
+- dt. , 

2 (k+6)a slD(t/2) 

2na L Ko(J(y + 0)2 - k2Ixl)e i (Y+6)x3, 
yer, 

(1.5.10) 

(P( . ) and Ko( . ) being the beta function and modified Bessel function, respec
tively, [1J). The domain of definition of gk(X, 9) as a function of the complex 
variable k is illustrated in Figure 6. 

<:t:> <:t:> CS 
Imk + + + CS <:t:> <:t:> 

'" ~ ... 
<:t:> + + + ?- ?-

I I I I <:t:> ,;:: ~ '" - - ?-

Rek 

(a) '-------'-1_----'-_--'-1 cuts ..... 1 __ 1L------'-1_--'1 

1m k 

~ 
N 

~ <:t:> <:t:> ~ ~ 

""" 
I N I N I 

I <:t:> I <:t:> 
~ + ~ 

I <:t:> I <:t:> N <:t:> """ 
Rek 

(b) L--.J-I ___ --L.~_ cuts _--'-----"I'---___ t'----'I 
Figure 6 The domain of definition of the function 9k(X, lJ), lJ e A1 , as a function of k 
in the complex k-plane: (a) when x e A1 ; (b) when x e 1R3 - A1 • 



202 111.1 Infinitely Many Point Interactions in Three Dimensions 

Furthermore, we will use, for the decomposition in x-space, the analog of 
0/1 (cf. (1.4.53)) 

0/1 1: .9'(1R3) -+ U ( A. 1, 2an dO; U(1R2 x fd) = 2an fA~ dO L 2(1R2 X fd, 

(o/IJ)(O, p, v) = (2nf1 L r d2 xf(x, A. + v)e-iPXe-i8\ 
).eA, JIhl2 

~ 2 f 3 OEA 1 , PEIR, VE l' fE.9'(IR), (1.5.11) 

and then extend 0/11 to L2(1R3) by continuity. The extension is still denoted 
by 0/11' 

Theorem 1.5.1. Let Yj E Y, yJ E f1' and (Xj E IR, j :;:= 1, ... , N. Then the 
self-adjoint operator -.1",Y+A, in U(1R3) defined in Theorem 1.1.1, with 
y = {Y1' ... , YN} and 

satisfies 

(1.5.13) 

where -.1",A"y(O) is the self-adjoint operator in L2(1R x r 1 ) with resolvent 
N 

(-.1",A"y(O) - k2f1 = Gk(O) + L [r",A"y(k, On:? (F_ii,y)O), . )Fk,y/O), 
j,j'=l 

2 ~ ~ 3 f . k E p( -d",A"y(O)), 1m k ~ 0, 0 E A1 , Yj E 1, (Xj E IR, ] = 1, ... , N, 
(1.5.14) 

where 

and 
e- i(p,y+8)Yj 

Fk,ypJ, p, y) = (2nf3/21(p, y + OW _ P' 

k2¢[02, 00), Imk~O, OEA. 1 , PEIR2, YEr1 , j= 1, ... ,N. (1.5.16) 

If we introduce 
(1.5.17) 

then 

(1.5.18) 

where -d",A"y(O) is the self-adjoint operator in L2(1R2 x f 1) with resolvent 

(-d (0) - k2)-1 ",A .. y 

N 

= gk(O) + L [r",A"y(k, O)]jj:(gk(' - Yj" 8), . )gk(' - Yj' 0), 
j,j'=l 

2 ~) k E p( -d",A"y(O)), 1m k ~ 0, 0 E A1, (1.5.19 
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where 

gk(lJ): L2(~2 x fd -+ L2(~2 x f l ), 

(gk(lJ)f)(P, v) = r d2 p' r
A 

d2v' gk((P - p', v - v'), lJ)f(p', v'), 
J~2 Jr, 

k2 ¢ [lJ2, (0), 1m k ~ 0, lJ E Al , P E ~2, V E fl' fE L2(~2 x fd, 
(1.5.20) 

and gk(X, lJ) is given by (1.5.10). 

PROOF. Following the proof of Theorem 1.4.3 we get (1.5.13) where 
(-.1.,A"y(O) - k2)-l equals (1.5.14) with 

r •. A,.y(k, 0) = [(a.i - 4ik) ~i}, - L Gk(Yj - Yj' + A)e-iUIN . (1.5.21) 
7t ).eA, ',},=1 

Next we observe that the infinite Sum on the diagonal actually can be summed to 
yield (1.5.15) while the off-diagonal sum can be summed ([237], eq. (14.3,1) and 
(17.3.1)) when Yj - Yj' = (0, 0, yJ - yJ.) ¢ A1 and can be expressed in terms of K o(') 
when Yj - Yj' = (Yj - Yj', yJ - yJ), Yj - Yj' #- 0 ([333], p. 62). The rest of the proof 
is similar to that of Theorem 1.4.3. • 

Since we will use later on detailed properties ofthe domain.9)( -A",A"r(lJ» 
of -A",A"r(lJ) we give the following 

3 f' ~ Theorem 1.5.2. Let Yj E Y, Yj E l' (Xj E ~,J = 1, ... , N, and lJ E Al . Then 
the domain.9)( -A",A"r(lJ» of -A",A"r(lJ) consists of all functions I/I(lJ) such 
that 

N 

I/I(lJ, p, y) = rA(lJ, p, y) + L aik, lJ)Fk'Yj(lJ, p, y), 
j=1 

where 

aj(k, lJ) = f [r",A"r(k, lJ)Jjj: L r d2p ei(P,Y+IJ)YJ'rA(lJ, p, y). 
j'=l yer, J ~2 

Here k2 E p( -A",A"r(lJ», 1m k ~ 0, and 

rA(lJ) E .9)(I(p, y + lJW) 

(1.5.23) 

= {g E L2(~2 x rdl L r d2pl(p, y + lJWlg(p, yW < oo}. 
yer, J~2 

(1.5.24) 

This decomposition is unique, and with I/I(lJ) of this form we have 

[( -A",A"r(lJ) - P)I/I(lJ)](p, y) = [I(p, y + lJW - k2]rA(p, y). (1.5.25) 

PROOF. Similar to that of Theorem 11.1.1.3. • 
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We now tum to the analysis of spectral properties, starting with the operator 
-A(l,A"y(O). For this operator we encounter resonances and, in particular, 
real resonances. Here resonances are defined in the following way: ko E C, 
1m ko ::;; 0, is a resonance of -A(l,A"y(O) iff det[r(l,A"y(ko, 0)] = 0 and, if 
ko E (0, (0), then k6 ¢ O'p( -.ii(l,A"y(O)). The multiplicity of ko by definition 
equals the multiplicity of the zero of det[r(l,A"y(k, 0)] at k = ko. 

From now on we will assume that Y consists of only one point which by 
translation can be taken to be zero. 

Theorem 1.5.3. Leta E ~IR, and -A(l,A,(O) == -A(l,A,,{O}(O), O E 1\1' Then the 
essential spectrum of -A(l,A,(O) is purely absolutely continuous and equals 

~ ~ 2 ~ 

O'ess( -A(l,A, (0)) = O'ac( -A(l,A,(O)) = [0 , (0), O'sc( -A(l,A,(O)) = 0, 

Writing 

we have 

o E 1\1' (1.5.26) 

{-a-2 In2[z(l,A,(0) + J[Z(l,A'(0)]2 - I]}, 

Z(l,A,(O) > 1, 

(1.5.27) 

O'p( -A(l,A,(O)) = {a- 2 arccos2 [z(l,A,(0)]}, Z(l,A,(O)::;; 1 and 

arccos2 [Z(l,A,(O)] < (aO)2, 

0, Z(l,A,(O)::;; 1 and arccos2 [z(l,A,(0)] ~ (aO)2. 
(1.5.28) 

If E(l,A,(O) is an eigenvalue of -A(l,A,(O), i.e., E(l,A,(O) E O'p( -Aa,A'(O)), 
then E/%,A,(O) is simple (Ea,A,(o) < ( 2 ) and the corresponding eigenfunction 
equals 

OE1\l' PEIR2, YEr1· 
(1.5.29) 

E/%,A,(O) is strictly increasing in a for 0 E 1\1' In addition, - Aa,A, (0) has the 
following resonances, all of which are simple. 

If za,A,(o) ::;; 1, then 

n E 71. - {O}, (1.5.30) 

are simple resonances of -A/%,A1(0). If k~,A1(0)2 ~ 02 allowing n = 0 in 
(1.5.30), then also k~,A1(0) is a simple resonance. 

If za,A,(o) > 1, then 

n E 71., 
(1.5.31) 

are simple resonances of -A/%,A,(O). -Aa,A,(O) has no other eigenvalues or 
resonances. 
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Remark. Observe that we have an infinite sequence of real resonances 
provided Z<x,A 1(8) ~ 1, while all the resonances are complex when Z<x,A 1 (8) > 1. 

PROOF. Uess ( -.1.,AJ8)) = [1:)2, (0) follows from Weyl's theorem ([391], Theorem 
XIII.14). Using Theorem XIII.20, [391], we see that use ( -.1.,A,(8» = 0. The reso
nances and/or eigenvalues are solutions of 

(1.5.32) 

or equivalently, of 

cos(ka) = Z··A 1(8), (1.5.33) 

where Z·,A 1(8) is defined by (1.5.27). If Z·,A 1(8) ::; 1, the solutions of (1.5.27) are 

n E 7L, (1.5.34) 

and by considering the residuum of the resolvent at [k~,Al(8)]2 we find that 
[k~,Al(8)]2 is a simple eigenvalue with the stated eigenfunction (1.5.29) provided 
[k~,Al(8)Y < 82 , i.e., if [k~,Al(8)]2 stays away from the essential spectrum. All 
[k:,Al(8)]2 for n E 7L - {O} (and also [k~,Al(8)Y if [k~,Al(8)]2 ~ 82) are embedded 
in the essential spectrum, and we will show that -.1 •. AJ8) has no embedded 
eigenvalues. Assume that rjJ(8) is an eigenvector to the eigenvalue E(8), E(8) = 

[k(8)]2 ~ 82 , i.e., 

-.1 •. Al(8)rjJ(8) = E(8)rjJ(8). (1.5.35) 

Applying Theorem 1.5.2, rjJ(8) can be written as 

rjJ(8, p, y) = lA(8, p, y) + (2nf 2a- 1 [IX - gdO, 8)]-1 L r d2 p' lA(8, p', y')' 
y'er1 JIR2 

for some k2 E p( -.1.,A,(8)), 1m k > 0, where 

Hence 

[E(8) - k2]rjJ(8, p, y) = [( -.1.,A,(8) - P)rjJ(8)](p, y) 

= [I(p, y + 8W - k2]lA(8, p, y). 

lA(8, p, y) = [E(8) - P] [I(p, y + 8W - k2rlrjJ(8, p, y). 

Inserting (1.5.36) into (1.5.38) we find 

lA(8, p, y) = (2nf 2a-1 [1X - gk(O, 8)]-1 L r d2p' ¢Jk(8, p', y')' 
y'sf, In;!2 

(1.5.36) 

(1.5.37) 

(1.5.38) 

. {[I(p, y + 8W - E(8)r1 - [I(p, y + 8W - prl} (1.5.39) 

which cannot be in £tl(l(p, y + 8W) unless lA(8) = 0 implying rjJ(8) = O. 
If Z·,A 1(8) > 1, we have to look for complex solutions of (1.5.33). Writing 

(1.5.40) 

we see that '1 satisfies 

(1.5.41) 
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implying that 

(1.5.42) 

Hence 

k~""'(f) = {-i In[z",A,(O) + J[Z',A'(O)]2 -1] + 2nn}/a, n E 7l., (1.5.43) 

and, in addition, 

(1.5.44) 

provide all solutions of (1.5,33). All k~,A,(O), n E 7l., are complex resonances, while 
E",A,(O) = [k",A'(O)]2 is a simple negative eigenvalue with eigenfunction (1.5.29) . 

• 
We now apply this theorem to analyze the spectrum of 

I
E!) 

0lI1 [ -~",A,JOlIll = _ dO[ -~a,A,(O)]. 
A, 

Theorem 1.5.4. Let (f. E IR, and consider 

~ 1 IE!) ~ 
OlII [ -Lia,A,J0lI1 = _ dO[ -Lia,A,(O)]. , 

A, 
(1.5.45) 

Then the essential spectrum of - ~a,A, is purely absolutely continuous and 
equals 

. ~ ~ {[E~A', (0), (f. 2": -(In 2)/2na, 
Uesst - Lia,A) = uac ( - a,A) = [E,:A" E~A,] U [0, (0), (f. < -(In 2)/2na, 

Usc ( - ~a,A,) = 0, 
where 

(1.5.46) 

E":;/' = -a-2{ln[+ 1 + te- 47taa + e-27taaJte-47taa + l]Y (1.5.47) 

The spectrum of - ~a,A, is monotone increasing in (f. in the sense that 
8Ea;/'/8a > O. 

PROOF. If ex < -(In 2)/2na, then z",A'(8) > 1 for all 0 E AI' Hence the unique 
negative band is obtained by varying 0 in Al in the lowest eigenvalue 

(1.5.48) 

of -~".A'(O). Together with Theorem XIII.87 in [391J and [85J, Ch.lO, this proves 
the statements when ex < -(In 2)/2na. If ex;;::: -(In 2)/2na, we can still find a non
empty open subset A of Al such that Z",A,(O) > 1 for 0 E A. As Z",A'(O)l 1, the 
eigenvalue (1.5.48) increases to zero, which proves that there is no gap in the 
spectrum when ex ;;::: - (In 2)/2na. • 

Our last topic in this section will be the e-approximation in connection 
with -~a,A, (0). For simplicity, we will only discuss the case Y = {O}, and start 
by introducing some notations. Let 

Ae(k, 0): L2(1R3) -+ L2(1R2 x rd, 

Be(k, 0): L2(1R3) -+ L2(1R3), (1.5.49) 

Ce(k, 0): L 2(1R2 X r1) -+ L 2(1R3), 
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be Hilbert-Schmidt operators with integral kernels 

A.(k, e, x, v, x) = gk«X, v) - ex, e)v(x), 

B.(k, e, x, x') = eA(e)u(x)gk(e(x - x'), e)v(x'), 

C.(k, e, x, x, v) = A(e)u(x)gk(ex - (x, v), e); 

e;<::O, k2¢[e2, (0), Imk;<::O, eEA1, x,x'EIR3, xE1R2, vEf~. 
(1.5.50) 

Theorem 1.5.5. Let V E R, supp V compact, A(e) = 1 + eX(O) + 0(e2) as 
e 1 ° both be real-valued. Then the self-adjoint operator 

H.,A, = - i\ + e-2 A(e) L V«· - A)/e), e > 0, (1.5.51) 
.teA, 

in L2(1R3) can be decomposed as 

0/11 HE A 0/111 = 2a ftD de HE A (e), e > 0, 
, , 7t A, ". (1.5.52) 

where H.,A,(e) is the self-adjoint operator on L2(1R2 x ft> with resolvent 

(H.,A,(e) - Pr1 = gk(e) - eA.(k, e)[1 + B.(k, e)]-1C.(k, e), 

e > 0, k2 E P(H.,A,(e», 1m k ;<:: 0, e E A1. (1.5.53) 

Assume that X(O) i= ° if H = -i\ + V is in case III or IV. Then H',A,(e) 
converges in norm resolvent sense to the operator - i\ .. ,A, (e) as e 1 0, i.e., 

n-li~ (H.,A,(e) - pr1 = (-A",A,(e) - k2rl, k2 E C - IR, e E At> 
.... 0 

(1.5.54) 
where 

00 in case I, 

-A'(O)I(v, <6W2 in case II, 

0(= 00 in case III, (1.5.55) 

-X(O)L~ I(v, <6iWJl in case IV. 

PROOF. The proof is similar to that of Theorems 1.4.8 and 1.4.9. • 
Remark. If H = - i\ + V is in case I or III, then 

e E A1, k2 E p( -A(e», 1m k;<:: 0, 

(1.5.56) 

where gk(e) is the resolvent of the free decomposed Laplacian -A(e). 

Applying the techniques from Sect. 1.4 and Sect. 11.1.3, one can analyze 
the behavior of the at most one simple discrete eigenvalue and the complex 
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resonances in the short-range approximation. However, the infinite straight 
polymer exhibits one very special feature, namely the existence of real reso
nances, i.e., poles of the resolvent (-A~.A!(O) - k2)-1 on the real k-axis in 
the limit 8 1 0. In this context we define resonances of H.,A! (0) as follows: 
ko E C, 1m ko ~ 0, is a resonance of H.,A! (0) iff det2 [1 + B.(ko, 0)] = ° and, 
if ko E [0, 00), then k~ ¢ (jp(H.,A! (0)). By definition the multiplicity of ko equals 
the multiplicity of the zero of det2[1 + B.(k, 0)] at k = ko. We will show 
that, in general, the real resonances of -A~,A,(O) also remain resonances for 
H~,A! (0) but to second order in 8 they move into the "unphysical half-plane", 
i.e.,they get a nonvanishing imaginary part. This is described in the following 
theorem, where for simplicity we assume H = - A -i- V to be in case II: 

Theorem 1.5.6. Let V E R, supp V compact, be real-valued, and let ).(8) be 
real-analytic in 8 for 8 small, ),(0) = 1. Assume that H = - A -i- V is in 
case II. Let Eo(O) = [kO(0)]2, 0 E AI, be any eigenvalue (1m ko(O) > ° or 
ko(O) < 1(1) or resonance (1m ko(O) < ° or ko(O) ~ 1(1) of -A~,A,(O) as 
described in Theorem 1.5.3 (we omit the IX and Al dependence in the notation), 
- A~,A! (0) being the norm resolvent limit of H.,A! (0) as 8 1 0. Then there exists 
a function k.(O) for 8> ° small enough with 

(1.5.57) 

such that 

det2 [1 + B.(k.(O), 0)] = 0, [1m k.(O)] . [1m ko(O)] ~ 0, (1.5.58) 

where 

k (ll) = 4 cos[ko(O)a] - cos(Oa) {A + [k (0)]2B } (1559) 
1 u n sin[ko(O)a] 1 0 1 , .. 

and 

cos[ko(O)a] - cos(Oa) 
k2(0) = 4n sin[ko(O)a] . 

. {- i[ko(0)]32 f r d3x d3x' tft(x)v(x) Ix - x'12v(x')tft(x') 
241(v, tft)1 In;l6 

+ 2ko(0)kl (O)Bl + [k 1 (0)]2C1 (ko(O)) + X (0) [ko(0)]2 Bl 

+ {AI + [kO(0)] 2Bd [X(O) + i~: ~;J 

+ I(v, tftW 2 f t6 d3x d3x' tft(x)V(X)El(ko(O), x - x')v(x')X(x') 

+ I(v, tft)I- 2 f t6 d3 X d3 x' tft(x)v(x)F1 (ko(O), x - x')v(x')tft(x') 

(1.5.60) 
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Here 

A = _ct(v, X) + 2'(0) (~, X) + 2"(0) (~, rjJ) - 2'(0) 
1 (v, rjJ) I(v, rjJW I(v, rjJ)12 ct, 

Bl = -8nl(:,rjJW f t6 d3xd3x'rjJ(x)v(x)lx-x'lv(x')rjJ(x'), 

C
1 
(k) = a[l - cos(ka) + sin(ka)] cos(Oa) 

4n[cos(ka) - cos(Oa)]2 ' 

D = -.12"'(0) (~, rjJ) + .12'(0) (~, 1]) _ 2'(0) (v, X) - 2"'(0) 
1 6 I(v, rjJW 2 I(v, rjJW ct (v, rjJ) ct 

1 (V,1]) 
+ 2ct (V, rjJ)' 

{
k [Sin(k - o)~l 1 f ei(k-9)a dt } 

E1(k, x) = -;--In - kO + -4 2 -In(l - t) x3, 
la . (k ll) a na eilk+9)a t 

sm + u 2 
(1.5.61) 

{ 
k2 

Fl (k, x) = - 8na In[2(cos(ka) - cos(Oa))] 

ik [f eHk
-

9
)a dt ] f eH

k+9)a dt ] 
- -2 -In(l - t) + -In(l - t) 

4na 0 tot 

1 [f eHk- 9)a dt f ei(k+9)a dt 
+ -4 3 -In(t) In(l - t) + -In(t) In(l - t) 

na 0 tot 

f ei(k-9)a dt 
- i(k - O)a - In(l - t) 

o t 

fei(k+9)a dt ]} 
+i(k + O)a 0 t 1n(1- t) (X3)2; 

x = (i, x 3 ) E 1R3, i E 1R2, x 3 E IR. 

Furthermore, rjJ denotes, as usual, any nontrivial solution of 

(1 + uGov)rjJ = 0, ~ = (sgn V)rjJ. (1.5.62) 

Finally, X and 1] are given by (1.5.65) and (1.5.66), respectively. Hence we 
obtain 

(a) If Eo(O) = [kO(0)]2 is an eigenvalue of - Lla,A, (0), then E,(O) = [k,(0)]2 
is an eigenvalue of Ha,A , (0) which is analytic in 6 provided Eo(O) < O. 

(b) If ko(O) is a complex resonance of - Lla,A , (0), i.e., if 1m ko(O) < 0, then 
k,(O) is a complex resonance of H"A, (0). 

(c) If ko(O) is a real resonance of - Lla,A , (0), i.e., if ko(O) > 101, then k,(O) 
is a complex resonance of H"A, (0) if 1m k3(0) i= O. We always have 
1m kl (0) = 0, while 1m k3(0) = 0 for at most a finite number of the real 
resonances ko(O) of - Lla,AJO). 
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PROOF. The general strategy is the same as in the proofs of Theorems 1.4.9, 
11.1.3.1, and 11.1.3.3. Again one expands the equation 

[1 + B.(k.(O), O)]~.(O) = 0 

in powers of e where 

and ~ satisfies (1.5.62). We then find 

~'(O) = X + c(O)~, 
X = T[A.'(O)~ - ot(v, ~)u], 

where T denotes the reduced resolvent (cf. 1.1.2.37), and 

~"(O) = '1 + d(O)~, 

'1 = T{A."(O)~ - 2[Al + [kO(O)]2Bl] (v, ~)u + [kO(O)]2. 
8n 

(1.5.63) 

(1.5.64) 

(1.5.65) 

{L3 d3x'l' - X'IV(X')~(X')} + [L3 dx' E1(ko(O), . - X')V(X')~(X')} 

- 2A.'(O)uGovX - 2ot(v, X)u}. (1.5.66) 

The constants c(O) and d(O) do not enter into the formulas for k1(O) and k2(O) and 
their value is therefore immaterial for (1.5.57). A subtle point occurs when ko(O) is 
a real resonance of - L\«,A! (0). Iflm k.(O) < 0, then [k.(O)]2 cannot be an eigenvalue 
of the self-adjoint operator H.,A! (0). From (1.5.59) and (1.5.60) we see that kl (0) is 
real, while in general 1m k2(O) #- 0, and hence in general the real resonance ko(O) 
turns into a complex resonance of H.,A! (0). By analyzing the purely imaginary terms 
in (1.5.60), we find that this can be zero for at most a finite number of ko(O). • 

111.1.6 Monomolecular Layer 

The last regular structure to be discussed in this chapter is that of an 
infinite plane monomolecular layer, which we obtain by replacing the three
dimensional lattice of Sect. 1.4 with a two-dimensional lattice A2 , viz. 

(1.6.1) 

where 

aj = (0, aJ, aJ) E ~3, j = 1,2, (1.6.2) 

are two independent vectors in ~3. In this way we obtain, as explained in Sect. 
1.3, a one-electron model of a monomolecular layer with point interactions. 
The discussion will proceed very much along the lines of the preceding section. 
Let Y2 be the set where we locate the point interaction, i.e., 

(1.6.3) 
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where 

(1.6.4) 

is such that 

Yj = (yj, yj, yJ) E Y, (yj, yJ) E f 2, j = 1, ... , N. (1.6.5) 

Here f2 denotes as usual the dual group defined by 

t2 = ~2/A2 (1.6.6) 

when A2 is considered as a subset of ~2 by ignoring the first component. t2 
can be identified with 

~ { 3 11' } r2 = sIal + S2 a2 E ~ ISjE [-2,2),J = 1,2. 

Similarly, the Brillouin zone A2 can be identified with 
~ { 3 II} A2 = slbl + S2 b2 E ~ ISjE [-2,2) , 

where bl , b2 provide a basis of the dual lattice r 2 , i.e., 

r2 = {nlbl + n2b2 E ~31(nl' n2) E Z2}, 

bj = (0, bi, bl) E ~3, bj ' aj' = 2n(jjj" j,j' = 1,2. 

(1.6.7) 

(1.6.8) 

(1.6.9) 

Whenever convenient, cf. (1.6.5) and (1.6.6), we shall consider A2 and t2 as 
subsets of ~2 by simply ignoring the first component. Hence we will write, e.g., 

(p, y) E ~3, P E~, Y E r 2 . (1.6.10) 

The first goal is to decompose the operators -.1""Y+A2 and -A""Y+A2, and 
for this we first have to decompose the resolvent of the free Hamiltonian, i.e., 
the resolvent of the Laplacian, in p-space. Let 

Gk(O): L2(~ x r 2 ) -. L2(~ x r 2 ) 

(Gk«(})g)(p, y) = (I(p, y + (}W - k2 )-lg(p, y); 

ei(y+6)i (IY + ( 1) 

(4n)-1It2 1-l lim L -I -£)-1 arctan -'k- , 
00 .... 00 yer2 Y + u l 

ly+61,,;oo 

x = (0, x) ~ A2 , 

1 -Jly+812 -k2 Ixl l 
-lt2 1-l L e e i(y+8)i, x = (xl, x) E ~3, Xl =F 0; 
2 yer2 Jly + 01 2 - k2 

P ~ !r2 + 01 2, 1m k ~ 0, 0 E A2, (1.6.12) 
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where 

(1.6.13) 

The analogs of the unitary operators 0/1, cf. (1.4.16), and Gfi, cf. (1.4.53), which 
we denote by 0/12 and Gfi2, respectively, are now defined by 

0/12: L2(~3) -+ L2(A2' L2(~ x r2» = f~® d2() L2(~ x r2 ), 

A, 

(0/I2!)«()' p, y) = !«p, y + ()), () E A2, P E~, Y E r 2, !E L2(~3), 

and 

Gfi2: .9'(~3) -+ L2(A2' IA2r 1 d2(); L2(~ x f 2» 
= IA2 1-1 f~® d2() L2(~ x f 2 ), 

A, 

(Gfid)«(), p, v) = 2n L r dxf(x, A. + v)e-iP"e-U8, 
).eA, JR 

- f 3 () E A2, P E~, V E 2, fE .9'(~ ). 

(1.6.14) 

(1.6.15) 

As usual Gfi2 is extended to L2(~3) by continuity, and the extension is still 
denoted by Gfi 2 • 

Theorem 1.6.1. Let Yj E Y, (yJ, yJ> E f2' and I1.j E ~,j = 1, ... , N. Then the 
operator -AIX,Y+A, in L2(~3) of Theorem 1.1.1 with 

(1.6.16) 

satisfies 

(1.6.17) 

where -A ... A,.y«() is the self-adjoint operator in U(~ x r 2) with resolvent 

k2 E p( -dlX.A,.y«()), 1m k ~ 0, () E A2, (yJ, yJ) E f2' 

I1.j E~, j = 1, ... , N, (1.6.18) 

where 

(1.6.19) 
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and 

If 

e- i(p.r+ 8)Yj 

F. (() p Y) - (2n)-3/Z.,...,.-_~=----::-;o-
k'Yj ,,- I(p, y + ()W - p' 

kZEp(-t.(())), Imk~O, ()EAz, PEIR, YErz, j=1, ... ,N. 
(1.6.20) 

A _ =-1[ A J= -Lla,Y+A2 - .'#' -Lla,Y+A2 .'#" (1.6.21) 

then 

oMz[ -~a,Y+AJ 0:;1 = IAzl-1 f~EB dZ ()[ -~a,A2,y(()J, (1.6.22) 
A2 

where - ~a,A2' y(() is the self-adjoint operator in L Z(IR x f'z) with resolvent 

( _~ (()_kZ)-l 
a,A2'Y 

N 

= gk(() + L [ra,A2 ,y(k, ()nJ,l(gk(' - Yr' (), ')gk(' - Yj,(), 
j,r~l 

kZ E p( -~a,A2'Y(())' 1m k ~ 0, () E Az, (yJ, yJ) E f'z, 

r:t.j E IR, j = 1, ... ,N. (1.6.23) 

Here 

gk((): L Z(IR x f'z) -+ L Z(IR x f'z), 

(gk(8)f)(x, v) = r dx ' r~ dZv' gk((X - x', v - Vi), ()f(x ', Vi), 
Ju;! Jt2 

Z Z ~ f' Z i"o k ¢[I()I ,(0), Imk~O, ()EAz, xEIR, VE z, fEL (IRXI Z), 

(1.6.24) 

and gk(X, v) is given by (1.6.12). 

PROOF. Following the proof of Theorem 1.4.3 we get (1.6.17) where 
(-~.,A2,y(8) - k2)-1 equals (1.6.18) with 

[( ik) _;lO]N 
r.,A2,y(k, 8) = !Xj - - bjj' - L: Gk(Yj - Yj' + A)e , (1.6.25) 

4n leA2 j,j'~l 

By appealing to Lemma 1.6.2, proved after this theorem, we obtain the stated form 
(1.6.19) of r.,A2 ,y(k, 8), Similarly, the proof of (1.6.22) follows the corresponding 
proof of Theorem 1.4.3. • 

The next result is the analog of Lemma 1.4.2. 



214 111.1 Infinitely Many Point Interactions in Three Dimensions 

Lemma 1.6.2 (Poisson Summation Formula). Let P E C, 1m k > 0, a E 1R3, 

and () E 1...2 ' Then 

eiklHal 
L e-iA8 

AeA, 4nlA. + al 
A;Io-a 

aEA2 • 

(1.6.26) 

PROOF. Consider first a = O. Writing 

L Gk(A)e-U8 = (2n)-1 L r dp(2n)-2 r d2 p -2 ei:.I. 2 e-U8, (1.6.27) 
.I.e A, .l.eA, JR J~, p + p - k 

A,.O 

we see that we can exploit the fact that 

i eipA 

(2nf2 d2p -2 + 2 k2 
H' P p-

(1.6.28) 

is the Green's function of the two-dimensional Laplacian at the point A with energy 
p2 _ k2. Hence by applying (4.36) we find 

L Gk(A)e- iA8 = (2n)-1 lim L r dp [ JA21 2 2 
AeA, w~oo yer, JR Iy + 81 + p - k 

ly+81,;w 

- n In(w2 + p2 - k2) + n In(p2 - k2)] 

1 . [ IA21 ] ik = -2 hm L - 2nw - - (1.6.29) 
8n w~oo yer, Jly + 81 2 - k2 4n 

ly+81,;w 

after a short computation. The general case a E A2 follows by translation. Assume 
now that a = (0, ii) ¢ A2 • By defining 

arctan (IY : (1) 

f(w) = L I ei(y+8)a, w > 0, (1.6.30) 
yer, Iy + 81 

ly+81,;w 
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and 

,,> 0, (1.6.31) 

we can follow the analysis used in the proof of Lemma 1.4.2 to obtain the conditional 
convergence of (1.6.30) as w - 00 and the equality (1.6.26). The last case, when 
a = (at, Ii) E [R3, a1 # 0, follows directly from [94], Theorem 67 and eq. (19), p. 260 . 

• 
We now tum to the study of spectral properties of - ,1",A2,Y(0) and specialize 

to the case Y = {O} from now on. 

Theorem 1.6.3. Let a. E ~, 0 E A2, and define -,1",A2(0) == -,1",A2 ,{O}(0). 
Then the essential spectrum of -,1",A2(0) is purely absolutely continuous 
and equals 

usc( -,1",A2(0)) = 0, 

o E A2 . (1.6.32) 

In addition, -,1",A2(0) has exactly one simple eigenvalue E()A2(0) = 
[kO,A2(0)]2 < 101 2 which is the unique solution of 

The corresponding eige1ifunction reads 

I/IE'fjA'(9)(0, p, y) = [I(p, y + OW - Eo,A2(0)rl, 

Eo,A2(0) is strictly increasing in a. for 0 E A2 . 

o E A2 , P E~, Y E r 2 . 

(1.6.34) 

PROOF. Equation (1.6.32) follows as in Theorem 1.5.3. Eigenvalues E are given 
as solutions of 

1m k ~ O. (1.6.35) 

From the explicit form of giO, 0) we see that gk(O, 0) - -00 as k2 - -00 and 
gk(O, 0) - 00 as k2 r 101 2, and that gk(O, 0) is strictly increasing in e. • 
Before we tum to the e-approximation, we give the spectrum of the full 

Hamiltonian. 

Theorem 1.6.4. Let a. E ~ and consider 

0lt2 [ -,1",A,]Olt;l = f~$ d2 0[ -,1",A2(0)]. 
A2 

Then the spectrum of - ,1",A2 is absolutely continuous and equals 

(1.6.36) 

a. ~ IXA2 ' 

IX < a.A2 , 

(1.6.37) 
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with Ea,A2(0) < ° and Ea,A2(0) < Ea,A2«() ) < ° provided IX < IX where IX o 0 0 0 A2 A2 

equals 

(1.6.38) 

and 

(1.6.39) 

PROOF. Again the proof is similar to that of Theorem 1.4.5. • 
Finally, we analyze approximations of - J.a,A2 (e) by Hamiltonians with 

local scaled, short-range interactions. Let 

A.(k, e): L2(1R3) --+ L2(1R x ['2)' 

B.(k, e): L 2(1R3) --+ U(1R3), 

C.(k, e): U(IR x ['2) --+ L 2(1R3), 

(1.6.40) 

be Hilbert-Schmidt operators with integral kernels 

A.(k, e, x, v, x) = gk«X, v) - ex, e)v(x'), 

B.(k, e, x, x') = eli(e)U(X)gk(e(X - x'), e)v(x'), 

C.{k, e, x, x, v) = li{e)U{X)gk{eX - (x, v), e); 

e ~ 0, k2 !f.lr2 + e12, 1m k ~ 0, e E A2, x, x' E 1R3, X E IR, v E ['2' 
(1.6.41 ) 

Theorem 1.6.5. Let V E R, supp V compact, and 1i(8) = 1 + el\,'(O) + O(e) as 
e! ° both be real-valued. Then the self-adjoint operator in L2(1R3) 

H.,A2 = -~ + e- 21i{e) I V{{· -li)/e) (1.6.42) 
AEA2 

satisfies 

(1.6.43) 

where H.,A2{e) is the self-adjoint operator in U{IR x ['2) with resolvent 

(H.,A 2 {e) - k2r 1 = gk{e) - eA.{k, e)[1 + B.{k, e)]-lC.{k, e), 

e > 0, P E P{H.,A2{e)), 1m k ~ 0, e E A2. (1.6.44) 

Assume that 1i'(0) =f. ° if H = -~ + V is in case III or IV. Then H.,A2{e) 
converges in norm resolvent sense to -~a,A2{e) as e! 0, i.e., 

k 2 E C - IR, e E A2 , 

(1.6.45) 
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where 

00 in case I, 

-).'(O)I(v, ~>r2 in case II, 

IX= 00 in case III, (1.6.46) 

{N r1 
-)"(0) i~ I(v, tfoiW in case IV. 

PROOF. The proof is similar to that of Theorem 1.4.8. • 
If IX = 00, then n-lim • .j.o(H.,A,(O) - pr1 = gk(O), the resolvent of the free 

decomposed Laplacian. 
Studying only the unique, simple eigenvalue E'O,A,(O) of -A .. ,A,(O) below 

the essential spectrum we get 

Theorem 1.6.6. Let V E R, supp V compact, be real-valued, and let ).(8), 
),(0) = 1, be real analytic in a neighborhood of zero. Assume H = - A + V 
to be in case II and let 0 E A2. Then H.,A,(O) has a unique simple eigenvalue 
E:,A,(O) < 1012 behaving as 

(1.6.47) 

where E'O,A,(O) is the unique eigenvalue of -A .. ,A,(O), -A ... A2(0) being the 
norm resolvent limit of H •. A2(0) as 8! 0, and E~·A2(0) satisfies 

E~·A2(0) = thA2(ko,A2(0), 0)[A2 + E'O·A2(0)B2], (1.6.48) 

where 

hA2(k, 8) = 21f'21 [k L (11 + (W - k2)-3/2]-1, 
yer2 

A ~"(O) «(ft, tfo) 11(0) «(ft, X) (v, X) ~'(O) (1649) 
2 = A I(v, ~)12 + A I(v, tfoW - IX(V, tfo) - A IX, •• 

B2 = - 81t1(:, ~W f t6 d3x d3x' tfo(x) v(x) Ix - x'i v(x')tfo(x'), 

and X satisfies (1.5.65). 

PROOF. Similar to the proof of Theorem 1.5.6. • 
111.1.7 Bragg Scattering 

By Bragg scattering we mean the scattering from an infinite half-crystal in 
three dimensions, more precisely we study the operator - A .. ,A+ where 

A+ = {n1a1 + n2a2 + n3a3 E ~31(nl' n2 , n3) E 7L2 x No} (1.7.1) 
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with No = N u {O} and ai' a2' a3 is a basis in ~3 and 

a;. = a E ~, A. E A+. (1.7.2) 

While our basic technique in the discussion of the crystal, straight polymer, 
and monomolecular layer has been the Fourier transform of the full matrix 
r",AJ(k) in the directions of symmetry, here we will combine this technique 
with the Wiener-Hopf method for inverting a Toeplitz matrix in the direction 
with "half" symmetry. 

Consider a particle coming towards the half-crystal A+ with momentum 
p', viz. 

p'b3 > 0 

where b1 , b2, b3 E ~3 satisfy (cf. Sect. 1.4) 

j #- j', j,j' = 1,2, 3. 

(1. 7.3) 

(1. 7.4) 

Thus b3 is orthogonal to the surface of A+, pointing into the half-crystal. After 
being scattered off the half-crystal the particle has momentum p with 

(1.7.5) 

Conservation of energy gives 

p2 = p,2 = E = k2. (1.7.6) 

Furthermore, Bragg scattering imposes that 

(p - p')A. = 0 (mod 2n), (1.7.7) 

where 

(1.7.8) 

As the next result shows there is only a finite number of reflected momenta p 
for any given p' satisfying (1.7.5)-(1.7.7). 

First, we introduce the necessary new notation. Let 

r2 = {n 1b1 + n2b2 E ~31(nl' n2) E Z2}, 

A2 = {s l bl + S2b2 E ~3lsj E [-!, t),j = 1,2}, 

A = {na3 E ~31n E No}, 

(1.7.9) 

(1.7.10) 

and for any q E ~3 we let qll denote the (not necessarily orthogonal) projection 
onto the plane orthogonal to a3' viz. 

3 2 

q = L qjbj , qll = L qjbj . (1.7.11) 
j=1 j=1 

Theorem 1.7.1. Let p' E ~3 and assume (1. 7.3). Then there is a finite number 
of p E ~3 satisfying (1.7.5)-(1.7.7). The allowed p can be written in the form 

p = PY2(P') = P~ + 12 + { -lb3r2(p~ + 12) 

- 1 b31-\/'---E---(p-il-+-Y-2)-=-2 -+-[-1 b-3-r""71 (-p-il-+-Y-2)-b-3]--=-2 } b3, 

12 E r2, E - (pil + Y2)2 + [lb31- l (pil + 12)b3]2 ;;;:: O. (1.7.12) 
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Furthermore, 

(1.7.13) 

Remark. Observe that Po(p'), i.e., 1'2 = 0, always satisfies (1.7.5)-(1.7.7) 
(specular reflection). 

PROOF. Starting with condition (1.7.7) we write 

(1.7.14) 

which inserted into (1.7.7) yields 

(1.7.15) 

which proves (1.7.13). Thus 

p = p' + Y2 + fJ3b3, Y2 E r 2 · (1. 7.16) 

Squaring we find 

p'2 = E = p2 = (p~ + Y2)2 + 2(p~ + Y2)b3(1'/ + fJ3) + (1'/ + fJ3)bj, (1.7.17) 

where 

p' - p~ = I'/b3 • (1. 7.18) 

Solving (1.7.17) with respect to 1'/ + fJ3 we find (1.7.12) using (1.7.5). • 
Recall from (II.1.5.6) that the off-shell scattering amplitude /a.,A/k, p, p') 

for (-~, -~~,A) with 

(1.7.19) 

reads 

I' (k ') - 1 " [r (k)]-l -ip;' ip';" J~,AN ,p, P - -4 ~ ~,AN u·e e , 
7t ;',;"EAN 

The scattering amplitude /a.,AJk, p, p') associated with - ~~,A+ will be defined 
as the weak limit of f~,AN(k, p, p') as N --+ 00, and our main result will be the 
computation of its on-shell limit. 

Theorem 1.7.2. Let /a.,AN(k, p, p'), 1m k ;;:: 0, Re k ;;:: 0, p, p' E C3, be the off
shell scattering amplitude, given by (1.7.20), associated with (-~, -~~,A) 
with AN = [-N, N]3 n A+. Then 

lim (g,f~,AN(k)f) = (g,f~,AJk)f) 
N-+oo 

= 41 L _ [r~,A)k)];:l,(e-i(');",f)(g, e- i (');'), 
7t ;',;"EA 

f, g E 9'(/R3), det[r~,AJk)] # 0, 1m k > 0. (1.7.21) 
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Let pi E 1R3 and assume that p = PY2(p') satisfies (1.7.12) for some '9'2 E r2. 
Then the on-shell scattering amplitude reads 

{" (I I ') - (p'a3)lb31 lti(P3-P3l. 
la.,!\.+ p, p, p - - IAI e 

where 

and 

. TI s~n ~[PIPI(02' Y2) + 2np;] s~n ~[~IPI(02' Y2) + 2np;] , 
Y2Er2 sm z[Plpl(02' Y2) + 2np3] sm z[~lpl(02' Y2) + 2np3] 
Y2#Y2 

(1.7.22) 

(1.7.23) 

2n J 2 2 1 2 Pk(02' Y2) = fbJ k - (02 + Y2) + [lb3 1 (02 + Y2)b3] , 

1m Pk(02' Y2) ~ 0, (1.7.24) 

PROOF. We have 

~ ~ L [r (k)r1,(e- i ('»).' !)(g e-i('»)') 
N-i>co 4n J..,;" E A+ (%,A+ l,A " , 

det[r.,A+ (k)] =F 0, 1m k > 0, j, g E .9'(1R3), (1.7.26) 

since {(e-i('»).,f)} E F(A+) when j E .9'(1R3). Following the proof of Theorem 1.6.1 
we infer 

= ~ L _ f d282 [r •. x(k, 82)];:-1,e-iP3b3).eiP3b3).'(1, (Oltd)(82»((0lt2g)(82), 1), 
4n )..).'eA X2 

det[r •. A+ (k)] =F 0, 1m k > 0, j, g E .9'(1R3), (1.7.27) 

with 

1m k > 0, (1.7.28) 

and 0lt2 given by (1.6.14). We use q3 for the component of a vector q E 1R3 with respect 
to b3 , cf. (1.7.11). Here the inner products in the first line are in L2(1R3), in the second 
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line in L 2(JR x i'2)' To study the on-shell limit we assume 

P3' P; E C, 1m P3 < 0, 1m P; > 0, (1.7.29) 

and consider 

Applying the formula [117] 

L [C];;-n~sntn' = (l - st)-l exp [~f" dx (1 - s~) In [C(x~], (1.7.31) 
n,n' e ilia 21t _It (s - e''')(t - e ''') 

where 

(1.7.32) 

and 

s, t E C, lsi, It I < 1 (1.7.33) 

and 

C(x) = L ene-in", Cn = - dx C(x)e in" 1 fit 
neZ 21t -It 

(1.7.34) 

to (1.7.30) we find 

f«,x(k, ( 2 ) = [1 - e-2ltl(P3-P3lr1 • 

[1 - e-2lti(P3-P3l] In[r (k 8 + ~b3)J 
{If" «.A ,2 21t 

. exp 21t _" dx (e 2"iP3 _ ei")(e2"iP3 _ e I,,) 

(1.7.35) 

since 

(1. 7.36) 

Let (cf. the following Lemma 1.7.3) 

r.,(k, 82 , z) 

and 

IAI { L sin[Pk(82 , }'2)] 1 Ib31 } -
= 1tlb3 12 h er2 {J,.(82, }'2) z + z 1 - 2 cos[{J,.(82, Y2)] + 41tlY21 + IX 

1121"., 
(1.7.37) 

r(k, 82 , z) = lim r.,(k, 82 , z), z E C - {OJ, (1. 7.38) 
"--+00 
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where {Jk(82 , Y2) is given by (1.7.24). Then 

r.,;;(k, ( 2 ) 

= [1 _ -2"i(P3-pJ)]-1 {_1_ i d [1 - e- 2"i(P3-PJ)] In[f'(k, 82 , z)]} 
e exp z 2 . 2 . , 

2ni Iz l=1 (e "'P3 - z)(e "'P3 - Z-I)Z 

(1.7.39) 

Consider now the integral 

I = __ 1_ [ (e- 2 "iP3 - e- 2 "ip,) In[r,,,(k, 82 , z)] 

'" 2ni Jlz l=1 (e 2"iP3 - z)(z - e 2"ip,) 
(1. 7.40) 

Since r",(k, 82 , z) is a meromorphic function on the Riemann sphere C u {oo}, it has 
an equal number of poles and zeros. Thus In [r",(k, 82 , z)] has cuts connecting every 
pair of poles and zeros. The poles of f'(k, 82 , z) are given as solutions z~(k, ( 2 ) of 

Define z,;(k, 82 , p) as the solutions of 

z,;(k, 82 , p) + [z,;(k, 82 , p)r1 = Yf",(k, 82 , p), 

where Yfw(k, 82 , p) solves 

with 

Hence 

(1.7.41) 

(1.7.42) 

(1. 7.43) 

(1. 7.45) 

F(k, 82, .) is a meromorphic function on C with poles at {2 cos [{Jk(82 , Y2)] IY2 E r2}' 
If {Jk(82 , Y2) E IR, then cos[{Jk(82 , Y2)] E [ -1, 1], and if i{Jk(82 , Y2) < 0, then 
cos[{Jk(82 , Y2)] > 1. Let Yf(k, 82 , p) be the solution of 

F(k, 82 , Yf(k, 82 , p)) = p. (1.7.46) 

As p --+ 00, Yf(k, 82 , p) --+ cos [{Jk(82 , Y2)] for some Y2 E r 2 , and we denote this solution 
of (1.7.46) by Yf y2 (k, 82 , p). Similarly, we denote by Yf""Y2(k, 82 , p) the solution of 
F",(k, 82 , Yf""Y2(k, 82 , p)) = P such that Yf""Y2(k, 82 , p) --+ cos[{Jk(82 , Y2)] as P --+ 00. 

With Yf""Y2(k, 82 , p) we can then associate z';'Y2(k, 82 , p) using (1.7.42), and 
z';,y,(k, ( 2 ) --+ z~(k, ( 2 ) as OJ --+ 00. Ordering the set {cos[{Jk(82 , Y2)]IY2 E r 2 }, i.e., 

-1:::; cos [Pk(82 , yi)] :::; ... :::; cos[{Jk(82 , Yi- 1)] :::; 1 :::; cos[{Jk(82 , yi)] :::; ... , 
(1. 7.47) 
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we have 

j > m. (1.7.48) 

From the above analysis we infer that we can parametrize the cuts ofln[r",(k, (}2' z)] 
by 

(1.7.49) 

r(k, (}2 + (x/2n)b3 ) has no zeros or poles in a uniform strip around the real axis, 
the width of which depends on 1m k. This implies that for OJ sufficiently large 
Iz,iL2(P)1 of- 1, Y2 E r 2. Since 

(1.7.50) 

we have 

C;;;.Y2 c {zd::llzl < 1}, C';;.Y2 c {zECllzl > 1}, Y2 E r 2 . (1.7.51) 

Hence 

(1.7.52) 

which implies that 

Furthermore, we have 

(1. 7.54) 

where {~((}2' Y2)IY2 E r 2} solves 

r (k () + ~((}2' Y2) b ) = 0 
a.A , 2 2n 3 , 

(1.7.55) 

From the proof of Lemma 1.7.3 we infer that 

c > 0, 
(1.7.56) 

c > 0, Y2 E r 2 , 

implying that the product converges uniformly as OJ -+ CJJ and that the convergence 
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is uniform in P3, p;. Taking first the limit (0 --+ CIJ term-by-term in (1.7.53) we find 

r •. ;;;Jk, (}2) = [1 - e-21ti(p'-P3lr 1 [r(k, (}2' e- 21tip,)]-1. 

1· f1 sin t[Pk((}2, Y2) + 2np3] sin t[tA((}2, Y2) + 2np;] 
. 1m 1 1 . 
"'-00 Y2Er2 sin I[Pk((}2, Y2) + 2np;] sin I[tA((}2, 'l'2) + 2np3] 

1121:> co 

As 1m P3, 1m P; --+ 0, we get 

and 

(1.7.57) 

(1.7.58) 

(1.7.59) 

where P = Py,(p' ) for some Y2 E 12. However, their ratio has a nontrivial limit. 
A short computation then gives (1.7.22). • 

We see that formula (1.7.22) expresses the on-shell scattering amplitude as 
an infinite product of terms depending on the incoming and reflected momenta, 
respectively. The term depending on the incoming momentum (which equals 
the inverse of the corresponding term of the reflected momentum) coincides 
with the ratio of two terms, one as if the crystal filled all of 1R3 and one as if 
there was no crystal. 

It remains to state 

Lemma 1.7.3. Let k E C, 1m k > o. Then 

(1.7.60) 

where 

p = Y2 + ()2 + (x + n)b3, 

Y2 E r 2, n E 7L, ()2 = PII (mod r 2) E /"'2' x E C, (1.7.61) 

and Ii. is independent of k, ()2' and x. 

PROOF. Let G(x) denote the left-hand side of (1.7.60) considered as a function of 
x alone, and let 

p' = Y2 + (}2 + (x' + n)b3· (1.7.62) 
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Then 

G(x) - G(x') 

= (2n)-3IAI y~r [(I' + p;2 _ k2 - (I' + p'~2 - k2 ] 

= (2n)-3IAI L [ 1 2 2 
yer [02 + 1'2 + (x + n)b3 ] - k 

y=Yz+.b, 

- [02 + 1'2 + (X,l+ n)b3 ]2 - k2] 

= (2nr3Ib31-2IAI' 

'y,~r, .~Z [(X + n)2 + 21b31 2(02 + I'2)b3 (x
1 
+ n) + Ib31 2[(02 + 1'2)2 - k2] 

- (x' + n)2 + 21b31 2(02 + I'2)b3 (x
1
, + n) + Ib3 1-2[(02 + 1'2)2 - k2]] 

= (2n)-1Ib31-2IAI L sin[/:1,.(02' 1'2)] . 
y,er, /:1,.(02.1'2) 

. {COS[Pk(02' 1'2)] - cos 2:[X + Ib31 2(02 + I'2)b3 ] 

- COS[Pk(02. 1'2)] - cos 2n
1
[X' + Ib31 2(02 + I'2)b3 ]}' 

(1.7.63) 

where Pk(02. 1'2) is given by (1.7.24). Define now 

d ( ) = sin[Pk(02' 1'2)] 1 + ~ 
YzX 2 • 

Pk(02.I'2) cos 2n[x + Ib31 (02 + I'2)b3 ] - cOS[/:1,.(02' 1'2)] 2nll'21 
(1.7.64) 

Then 

d ( ) = [fJ, (0 )]-1 { sin [Pk(02' 1'2)] + .} 
y, X k 2.1'2 cos 2n[x + Ib31 2(02 + I'2)b3 ] - COS[Pk(02. 1'2)] 1 

'R (0 )-1 Ib31 
- Il'k 2.1'2 + 2nll'21 

= [/:1,.(02.1'2)]-1. 

i cos 2n[x + Ib3 1-2(02 + I'2)b3 ] + sin[/:1,.(02' 1'2)] - i COS[Pk(02. 1'2)] 

cos 2n[x + Ib31 2(02 + I'2)b3 ] - cOS[/:1,.(02' 1'2)] 

ill'21- (2n)-1Ib3 IPk(02' 1'2) 

Pk(02. 1'2) 11'21 

. -1 2 cos 2n[x + Ib3 1-2(02 + I'2)b3 ] - eifJk(8,.Yz) 

= 1[/:1,.(02.1'2)] 2 cos 2n[x + Ib3 1-2(02 + I'2)b3 ] - COS[Pk(02. 1'2)] 

20 I' Ib 1-2 1' b + i 2 2 - 3 ~ 3 + 0(11'21-3) 
2/:1,.(02.1'2)11'21 

(1.7.65) 
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since 

(1.7.66) 

Let BO) be the circle in the plane spanned by bi and b2 with radius OJ centered at 
the origin. Then 

2 cos 2n[x + Ib31-2(02 + Y2)b3] - COS[Pk(02' Y2)] 

+ O(lY21- 3 )} (1.7.67) 

since r 2 n BO) is invariant with respect to Y2 -+ -Y2' and 02Y2 and Y2b3 are uneven 
with respect to this transformation. Hence we infer that 

lim I dy2 (x) (1.7.68) 
CD-ex> ')'2 er2 nBm 

where a. is independent of k, O2 , and x. • 
III.1.S Fermi Surfaces 

The concept of the Fermi surface, which is of vital importance in solid state 
physics, allows us to relate several of the topics so far discussed in this chapter. 

Consider an infinite, perfect crystal and assume that we remove all the 
electrons from the crystal, and that we intend to put them back one by one. 
In addition, suppose that we have absolute temperature T = 0 so that the 
electrons go into states with as low energy as possible. The electrons, obeying 
Fermi-Dirac statistics, satisfy the Pauli principle. By taking into considera
tion the spin, this means that at most two electrons can have the same energy. 
Hence the first two electrons occupy a state which corresponds to the bottom 
of the ground state band, while the next two electrons go into a state with 
a slightly higher energy and so on. When all the electrons are put back, we 
have reached some energy EF , the Fermi energy. 

To model this we consider, as explained in Sect. 1.3, the one electron model 
with point interactions, i.e., the operator - AIX,A where A is the Bravais lattice. 
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Recall from Theorem 1.4.4 that 

(1.8.1) 

with E't;A(80 ) < 0 as long as ex < CX O•A' 
In terms of the density of states, formally defined by, e.g., ([161], p. 7) 

i 
pa.A(E) = - Tr[( -Aa A - E - iOr 1 - (-Aa A - E + iOrl] (1.8.2) 

2n' . 

the Fermi energy can then be defined by 

pa.A(EF ) = NI2 (1.8.3) 

where N is the number of electrons per nucleus. (The factor 2 comes from 
the Pauli principle.) 

However, the three-dimensional crystal does not seem to allow a simple 
expression for the density of states, so we will not give any explicit formula 
for (1.8.2) (see, however, [215]). (In one dimension one can compute (1.8.2) 
explicitly, see Sect. 2.3.) The Fermi surface is then defined to be the set 

(1.8.4) 

Within the framework of the one-electron model of a solid, we can explain 
some of the corresponding conductivity properties. Namely, if EF is at the 
bottom of a gap between the valence (filled) band and the conduction (empty) 
band, then there is a certain amount of energy needed to excite some electrons. 
Hence we have an insulator. If EF is sufficiently far away from the upper end 
of the valence band, one has a metal. Similarly, in the intermediate cases where 
either the gap is small or EF is fairly close to the end of the valence band, the 
metal/insulator distinction becomes less sharp and one gets semiconductors 
or semimetals. 

Returning to the Fermi surface we can state the following 

Theorem 1.8.1. Let cx E IR and A be a Bravais lattice. Then the Fermi surface 
for the operator - Aa.A is the set 

Fa.A(EF ) = {8 E AI4ncx = -KF + L e-:F1)'1 COS(8)')}, (1.8.5) 
).EA 11'.1 
).,.0 

where EF = -K;, KF > 0, is the Fermi energy. 

PROOF. Equation (1.8.5) follows immediately from (1.8.4) and formula (1.4.38) 
used in Theorem 1.4.1. • 

The actual computation of a Fermi surface in solid state physics is usually 
done by combining theory and experiment (see, e.g., [126]). By performing 
various experiments one can measure, e.g., the diameters for different cross
sections of the Fermi surface. In combination with a parameter-fitting ap
proach, the Fermi.surface for most of the simpler metals has been determined 
to a high degree of accuracy. What we do here is a somewhat different 
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approach: Mter having chosen the potential, we do not introduce any other 
approximations. 

With the aid of a computer we have illustrated the Fermi surface for various 
values of EF , ct, and A, see Figures 7-33. 

A few words are appropriate to explain the illustrations: The Fermi surface 
as defined by (1.8.4) is a multi valued surface, or if one extends it periodically 
to 1ij3 (i.e., replace A by 1ij3) an infinitely many-valued surface, in the following 
sense. By solving for one of the components ()j of () = «()1' ()2' ()3) in terms of 
the remaining components, we obtain a multivalued (infinitely many-valued) 
function. In the figures we have only illustrated a single-valued function, 
more precisely we have illustrated the part of the surface nearest to the origin 
with ()3 ~ o. 

The edges of the surface of the Brillouin zone are also included in the 
illustrations. 

Strictly horizontal or vertical parts of the illustrations are not part of the 
Fermi surface. 

Finally, contour plots are also provided for some of the illustrations. 



III.l.8 Fermi Surfaces 229 

Figure 7 The simplest Fermi surface we include here is for a simple cubic crystal 
(SC or cubic P) with E = - 1 and IX = 0.12 and a = b = c = 1 (for notation concerning 
the lattices, see [290]) inside the upper half of its Brillouin zone. Completely vertical or 
horizontal parts of the illustration are not parts of the Fermi surface. 

Figure 8 (a) and (b) The Fermi surface of a body centered crystal (BBC or cubic I) with 
E = -1 and IX = -0.14 inside the upper half of its Brillouin zone. The total surface 
within the upper half of the Brillouin zone is the union of the two surfaces depicted 
above. 

Figure 9 (a) and (b) A contour plot of Figure 8 (a) and (b). 
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Figure 10 (a) and (b) The Fermi surface of Figure 8 (a) and (b) extended periodically. 
Again it is difficult to vizualize the total surface in the sense that the total Fermi surface 
is the union ofthe two surfaces above extended periodically in the positive and negative 
z-direction. 

Figure 11 (a) and (b) A contour plot of Figure 10 (a) and (b). 
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Figure 12 (a) and (b) A magnification of part of the surface in Figure 10 (a) and (b). 

Figure 13 (a) and (b) A magnification of another part of the surface in Figure 10 (a) 
and (b). 
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Figure 14 (a) and (b) The Fermi surface of a face centered cubic (FCC or cubic F) 
crystal with E = -1, 11. = - 0.17 inside the upper half of the Brillouin zone. 

(b) 

Figure 15 (a) and (b) A contour plot of Figure 14 (a) and (b). 

Figure 16 (a) and (b) The Fermi surface of Figure 14 extended periodically. 
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(a) (b) 

Figure 17 (a) and (b) A contour plot of Figure 16 (a) and (b). 

Figure 18 (a) and (b) A magnification of a part of Figure 16 (a) and (b). 

The next seven figures show how the Fermi surface inside the upper half of 
its Brillouin zone varies with E for an orthorhombic P crystal with axes a = 3, 
b = 2, c = 1 and with a = O. 
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Figure 19 E = -1.2. The Fermi surface is homeomorphic to a sphere around each 
print of the orthogonal lattice. 

Figure 20 E = - 1.1. 

Figure 21 E = -0.9. The Fermi surface is now connected in the x-direction. 
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Figure 22 E = -0.425. 

Figure 23 E = -0.35. The Fermi surface is connected in the x- and y-directions. 

Figure 24 E = - 0.13. 
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Figure 25 E = -0.1. 

The next three figures show a similar series for a tetragonal P crystal with 
axes a = b = 2, c = 1 and with ex = o. 

Figure 26 E = - 1.1. 

Figure 27 E = -0.6. 



1II.1.8 Fermi Surfaces 237 

Figure 28 E = - 0.4. 

The next two figures show the Fermi surface inside the upper half of its 
Brillouin zone for a tetragonal P crystal with axes a = b = 2, c = 3 and with 
IX = 0 for two values of E. 

Figure 29 E = -0.24. 

Figure 30 E = -0.2. The Fermi surface is now connected in the z-direction. 
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Figure 31 The surface for a monoclinic C crystal with axes a = 2, b = 1.5, c = 1 inside 
the upper half of its Brillouin zone. The angle between the axes a and 7! is 60°, (1. = 0, 
and E = -1. 

Fig. 32 

'. 

Fig. 33 

Figures 32 and 33 The Fermi surfaces of a trigonal crystal with (1. = 0 and E = -1 for 
two different angles, 30° and 70°, between the symmetry axis and each of the crystal 
axes. 
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111.1.9 Crystals with Defects and Impurities 

Having studied in detail the spectral properties of a perfect, infinite crystal 
in three dimensions with point interactions, we now turn to the question of 
how various defects may change the spectrum in this mode1. As will turn out 
below, the point interaction Hamiltonian, in fact, allows one to make explicit 
computations of the consequences of certain defects. 

Consider first the general situation where we have given 

inf I Yj - Yj'1 = d > 0, 
j,i' eJ 
j#i' 

a: Y -+ IR, 

(1.9.1) 

with a bounded. We will study how the resolvent of the operator -.:la,Y 
(given by (11.1.1.33) if IYI < 00 and by (1.1.6) if IYI = 00) is related to the 
resolvent of the operator - .:la, f where Ii and Yare certain modifications of 
a and Y, respectively. More precisely let 

MEN. 

Then we distinguish the following three modifications: 

(a) Assume that 

Y= YuZ, YnZ=0, Z-=l-0, 

lily = a, 

(1.9.2) 

(1.9.3) 

We then say that -.:la,f represents the Hamiltonian with interstitial 
impurities located at Z c 1R3 relative to -.:la,Y, and write -.:la,y,p,Z for 
-.:la, 

(b) Assume that 

Y= YuZ, YnZ=0, Z-=l-0, 

all' = Ii, az E IR, Z E Z. (1.9.4) 

We then say that -.:la,f is the Hamiltonian with defect impurities or 
vacancies located at Z relative to -.:la,Y, and we write -.:la,y,{oo},Z for 
-.:la,f· 

(c) If 

Y= Y=ZuZ, Z n Z = 0, Z, Z -=I- 0, 

(1.9.5) 

we say that - .:la, f is the Hamiltonian representing substitutional impu
rities relative to -.:la,y and again we write -.:la,y,p,Z for -.:la,i'. 

For simplicity we will not consider a mixture of the above three cases. 
For the relation between the resolvents of -.:la,Y and -.:la,y,p,z we have the 
following 
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Theorem 1.9.1. Let Y = {Yj E 1R 31j E J}, Y = {Yj E 1R3 1j E J}, J, J c:; N, 
satisfy 

inf J Yj - Yj' I = d > 0, inf I Yj - Yr I = d > ° 
j,r EJ 

(1.9.6) 
j,r E J 

Hr Hr 

and assume that a: Y ~ IR and a: Y ~ IR are bounded. Moreover, let 

(a) Suppose that 

Y= YuZ, 

and let 

Then 

MEN. (1.9.7) 

YnZ=0, az = f3z E IR, Z E Z, 
(1.9.8) 

-l1a,y,(J,z = -11",y, (1.9.9) 

(-11 - k2)-1 = (-11 _ k2)-1 a,Y,(J,Z a,Y 

where 

M 

+ L [ra,Y,(J,z(k)Jj:(Gk,a,y(',zr)' ')Gk,a,y(',Zj)' 
j,r=l 

k2 E p( -l1a,y) n p( -l1a, y,/l,z), 1m k > 0, (1.9.10) 

Gk,a,y(X, x') = (-l1a,y - k2r1(x, x') 

= Gk(x - x') + L [ra,y(k)];y~Gk(X - y)Gk(X' - y'), 
y,y'E Y 

and 

ra,y,(J,z(k) = [(f3zi - ~~)bjr - Gk,a,y(Zj' zr)J~r=l' (1.9.12) 

(b) Assume that 

Y= YuZ, YnZ=0, al y = a, az E IR, Z E Z, 
(1.9.13) 

and let 

-11 {} = -11- y-a, y, 00 ,z tX, • (1.9.14) 

Then 

(-l1a,y,{oo},z - k2r 1 = (-l1a,y - k2r 1 

M 

- L [r", y,a,z(k)Xj: (Gk,,,,YL Zr), ')Gk,,,,Y(', Zj), 
j,r=l 
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(c) Suppose that 

y= Y=ZuZ, ZnZ= 0, 

ay = lXy iff Y E Z, (1.9.16) 

and let 

-ll.fI.,y,p,Z = -Il..i,i· (1.9.l7) 

Then 

( -Il. - k2)-1 = (-Il. - k2)-1 
~~~z ~y 

M 

+ L {[rd,p,z(k)r1 DfI.,p[rfl.,i,fI.,z(k)r1 }jj" 
j,j'=l 

. ( Gk, fl., i(-, zj.), .) Gk, fl., i(-, z), 

k2 E p( -ll.fI.,y) n p( -ll.fI.,y,p,z), 1m k > O. (1.9.18) 

with 

D - [DfI.,P]M fI.,p - jj' j,j'=l' j,j' = 1, ... , M. 
(1.9.l9) 

PROOF. (a) Write 

where 

and rAk) couples the points in Z to Y, i.e., 

with 

Then 

[ 0 Gk(Zo' Y)] 
reek) = Gk(Y, Z) 

Gk(Z, Y): [2(y) _[2(Z), 

Gk(Y, Z): [2(Z) _[2(y), 

Gk(Z, Y) = {Gk(z - Y)}zez,yeY' 

Gk(Y, Z) = {Gk(y - z)}yey,ZEz' 

(1.9.20) 

(1.9.21) 

(1.9.22) 

(1.9.23) 

[rti,v(k)r1 = [r m(k)r1 + [r m(k)]-l re(k){1 - [r m(k)r1 re(k)} -1 [rm(k)r1 

(1.9.24) 

for 1m k sufficiently large. The inverse {1 - [rm(k)r1re(k)}-1 can be expressed 
explicitly in terms of [r",y,II,z(k)rl, namely 

{1- [rm(k)r1re(k)r1 

[ r-l rll,z(k) r-1Gk(Z, Y) ] 
= 1 1 1 1 ' (1.9.25) 

[r",y(k)r G(Y, Z)r- 1y + [r",y(k)r Gk(Y, Z)r- Gk(Z, Y) 

where for convenience we have abbreviated 

r = r..,y,II,z(k) (1.9.26) 
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and 1y denotes the identity matrix on [2(y). A tedious but straightforward 
computation then gives (1.9.10). 

(b) follows from (a) since an interchange of -Ll".f and -Ll •. y yields case (a). 
(c) Observe first that 

(-Ll •. y •p•z - k2)-1 - (-Ll •. y - k2r 1 

= I {[r".f(k)J/ - [r •. y(kn? }(Gk (' - Yr), ')Gd' - y), (1.9.27) 
j.j' EJ 

and the problem now consists of reducing the right-hand side to a rank M = IZI 
operator. To this end, we write 

r -(k) - [r".z(k) -G(Z, Z)], 
".y - -G(Z, Z) r •. z(k) 

with inverses 

[r •. f(k)r ' 

r (k) _ [ r •. z(k) 
•• y - -G(Z,Z) 

-G(Z, Z)] 
r •. z(k) 

(1.9.28) 

[ 
[r •. z.p.z(k)r' [r •. z.p.z(k)r'G(Z, Z) [r •. z(k)]-I ] 

= [r •. z(k)r'G(Z, Z) [r •. z.p.z(k)r' [r •. z(k)r' + [r •. z(k)rIG(Z, Z) [r •. z.p.z(k)r' ' 

[r •. y(k)r' 

[ [r •. z .•. z(k)r' [r •. z .•. z(kJr'G(Z,Z) [r •. z(k)r ' ] 

= [r •. z(k)r'G(Z,z)[r •. z .•. z(kJr ' [r •. z(kJr ' + [r •. z(k)r'G(Z,Z) [r •. z .•. z(k)r ' . 
(1.9.29) 

Hence 

r. - k -1 _ r k -I = [H HG(Z, Z)[r •. z(k)r1 
] 

[ •. y( )] [ •. y( )] [r •. z(k)r1G(Z, Z)H [r •. z(k)r1G(Z, Z)HG(Z, Z) , 
(1.9.30) 

where 

H = [r •. z.p.z(k)r1 - [r •. z .•. z(k)r ' = [r •. z.p.z(k)rlD •. p[r •. z .•. z(k)rl (1.9.31) 

with 

j,j' = 1, ... , M. (1.9.32) 

Recalling that 

Gk .•. Z(x, x') = Gdx - x') + I _ [r •. z(k)];) Gk(x - y)Gdx' - y'), 
y,y'eZ 

k 2 E p( -Ll •. z ), 1m k > 0, x, x' E [R3 - Z, x of- x', (1.9.33) 

a straightforward calculation, combining (1.9.27), (1.9.30), and (1.9.31), gives (1.9.18) . 

• 
Remark. The theorem is still valid, with obvious modifications if Z = 
{zjlj EN} (i.e., if M = (0) provided Iz - z'l ;;::: d > 0, z, Z' E Z, z =I z'. 

Observe the strong resemblance between (1.9.10) and say (II. 1. 1.31). This 
suggests that (1.9.10) could be proved along the lines of the proof of Theorem 
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11.1.1.1 with -~ replaced by -~""y [31]. Furthermore, we infer that adding 
another point interaction amounts to a change by a rank-one operator for 
the corresponding resolvents. 

By using the above explicit formulas for the resolvents we can deduce the 
following general spectral properties. 

Theorem 1.9.2. Let f = {Yj E 1R3 1j E J}, Y = {Yj E 1R3 1j E J}, J, J s;; N, 
satisfy 

infJYj - Yj'1 = d > 0, 
j,j' eJ 
j#j' 

inf I Yj - Yj'1 = d > 0 
j,j' eJ 
j#j' 

and assume IX: Y -+ IR, ~: f -+ IR to be bounded. Let 

Z= {Zl"",ZM} C 1R3, 

and suppose one of the following three cases: 

MEN, 

(a) f = Yu Z, Y n Z = 0, ~IY = IX, ~z = pz E IR, Z E Z. 
(b) Y = f u z, f n Z = 0, IXli = ~, IXz E IR, pz = 00, Z E Z. 
(c) Y = f = Z u Z, Z n Z = 0, ~y = lXy iff Y E 2, ~z = pz, Z E Z. 

Then 

(1.9.34) 

(1.9.35) 

(1.9.36) 

and if (a, b) c p( -~"',Y)' -00 :::;; a < b < 00, then (a, b) n u( -~""Y,P,z) 
consists of at most M = IZI eigenvalues counting multiplicity. 

PROOF. Weyl's theorem ([391], p. 112) proves (1.9.36). The statement about the 
multiplicity of eigenvalues follows from [494], p. 246. • 

In short, Theorem 1.9.2 proves that defects of the kinds (a), (b), (c) do not 
change the essential spectrum, but may add eigenvalues in all gaps in the 
spectrum, the total number of which cannot exceed the number of defects. To 
obtain more precise information about these eigenvalues, one has to analyze 
the pole structure of the coefficients of the rank M operator. Assuming that 
one has only detailed spectral information on the "perfect" Hamiltonian 
- ~", y, this requires that the rank M operator is expressed exclusively in terms 
of -~",Y' By examining the formulas in Theorem 1.9.1, we see that these 
requirements make the formulas for case (b) and (c) less suitable. 

Next we turn to more detailed statements concerning changes in the spectrum 
when Y = A, A being a Bravais lattice in the sense of (1.4.3). For the notation 
we refer to Sect. 1.4. 

Corollary 1.9.3. Let Z = {Zl, ... , ZM} C 1R3, MEN, IX E IR, and p: Z -+ IR. 
Assume that either Z n A = 0, i.e., that Z is the location of the interstitial 
impurities (case (a», or that Z c A, i.e., Z is the location of the substitutional 
impurities (case (c». Then u( - ~",A,P,Z) n (-00, EO'A(O» contains at most M 
eigenvalues counting multiplicity. 
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If rx < rxO,A' then also a( -Lla,A,p,Z) n (E~,A(8o), 0) contains at most M 
eigenvalues counting multiplicity. 

Although case (b), i.e., the case of vacancies, could easily have been included 
here, it is omitted since in this case we can prove stronger results, using other 
techniques (cf. Corollary 1.9.6). In the case of a single interstitial impurity our 
information is more detailed. 

Theorem 1.9.4. Let Z E 1R3 - A be the location of the interstitial impurity 
and let rx, f3 E IR. Define 

Aa,A(k, z) = ~ + IAI-1 f d3 8[rx - gk(O, 8)]-1Igk(Z, 8)12. (1.9.37) 
4n A 

Then - Lla,A,P,z has exactly one simple eigenvalue Ep:~ E (-00, E~,A(O)) iff 

(1.9.38) 

If rx < rxO,A' then -Lla,A,P,z has, in addition, one simple eigenvalue Ep:~ E 

(E~,A(8o), 0) iff 

If Ep',~ = (kp:~)2, 1m kp:~ > 0, is an eigenvalue of -Lla,A,P,z as above, then 
k = ka,A solves p,z 

f3 = Aa,A(ka,A z) 
p,Z' (1.9.40) 

and the corresponding eigerifunction tjJ reads 

X E 1R3 - (Au {z}). (1.9.41) 

PROOF. From Theorem 1.9.1 we know that the equation which determines possible 
eigenvalues E = k2 < 0, 1m k > 0, in the gaps of the spectrum of the perfect crystal 
reads 

ik P = - + Gk • A(Z, z). 4n ' , 
(1.9.42) 

Furthermore, we have 

Gk,.,A(X, x') = Gk(x - x') + (Gk(x - .), [fa,A(k)r1Gk(x' - . ))f2(A) 

= Gk(x - x') + (gk(X, .), [a - gk(O, . )]-1 gk(X', . ))U(A;lhl-1 d38) 

(1.9.43) 

using the Fourier transform (cf. the proof of Theorem 1.4.3). Since Gk,.,A(Z, z) is 
monotone increasing in K, K = - ik > 0, the result follows. • 

We now turn to the detailed analysis of defects in ordered alloys. More 
precisely, we consider the operator - Lla, Y+A, as given in Theorem 1.4.3, where 
rx satisfies (1.4.54) 

(1.9.44) 
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and "turn off" the point interactions at some points Z in order to introduce 
vacancies in the ordered alloy. 

Theorem 1.9.5. Consider the operator - ~ .. ,Y+A where or: E ~N, A is a Bravais 
lattice and Y satisfies (1.9.44). Let Bj denote the jth negative energy band 

Bj = {E E (-00,0)130 E A: ytA'Y(E, 0) = O}, j = 1, ... , N, (1.9.45) 

where Yi,A'Y(E, 0)::;; ... ::;; y~,A'Y(E, 0) are the eigenvalues of the matrix 
r",A,y(k, 0), E = k2, 1m k > O. Define 

E .. ,A,Y = inf[u(-~ )] - ",Y+A , E~A,Y = sup{u(-~ .. ,Y+A)(')(-oo,O)} 
(1.9.46) 

and assume that 

j= 1, ... ,N, 

and 

Then 

u( -~ii,y) S [E~A,y, E~A,y] U [0, (0) 

for any set Y such that 

YS Y+A, lily = or:. 

(1.9.47) 

(1.9.48) 

(1.9.49) 

(1.9.50) 

Furthermore, -~ii,y has exactly M = I YI eigenvalues counting multiplicity 
provided M < 00. 

Remark. Conditions (1.9.47) are satisfied if, e.g., u( -~ .. ,Y+A) consists of 
exactly N negative bands. 

PROOF. Observe first that the matrix r .. ,A,y(E) == r",Y+A(k), E = k2 , 1m k > 0, is 
strictly positive definite for E < E~:A,y and strictly negative definite for E E (E~A,Y, 0). 
This can be seen as follows. Assume that there is an E < E~A,y (analogously, 
E E (E~A,y, 0» such that r .. ,y,A(E) is negative. Applying 

r(E) = fE9 d3 (J r(E, (J), r(E, (J) == r",A,y(lc, (J), (1.9.51) 
A 

which was proved in Theorem 1.4.3, we infer that there is a 0 E A such that r(E, 0) 
has at least one negative eigenvalue 'l'i:,A'Y(E,O). 'l'i:,A'Y(E,O), being monotone 

decreasing in E, remains negative for E E (E, 0). Let E E BiD (implying E < E). Then 

there_exists a 8 E A such that 'l'i:,A'Y(E, 8) = 0, and hence 'l'i:,A.Y(E, 8) > 0 for all 
E < E. Using now the continuity in (J of "Ii:' A, Y (E, (J) we conclude that there exists 
a 8 E A such that 'l'l'o,A'Y(E, 8) = 0 which contradicts the definition of E~A,Y. To 
prove (1.9.49) it suffices to prove that the matrix r",y(k), E = k2, 1m k > 0, is 
strictly positive definite for k2 < E~A,y and strictly negative definite for 
k2 E (E~A,y, 0). From the min-max theorem ([391], Theorem XIII. 1) we have 

(1.9.52) 
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(1.9.53) 

when k2 E (E~A.Y, 0). The strict monotonicity in E = k2 (for E < 0) of ri,,(k) 
proves the statement about the multiplicity. • 

Corollary 1.9.6. Let ot E ~ and assume Y ~ A to be an arbitrary subset of 
the lattice A c ~3. Then 

0"( -L\II,y) ~ [EO,A(O), EO,A(OO)] U [0, (0). (1.9.54) 

If A - Y is finite, i.e., if 

IA- YI < 00, (1.9.55) 

then 

(1.9.56) 

provided ot < oto,A-

PROOF. Theorem 1.4.5 ensures that the conditions (1.9.47) and (1.9.48) are satisfied. 
From Theorem 1.9.1 we know that under assumption (1.9.55) (-~II,A - k2)-1 -
(-~II,y - k2r l has rank IA - YI < 00, and hence the two operators have the same 
essential spectrum. • 

Before we study defects in binary ordered alloys, i.e., when Y = {Yl' Y2}' 
we will describe the spectrum of -L\(III,1I2),{Y"Y2}+A in more detail. 

Theorem 1.9.7. Let (ot 1 , o(2 ) E ~2, ot 1 < ot2 , and let A c ~3 be a Bravais 
lattice. If Yl' Y2 E rand 

(1.9.57) 

then 

(1.9.58) 

PROOF. Observe first that 

u( -~II,A) = u( -~II,{Y}+A)' (1.9.59) 

by translation invariance. Let 8 E A. By explicit computation 

')11 (k, 8) :;;; !Xl - gk(O, 8) < !X2 - gk(O, 8) :;;; ')I2(k, 8), (1.9.60) 

where ')11 (k, 8) < ')I2(k, 8) are the eigenvalues of r(II,,1I2)' {Yl,Y2}+A (k, 8). Furthermore, 
for e E (E~"A(8o), E~2,A(0)), we have 

implying 

and hence (1.9.58). 

(1.9.61) 

(1.9.62) 

• 
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Turning now to defect impurities in ordered alloys we can state the following 

Theorem 1.9.8. Let oc = (oc1, o(2) E 1R2, and let A be a Bravais lattice. 
Furthermore, let Y = {Y1' Y2} c r and assume that 

(1.9.63) 

and 

EO"A(Bo) < E02,A(O). (1.9.64) 

Let r be an arbitrary finite subset of Y + A, i.e., 

r = {Y1 + All' ... , Y1 + AN,d u {Y2 + A12 , ... , Y2 + AN22} c Y + A 
(1.9.65) 

and (i = oclf. Then 

l(j(-A- -) n [EI1.,A,Y EI1."A(B )JI = N I1.,Y -, 0 0 l' 

l(j( -A .. ,f) n [E02,A(O), E~A'YJI = N2 , 

counting multiplicity. 

(1.9.66) 

PROOF. From Theorems 1.9.5 and 1.9.7 it follows that the negative part of 0'( -,ili,f) 
consists of exactly N1 + N2 points within the two intervals [E~A,Y, E~A,Y] -
(EO··A(Oo), E02,A(0))-SO what remains to be proven is that they distribute in the 
stated way. This is shown using induction and Rayleigh's theorem. Assume that for 
given N1 and N2 

0'( -,iii, v) 11 [E~A,Y, EO·,A(OO)] = {Ef, ... , EU, 

0'( -,i .. ,v) 11 [E02,A(0), E~A.Y] = {Ei, +1, ... , Et}, 

with N = N1 + N2 = I YI and 

(1.9.67) 

(1.9.68) 

(In this and in the remaining part of the proof, all statements include possible 
degeneracies.) Let now 

Yi = Yu {Yl + A.}, Yt+A.Ef, A.EA. (1.9.69) 

Rayleigh's theorem ([391], Problem 11, p. 364) implies 

(1.9.70) 

Suppose E~;+1 > EO,·A(OO)' Then there are N2 + 1 eigenvalues of -,i.,y, greater 
than EO·,A(OO), which is impossible by the following argument. Consider Y2 = 

Yl - {Y2 + l}, Y2 + l E Y1 • Applying again Rayleigh's theorem we know that 
-,i.,Y2 has at least N2 + 1 eigenvalues greater than EO"A(OO)' By repeating this 
argument another N2 - 1 times we obtain the operator -,i •. f with 
y = {y +.A., Y1 + .A. 11 , ... , Y1 + .A.N,d with at least one eigenvalue greater than 
EO·,A(OO) which contradicts Corollary 1.9.6. Hence 

IO'( -,i.,y.) 11 [E~A,Y, EO··A(Oo)]1 = Nl + 1, 
(1.9.71) 
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Similarly, one proves the analogous result when one adds a point Y2 + A to the set 
Yl . Finally, we observe in the case Nl = 1 and N2 = 0 that 

0'( -da,f) s; [EO"A(O), E02,A(OO)] v [0, (0) 

s; [E~A,Y, E~A,Y] V [0, (0). 

using Theorem 1.9.5 and Corollary 1.9.6. The case Nl = 0, 
analogously. 

For binary ordered alloys we can improve Theorem 1.9.5. 

(1.9.72) 

N2 = 1 follows 

• 

Theorem 1.9.9. Let a = (aI' (2) E 1R2, let A be a Bravais lattice, and let 
Y = {YI' Y2} ct. Assume that 

E~"A((}O) < E~2,A(0). (1.9.73) 

Then for any set Y such that 

(1.9.74) 

we obtain 

0'( -~a,r) C;; [E,:A,y, E~"A((}o)] U [E"'2,A(0), E~A,y] u [0,00) (1.9.75) 

where a. = air. 

PROOF. Consider the operator -da,f. where 

y" = Y n Bn (1.9.76) 

with Bn being a ball of radius n with center at the origin. Following the proof of 
Theorem 1.1.1 we infer that 

s-lim (-da,f. - k2)-l = (-da,f - k2rl, k2 E IC - ~. (1.9.77) 

Using Theorem 1.9.8 and the fact that the spectrum cannot expand under limits 
in the strong resolvent sense ([388], Theorem VIII.24) we conclude that (1.9.75) is 
valid. • 

One can also make similar statements for ternary ordered alloys, i.e., 
IYI = 3. 

Let (aI' a2, ( 3) E 1R3, {y!, Y2, Y3} c t, and assume that the spectrum of all 
the binary ordered alloys which one can construct consists of two nonover
lapping negative bands bounded away from zero, i.e., 

0'( - ~{"'j,"'j'},A'{Yj,Yj'}) II (-00,0) 

= [E~l(j,j'), E~l(j,j')] U [E~2(j,j'), E~2(j,j')], 

E~l(j,j') < E~2(j,j') < E~2(j,j') < 0, j =I j', j,j' = 1,2,3. (1.9.78) 

Then we can prove the following 

Theorem 1.9.10. Let a = (aI' a2' ( 3) E 1R3, Y = {YI' Y2' Y3} c t, and 
assume (1.9.78). Let 

E~l = min{E~I(j,j')lj =I j',j,j' = 1,2, 3,}, 

E~l = max{E~lj,j')lj =I j',j,j' = 1,2, 3,}, 1= 1,2, 
(1.9.79) 
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and assume 

(1.9.80) 

Then 

(E~2' E~2) n q( - Aa,A,y) = 0, (E~l> E~d n q( -Aa,A,Y) = 0· 
(1.9.81) 

Remark. See Figure 34 for a possible situation. 

PROOF. Let (J E A, E = k2 < 0, 1m k > O. Consider the six distinct 2 x 2 matrices 

(1.9.82) 

and let 

'IV (k, (J) ::s; 'If' (k, (J), j #- j', j, j' = 1, 2, 3, (1.9.83) 

denote their eigenvalues. From Rayleigh's theorem we infer 

Yf,A'Y(k, (J) ::s; yfJ'(k, (J) ::s; yz,A.Y(k, (J) ::s; y~j'(k, (J) ::s; Y3,A'Y(k, (J), (1.9.84) 

where (cf. (1.9.60» 

(1.9.85) 

denote the eigenvalues ofr«,A.y(k, (J). Now we can follow the arguments in the proof 
of Theorem 1.9.7. • 

E~l,A(O) E~l,A«(Jo) E~2,A(0) E~2,A«(JO) E~3,A(0) E~3,A«(JO) 0 

E~l (1,3) E~l(l, 3) E~2(l, 3) E~2(1, 3) 

E~2(l, 2) E~2(1, 2) 
, 

E~l(1, 2) E~1(1,2) I 
I 
I 

E~1(2, 3) E11 (2,3) E~2(2, 3) E~2(2, 3) , 
I 
I 0 I 

E~A,y E~2 E~2 E~l E~1 E~A,y 

Figure 34 

The analog of Theorem 1.9.8 now reads 

Theorem 1.9.11. Let IX = (IX 1 , 1X2' 1X3) E ~3, 1X1 < 1X2 < 1X3' let A be a Bravais 
lattice, and let Y = {Yl' Y2' Y3} cr. Furthermore, let f be an arbitrary 
finite subset of Y + A, i.e., 

f = {Yl + All' .'" Yl + AN1d U {Y2 + A12> "., Y2 + AN22 } 

U {Y3 + A13"'" Y3 + AN33 } c Y + A 

and assume that 

(1.9.86) 

(1.9.87) 
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Then 

IO"( -Aa,A,y) n [E~A,y, E~"A(eo)]l = Nt> 

IO"( -Aa,A,y) n [E~1' E~z]1 = Nz, 

IO"( -Aa,A,y) n [E~3,A(0), E~A,y] I = N3 , 

counting multiplicities. 

PROOF. Similar to that of Theorem 1.9.8. 

(1.9.88) 

• 
Our last result concerning defects in ternary ordered alloys is the following 

analog of Theorem 1.9.9. 

Theorem 1.9.12. Let rJ. = (rJ. 1 , rJ. z, rJ. 3 ) E 1R 3 , rJ. 1 < rJ.z < rJ. 3 , let A be a Bravais 
lattice, and let Y = {Yl, Yz, Y3} c t. Furthermore, let Y be an arbitrary 
subset of Y + A, 

Yc Y+A (1.9.89) 

and assume (1.9.87). Then 

0"( -Aa,y) S [E~A,y, E~"A(O)] u [E~3,A(e), E~A,y] u [0,00). (1.9.90) 

PROOF. Similar to that of Theorem 1.9.9. • 
Notes 

Section 111.1.1 
The presentation here is taken from Grossmann, H0egh-Krohn, and Mebkhout 
[227] which contains the first existence theorem in the general case of infinitely 
many centers. 

Section 111.1.2 
The first approximation theorem in terms of local scaled short-range Hamil
tonians in the infinite center case appeared in Albeverio and H0egh-Krohn 
[24]. They proved convergence in strong resolvent sense. This was later 
improved by [251], and we follow the latter approach although here for 
simplicity we only consider the case with a finite number of different potentials. 
The general case where all the potentials are allowed to be different is treated 
in [251] with additional assumptions on the potentials. 

Section 111.1.3 
The one-electron model of an infinitely extended regular structure, e.g., a 
crystal, is one of the oldest models in quantum mechanics [290], [332], [391], 
[493]. The model, leading to a one-body Schrodinger operator with a periodic 
interaction, has been studied under the name of Floquet theory in mathe
matics and Bloch theory in physics. See also the notes to Sects 1.4 and 1.8. 
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Section m.I.4 
The basic manipulations at the beginning of this section, due to [53], [54], 
are taken from Reed and Simon ([391], Sect. XIII.16), see also [85], [160], 
[443], [444]. The formula for the energy of the three-dimensional crystal with 
point interactions was first derived heuristically by Goldberger and Seitz 
in 1947 [216] (see also [479]), and was rediscovered by Grossmann, Heegh
Krohn, and Mebkhout [227]. A recent treatment appeared in [279J. Prior 
to [227J there had been some work on higher dimensional analogs of the 
Kronig-Penney model, which led to solvable models with certain nonsepa
rable interactions [467J. The basic theorems, Theorems 1.4.4 and 1.4.5, are 
essentially taken from [227]. Theorem 1.4.1 and the consistency part of 
Theorem 1.4.3 are due to [249], while (1.4.47) is contained in [227]. Theorem 
1.4.6 was proved in [243]. The approximation of -,'\",,,(0) in terms oflocal 
short-range Hamiltonians H.,A(O) first appeared in [251], see also [178], and 
essentially we follow the former approach. 

Section m.I.S 
The formula for the energy bands was first derived heuristically by Demkov 
and Subramanian in 1970 [153], see also [88], [132], [151], [152], and later 
proved rigorously by Grossmann, Heegh-Krohn, and Mebkhout [227] (see 
also [281]). Here we essentially follow [227] while the approximation in terms 
of local scaled short-range Hamiltonians is taken from [251]. In [152] the 
problem is studied when the infinite straight polymer is replaced by a finite 
but long chain. 

Section m.I.6 
The model of an infmite monomolecular layer was first studied by Grossmann, 
Heegh-Krohn, and Mebkhout [227], from which its basic properties are 
taken. A recent treatment appeared in [280]. Theorem 1.6 appears to be new. 
The short-range expansion is taken from [251]. 

Section m.I.7 
The results in this section were announced in [50], [52], but the detailed proof 
appears here for the first time. For general scattering theory off objects with 
different left and right space asymptotics, e.g., half-crystals, we refer to [136]. 
For Bragg scattering in the context of neutron scattering we refer to [141], 
[413]. 

Section m.l.8 
The discussion in the first part of the section is essentially taken from [391], 
Ch. XIII. For the density of states for three-dimensional point interactions 
we refer to [215]. The illustrations of the Fermi surface are all taken from 
Heegh-Krohn, Holden, Johannesen, and Wentzel-Larsen [242]. For a com
prehensive discussion of Fermi surfaces we refer to [126]. 
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Section ID.l.9 
Theorem 1.9.1 is new, except for part (a) which is taken from Albeverio, 
H0egh-Krohn, and Mebkhout [31]. Their proof, however, is based on an 
analog of the proof of Theorem 11.1.1.1, in which -A is replaced by -A",A' 
and which in turn is perturbed by a sum of point interactions located at Z. 

Theorem 1.9.2, Corollary 1.9.3, and Theorem 1.9.4 appear to be new, 
while Theorems 1.9.5-1.9.12 are all taken from H0egh-Krohn, Holden, and 
Martinelli [243]; We also refer to [72], [391], and [481] for general results 
on impurity scattering. 



CHAPTER 111.2 

Infinitely Many b-Interactions in 
One Dimension 

111.2.1 Basic Properties 

In Sect. 11.2.1 we studied D-interactions centered at a finite set Y = 

{y 1, ... , YN} c !R. The purpose of this section is to study the case N --+ 00 and 
hence treat the corresponding model with infinitely many centers. 

Let J c 7L be an infinite index set and let Y = {Yj E !RU E J} be a discrete 
subset of !R such that for some d > ° 

inf I Yj - Yj'1 = d > 0, 
j,j'EJ 
Nj' 

Yj' Yj' E Y, j,j' E J. (2.1.1) 

For notational convenience we assume that j E J implies j + 1 E J and 
Yj < Yj+l' We also define Ij = [Yj-l, Yj],j - 1,j E J, and (withjinf = in~EJ(j)) 
IiI•f = (-00, Yj;.f] in the case where inf Y = Yj;nf > -00 such that UjEJIj = !R. 

In analogy to Sect. 11.2.1, we introduce the minimal operator Hy in LZ(!R) 

. dZ 

Hy = - dxz' f0(Hy) = {g E H2 , Z(!R)lg(Yj) = 0, Yj E Y,j E J} (2.1.2) 

and note that Hy is closed and nonnegative. Its adjoint operator reads 

. dZ 

H: = -dx2 ' 

The equation 

HN/(k) = kZt/I(k), 

(2.1.3) 

t/I(k) E f0(Hn PEe -!R, 1m k > 0, (2.1.4) 

253 
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has the solutions 

r/lik, x) = eiklx-YJI, 1m k > 0, Yj E Y, j E J, (2.1.5) 

which span the deficiency subspace of fIy. As a consequence fIy has deficiency 
indices (00, 00). By the discussion in Appendix C a particular class of self
adjoint extensions of fIy is of the type 

d2 

-.1.cz,y = - dx2 ' 

~(-.1.cz,y) = {g E H2,1(1R) n H2,2(1R - Y)lg'(Yj+) - g'(Yj-) = (Xjg(Yj),j E J}, 

(X = {(Xj}jeJ> -00 < (Xj :s; 00, j E J. (2.1.6) 

By definition - .1.cz, y describes <5-interactions of strength (Xj centered at Yj E Y, 
j E J. The special case (Xj = O,j E J, represents the kinetic energy operator -.1. 
on H2,2(1R), whereas (Xjo = 00 for some jo E J leads to a Dirichlet boundary 
condition at Yjo (i.e., g(Yjo + ) = g(Yjo - ) = 0). 

We start with an approximation of -.1.cz,y by means of finitely many 
<5-interactions. 

Theorem 2.1.1. Let (Xj E IR, j E J, and assume (2.1.1). Let M, N E N, 

YM,N C Y, (XM,N C (x, where 

YM,N = {Yj E YI- M :s; j :s; N}, (2.1.7) 

Then 

where 

Pb = {z E ICIz E p( -Acz y ) for M, N ~ No(z), No(z) EN and 
M,N' M,N 

3C: II( -.1.cz y - zt111 :s; C for M, N ~ No(z)}. (2.1.9) 
M,N' M.N 

PROOF. Let 
!i}o = {f e !i}( -Acz,y)lsupp(f)compact}. (2.1.10) 

Then!i}o is a core of -Acz,Y' For a proof ofthis fact let Ie!i}( -Acz,y) and truncate 
I by introducing 

NeN, (2.1.11) 

where 

o :s; tPN :s; 1, 

[Y-N+l + Y-N d YN + YN-l dJ 
xe 2 + 4' 2 -4' 

(2.1.12) 
d d 

x :s; Y-N + 4 or x ~ YN - 4' 

IltP~lloo + IltPNlloo :s; const. 
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Then fN ~ f and 
N~oo 

-1l •. rfN = I/JN(-Il •. rf) - 21/J'"r -I/J~f N~~ -Il •. rf (2.1.13) 

by dominated convergence and the fact that r E L2(1R). Next, let go E £&0' Then 
go E £&( -Il. y ) for M, N EN sufficiently large and 

M,N' M,N 

(2.1.14) 

completes the proof using Theorem VIII.1.5 of [283]. • 
By Theorem VIII.5.1 of [283J the above result implies 

Theorem 2.1.2. Let IX,j E lR,j E J, and assume (2.1.1). Let n c IR be any open 
set such that 0'( -~. y) c n. Then the spectrum of - ~a Y is asymptoti-

• M.N' M,N 

cally concentrated on n, i.e., 

(2.1.15) 

where P-a (.) denotes the spectral projection associated with 
i2M ,N'YM •N 

- ~aM.N' YM.N· Furthermore, 

P-a ((a, b)) S , P-a ((a, b)), 
I1.M,N'YM.N M,N-+oo a.,Y 

with p-a.),) the spectral projection of -~a.Y' 

Clearly, norm resolvent convergence cannot hold in (2.1.8) since, in 
general, -~a.y has gaps in its essential spectrum (cf., e.g., Sect. 2.3) whereas 
O'ess( -~a y ) = [0, (0) for all M, N EN. 

M,N' M,N 

Next we describe the resolvent of -~a.Y. 

Theorem 2.1.3. Let IX,j E IR - {O},j E J, and assume (2.1.1). Then 

(-~a.Y - k2r1 = Gk + L [ra.y(k)li,l(Gk (· - Yj'), ')Gk(' - Y), 
j.j'eJ 

where 

r •. y(k) = [ -lX,j-1bjr - Gk(Yj - Yrn.reJ> 

is a closed operator in 12(y) with 

1m k > 0, (2.1.18) 

[r •. y(k)r1 E .1l(F(Y)), P E p( -~a.Y)' 1m k > ° large enough. (2.1.19) 

PROOF. We first prove that 

f(k) = {(Gk(' - y),f)}jeJ E [2(y), 1m k > 0, 

g(k) = {(g, Gk(' - Yj))LeJ E [2(y), 1m k > 0, 
(2.1.20) 

are analytic in k2 E IC - [0, 00). We estimate 

If(k)jl = I I r dx(i/2k)eikIX-Y;!f(x) I 
neJ J1n 

(2.1.21) 
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where 

an = (1. dXlf(XWr2, n E J, a = {an}nEJ E F(J) (2.1.22) 

and In has been defined after (2.1.1). Introducing 

M(k) = {M(k)jnL,nEJ' 1m k > 0, (2.1.23) 

we want to prove that M(k) E 86(lZ(J)). By explicit integration we get 

I (f dx e_2ImkIX_YII)1/2 S (21m k)-1/2 I {e~ImkIY.-Y~, n sj, 
nEJ I. nEJ e Imkly._1 YII, n ~ j + 1, 

s (21m kfl/22 I e-Imklmld, (2.1.24) 
mEl 

and hence 

IIM(k)IIH = (~~~ '~J IM(k)jnl)1
/
2 (~~~ j~J IM(k)jnl)1/2 

s (21m kfl/2C < 00, (2.1.25) 

where II'IIH denotes the Holmgren bound. Consequently, M(k) is bounded in [2(J) 
and thus f(k) E f2(Y). By the same estimates one proves analyticity of f(k) in 
PEe - [0, 00), 1m k > O. Next let 

gk = [Gk(Yj - Yr)]j,j'EJ> 1m k > O. (2.1.26) 

Then gk E 86(lZ(Y)) since 

IlgkllH = sup I I Gk(Yj - Yr)1 s (2lklfl sup I e-ImkIYrYl,1 
jeJ j'e] jeJ j'e] 

S (2lklfl sup I e-Imklh'ld = (2Iklf1C' < 00, 1m k > O. (2.1.27) 
JEJ rEI 

Thus Ilgkll = O(llm kl-1) as 1m k -+ 00 and r.,y(k) is closed in [2(y) (self-adjoint for 
k = iK, K > 0). Decomposing gk into its diagonal part gp = (i/2k) 1 and off-diagonal 
part g?D = gk - gP, the proof of (2.1.27) shows that 

1m k > O. (2.1.28) 

But the matrix 

{[ _rxj-l - (i/2k)]bjj,}-1 = -{[2rxjk/(2k + irx)JbjrL,rEJ' 

1m k > 0, k #- - irxj/2, j E J, (2.1.29) 

is certainly bounded in [2(y) implying [r.,y(k)r1 E 86W(Y)) for 1m k > 0 large 
enough, k #- - irxj/2, j E J. Moreover, gk' 1m k > 0, is analytic in k2 E C - [0, 00) 
and hence [r.,y(k)r1 is analytic in k2 E C - [0, 00) for 1m k > 0 large enough, 
k #- -irxj/2,j E.J. Next we define in [2(y) 

j E J, N E N, (2.1.30) 
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and 

r",r,N(k) = [r",r,N(k)j)'l)'eJ 

r: (k) _ {r",r'N(k)jj" UI, 1j'1 :;:;; N, 
",r,N ~j' - 0, UI ~ N + 1 or Ii'! ~ N + l;j,j' E J, N E ~. (2.1.31) 

Obviously, fN(k) ~ f(k), gN(k) ~ g(k), 1m k > 0, in 12(y). Take k = i", " > 0. 
N-«J,., N-.oo 

Then r",r,N(i"), N EN, is bounded and self-adjoint with 

11r.,r,N(i")11 :;:;; sup Icxi11 + (2,,)-1 C' (2.1.32) 
1J1:S;N 

and r.,r(i,,) is self-adjoint. Let a = {ajheJ C .@(r.,r(i,,». Then limN_a:> II [r",r,N(i,,) -
r., r(i,,)] all = ° since by splitting 

r.,r,N(i,,) == r~r,N(i") + ~~,N(i") and r.,r(i,,) == r~r(i") + r,,~~(i") 
into its diagonal and off-diagonal parts, respectively, the diagonal parts obviously 
fulfill limN_a:> II[r~r,N(i") - r~r(i,,)]all = ° and the off-diagonal terms are uni
formly bounded and 

11[~~,N(i") - ~~(i,,)]bI12 = I I I r2~(i")jA·12 
IiI.,N+l )'eJ 

jeJ 

b = {bjheJ E 12(y), (2.1.33) 

since r2~(i")jj' = -(1/2,,)e-KIYrYpl < O,j # j',j,j' E J, and hence 

I [I 1~~(i")j)'llbj.IJ2 < 00. 
jeJ j' eJ 

By Theorem VIII.1.5 in [283] we infer 

Finally, we use (cf. (11.2.1.6» 

for" > 0 large enough, ,,# -rx)2, j E J. 
(2.1.34) 

(f, (-!l"N.N,rN.N - P)-l g) = (f, Gkg) + (fN(k), [r.,r,N(k)r1gN(k», 

1m k > 0, k2 E p( -!l" ,r ), (2.1.35) 
N,N N,N 

where (. , .) in the second term on the right-hand side of (2.1.35) denotes the scalar 
product in 12(y). Taking N ..... 00 in (2.1.35), observing Theorem 2.1.1, (2.1.34), we 
obtain (2.1.17) in the weak sense for k = i", " > 0, large enough, " # - cxj /2, j E J. 
Using {Gk(' - Yj)heJ E 12(y), 1m k > 0, we infer (2.1.17) for k = i", " > 0, large 
enough, " # - icx)2,j E J. Analytic continuation with respect to k2 E p( - !l", r) then 
completes the proof. • 

Additional properties of - AG!, yare described in 

Theorem 2.1.4. Let!Xj E ~ - {O},j E J, and assume (2.1.1). Then the domain 
£d( - AG!, y) consists of all elements", of the type 

"'(x) = ~(x) + L [rG!,y(k)]jj}~(Yj·)Gk(X - Yj), (2.1.36) 
j,leJ 
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where rA e 2)( -~) = H2.2(1R) and P e p( -~«.y), 1m k ~ O. The decomposi
tion (2.1.36) is unique and with I/J e 2)( -~«.y) of this form we obtain 

(2.1.37) 

Next let I/J e 2)( - ~«. y) and suppose that I/J = 0 in an open set U £ IR. Then 
-~«.yI/J = 0 in U. 

PROOF. One can follow the corresponding proof of Theorem 1.1.2. • 

Finally, we describe an important one-to-one correspondence between 
- ~IZ. yin L 2(1R) and a certain discrete operator in F(Z). Let J = Z and assume 
without loss of generality that ±oo are accumulation points of Y implying 
IR = Ujez1j(otherwise, one could always take ocj = o for allj <jinf)' Then the 
general solution of 

(-~«.y - k2)I/J(k, x) = 0, 

is given by 

1m k ~ 0, X e lj+l = (Yj, Yj+l) (2.1.38) 

I/J(k, x) = I/J(k, Yj) cos [k(x - y)] + I/J'(k, Yj+ )k-1 sin[k(x - Y)], 

I/J'(k, x) = -I/J(k, Yj)k sin[k(x - Y)] + I/J'(k, Yj+) cos [k(x - Yj)], 

with 

Introducing in C2 

[ I/J(k, Yj) ] 
'¥j(k) = I/J'(k, Yj_) , 

1j(k) 

1m k ~ 0, X e lj+l, (2.1.39) 

I/J'(k, Yj+) - I/J'(k, Yj-) = ocjI/J(k, y), j e Z. 
(2.1.40) 

= [COS[k(Yj+l - Yj)] + ocjk-1 sin[k(Yj+l - Yj)] k-1 sin[k(Yj+l - Y)]J, 
-k sin [k(Yj+l - Yj)] + OCj cos [k(Yj+l - Yj)] cos[k(Yj+l - Y)] 

1m k ~ 0, j e Z, (2.1.41) 

one infers from (2.1.40) that 

1j(k)'Pik) = 'Pj +1 (k), 

Next we introduce in C2 

1m k ~ 0, jeZ. (2.1.42) 

W,(k) = [1 0 ] 
J cos[k(Yj+1 - Yj)] _k-1 sin[k(Yj+l - Yj)] , 

1m k ~ 0, je Z, 

1m k ~ 0, je Z, 

(2.1.43) 

(2.1.44) 
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and obtain 

and 

U}-l (k)'Pik) = <l>ik), 1m k ~ 0, j E E, (2.1.45) 

[U}_1(k)T1 = -(k/sin[k(Yj - Yj_dJ)[-k-1 si~[k(Yj - Yj-l)] 01J, 
-COS[K(Yj - Yj-dJ 

1m k ~ 0, k"# nm(Yj - Yj_lt 1, j, m E E. (2.1.46) 

Defining 

Mik) 

= U}(k) 1j(k) [U}-l (k)Tl 

[ 
k-l . [k( )J + sin[k(Yj+1 - Yj-l)] aj sm Yj+l - Yj -----:-. ---'-------'----

= sm[k(Yj - Yj-l)] 

1 

s~n[k(Yj+1 - yj)J] 
sm[k(Yj - Yj-dJ , 

° 
1m k ~ 0, k"# nm(Yj - Yj-ltl, j, m E E, (2.1.47) 

we get 

Mik)<I>j(k) = <l>j+l (k), 1m k ~ 0, k"# nm(Yj - Yj-ltl, j, m E E, (2.1.48) 

or equivalently 

sin[k(Yj - Yj-dJ t/lj+l (k) + sin[k(Yj+l - Yj)] t/lj-l (k) 

= {ajk-1 sin[k(Yj+1 - Yj)] sin[k(Yj - Yj-l)] + sin[k(Yj+1 - Yj-l)J}t/lj(k), 

1m k ~ 0, k"# nm(Yj - Yj_d-1, j, m E E, t/lj(k) == t/I(k, Yj), 

1m k ~ 0, j E 7l. (2.1.49) 

Of course, (2.1.48) and (2.1.49) could have been derived directly (as we will do 
in Ch. 3) without introducing the second type of transfer matrices 1j(k), j E E. 

We summarize this calculation in 

Theorem 2.1.5. Let aj E IR, j E J, and assume (2.1.1). Then any solution 
t/I(k, x), k2 E IR, 1m k ~ 0, k "# nm(Yj - Yj-l tl, j, m E E, of (2.1.38) (given by 
(2.1.39) and (2.1.40)) satisfies (2.1.49). Conversely, any solution of (2.1.49) 
defines via 

sin[k(x - yJJ 
+ {t/lj+l(k) - t/lik) cos[k(Yj+l - y)J} . [k( )J' 

sm Yj+l - Yj 

X E Ij+l, k2 E IR, 1m k ~ 0, K"# nm(Yj - Yj_lt 1, j, m E E, (2.1.50) 

a solution of (2.1.38) (with (2.1.39) and (2.1.40) being valid). In addition, 
t/I(k) E U(IR) implies {t/lj(k) = t/I(k, Yj) }jel E IP(E) for p = 00 or p = 2. More-
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over, exponential growth (resp. decay) of I/I(k, x) (i.e., c1eHlxl ~ II/I(k, x)1 ~ 
c2 eHlxl ) implies that of {I/Ij(k) }jeZ and at the same rate (i.e., c~ eH1yJi ~ 
I I/Ij(k) I ~ c;e HlYJ1 ). In the special case of a lattice structure of Y, i.e., 
Yj+1 - Yj = a > 0, j E 7L, the last two statements may be reversed, i.e., 
{I/Iik)}jeZ E IP(7L) implies I/I(k) E U(IR) for p = 00 or p = 2 and similarly for 
the exponential growth (resp. decay) rate. 

PROOF. It remains to prove the last statements. Let k2 E IR, 1m k ~ 0, k-:f:. 
nm(Yj - Yj-lrt, j, m E 7L, and assume all solutions t/J(k, x) and t/Jik) to be real. If 
t/J(k) E U(IR) and thus t/J"(k) E U(IR) we infer t/J'(k) E U(IR) ([283], p. 192) for all 
1 ~ p ~ 00. Then {t/Iik) = t/J(k, Yj)hez E [P(7L) follows from 

t/J(k, Yj) = t/J(k, x) cos [k(x - Yj)] - t/J'(k, x)k-1 sin[k(x - Yj)], x E ~+!, (2.1.51) 

for p = 00 and from 

[t/J(k, Yj)]2 + k- 2[t/J'(k, Yj+ )]2 = [t/J(k, X)]2 + k- 2[t/J'(k, X)]2, x E ij+!, (2.1.52) 

and (2.1.1) for p = 2. The assertions for the growth (resp. decay) rate are obtained 
as follows. From the Schrodinger equation we see that t/J"(k, x) obeys the same 
inequalities as t/J(k, x). The corresponding inequalities for t/J'(k, x) now simply result 
after integration with respect to x. Conversely, assume {t/Jik) hez E [P(7L) for p = 00 

or p = 2. The case p = 00 directly results from (2.1.50) and the case p = 2 follows 
from (2.1.50) and 

[t/J(k, X)]2 + k-2[t/J'(k, X)]2 

X E ij +!. 

(2.1.53) 

• 
For later purposes we rewrite the basic formulas in the special case of a 

periodic lattice Y where Yj+l - Yj = a > 0, Yj E Y,j E 7L. Then the matrix Mik) 
becomes 

Mik) = [rx.jk-1 Sin(ka~ + 2 cos(ka) -1J o ' 1m k ~ 0, j E 7L, (2.1.54) 

and (2.1.49) simply reads 

I/Ij+l(k) + I/Ij-l(k) = {rx.jk-1 sin(ka) + 2 cos(ka)}I/Ij(k), 

1m k ~ 0, k =1= nm/a, j, m E 7L. (2.1.55) 

We emphasize that (2.1.38)-(2.1.40) lead directly to (2.1.55) implying the 
irrelevance of the exceptional points km = nm/a, m E 7L, in this case. However, 
when starting from (2.1.55), to get back (2.1.38)-(2.1.40) one still encounters a 
g-term in (2.1.50) at the exceptional values km = nm/a, m E 7L. It then depends 
on the sequence rx. = (rx.j)jeZ whether I/I(k, x) is well defined at such values 
km and hence whether there is a one-to-one correspondence between solu
tions of (2.1.38) (fulfilling (2.1.39) and (2.1.40» and (2.1.55). In any case these 
exceptional points are irrelevant for determining the continuous spectrum of 
-~I%.Y· 
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111.2.2 Approximations by Means of Local Scaled 
Short-Range Interactions 

The purpose of this section is to extend the approximation result of Sect. 11.2.2 
to the case of infinitely many centers. In addition to assumption (2.1.1) we 
introduce real-valued potentials Jj E U(IR), j E J, and WE U(IR) such that 
almost everywhere 

IJjI ~ W, 

Define the quadratic forms in L 2(1R) 

j E J. 

q.,yJf, g) = Aj(e) t dx e- 2 Jj((x - Yj)/e)f(x)g(x), 

(2.2.1) 

° < e < eo, j E J, (2.2.2) 

and 

q~j,YJf, g) = IXjf(y)g(Yj), 

with 

Yj E Y, j E J, (2.2.3) 

j E J, (2.2.4) 

and Aj E CO((O, eo)) real-valued for some eo > ° with 

Aie) .fo elXj + o(e), j E J. 

By Lemma C.5 

Q~,y(f, g) = (I', g') + L q~j,YJf,g), 
jeJ 

(2.2.5) 

° < e < eo, Y = {yjU E J}, (2.2.6) 

and 

IX = (IX 1 , 1X2 ,oo.), (2.2.7) 

are closed forms in L2(1R) bounded from below. The unique self-adjoint and 
semi bounded operator associated with Q., y is denoted by H., y and, as shown 
in Appendix C, the operator associated with Q~, y is precisely - ~~, y as defined 
in (2.1.6). 

Our main result then reads 

Theorem 2.2.1. Assume (2.1.1), Jj, WE Ll(lR) real-valued, I Jjl ~ W, ° < e < eo, Aj(e) = eAj(O) + o(e) as e! O,j E J, and let H., y be defined as above. 
Then, as e ~ 0, H., y converges to - ~~, y in norm resolvent sense, i.e., if 
k2 E p( -~~,y) then k2 E p(H.,y) for e > ° small enough and 

n-lim (H.,y - k2)-1 = (-~~,y - k2)-l, 
..!,o 

Y c IR, (2.2.8) 
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where 

!Xj = Aj(O) t dx Jj(x), j EJ. (2.2.9) 

PROOF. Let f, 9 E CO'(IR) and 

) {
I, Ix - yjl ~ b, 

Yfj E CO'(IR, 0 ~ Yfj ~ 1, Yfix) = 
0, Ix - yjl ~ 2b, 

for some 0 < b < d/4. 

(2.2.10) 

Then, for e small enough,j E J, 

Iqe,y/f, g) - qai'Yi(f, g)1 

~ lA-j(O) + 0(1)1 ti_+33 dx e-1 1l-j((x - Yj)/e)llf(x)g(x) - f(y)g(y) I 

+ 21A-j(0) + o(I)lllflloollglloo l-00,yr31u [Yi
H

,00) dx e-1 1l-j((x - Yj)/e) I 

~ C sup If(x)g(x) - f(y)g(Y)1 + C'llflloollglloo r dx W(x) 
IX-Yil'; 3 Jr-oo, -3Ielu[3Ie,00) 

~ C t~+2233 dx YfiX) [I1'(x)llg(x)1 + If(x)llg'(x)l] 

+ C'llflloollglloo l-00,-3IelU[3Ie,00) dx W(X) 

~ C(ti_+223
3 

dXIYf(XWr2 [II1'llllglloo + Ilflloollg'll] 

+ C'llflloollglloo Loo,-3IelU[3Ie,00) dx W(X) 

~ C" {b 1/2 + r dx W(X)} II !II +1 II 9 II +1, J (-00, -3Ielu[3Ie,00) 

(2.2.11) 

where 

(2.2.12) 

and ([389], p. 168) 

(2,2.13) 

have been used. Since CO'(IR) is a form core for - ~ on H2.2(1R) and qe'Yi' qai'Yi are 
infinitesimally bounded with respect to the kinetic energy form on H 2 , 1 (IR), the 
estimate (2.2.11) extends to all f, 9 E H2 , 1 (IR). Next, let ifl" I/!, E H 2 , 1(1R) and 

supp(ifl,), supp(I/!,) c [dl - 3;, dl + 3;J, IE 7l.. 

Choose a dlj, Ij E 7l., which is closest to Yj E Y. Then for I = Ij,lj ± 1,lj ± 2, the above 
method shows that for any v > 0 there exists an 0 < e1 < eo such that for all 
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1= Ij' Ij ± I, Ij ± 2. (2.2.14) 

For IE 7L - {Ij' Ij ± I, Ij ± 2} we get from ¢J,(Yj) = "'/(Yj) = O,j E J, 

Iq.,Yj(t/J" "'I) - qaj,yi¢J" "'/)1 = Iq •• yit/J" "'/)1 

IE 7L - g, Ij ± I, Ij ± 2}. (2.2.1S) 

From (2.2.14) and 

f(dl+(3dI2)-Yj)/. f-1/2. foo 
I dx W(x) :s; 3 dx W(x) + 3 dx W(x) 

leZ-(/j,lj± 1,/j ±2) (dl-(3dI2)-Yj)/' -00 112. 
(2.2.16) 

we actually infer that for any v > 0 there exists an 0 < 6, < 60 such that for 
0< 6:S; 6" jEJ, 

Iq.,Yj(¢J, "') - qaj,Yj(¢J, "')I:s; a/II¢JII+III"'II+1' j E J, 

for all ¢J, '" E H 2 ,1(1R), supp(¢J), supp("') c [dl - (3d/2), dl + (3d/2)] with 

I a,<v. 
leZ 

Thus Lemma C.S applies and yields for all v > 0 

IQ.,r(f,f) - Qa,r(f,f)1 :s; vllfll~" fE H 2,1(1R), 

implying 

(2.2.17) 

(2.2.18) 

(2.2.19) 

(2.2.20) 

But (2.2.20) implies norm resolvent convergence of H •. r to -&a,r by Theorem 
VIII.2Sc of [388]. • 

We observe again that if Ajo(O)flRdx Jjo(x) = 0 for some jo E J, the [)-
interaction at Yjo disappears in - L\ .. , y. In particular, He, y converges to - L\ as 
8! 0 if and only if Aj(O) fIR dx Jj(x) = 0 for allj E J. 

Obviously, our proof of Theorem 2.2.1 represents an alternative to the 
corresponding proofs of Theorems 1.3.2.3 and 11.2.2.2. 

111.2.3 Periodic a-Interactions 

In this section we treat the case of periodic o-interactions on the real line. We 
start with the simplest case of the Kronig-Penney model and subsequently 
discuss generalizations of it. 

In the Kronig-Penney model the Bravais lattice A simply reads 

A = {naln E Z}, a >0, (2.3.1) 
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such that the Wigner-Seitz cell r is given by 

r = [ - a12, aI2). 

The dual lattice r is then defined by 

r = {nbln E Z}, 

and the Brillouin zone A equals 

b = 2nla, 

(2.3.2) 

(2.3.3) 

A = [ - b12, bI2). (2.3.4) 

Then the Hilbert space L2(1R) can be decomposed as 

L2(1R) = 011-1 L2(A; P(r» == 011-1 rEB d(} P(r), (2.3.5) 
] [-b/2.b/2) 

where 

C¥i: L2(1R) -.. L2(A; 12(r», 

(OIIf)«(), n) = !«() + nb), () E [ -bI2, bI2), nEZ, fE U(IR), (2.3.6) 

or as 

U(IR) = ~-1 L2(A, b-1 d(}; U([ -aI2, aI2») 

== ~-1 rEB d: L2([ -aI2, aI2», 
] [-b/2.b/2) 

(2.3.7) 

where 

~: 9'(IR) -.. U(A, b-1 d(}; L2([ -aI2, aI2))), 

ao 

(cfjjf)«(), v) = L ein6Gf(v + na), 
"=-00 

V E [ -aI2, aI2), () E [ -bI2, bI2), fE 9'(IR), 

~-1: L2(A, b-1 d(}; L2([ -aI2, aI2») -.. L2(1R), (2.3.8) 

(cfjj-1g)(V + na) = b-1 fb'2 d(} e- in6G g«(}, v), 
-b/2 

g E L2(A, b-1 d(}; U([ -aI2, aI2»), v E [ -aI2, aI2), nEZ, 

where the closure of cfjj is denoted by the same symbol. 
Next we unitarily implement translations x -.. x + a in L2(1R), i.e., we 

introduce the operator 

(2.3.9) 

implying 

(2.3.10) 

Obviously, T" is diagonal with respect to the decomposition (2.3.7), i.e., 

(2.3.11) 
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(Note that () is the so-called quasi momentum or Bloch's vector.) Now we are 
in a position to study the Kronig-Penney Hamiltonian - .1", A in L 2(~) which 
according to (2.1.6) is defined as 

d2 

-.1",A = - dx 2 ' 

!l)( -.1",A) = {g e H2,1(~) n H2,2(~ - A)lg'(na+) - g'(na-) 

= rxg(na), n e Z}, 

-00 < rx ~ 00. (2.3.12) 

In addition, we introduce the family of self-adjoint operators in L 2« - a12, aI2)) 

d2 

-.1,.,A«()) = - dv2 ' 

!l)( -.1",A«())) = {g«()) e H2,1« -aI2, a12)) n H2,2« -aI2, a12) - {O})I 

g«(), -aI2+) = ei9Gg(9, aI2-), 

g'(9, -a12 +) = e iOag'(9, al2 -), g'(9, 0 +) - g'(9, 0-) = rxg(9, O)}, 

-00 < rx ~ 00, 9 e [ - b12, bI2), (2.3.13) 

(self-adjointness of -.1",A(9) immediately follows from the fact that the 
boundary conditions in (2.3.13) are linearly independent and symmetric, 
[158], Theorem XII.4.30). The spectrum of -.1",A«(J) (cf. Figure 37) is described 
in 

Theorem 2.3.1. Let -00 < rx ~ 00, 9 e [ - b12, bI2). Then the essential 
spectrum of -.1",A«(J) is empty, 

(1 ••• ( - .1,.,A(9)) = 0 (2.3.14) 

and thus the spectrum of -.1",A«(J) is purely discrete. In particular, its eigen
values E:;A(9), meN (ordered in magnitude) are given by 

meN, (2.3.15) 

where k;;A«(J), meN, are the solutions of the Kronig-Penney relation 

cos(9a) = cos(ka) + (rx/2k) sin(ka), Imk ~ O. (2.3.16) 

For rx e ~ - {O} the corresponding eigenfunctions read 

g:;A(9, v) = c 
-a12 < v ~ 0, 

-iOa -ik",A(6)a 1 
-iOa -ik"~O)a ik'.A(/I)V + e e... - -ikO.A(/I)v 

e e ... e... iOa -ik'.A(O)a 1 em, e e... -

o ~ v < a12, 

meN, 9 e [ - b12, bI2). (2.3.17) 
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In addition, E~A(e), ex E IR - {O}, e E [ -b/2, b/2), are nondegenerate and 

o < E~,A(O) < E~,A( -b/2) = re2/a2 < E'i,A( -b/2) < E'i,A(O) = 4re2/a2 

< E3,A(0) < E3,A( -b/2) = 9re2/a2 < E4"A( -b/2) < E4"A(O) = 16re2/a2 

< E'S,A(O) < "', ex> 0, (2.3.18) 

E~,A(O) < E~,A( - b/2) < E'i,A( - b/2) = re2/a2 < E'i,A(O) < E3,A(0) = 4re2/a2 

< E3,A( -b/2) < E4"A( -b/2) = 9re2/a2 < E4.'A(O) < E'S,A(O) = 16re2/a2 

< E'S,A( -b/2) < "', 

{ 
<0 if -ex> 4/a, 

E~,A( -b/2) =0 if -ex = 4/a, 

>0 if -ex < 4/a, 

ex < O. (2.3.19) 

All nonconstant eigenvalues E~A(e), e E [ -b/2, b/2), mEN, are strictly 
increasing in ex E IR. 

For ex = 0 the eigenvalues and eigenfunctions explicitly read 

e E ( - b/2, 0), mEN, 

E~,A(O) = [2(m - 1)re/a]2, E~A( -b/2) = [(2m - 1)re/a]2, 

g~':t(e, v) = Cei{±6+12(m-l)1t/a1}., e E (-b/2, 0), mEN, 

g~,A(O, v) = C {C~S[2(m - 1)rev/a], 
sm[2(m - 1)rev/a], 

Q,A( -b/2 ) = C {cos [(2m - 1)rev/a], 
gm , v sin[(2m _ 1)rev/a], 

mE N, 
m = 2, 3, ... , 

mEN, 

mEN, 

(2.3.20) 

(note that they are only degenerate for () = - b/2, mEN, and () = 0, m ~ 2). 
For ex = 00 the Dirichlet boundary condition at zero implies simple eigenvalues 
(independent of e) 

E:;;,A = m2re2/a2, 

g:;;,A(e, v) = C sin(mrev/a) {(1_' 1)me-i6a, - a/2 < v :::;; 0, mEN. (2.3.21) 
0:::;; v < a/2, 

PROOF. Since a is finite, -~.,A(8) has a compact resolvent which proves (2.3.14). 
The results (2.3.15)-(2.3.17) and (2.3.20), (2.3.21) follow from straightforward com
putations such that it suffices to discuss the nondegeneracy statement and (2.3.18) 
and (2.3.19). For 8 E (-b/2, 0) u (0, b/2) and IX E IR, E:;A(8) is nondegenerate since if 
1/1 1 (8) solves - 1/1" = EI/I for some E E IR and satisfies the boundary condition in 
(2.3.13), then 1/12 ( - 8) = 1/11(8) solves the same equation but different boundary 
conditions with 8 replaced by - 8 (this is also connected with the fact that -~.,A(8) 
and -~.,A(-8) are antiunitarily equivalent under complex conjugation). Since 
there are at most two linearly independent solutions of -1/1" = EI/I, E:;A(8) is simple. 
The cases 8 = 0, -b/2 are more involved. Thus we consider solutions of 

± 1 = cos(ka) + (1X/2k) sin(ka), 1m k ~ 0. (2.3.22) 
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We start with rx > 0: Let k = iK, K ~ O. Then 

± 1 = cosh(Ka) + (rx/2K) sinh(Ka) (2.3.23) 

has obviously no solutions implying that all solutions k of (2.3.22) obey k2 > O. But 
for k > 0 solutions of (2.3.22) are equivalent to solutions of 

sin(ka/2) = 0 or cot(ka/2) = 2k/rx for e = 0, 

sin[(ka + n)/2] = 0 or cot[(ka + n)/2] = 2k/rx 
(2.3.24) 

for e = -b/2, 

which now are simple to realize graphically (cf. Figure 35(a)) since cot(ka/2) 
(resp. cot[(ka + n)/2]) decreases monotonically from +00 to 0 for k in the 

coth(Ka/2) 

,0<'---------- Ka/2 

(a) rx> 0 (b) rx l < -4/a, -4/a < rx 2 < 0 

,...., 
N :::::: 
~ 

,...., 
N :::::: 
~ 

+ N" 
<3 ""i3 ~ ;::; ~ 
0 8 0 

+ N" 
<3 --~ <3 

L...J ~ 

8 8 
(c) rx < -4/a (d) -4/a < rx < 0 

Figure 35 
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intervals (mn/a, (m + l)n/a) (resp. «m + l)n/a, (m + 2)n/a», m = 0, 2, 4, .... Thus 
cot(ka/2) = 2k/a. has precisely one solution in each interval (mn/a, (m + l)n/a), 
m = 0, 2, 4, ... , and mn/a, (m/2)n/a, m = 2, 4, ... , are solutions of sin(ka/2) = O. 
Applying the same argument to the second line in eq. (2.3.24) we obtain (2.3.18). For 
a. < 0 we again take k = iI(;, I(; > 0, and note that (2.3.23) has solutions I(; if and only 
if 

coth(I(;a/2) = 2K/Ia.1 

(1a.1/2K) tanh(Ka/2) = 1 

for () = 0, 

for () = -b/2, 
(2.3.25) 

has solutions. Since coth(Ka/2) strictly decreases from + 00 to + 1 if K varies in (0, 00), 
the equation for () = 0 has precisely one solution for all a. < 0 (cf. Figure 35(b». On 
the other hand, since tanh(Ka/2) is monotonically increasing from 0 to + 1 for 
K E [0, 00), the equation for () = - b/2 has precisely one solution if and only if 

1a.1 ~ 4/a, a. < O. (2.3.26) 

The rest of(2.3.19) now follows from (2.3.24) as described earlier (cf. Figure 35(c), (d». 
Simplicity of the eigenvalues for () = 0, - b/2 follows from the calculation leading 
to (2.3.17). The monotonicity statement after (2.3.19) immediately follows from 
(2.3.16) and the fact that for k ~ 0, sin(ka) has constant sign whenever the right-hand 
side of (2.3.16) is strictly decreasing from + 1 to -lor strictly increasing from -1 
to +1. • 

+1 

>E 0 

-1 

(a) a. = 0 (b) IX = 20 

(c) a. = -16 

Figure 36 F(E) = cos(jE) + (a./2jE) sin(jE), 1m jE ~ O. 

E 
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In Figure 36 the right-hand side of the Kronig-Penney relation (2.3.16) is 
plotted as a function of E = k 2 (a = 1), i.e., F(E) = cos(jE) + (1Y./2JE)· 

sin(JE). Whenever F(E) E [ -1, 1] for some E we can find a () E A such that 
the Kronig-Penney relation F(E) = cos«(}) is satisfied, and we observe the 
familar band structure with infinitely many gaps. For a plot of E~A«(}), IY. > 0, 
cf. Figures 37 and 38. 

E~/-(e) 
\ 

E~1'(e) 

-+--=-+-=---+---> e e 
-n n -n n -n 
(a) Cl = 0 (b) Cl = 2.8 (c) Cl= -2.8 

Figure 37 The eigenvalues E:;1'(8) = [k:;1'(8)]2, rn = 1, ... , 4, of -~ •. z(8) as a 
function of e, - n ::; e < n. 

E E E 

/ / 

/ / 
/ / 

--'-----'''----------~e e e 

(a) Cl = 0 (b) Cl = 2.8 (c) Cl = -2.8 

Figure 38 The energy E = k2 as a function of e ;;::: O. 
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Since -Aa,A commutes with translations implemented by T;. we obtain 

Theorem 2.3.2. Let -00 < oc :::; 00 and A = aZ, a > O. Then 

- --1 fEB dB 0Zt[ -Aa,AJOZt = b[ -Aa,A(B)]. 
[-b/2,b/2) 

(2.3.27) 

PROOF. Let g:"A(B, v), m E I\J, be the eigenvectors of -.1.,A(B) (cf. Theorem 2.3.1) 
and let 

(2.3.28) 

be the linear span of all eigenvectors of - .1.,A(B). Then £&.,A(B) is a core for - .1.,A(B). 
Next we note that (suppressing the IX, A dependence of gm for notational convenience) 

nEZ, mE I\J, (2.3.29) 

and by dominated convergence 

n E"2, mE I\J. (2.3.30) 

Thus Jij-1 gm' m E I\J, fulfill the boundary conditions in £&( - L\.,A)' Using dominated 
convergence once again one infers 

and thus 

= b-1 Jb/2 dB e- in9a E':,;A(B)gm(B, v), 
-b/2 

n E"2, mE I\J, v E [ -aI2, aI2), (2.3.31) 

(<ti[ -.1.,AJ<ti-1gm)(B, v) = E~A(B)gm(B, v) = [-.1.,A(B)gm(B)] (v), 

n E"2, mE I\J, v E [ -aI2, aI2). (2.3.32) 

Since £&a,A(B) is a core for -.1.,A(B) the proof is finished. • 
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E 

----------~~-----------4 a 

Figure 39 The band spectrum of -/).«.1. as a function of IX (cf. also Figures 37 and 38) 

The spectrum of -.:\a,A (cf. Figure 39) is described in 

Theorem 2.3.3. Let IX E IR and A = a7i., a> O. Then -.:\a,A has a purely 
absolutely continuous spectrum 

OCJ 

0'( -.:\.,A) = O'ac( -.:\a,A) = U [a~''', b~,A], a;;A < b~,A ~ a;;t-l, mEN, 
m=l 

(2.3.33) 

modd, 
m even, 

{
Ea,A(-b/2) = m2 n 2/a 2 m odd 

a;;A > (m - 1)2n2/a 2, 

(2.3.34) 

ba,A = m " 

m E~A(O) = m2 n 2/a 2 , m even, 
mEN, 

and Jor IX < ° 
{ 

<0, IIXI > 4/a, 

br,A = E~,A( -bj2) =0, IIXI = 4/a, 

>0, IIXI < 4/a, 

a, A _ {E~A(O) = (m - Ifn2ja2 , 

am - E~A( -b/2) = (m - Ifn2/a2, 
modd, 

m even, 

ba,A = {E~A( -bj2), m odd, 
m E~A(O), m even, 

m = 2, 3,4, ... , 

mEN, 

(2.3.35) 
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with E~A(e) the eigenvalues of -~~,A(e) described in Theorem 2.3.1. As 
m -+ 00, the length of the mth gap a:;.ti - b::"A resp. the width of the mth 
band b::"A - a:;A asymptotically fulfills 

a~,A - b~,A = 21ocla-1 + O(m-1) 
m+l m m-oo ' 

b::"A - a:;A = 2mn2 a- 2 - [2locla + n 2 ]a- 2 + O(m-1), oc E IR. 
m-oo 

(2.3.36) 

Foroc E IR - {O}, -~~,A has infinitely many gaps in its spectrum (since E~A(O), 
E~A( -bj2), mEN, are simple, all possible gaps in 0'( -~~,A) occur). For 
oc = 0, -~O,A equals the kinetic energy operator -~ on H 2,2(1R), and due to 
the degeneracy of E~,A(O), m ~ 2, E~,A( -bj2), mEN, all gaps close, i.e., 

(2.3.37) 

For oc = 00, -~oo,A equals the Dirichlet Laplacian on IR - A and hence 
reduces to an infinite direct sum of Dirichlet Laplacians on (rna, (m + 1)a), 
m E Z. As a consequence its spectrum is pure point with each eigenvalue of 
infinite multiplicity 

O'c( -~oo,A) = 0, 
(2.3.38) 

Furthermore, we note a strict monotonicity of 0'( -~~,A) with respect to 
oc(being a consequence of the monotonicity of E~A(O), E~A( - bj2), mEN, with 
respect to oc E IR as mentioned in Theorem 2.3.1) 

0'( -~~,A) C 0'( -~~"A)' 0 ::; oc' < oc, 
(2.3.39) 

oc' < oc ::; O. 

The band edges a:;A, b::"A, mEN, are continuous with respect to oc E IR. 

PROOF. Let IX E IR. In order to prove the absence of eigenvalues we note that the 
solutions k~A(8) of (2.3.16) are certainly continuously differentiable with respect to 
8. Taking the derivative with respect to 8 in (2.3.16) then yields 

-a sin(8a) = -a[k~A(8)]' sin[k~A(8)a] 

- (1X/2)[k~A(8)r2[k~A(8)]' sin[k~A(8)a] 

+ (1X/2) [k~A(8)rl [k~A(8)]' cos[k~A(8)a], mEN. (2.3.40) 

Assuming [k~A(8o)]' = 0 for some 80 E (-b/2, 0) then yields the contradiction 
sin(8oa) = O. Hence k~A(8) is strictly monotone increasing or decreasing as 8 
varies in (-b/2, 0). Thus the set {8 E (-b/2, 0)IE:;A(8) = Eo},Eo E lR,has vanishing 
Lebesgue measure implying (2.3.33) by Theorem XIII.85 of [391]. Absolute conti
nuity of the spectrum follows from [85], Lemmas 10.12-10.15. The general structure 
of the spectrum in (2.3.33)-(2.3.36) now follows from Theorems 2.3.1 and 2.3.2 and 
the theory of direct integral decompositions (cr., e.g., [391], Ch. XIII.16). The result 
(2.3.38) for IX = 00 is a direct consequence of (2.3.21). 

The asymptotic relation (2.3.36) is obtained as follows. Let, e.g., IX > 0 and 
tan[w(k)] = 1X/2k, k > O. Then the band edges are obtained from (2.3.22) by solving 

(_1)m cos [w(k)] = cos[ka - w(k)], k > O. (2.3.41) 
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The solutions kn > 0 (ordered in magnitude) from n ;;:: 2 on are given by 

meN, (2.3.42) 

such that the mth gap reads 

(b:"lI., a::~l) = (mZnz/az, (mn + 2w(kzm+l))z/aZ). (2.3.43) 

Since 

mn < kZm+1 a = mn + 2w(kzm) < (m + l)n (2.3.44) 

and 

w(k) = arctan(ex/2k) = (ex/2k) + O(k- 3 ) 
k-oo 

(2.3.45) 

one infers (2.3.36). Analogously for ex < O. • 
Given the above result it is simple to compute the density of states of -IlIZ,A 

explicitly. In fact, from (2.3.16) we infer 

Corollary 2.3.4. Let (t E ~ and A = alL, a > 0. Then the density of states 
dplZ,A/dE of -IlIZ,A at a point E = k2 with E~A(O) = E, mEN, is given by 

dplZ,A = _1_ dO = _1_1 sin (ka)1 {1 _ (t ka cot(ka) - 1} 
dE 2nkdk 2nlkllsin(Oa)1 2ak2 ' 

Re k ~ 0, 1m k ~ 0, P E u( -IlIZ,A), mEN, (2.3.46) 

where 0 = O(k) satisfies the Kronig-Penney relation (2.3.16). (Here A denotes 
the interior of a set A c ~.) Furthermore, dplZ,A/dE = O(IE - Emrl/2) near 
the band edges Em E {a!A, b;:.,A }me N' As (t -+ 0, dplZ,A/dE converges pointwise 
to the density of states associated with the kinetic energy operator -11 9n 
H2,2(~), viz. 

dplZ' A dpo,A 
--__ -- = (2nk)-1 

dE IZ .... O dE ' k > 0, E = k 2 E u( -lllZo,A)' (2.3.47) 

PROOF. Follows from (2.3.16) since 

{em - l)n/a. 
£J(k, ex) = (_I)m+1a-1 arccos[cos(ka) + (ex/2k) sin(ka)] + 

mn/a, 

where arccos( . ) denotes the principle value. 

Bloch waves associated with -IlIZ,A are derived in Sect. 2.6. 

modd, 

m even, 

• 
The reader will observe that in contrast to three dimensions (cf. Sect. 1.4) 

where we gave the whole presentation in p-space, the analysis in one dimen
sion is done completely in x-space. For completeness we will now indicate 
how one could employ the p-space analysis of Sect. 1.4 in one dimension also. 
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Consider first the operator in F(r) 

(HW(O)g)(y) = (y + Of g(y) + a-1 flW(xw(- + 0), g)Xw(Y + 0), y E r, OJ > 0, 

g E f0(HW(O)) = {g E 12(r)IY~r (y + 0)4Ig(yW < oo}, 

where 

(2.3.49) 

{
I, 

Xw(p) = 0, 
Ipi ::; OJ, 

Ipl > OJ, 
(2.3.50) 

which is the analog of(1.4.30) in one dimension with N = 1, Y1 = 0. By Lemma 
B.5 the resolvent of HW(O) reads 

(HW(O) - k2)-1 = Gk(O) - [~+ (xJ + 0), Gk(O)xw(' + 0))J-1. 
pW 

. (Gk(O)Xw(- + 0), . )Gk(O)Xw(' + 0), (2.3.51) 

where 

(Gk(O)g)(y) = ((y + 0)2 - Pr1g(y), 

k2 $ !r + 01 2, 1m k Z 0, g E F(r), 0 E X, Y E r. (2.3.52) 

The subtle point in the three-dimensional case was the computation of the 
limit of the factor in front of the rank-one part in (2.3.51) as OJ -+ 00. In one 
dimension this term can easily be computed, viz. ([221J, p. 23) 

(Xw(· + 0), Gk(O)Xw(' + 0)) 

a sin(ka) 
(2.3.53) 

2k[cos(ka) - cos(Oa)] ' 

and hence there is no need to renormalize the coupling constant fl w, i.e., we 
simply choose flw = rJ. for all OJ. Thus 

n-lim (HW(O) - k2r 1 
W .... oo 

where 

== (-A",A( -0) - k2r 1 

( I cos(ka) - cos(Oa) (-(0) ) (0) 
= Gk(O) + rJ. a) (0) (k) (12k)' (k ) Fk " Fk , cos a - cos a - rJ. sm a 

k2 E p( -A",A( -0)), 1m k z 0, 0 E X, -00 < rJ. ::; 00, (2.3.54) 

k2 $ !r + 01 2, 1m k Z 0, 0 E X, Y E r. 
(2.3.55) 

As a byproduct we obtain explicitly the resolvent of -A",A(O). 
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Finally, we would like to illustrate the phenomenon of spectral concentration 
in connection with transmission probabilities when approximating -1l-n/2, nZ 

by N-center Hamiltonians with b-interactions of strength -n/2 centered at 
N equally spaced points of mutual distance- n. Figure 40(a)-(e) taken from 
[397] clearly indicates the formation of gaps in the spectrum of the limiting 
Hamiltonian -1l-n/2 ,nZ associated with vanishing transmission probabilities 
(cf. also [127]). 
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Figure 40 Transmission probability 1~,y(kW, k > 0, for IX = -nI2, Y = {Yl"'" YN}, 
IYj - Yj'1 = n,j * j',j,j' = 1, ... , N [397]. Reprinted with the permission ofthe Society 
for Industrial and Applied Mathematics from C. Rorres, "Transmission coefficients 
and eigenvalues of a finite one-dimensional crystal," SIAM Journal on Applied M athe
matics, Volume 27, Number 2,1974. All rights reserved. Copyright 1974 by the Society 
for Industrial and Applied Mathematics. 
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So far we have discussed the standard approach to the Kronig-Penney 
model based on direct integral decompositions of the type (2.3.27). For 
subsequent generalizations of this model spectral results are much quicker 
obtained by using the discrete operator (2.1.55) mentioned at the end of 
Sect. 2.1. In particular, for the Kronig-Penney model, (2.1.55) reads 

t/lj+1 (k) + t/lj-1 (k) + /l(k)t/lj(k) = e(k)t/lik), 

/l(k) = -rtk-1 sin(ka), e(k) = 2 cos(ka), 1m k ~ 0, jEll. (2.3.56) 

This difference equation is solved by the ansatz 

'/'. = e±i8aj 
'I'J ' 

1m 0 ~ 0, jEll, (2.3.57) 

immediately implying the Kronig-Penney relation (2.3.16). We thus get 
k2 E 0'( - All, A), 1m k ~ 0, k #- nm/ a, iff a 0 E [0, b/2] exists such that (2.3.16) is 
fulfilled. Near the exceptional values km = nm/a, mE lL - {O}, the expression 
(2.1.50) blows up since the energies n2 m2/a2 , mE lL - {O}, lie at the band edges 
(cf. (2.3.34) and (2.3.35)). At k = 0, formula (2.1.50) ceases to make sense for 
rt ~ ° and for rt ::;; -4/a. 

Next we turn to a generalization describing ordered alloys. Let rt{p) be a 
sequence with period pEN, i.e., 

rt{p) = {rt\P)}. -" 
~ JEI..' jEll. (2.3.58) 

Then (2.1.55) becomes 

t/lj+1 (k) + t/lj-1 (k) + /lj(k)t/lj(k) = e(k)t/lj(k), 

/lj(k) = - rtjP)k-1 sin(ka), e(k) = 2 cos(ka), 

1m k ~ 0, k #- nm/a, j, m E lL, (2.3.59) 

which can be written as 

p-1 n Mj(k)Wo(k) = Wp(k), 1m k ~ 0, k #- nm/a, mE lL, (2.3.60) 
j=O 

where Mj(k) and Wj(k) have been defined by (2.1.54) and (2.1.44), respectively. 
Since det[Mj(k)] = 1,j E lL, nf':~ Mik) has eigenvalues A., A. -1 E C. By Bloch's 
theorem or Floquet theory ([160], [334]) Wp(k) = e ip8aWo(k) and the eigen
values are given by e±i8pa implying 

r 1 Tr[U Mik)] = cos(Opa), 1m k ~ 0, 1m 0 ~ 0. (2.3.61) 

The energy bands are of course obtained from (2.3.61) by checking for which 
k, 1m k ~ 0, k #- nm/a, m E lL, 2-1 Tr[I1f':~ Mj(k)] lies in the interval [ -1, 1] 
(or equivalently for which k a corresponding O(k) E [0, n/pa] exists). 

It turns out that the product 

m-1 

.Am(k) = n Mik), mEN, (2.3.62) 
j=O 
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can be recursively computed in terms of certain Sturm-Liouville polynomials 
Pm(e, P.o, ... , p.m), Qm(e, P.l' ... , p.m), m = -1,0, 1,2, .... In fact, 

mEN, (2.3.63) 

where 

Po = e - P.o, 

(2.3.64) 

Q-l = 0, Qo = 1, 

meN. (2.3.65) 

In particular, the density of states dprz{P),A/dE of -A,,(P),A at a point E = P in 
the mth band E~P),A(O) = E, meN, of such models is given by the simple 
expression 

dp,,(P),A 1 dO (-1r+l d {[P-l ]} 
dE = 2nk dk = 4npak dk arccos Tr JJ Mj(k) , 

Re k ~ 0, 1m k ~ 0, k2 e cr( - A"'P),A)' meN. (2.3.66) 

We discuss some special cases. First, let 

P= 2, tx e IR, j e 7L. (2.3.67) 

Then (2.3.61) yields the spectral condition 

cos2(Oa) = cos2(ka) - (tx/2k)2 sin2(ka), 1m k ~ 0, 0 e [ -b/2, b/2). (2.3.68) 

More generally, taking 

p=2, tx, P e IR, (2.3.69) 

(2.3.61) implies for the spectrum 

cos2 (Oa) = [cos(ka) + (tx/2k) sin(ka)] [cos(ka) + (P/2k) sin(ka)], 

1m k ;;:: 0, 0 e [ -b/2, b/2). (2.3.70) 

Next we consider a case which models a certain super lattice structure 

o:s;,j:s;, Pl - 1, 

Pl:s;,j:s;,Pl+P2- 1, yl =l=Y2' Yl'Y2 elR, 
(2.3.71) 

P = Pl + P2' Pl' P2 e N, j e 7L. 

Then the matrix.Ap splits into a product oftwo matrices .API and .APl which 
are associated with the constant sequence Yl and Y2 and with Chebyshev poly
nomials, respectively. Abbreviating 

2 cos ,p, = 2 cos(ka) + y,k- l sin(ka), 1m k ;;:: 0, Im,p,;;:: 0, 1 = 1, 2, 
(2.3.72) 
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one gets from (2.3.64) and (2.3.65) (cf. [1], p. 782) 

P~.!!1 = Q~I) = Um(cos~z) = sin[(~ : 1)~I] , 
sm I 

mE No, 1 = 1,2, (2.3.73) 

that 

[

Sin[(P2 + 1)~2] 
sin ~2 

sin(p2~2) 

sin ~2 

sin(p2~2) ][Sin[(P1 + 1)~1] 
sin ~2 sin ~1 

sin[(~2 -1)~2] sin(p1 ~d 

sm ~2 sin ~1 

sin(p1 ~1) ] 
- sin ~1 

_ sin[(p1 -1)~1] 

sin ~1 
(2.3.74) 

which implies by (2.3.61) 

2 sin ~1 sin ~2 cos(Opa) = sin[(p1 + 1)~1] sin[(p2 + 1)~2] 

- 2 sin(p1~1) sin(p2~2) 

+ sin[(p1 - 1)~1] sin[(p2 - 1)~2]' 

o E [-bj2, bj2). (2.3.75) 

Other examples, taking, e.g., different periods a, b, c, ... , a # b, a # c, 
b # c, ... , and different strengths IX, {3, y, .. . ofthe interactions are now obtained 
in a straightforward manner from (2.1.55). 

We conclude this series of examples with an interesting generalization of 
the Saxon and Butner conjecture concerning gaps in certain "substitutional 
alloys" described by b-interactions. The alloy is assumed to consist of N E N 
different sorts of "atoms" represented by equally spaced b-interactions (with 
fixed distance a > 0 between each other) of strength Yn E IR, Yn # Yn" n # n', n, 
n' = 1, ... , N, arranged in the following way: The primitive cell t ofthe model 
consists of P1 points supporting b-interactions of strength Yn" followed by P2 
points supporting b-interactions of strength Yn2' up to PM points supporting 
b-interactions of strength YnM' M ;?: N, MEN. In particular, each Yn' n = 

1, ... , N, occurs at least once and a finite number of repetitions of blocks 
with b-interactions of strength Yn are allowed. The corresponding model 
Hamiltonian is then denoted by - Lla Y +A (cf. Sect. 1.4) where 

P' p p 

IXp = (Yn" ... , Yn" Yn2' ... , Yn2' ... , YnM' ... , YnM)' 
I I I I I I 

PI-times 

Yn E~, Yn # Yn" n # n', n, n' = 1, ... , N, PI E N, 

1 = 1, ... , M, M, N E N, 

M 

Yp = {nalO :::;: n :::;: P - I}, Ap = palL = {npaln ElL}, P = 2: PI' (2.3.76) 
1=1 

Our main result concerning gaps in the spectrum of -Lla Y +A then reads 
p' p p 
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Theorem 2.3.5. Assume (2.3.76) and define -1\ .. Y +A as described above. 
P' p P 

Let 

N 

PN = n p( - 1\Yn,aZ), a> 0, N EN, (2.3.77) 
n=1 

be the intersection of all spectral gaps of the Hamiltonians of the pure 
Kronig-Penney crystals with potential strength Yn E IR and fixed Bravais 
lattice alL, a > 0, modeled by - 1\Ynoaz, n = 1, ... , N (cf (2.3.12)). Then 

for all pEN, (2.3.78) 

i.e., common spectral gaps of all pure crystals described by - 1\Yn,az, 

n = 1, ... , N remain spectral gaps for all alloys represented by -1\"p,Yp+Ap' 

pEN, consisting of N sorts of atoms. 

PROOF. According to our example discussed in (2.3.71)-(2.3.75) we get 

.,/{p(k) = Ii "/{p,(k) = Ii [sin[~PI + 1)~/(k)] -sin[p/~(k)] ] 1 
1=1 1=1 sm[p/~/(k)] -sin[(pI - 1)~/(k)] sin[~/(k)]' 

where 

2 cos[~/(k)] = 2 cos(ka) + Yn,k-1 sin(ka), 

(2.3.79) 

1m k ~ 0, 1m ~, ~ 0, I = 1, ... , N, 
(2.3.80) 

and entries in "/{p,(k) are the Chebyshev polynomials (2.3.73). Energies k2 E IR in the 
spectral gap of all pure crystal Hamiltonians - Llyn,az are now simply characterized 
by 

12 cos(ka) + Ynk-1 sin(ka)1 > 2, 1m k ~ ° for all n = 1, ... , N, (2.3.81) 

or equivalently by 

{ il/ll(k), 
~/(k) = il/l,(k) + n, I/I,(k) > 0, 1m k ~ 0, 1= 1, ... , N. (2.3.82) 

Thus in order to prove (2.3.78) it suffices to show that (2.3.82) for some fixed k, 
1m k ~ 0, implies for all p E !\I 

(2.3.83) 

It suffices to delete the absolute values in (2.3.81) and (2.3.83) (i.e., to choose 
~(k) = il/l,(k». This case is now proved as follows. Let 

M(aj, hj' cj) = [aj ~ Cj 

and 

(2.3.85) 
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In a first step we show that 

NE~. (2.3.86) 

For this purpose we note that 

with the properties 

A >0, 
(2.3.88) 

A ± B = (a 1 ± bd(a2 =+= b2 ) > O. 

Next, we prove by induction that Aj > 0, Aj ± Bj > O,j = 1, ... , N, implies 

CN > 0, CN ± DN > 0, N E~. (2.3.89) 

Obviously, (2.3.89) is valid for N = 1. Assuming (2.3.89) to be correct for N E ~ we 
infer 

Since 

)I [~; ~J = [~: ~:J[~;:: ~:::J 
= [CNAN+l + DNBN+1 CNBN+l + DNAN+lJ 

CNBN+1 + DNAN+1 CNAN+1 + DNBN+1 

CN+1 ± DN+1 = (AN+l ± BN+l)(CN ± DN) > 0, 

CN+1 = [(CN+1 + DN+1)/2] + [(CN+l - DN+l)/2] > 0, 

we get (2.3.89). Taking N even, N = 2n, n E ~, we infer 

whereas for N odd, N = 2n + 1, n E ~, we get 

[ON ] {[Cn Dn][a2n+1 _-b2n+1]} = O. Tr . M(aj, bj ) = Tr C b 
J=l Dn n 2n+1 a2n+l 

This proves (2.3.86). In the second step we now show that 

T{tI M(aj , bj , Cj )] ~ 2 J] cj , NE~. 

(2.3.90) 

(2.3.91) 

(2.3.93) 

(2.3.94) 
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Define 

NEN, (2.3.95) 

then 

(2.3.96) 

Hence 

= CtfN-l(C2, ... , CN) + fN(O' 0, ... ,0) + c2fN-l(0, c3, ... , CN) 

+ c3fN-l (0,0, C4, ... , CN) + ... + cNfN-l (0,0, ... ,0). (2.3.97) 

Iterating the above procedure, observing (2.3.86) (i.e., fN(O, ... , 0) ~ ° for all N E N) 
we obtain 

0J N = 2 Il cj 
CN j=l 

and hence (2.3.94). Finally, identifying 

a, = sinh[p,t/I,(k)] COsh[t/lI(k)]/sinh[t/lI(k)], 

b, = sinh[PIt/lI(k)]/sinh[t/I,(k)], 

C, = COSh[PIt/l,(k)], 

inequality (2.3.94) and (2.3.82) imply 

1= 1, ... ,N, 

Tr[J/p(k)] = T{tl J/p,(k)] ~ 2 ,I] cosh[p,t/I,(k)] > 2. 

(2.3.98) 

(2.3.99) 

(2.3.100) 

• 
For an illustration of Theorem 2.3.5 in the diatomic case, see Figure 41 

[404]. 
Using a simple limiting argument we can now extend Theorem 2.3.5 to an 

arbitrary bounded sequence IX (not necessarily periodic) as follows. 

Theorem 2.3.6. Let IX = {lXj}jeJ' be a bounded sequence of real numbers, 
A = aZ, a > 0, and assume U c IR to be open. If 

U £; n p( -Llaj,A) then U £; p( -Lla,A)' 
jElL 

(2.3.101) 

PROOF. Define a periodic sequence arm) by setting 

Ijl:-s; m, (2.3.102) 
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and extending periodically. Then Q(m) has period 2m + 1 and we next prove that 

(2.3.103) 

in strong resolvent sense. For this purpose, let 

rjJ E ~o( -~'.A) = {g E ~(-~ •• A)lsupp(g) compact}. (2.3.104) 

If m is large enough we have supp(rjJ) c ( - m, m). Thus rjJ E ~( - ~.(m),A)' Next set 

t/J± = (-~ •. A ± i)rjJ = (-~.(m),A ± i)rjJ. (2.3.105) 

Then 

[( -~.(m),A ± if1 - (-~.,A ± if1 ]t/J± 

= ( - ~.(m),A ± i)-I [ - ~ •. A + ~.(m).A] ( - ~ •. A ± i)-I t/J ± = O. (2.3.106) 

Since ~o( -~ •. A) is a core for -~ •. A (cf. the discussion following (2.1.10)) (2.3.103) 
results (cf. [388], Theorem VIII.25). Since the spectrum cannot suddenly expand 
under strong resolvent convergence ([388], Theorem VIII.24) we infer that any open 
interval (c, d) ~ U with (c, d) n 0"( - ~.(m).A) = 0 for all mEN in fact satisfies 
(c, d) n 0"( -~. A) = 0. Since by hypothesis (c, d) n 0"( -~. A) = 0 for all j E 71., 
Theorem 2.3.5' implies (c, d) n 0"( -~.(m).A) = 0 for all mEN which completes the 
proof. • 

Monatomic 
A 

l.ttice 

PI??; >23 

DiatomIC 
A-B-A-B 

lattice 

W~ZJ 
Honatomic 

B 
lattice 

Figure 41 Comparison of energy bands (cross-hatched regions) of a pure A crystal 
-~A.A' a pure B crystal -~B.A and the diatomic ... ABAB ... crystal. From Saxon 
and Hutner, 1949, [404]. 
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Next we derive the analog of Theorem 1.4.6 in the one-dimensional context. 
Let 

t = [ -a/2, a/2) (2.3.107) 

and denote by -L\',Y+A the analog of (1.4.56), i.e., 

d2 

-~",Y+A = - dx2 ' 

f0( -~",Y+A) = {g E H 2,1(1R) n H 2,2(1R - (Y + A)) I 

g'«Yj + na)+) - g'«Yj + na)-) = ajg(Yi + na), 

j = 1, ... , N, n E 1"}, 

aj E IR, j = 1, ... , N. (2.3.108) 

Then we have 

Theorem 2.3.7. Let (Xj E IR, Yj E t, j = 1, ... , N. Then 0'( -~O:,Y+A) n 
(-00,0) consists of at most N disjoint, closed intervals. 

PROOF. Although one could follow the proof of Theorem 1.4.6 step by step 
we prefer to present another argument which in turn would also apply in the 
three-dimensional context. Following our earlier arguments in this section (cf. also 
(1.4.56)) one easily infers that 

- --1 flfJ dO 0Jt[ -.1.,Y+AJOJt = A b{ -.1.,A,Y(O)], (2.3.109) 

where (cf. (2.3.13)) 

!0( -.1.,y,A(O)) = {g(O) E H 2,1« -aI2, a12)) (\ H 2,2« -aI2, a12) - Y)I 

g(O, -a12 +) = ei6a g(8, aI2-), g'(8, -aI2+) = eiBa g'(8, al2 -), 

g'(8, Yj+) - g'(8, Yj-) = (Xjg(8, Yj),j = 1, ... , N}, 

(Xj E IR, j = 1, ... , N, 8 E [ -bI2, bI2). (2.3.110) 

Clearly, -.1.,A,y(8) and -.1o,A,y(8) (i.e., (Xj = 0, j = 1, ... , N) are self-adjoint 
extensions of 

. d2 

Hy(O) = -dv2 ' 

!0(Hy(8)) = {g(8) E H 2 ,2« -aI2, aI2))lg(8, Yj) = O,j = 1, ... , N, 

g(O, -aI2+) = ei8a g(8, aI2-), g'(8, -aI2+) = ei8a g'(8, al2 -)}, 

o E [ - b12, bI2). (2.3.111) 

A simple computation proves that Hy(8), e E [ -bI2, bI2), has deficiency indices 
(N, N). Since -.1o,J\,y(8), 8 E [ -bI2, b12) (the free decomposed operator) is obvi-
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ously nonnegative, -.:\«,A,y(o), 0 E [ -b/2, b/2), ex E IR, can have at most N negative 
eigenvalues by Corollary 1 of [494], p. 246. By (2.3.109), -.:\«,Y+A has at most N 
disjoint negative energy bands (cf. (1.4.25». • 

Finally, we recall the absence of eigenvalues for periodic systems of the type 
(2.3.59) and (2.3.60). This implies the irrelevance of the exceptional points 
km = nm/a, mE 71., when calculating the spectrum of -L\,.1p),aZ: Denoting by 
hO)(p) the bounded, self-adjoint operator in F(71.) 

(hO)(p)I/I)j = I/Ij+l + I/Ij-l + wjP)I/Ij' pEN, j E 71., {I/Ij}jeZ E F(71.), (2.3.112) 

where w(p) is a sequence of real numbers with period p 

j E 71., (2.3.113) 

we get the standard result 

Lemma 2.3.8. The spectra of - L\ .. (p),aZ and hO)(p) are purely continuous, i.e., 

(2.3.114) 

PROOF. If suffices to discuss h.,(p). Let T±P' pEN, denote the unitary shift 
operators in 12(Z) 

pE N, (2.3.115) 

Then obviously T±p commutes with h""Pl' Assume that eo is an eigenvalue of h.,(Pl 
with corresponding eigenspace JtQ. By inspection T±pJfo ~ JtQ implying 

pE N, (2.3.116) 

since T_p = (Tpfl. Thus Tp is reduced by JtQ and Tpl.lf'o is unitary. Since dim Jfo :5; 

2, Tpl.lf'o has an eigenvalue, i.e., 

TptPC = ei6~tPC, t5C E IR, tPC E Jfo' (2.3.117) 

Thus ItPCI = {ltP&}lhel is a periodic sequence of period p in 12(Z) contradicting 
ItPCI E 12(Z). • 

Applying Lemmas 10.12-10.14 of [85] one can actually prove that 
u( - L\ .. (p),aZ) and u(hO)(p)) are purely absolutely continuous. 

111.2.4 Half-Crystals 

The purpose of this section is to discuss spectral and scattering properties of 
half-crystals, i.e., models of the type - L\ .. +, A + where 

rt.j = rt., rt. E~, j E No. (2.4.1) 

Although this model could be analyzed directly, we again prefer the much 
shorter approach based on the difference equation (2.1.55). Actually, we will 
treat a more general situation having different half-crystals on the left and 
right since this problem requires the same amount of work as studying (2.4.1). 
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Thus we introduce the operator -L1,,-+,A where 

A = alL., a >0, ex. = {ex+, 
J -ex , 

j = 0,1,2, ... , 

j = -1, -2, ... , 

ex ± E~. (2.4.2) 

(By translations the endpoints - 1, 0 of the two half-crystals can be shifted to 
any points m - 1, m, m E lL..) The true half-crystal then corresponds to ex- = O. 
Concerning spectral properties of -L1"-+,A we state 

Theorem 2.4.1. The spectrum of -L1,,-+,A is purely absolutely continuous 
and given by 

(2.4.3) 

where -L1,,±,A denote the infinite crystals (i.e., Kronig-Penney models) of 
strength ex± and Bravais lattice A = alL. (cf (2.3.12». On the interior of the 
set 0'( -L1"-,A) n 0'( -L1,,+,A) the spectral multiplicity of -L1,,-+,A equals 2 
whereas on 0'( - L1,,-+ ,A) - {O'( - L1,,- ,A) n 0'( - L1,,+ ,A)} the multiplicity is 1. 

PROOF. We have to solve (suppressing the k-dependence) 

e = 2 cos(ka), 

The ansatz 

in (2.4.4) yields 

{
p.+, j = 0, 1, 2, ... , 

p.j = -
p. , j= -1, -2, ... , 

k =F mn/a, me 7L. (2.4.4) 

j= -1, -2, ... , 

j = 0, 1,2, ... , 1m (J± ~ 0, 
(2.4.5) 

(2.4.6) 

for j ::5; - 2 and j ~ 1, respectively. Here N,!= =F 0 are (k-dependent) normalization 
constants to be determined later on. At j = -lone obtains 

N+ 1'1 + N_[e2i9_a - (e - p.-)e i9_a ]911 = N_[(e - /F)e- i9_a - e-2i9_a ] (2.4.7) 

and atj = 0 we get 

N+[e i9•a _ (e - p.+)]1'l + N_e i9_a911 = _N_e- i9_a• (2.4.8) 

Similarly, the ansatz 

j = 0, 1,2, ... , 

j= -1, -2, ... , Im(J± ~O, 
(2.4.9) 

yields again (2.4.6) for j ::5; -2 andj ~ 1, respectively. Forj = -lone infers 

(2.4.10) 
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and forj = 0 

M_e i8_a fr + M+[e i8+a - (e - Jl+)]9j!r = M+[(e - Jl+) - e- i8+a] (2.4.11) 

results. Here M ± are again (k-dependent) normalization factors. Checking the 
determinant of the system (2.4.7), (2.4.8) shows that there exists a unique solution 
for 1'1, 9j!1 (9j!1 #- 0) iff 

(2.4.12) 

Similarly, (2.4.10) and (2.4.11) yield a unique solution for f r, 9j!r (9j!r #- 0) iff (2.4.12) 
holds. Next, let ho and h denote the bounded and self-adjoint operators in 12(Z) 

Then the fact that 

implies 

(ho'n = t/lj+l + t/lj-l' 

(ht/l)j = (hot/l)j + Jljt/lj' 
(2.4.13) 

(2.4.14) 

(2.4.15) 

Consequently, (2.4.6) determines the values of e in the spectrum of h for real values 
of 8±. Actually, we may restrict ourselves to 

8± E [0, n/a] (2.4.16) 

implying 

(2.4.17) 

since then (2.4.12) is obviously fulfilled for all 8± E (0, n/aJ. Rewritten in terms of k 
this means (cf. Theorems 2.1.5 and 2.3.1) 

Imk~O, (2.4.18) 

and hence the first part of (2.4.3) holds. The statements about the multiplicity of the 
spectrum now simply follow from the linear independence of the two solutions 

t/I± = Nlhez E lOO(Z) 

defined in (2.4.5) and (2.4.9) and the fact that 

e E (-2 + max(Jl-, Jl+), 2 + min(Jl-, Jl+» 

is equivalent to 

1m k ~ 0, 

(2.4.19) 

(2.4.20) 

(2.4.21) 

(where A denotes the interior of a set A c IR). The absence of the singular continuous 
spectrum now follows by mimicking the standard construction of the (absolutely 
continuous) spectral measure associated with second-order finite difference 
operators (cf., e.g., [46], [120], [122], [214]). It remains to prove the absence of 
eigenvalues of - L\a-+.A. According to (2.1.52) and the remarks after (2.1.55) we only 
need to show 

(2.4.22) 

Since 9j!r, 9j!1 #- 0, t/I± in (2.4.19) is a fundamental set of solutions of ht/l = et/l, 
t/I E lOO(Z), iflm 8± = O. But then t/I± ¢ 12(Z) completes the proof. • 
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In the special case where rx.- = 0, (2.4.3) and (2.3.33) imply that the spectrum 
of the true half-crystal is simply given by [af·A, bf·A] u [0,00). 

The multiplicity statements in Theorem 2.4.1 confirm the intuitive ideas 
that a particle in the left half-crystal moving to the right can only penetrate 
into the right half-crystal if its energy lies in an allowed band for both infinite 
crystals (represented by - A",±.A)' In that case a particle moving to the left in 
the right half-crystal with the same energy penetrates into the left half-crystal 
implying spectral multiplicity two. In the remaining case, where a particle in 
the left (right) half-crystal runs to the right (left) with an energy lying in a 
gap of the infinite crystal described by -A",+.A( -A",-.A) one expects total 
reflection. Thus the transmission coefficient from the left (right) should be 
zero and hence the reflection coefficient from the left (right) of modulus one 
implying spectral multiplicity one in this case. These results are actually 
contained in the following. 

Theorem 2.4.2. Let k 2 E {O"( -A"'-.A) n 0"( -A",+.A)}O, 1m k ~ O. Then the 
transmission and reflection coefficients from the left and right associated with 

-A"'-+.A are given by 

e-i9+(k)a _ e-i9 _(k)a 

9l~-+ .A(k) = e i9 _(kJa _ e- i9+(k)a ' 

ei9+(k)a _ e i9-(k)a 

9f!~-+.A(k) = ei9_(k)a _ e i9+(k)a' 

where (cf 2.3.16)) 

(2.4.24) 

cos[O±(k)a] = cos(ka) + (rx.± 12k) sin(ka), O±(k) E (0, nla). (2.4.25) 

In particular, the on-shell scattering matrix in C2 

is unitary in this case. 
If k2 E {O"( -A",-+.A) - 0"( -A"'+.A)}O, 1m k ~ 0, then 

where 

eK+(k)a _ e-i6 _(k)a 

9f!~-+ .A(k) = - eK+(k)a _ e i9-(k)a ' 

(2.4.26) 

(2.4.27) 

(2.4.28) 

(2.4.29) 
cosh[K+(k)a] = cos(ka) + (rx.+ 12k) sin(ka), K+(k) = -iO+(k) > O. 

cos[fL(k)a] = cos(ka) + (rx.-12k) sin(ka), O_(k) E (0, nla) 
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Similarly, if P E {a( - t\ .. -+ ,A) - a( - t\ .. - ,A)} 0, 1m k ~ 0, then 

ff..'--+,A(k) = 0, 

where 

e-K_(k)a _ e i9+(k)a 

9l~-+,A(k) = - e-K_(k)a _ e-itl+(k)a' 

(2.4.30) 

(2.4.31) 

cos[O+(k)a] = cos(ka) + (oc+ 12k) sin(ka), O+(k) E (0, nla), 
(2.4.32) 

cosh[K-(k)a] = cos(ka) + (oc-12k) sin(ka), Ic(k) = - iO_(k) > O. 

PROOF. For simplicity we suppress the 0(-+, A dependence in all quantities 
involved. Because ofljl(k, aj) = ljIj(k) (cf. (2.1.49» we only need to solve (2.4.7), (2.4.8) 
and (2.4.10), (2.4.11). Let k2 E {u( -A.-,A) n (-A.+,AW, 1m k ~ O. Then (2.4.24) 
and 

-I N_(k) e i8_(k)a - e-i8_(k)a 

T (k) = N+(k) eI8_(k)a _ e 18+(k)a' 

_ M (k) e i8+(k)a _ e- i8+(k)a 

Tr(k) = -+ - --:::-::-:----=-:,-:-M_(k) e i8_(kla _ e i8+(k)a' 

(2.4.33) 

result. Since the "plane waves" e±itl±(kjaj in (2.4.5) and (2.4.9) have to be normalized 
identically we actually infer 

(2.4.34) 

Finally, time reversal invariance implies equal transmission coefficients and hence 

[ N+(k)]2 = sin[O_(k)a] 
N_(k) sin[O+(k)a] ' 

(2.4.35) 

Insertion of (2.4.35) into (2.4.33) implies (2.4.23) (since ,r'(k) == T'(k), ,rr(k) == Tr(k) 
in this case). If k2 E {u( -A.-+,A) - u( -A.+,AW, 1m k ~ 0 the wave ljI+ in (2.4.5) 
decays exponentially forj ~ 1. Thus we get ,r'(k) == 0 in this case. The results (2.4.30) 
and (2.4.31) are obtained analogously. • 

Clearly, the above results immediately generalize to more complex situa-
tions. For example, one could think of gluing together two half-crystals which 
stem from pure crystal models of the type -t\"p,fp+Ap ' -t\~q,Yq+Aq where 
Ap = paZ, Aq = qiiZ, a > 0, ii > 0, and ocp (resp. IXq) have periods p, q E N (cf. 
(2.3.76». Then Theorem 2.4.1 directly extends to this case and Theorem 2.3.5 
can be used to locate gaps in the spectrum of the composed half-crystals. 

111.2.5 Quasi-Periodic t5-lnteractions 

This section is devoted to a brief study of quasi-periodic b-interactions. Again 
we rely heavily on the corresponding difference equation approach. 

Let h(A, 0, f/J) denote the following bounded, self-adjoint operator in 12(Z) 

(h(A, 0, f/J)t/I)j = t/li +l + t/li-l + A cos(2njO + f/J)t/li' 

j E Z, {t/lihez E 12(Z), A E~, ° ~ 0, f/J E [0, 2n). (2.5.1) 
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By Theorem 2.1.5 the associated operator in L2(1R) reads -Ay(9,tP),A where 
A = aZ, a > 0, and y(e, ,p) is now of the type 

j E Z, Y E IR. (2.5.2) 

Moreover, if e (resp. k2 ), 1m k :?: 0, denote the energy of h(2, e, ,p) (resp. of 

- AY(9,tP),A)' then 

e = 2 cos(ka), 2 = -(y/k) sin(ka), 1m k :?: 0. (2.5.3) 

In order to analyze - Ay(9,tP),A we first describe some basic spectral properties 
of h(2, e, ,p). For this purpose we need to recall certan notions in number 
theory: We call e a Liouville number iff e is irrational and there are integers 

Pn' qn -;;:;;; 00 with 

nE N. (2.5.4) 

We will also need a subset of Liouville numbers characterized by the fact that 
there is a C > ° such that 

nE N, (2.5.5) 

holds. Next, e is called a Roth number iff e is irrational and for all e > ° there 
is a C, > ° such that for all p, q E N 

Ie - (p/q) I > C,q-2-,. (2.5.6) 

In contrast to Liouville numbers which are of Lebesgue measure zero (but 
they are dense in IR and uncountable) the set of Roth numbers is of full 
Lebesgue measure. We also need approximating functions 0: [0, 00) -+ (0, 00) 

of the type 

(i) 0 is continuous, decreasing and lims "'", O(s) = 0. 
(ii) - S-l In(O(s)) is decreasing in s E (0, 00). 

(iii) - S~ ds S-2 In(O(s» < +00 for any So > O. 

A typical example is given by 

O(s) = {~~~os~;ln S)1+", 

Theorem 2.5.1. 

o ::;; s ::;; So = e1 +"', 

S :?: So, 0 < IX ::;; !. 

(a) Aubry duality: Fix e irrational. Then 

(2.5.7) 

O"(h(A, e, ,p)) = (A/2)0"(h( 4/ A, e, ,p)), A l' 0, ,p E [0, 2n). (2.5.8) 

(b) Fix IAI > 2 and e irrational. Then, for a.e. ,p E [0, 2n), 

O"ac(h(A, e, ,p)) = 0. (2.5.9) 

If, in addition, e is a Liouville number obeying (2.5.5) then, for a.e. 
,p E [0, 2n), the spectrum of h(A, e, ,p) is purely singular continuous. 

(c) Let 0 satisfy (i)-(iii) above, I:;" 0 O(n) < i and fix e to be irrational 
with infjd' Ise + jl :?: O(s) for all s > O. Then, for 121 small enough and 
for all ,p E [0, 2n), h(A, e, ,p) has some absolutely continuous spectrum 
which contains a closed set of positive Lebesgue measure. 
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(d) Let 0 satisfy properties (i)-(iii) above and fix 0 to be irrational with 
infjeZ IsO + jl ~ O(s) for all s > 0. Assume, in addition, that 0 is a Roth 
number with continued fraction expansion 0 = Cal' a2 , ••• , an, ... J for 
which lim SUPn--+O() an ~ 10. Then, for I AI large enough, h(A, 0, rjJ) has for 
a.e. rjJ E [0, 2n) an infinite set of eigenvalues (with exponentially decaying 
eigenvectors) whose closure has positive Lebesgue measure. If, in addi
tion, lim SUPn--+O() an = 00 (which happens for a set of O's with full 
Lebesgue measure) then, for any B > ° there is a Ao > ° such that 
for a.e. rjJ E [0, 2n) and all IAI ~ Ao (resp. IAI ~ A(jl) the absolutely 
continuous part of the spectrum (resp. the closure of the set of eigen
values) of h(A, 0, rjJ) has Lebesgue measure greater than 4 - B (resp. 
greater than (4 - B)A/2). (Obviously, 100(h(O, 0, rjJ)1 = 4, 100(h(A, 0, rjJ))1 ~ 
4 + 2IAI.) 

Given these results and the correspondence (2.5.3) between h(A, 0, rjJ) and 
-I1Y(9,,p),A' one can derive corresponding results for -I1Y(9,,p),A' We state 

Theorem 2.5.2. 

(a) Fix 0 irrational. Then, for a.e. rjJ E [0,2n), -I1Y(9,,p),A has no absolutely 
continuous spectrum in the region {E = k211m k ~ 0, I(y/k) sin(ka)I > 2}. 
If, in addition, 0 is a Liouville number obeying (2.5.5) then, for a.e. 
rjJ E [0,2n), 0"( -I1Y(9,,p),A) is purely singular continuous in that region 
(provided this region is nonempty). 

(b) Assume that 0 obeys the conditions of Theorem 2.5.1(c). Then, for all 
rjJ E [0, 2n), -I1Y(9,,p),A has some absolutely continuous spectrum in the 
region {E = k211m k ~ 0, I(y/k) sin(ka)I small enough}. 

(c) Assume that 0 obeys the conditions of Theorem 2.5.1 (d). Then, for a.e. 
rjJ E [0, 2n), -l1y(9,,p),A has an infinite set of eigenvalues in the region 
{E = k211m k ~ 0, I(y/k) sin(ka)1 large enough} (\ 0"( -I1Y(9,,p),A) (pro
vided the intersection is nonempty). 

The difficulty with Theorem 2.5.2(a) and (c) is that it is not clear whether 
there exists some spectrum of -I1Y(9,,p),A in these regions at all. 

111.2.6 Crystals with Defects and Impurity Scattering 

We now discuss how to incorporate impurities represented by b-interactions 
in the model Hamiltonian -11«, y. In the particular case of the Kronig-Penney 
Hamiltonian we also discuss scattering on such impurities. 

Let -11«,y be defined as in (2.1.6) and abbreviate by 

P E p( -11«,y), 1m k ~ 0, (2.6.1) 

its resolvent given in (2.1.17). Let Z c IR denote the finite set of impurity points 

Z = {Zl E IRII = 1, ... , M}, MEN, (2.6.2) 

which support b-interactions of strength Yl E IR - {O}, I = 1, ... , M. The total 
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Hamiltonian representing b-interactions of strength !Xj at the points Yj E Y, 
j E J, and additional b-interactions of strength Yl at the impurity points Zl E Z, 
1= 1, ... , M, is then denoted by -~a.y.y,z where the sequence Y is defined as 

Y = {Yl E IR - {0}11 ~ I ~ M}. (2.6.3) 

If Zl E Z equals some Yj E Y then, depending on whether Yl equals -!Xj or not 
we get a defect impurity (i.e., the vanishing of the b-interaction at Zl = Yj) or a 
substitutional impurity at Zl = Yj when compared to - ~a, y. The situation 
Zl ¢. Y describes an interstitial impurity at Zl in addition to the system described 
by -~a,y. 

Clearly, -~a,y,y,z subordinates to the discussion in Sect. 2.1. Our goal here 
is to relate spectral properties of -~a,y,y,z and -~a,y. As a first result we 
compare their resolvents: 

Theorem 2.6.1. Let !Xj , Yl E IR - {O},j E J, I = 1, ... , M, and assume (2,1.1). 
Suppose that -~a,y,y,z and Gk,a,y are defined as above. Then 

(-~a,y,y,z - k2)-1 

M 

= Gk,a,y + L [ra,y,y,z(k)];;}(Gk,a,y(ZI"'),' )Gk,a,y(-, Zl)' 
l,l'=l 

k 2 E p( -~a,y,y,z)' 1m k ~ 0, (2,6.4) 

where 

ra,y,y,z(k) = [ -Yl-1bll , - Gk,a,y(Zl' ZI')]j~~'=l' P E p( -~a,y), 1m k ~ 0, 
(2.6.5) 

PROOF. We first note that both operators -L1.,Y,y,Z and -L1.,y are self-adjoint 
extensions of the closed, symmetric operator in L 2(1R) 

. d2 
H ---.,Y,y,Z - dx2 ' 

!'fi(H.,y,y,z) = {g E!'fi( -L1.,y)lg(zl) = 0, Zl E Z, I = 1, ... , M} (2,6.6) 

with deficiency indices (M, M), The adjoint of H •. y,y,Z then reads 

. d2 

H* ---.,Y.y,Z - dx2 ' 

!'fi(iI:,y,y,z) = {g E H 2,l(lR) n H 2,2(1R - {Yu Z})I 

g'(Yj+) - g'(Yj-) = !Xjg(Yj), Yj E Y - Z,j E J}, (2,6.7) 

Since the solutions of the equation 

t/I(k) E !'fi(H:'y,y,z), k2 E C - IR, 1m k > 0, (2.6,8) 

are given by 

1m k > 0, Zl E Z, I = 1, ... , M, (2.6.9) 
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the general structure of (2.6.4) follows from Krein's formula (cf. Theorem A.3). The 
remaining calculations are analogous to that in the proof of Theorem 11.2.1.1. • 

Concerning spectral properties we state 

Theorem 2.6.2. Let ai' YI E IR - {O},j E J, I = 1, ... , M, and assume (2.1.1). 
Then 

(2.6.10) 

Moreover, let (a, b) c: p( -L\a,y), -00 ~ a < b < 00. Then IT( -L\a,y,y,z) n 
(a, b) consists of at most M eigenvalues counting multiplicity. 

PROOF. The invariance of the essential spectrum in (2.6.10) is due to Weyl's 
theorem ([391], p. 112) and (2.6.4). The rest follows from Corollary 1 in [494], p. 246 . 

• 
Since a more detailed spectral analysis of -L\a,y,y,Z seems too difficult in 

general we now specialize to the periodic case and choose Yequal to the lattice 
A = alL, a > 0. In addition, we first assume the sequence a to be periodic 
with period one, i.e., we first investigate impurities in the Kronig-Penney 
Hamiltonian -L\a,A' a E IR - {O} (cf. (2.3.12». 

The following two linearly independent functions 

= UJ (k 0)( 12k) i/Jax -i/Jax' {ei/Jaa sin(kx') - sin[k(x' - a)]} 
T a A ,IT, a e e «() ) (k ) , , cos a-cos a 

x' = x - a[[xla]], 1m k ~ 0, IT = ± 1, 1m () ~ 0, Re () ~ 0, (2.6.11) 

where [[y]] denotes the integer part of y (i.e., the largest integer less than or 
equal to y) and () = ()(k) satisfies the Kronig-Penney relation (2.3.16), solve 

-'P:,A(k, IT, x) = k2 'Pa,A(k, IT, x), 1m k ~ 0, IT = ± 1, x E IR - A, (2.6.12) 

and fulfill the boundary conditions 

'Pa,A(k, IT, na+) = 'Pa,A(k, IT, na-), 

'P~,A(k, IT, na+) - 'P~,A(k, IT, na-) = a'Pa,A(k, IT, na), 

1m k ~ 0, IT = ± 1, n EN. (2.6.13) 

The result (2.6.11) can be quickly derived as follows. Equations (2.6.12) and 
(2.6.13) yield the homogeneous Lippmann-Schwinger equation 

'P(k, x) = a L Gk(x - na)'P(k, na) = a L Gk(x - na)eil'na'P(k, 0), (2.6.14) 
n€Z n€Z 

where Bloch's theorem, i.e., 

'P(k, x + na) = eil'na'P(k, x), 1m J.l ~ 0, X E IR, nElL, (2.6.15) 
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has been used. It remains to evaluate the sum in (2.6.14): 

'P(k, x) = (irx/2k)'P(k, 0) {[[Ill eikxei(/J-klna + f e-ikxei(/J+klna} 

n= -00 n=[[x/all+l 

_ . {ei(/J-klanx/all+ikx e i(/J+kla([[x/all+ll-ikx} 

- (zrx/2k)'P(k, 0) 1 -i(/J-kla + 1 i(/J+kla -e -e 

= (irx/2k)'P(k, O)ei/Janx/all ei/Ja sin(kx') - sin[k(x' - a)J, 
cos(ka) - cos(J1.a) 

x' = x - a[[x/aJJ, x E IR, 1m k ~ 0, 1m J1. ~ O. (2.6.16) 

If (J = + 1( -1) which corresponds to J1. > 0 (J1. < 0) in (2.6.16), (2.6.11) repre
sents a wave traveling to the right (left) in the lattice. Moreover, (2.6.11) clearly 
exhibits Bloch's theorem since x' = x - a[[x/aJJ is periodic with the period 
a of the lattice A = all... We also remark that taking x = 0 (i.e., x' = 0) in 
(2.6.11) immediately yields the Kronig-Penney relation (2.3.16). 

Now we are prepared to discuss impurities. To avoid too lengthy computa
tions we restrict ourselves to a single impurity at the point Z E IR described by 
a b-interaction of strength y E IR - {O}. The corresponding Hamiltonian is 
then denoted by -~ex,A,y,z' We start by solving the bound state problem 

-~ 'II (k) = P'P (k) 'II (k) E ~(-~ ) a,A,y,z a,A,y,z cr,A,}"z , a,A,y,z a,A,y,z , 

P E IR, 1m k ~ O. (2.6.17) 

Consequently, 'Pex,A,y,Ak, x) solves 

-1jJ" (k, x) = k2 1jJ(k, x), xER-{Au{z}}, (2.6.18) 

with the boundary conditions 

ljJ(k, na + ) = ljJ(k, na - ), 

1jJ'(k, na+) -1jJ'(k, na-) = rxljJ(k, na), 

ljJ(k, z+) = ljJ(k, z-), 

na E A - {z}, nEll.., (2.6.19) 

1jJ'(k, z + ) - 1jJ'(k, z -) = [y + rxbZ,AJ ljJ(k, z), (2.6.20) 

{1' z E A, { } where bz,A = 0, Z ¢ A. For x E IR - z, ljJ(k, x) also solves -~ex,AIjJ(k) = 

PIjJ(k). The solutions of (2.6.17) are thus certain linear combinations of 
'Pex,A(k, ± 1, x). Since 'Pex,A(k, ± 1, x) are oscillating for () E IR we need 1m () > 0 
in order to guarantee square integrable solutions. Thus we are led to the ansatz 

1 'Pex,A(k, -1, x) 
C1 , 

'Pex,A(k, -1, z) 
'II kx-

ex,A,yj, ) - 'Pex,A(k, + 1, x) 
C2 , 

'Pex,A(k, + 1, z) 

x < z, 

(2.6.21) 

x > z, 1m ()(k) > O. 
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Insertion of (2.6.21) into (2.6.20) yields 

(2.6.22) 

and 

'P~ A(k, + 1, z+) 'P~ A(k, -1, z-) 
C2 u; (k 1) - C1 u; (k -1 ) = (y + IXbz,A)cl' (2.6.23) 

r",A ,+ ,z r",A' ,z 

Observing 

'P~,A(k, ± 1, z+) - 'P~,A(k, ± 1, z-) = IXbz,A 'P",A(k, ± 1, z) (2.6.24) 

(cf. (2.6.12), (2.6.13)) in (2.6.23) we infer 

'P~,A(k, +l,z±) 'P~,A(k, -l,z±) 
C2 -Cl =YC1' 

'P",A(k, + 1, z) 'P",A(k, -1, z) 
(2.6.25) 

Together with (2.6.22) this leads to 

W('P",A(k, + 1), 'P",A(k, -l))z± 

+ y'P",A(k, + 1, z)'P",A(k, -1, z) = 0, (2.6.26) 

where W(J, g)", = f(x)g'(x) - f'(x)g(x) denotes the Wronskian of f and g. 
With the help of(2.6.11), (2.6.26) simplifies to 

-2ik sin(Oa) sin(ka) + y{sin2 (kz') + sin2 [k(z' - a)] 

- 2 sin(kz') sin[k(z' - a)] cos(Oa)} = 0, 

z' = z - a[[zla]], 1m k :2: 0, 1m O(k) > O. (2.6.27) 

Thus (2.6.27) together with the Kronig-Penney relation (2.3.16) represents the 
bound state condition. Before we separately discuss the case of substitutional, 
defect, and interstitial impurities we derive a technical result that enables one 
to decide in which energy gaps of -Ll",A impurity states associated with 
-Ll",A,y,z do actually occur: 

Lemma 2.6.3. Let e E (b::"\ a;;.td, 1m k :2: 0, bg,A = -00, and suppose 
that K = e i9a where 0 = (mnla) + ib, b > 0, mE No, is a solution of 
the Kronig-Penney relation (2.3.16) such that (K + K-1 )/2 = cos(ka) + 
(1X/2k) sin(ka). Assume that I/I(k, x) is a real-valued solution of 

-I/I"(k, x) = k2 t/1(k, x), X E (-aI2, a12) - {O} (2.6.28) 

satisfying the boundary conditions 

I/I(k, a-) = KI/I(k, 0+), 

I/I'(k, a-) = K[I/I'(k, 0+) - IXI/I(k, 0)]. 
(2.6.29) 

(a) Define 

(k) = I/I'(k, aI2+) 
r I/I(k, a12) . 

(2.6.30) 
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Then, as k 2 varies from the lower end of a gap in 0'( - da,A) to the upper 
end, r(k) is continuous with respect to k and strictly increasing in P. In 
particular, for IX > 0, r(k) alternately increases from -00 to 0 or from 
o to +00 starting with -00 to 0 in the zeroth gap (i.e., the one starting 
at -(0). For IX < 0, r(k) increases from -00 to 0 in the zeroth gap and 
then alternately from -00 to 0 or from 0 to +00 starting with -00 to 
o in the first gap (cf. Figure 42). 

(b) Define 

-(k) = t/I'(k, 0+) _ ( 12) 
r t/I(k, 0+) IX. 

(2.6.31) 

Then, as k 2 varies from the lower end of a gap in 0'( - da,A) to the upper 
end, f(k) is continuous with respect to k and strictly increasing in k 2• In 
particular, for IX > 0, f(k) increases from -00 to 0 in all gaps (including 
the zeroth one), whereas for IX < 0, f(k) increases from -00 to 0 in the 
zeroth gap and from 0 to +00 in all the remaining ones (cf. Figure 43). 

PROOF. Inserting the ansatz 

ljJ(k, x) = cos(kx) + A sin(kx) 

into (2.6.29) immediately yields for k2 :?: ° 

where 

r(k) = -sgn(~(k))[k/2 sin(ka/2)J [~(k)2 - 1]1/21/(kf\ 

f(k) = -sgn(~(k))[k/sin(ka)J Ww - 1]1/2, 

~(k) = cos(ka) + (rx/2k) sin(ka), 

I/(k) = cos(ka/2) + (rx/2k) sin(ka/2), 

Similarly, for k = iK, K > 0, one infers 

where 

r(k) = -sgn(WK)) [K/2 sinh(Ka/2)J[WK)2 - IJ1/2 1/(iK)-1, 

f(k) = -sgn(~(iK))[K/sinh(Ka)] [~(iK)2 - 1]1/2, 

~(iK) = cosh(Ka) + (rx/2K)sinh(Ka), 

I/(iK) = cosh(Ka/2) + (rx/2K) sinh(Ka/2), k = iK, K > 0. 

(2.6.32) 

(2.6.33) 

(2.6.34) 

(2.6.35) 

(2.6.36) 

Monotonicity of r(k) and f(k) now follows by checking dr/dk and df/dk. The rest of 
the assertions concerning the range of rand f in gaps follows from the explicit 
formulas above. • 

We note that in part (a) of the above lemma the c5-interaction of strength IX 

is placed in the center of the primitive cell as has been done in the definition 
of - da,A(B) (cf. (2.3.13)). This case will be applied to interstitial impurities. On 
the other hand, part (b) describes a primitive cell shifted to the right by al2 
with respect to the one in part (a). Consequently, there are c5-interactions of 
strength 1X12 placed at 0 + and a -. This case will be used for substitutional 
and defect impurities. 
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ka 

______ ~----~--~~~--+-~----~~--__.~a 

Figure 42 The range ofr in the energy gaps. From Shrum and Peat, 1968, [411]. 

ka 

------~----~--++~~--+-~----~~--~.~a 

Figure 43 The range ofrin the energy gaps. From Shrum and Peat, 1968, [411]. 
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-[y - (nja)]aj2n 

Figure 44 Cross-hatched regions denote the energy bands of -11-n/a•A • p' Dotted lines 
indicate the extra energy levels due to a single substitutional impurity for varying 
impurity strength y. From Saxon and Hutner, 1949, [404]. 

We have (cf. Figure 44). 

Theorem 2.6.4. Let the substitutional b-interaction be concentrated at 
z E A with coupling constant Y E IR - {O}, Y =1= -oc. Then the essential spec
trum of - A",A, r.z is purely absolutely continuous and coincides with the band 
spectrum of - 8", A 

(J (- A A ) = (J (- A A ) = (J( - A A) ess ex, ,y,z ac a, ,,},,Z IX, ' 

(2.6.37) 
(Jsc( -A",A,r,z) = 0· 

(i) For oc > 0, Y > 0, -A",A,r,z has no eigenvalues. 
(ii) For oc > 0, Y < 0, -A",A,r,z has precisely one simple impurity state in 

every gap of its essential spectrum (including the zeroth one). 
(iii) For oc < 0, y > ° there is precisely one simple impurity state in every 

gap except the zeroth one. 
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(iv) For a < 0, y < 0 there is precisely one simple eigenvalue below the first 
band and -A~.A.y.z has no other eigenvalues. 

The equation for impurity states of energy E = P of -A~.A.y.z in 
IR - O'ess( -A~.A.Y.z) reads 

cot(ka) = (k/a) [1 + (2kt2(y2 - ( 2)], 

k2 E IR - O'ess( -A~.A.Y.z)' 1m k ~ 0, (2.6.38) 

with 1m O(k) > 0, Re O(k) E (n/a) No, where 0 obeys the Kronig-Penney 
relation (2.3.16). 

PROOF. The absence of embedded eigenvalues of -~ •. A.Y.z in its essential spec
trum follows from the condition 1m 8(k) > 0 (cf. (2.6.21)) since only 8(k) E IR gives 
rise to the band spectrum of -~ •. A' Relations (2.6.37) then follow from (2.6.10), 
(2.6.4), and Theorem XIII.20 in [391]. That there exists at most one simple impurity 
state in each gap is a consequence of Theorem 2.6.2 (or of the strict monotonicity 
of F(k) in Lemma 2.6.3(b)). Observing z = noa for some no E Z and hence z' = 0, 
(2.6.27) simplifies to 

-2ik sin(8a) + y sin(ka) = 0, 1m k ~ 0, 1m 8 > O. (2.6.39) 

Eliminating 8 in (2.6.39) and in (2.3.16) yields (2.6.38). Clearly, Re 8 E (n/a) No to 
guarantee k2 E IR. The rest of the assertions now follow from Lemma 2.6.3(b) since 
the solutions '¥ •. A(k, ± 1, x) can only match at z to give there a D-interaction of 
strength y if F(k) = y/2 (i.e., in particular, if their signs coincide) due to reflection 
symmetry of the bound state wave function near z. • 

For the defect impurity we obtain (cf. Figure 45) 

Theorem 2.6.5. Let the defect b-interaction be concentrated at Z E A with 
coupling strength - a. Then 

O'ess( -Ll~.A.-~.z) = O'aJ -Ll~.A.-~.z) = 0'( -A~.A)' 

O'sc( -A~.A.-~.Z) = 0· 
(2.6.40) 

(i) For a> 0, -Ll~.A.-~.z has precisely one simple eigenvalue in all gaps of 
its essential spectrum (including the zeroth one). 

(ii) For a < 0, - A~.A. -~.z has precisely one simple eigenvalue in all gaps of 
its essential spectrum except the zeroth one. 

The corresponding equation for defect levels E = k2 of -A~.A.-~.z in 

IR - O'ess( -A~.A.-~.z) reads 

cot(ka) = k/a, k2 E IR - O'ess( -A~.A.-~.z), 1m k ~ 0, (2.6.41) 

with 1m O(k) > 0, Re O(k) E (n/a)N o, where 0 solves (2.3.16). 

PROOF. Taking y = -IX in (2.6.38) implies (2.6.41). The rest is analogous to the 
proof of Theorem 2.6.4 • 
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-3 

-4 
-105 -1 -{)O5 0 {)O5 1 1'5 a -l1.a/2n 

Figure 45 Cross-hatched regions denote the energy bands of -~.,A,-.,z by varying 11.. 

Dashed lines show the extra energy levels due to a single defect point interaction of 
strength -11.. From Saxon and Hutner, 1949, [404]. 

Finally, we discuss an interstitial impurity (cf. Figure 46) in 

Theorem 2.6.6. Let the interstitial !5-interaction be placed at z in the middle 
of two consecutive lattice points in A with a coupling constant y E ~ - {O}. 
Then 

(J (-A -) = (l (-A A -) = (J(-A A) ess a,A, ')',Z ac a:" }"Z a, ' 
(2.6.42) 

(Jsc( -Aa ,A,1,Z) = 0. 
(i) Fora. > O,y > 0, -Aa,A,1,zhas a simple impurity level in every odd gap, 

whereas for a. > 0, y < ° there is a simple impurity level in all even gaps 
(including the zeroth one). 

(ii) For a. < 0, y > ° there exists a simple impurity state in every even gap 
of (Jess ( -ACZ,A,1,Z) except the zeroth one. 

(iii) For a. < 0, y < ° there exists a simple bound state of -Aa,A,1,Z in the 
zeroth gap and in all odd gaps of its essential spectrum. 

-Aa,A,1,z has no other eigenvalues. 



300 111.2 Infinitely Many 8-lnteractions in One Dimension 

The corresponding equation for impurity states E = k2 of -A~,A,Y,Z in 
IR - lTess( -A~,A,y,z) reads 

(y/2k)2 = (ex/2k) [tan(ka/2)r1 - 1 k2 IR ( 
(ex/2k) tan(ka/2) + l' E - Uess -A~,A,y,z)' 

with 1m O(k) > 0, Re O(k) E (n/a) No, where 0 solves (2.3.16). 

1m k ~ 0, 

(2.6.43) 

PROOF. Since z = (no + t)a for some no E 7L we get z' = a/2 and thus (2.6.27) 
becomes 

i tan(8a/2) = (y/2k) tan(ka/2), 1m k ~ 0, 1m 8 > O. (2.6.44) 

Eliminating 8 from (2.6.44) and (2.3.16) yields (2.6.43). The rest of the proof parallels 
that of Theorem 2.6.4 except that now Lemma 2.6.3(a) has to be applied in order 
to get solutions of r(k) = y/2. • 

._ ........ __ .....•........... _ ..............• 

-2 -1 ---. 
ya/2n 

Figure 46 Cross-hatched regions denote the energy bands of -1'l-n/a,A,r,z' Dotted lines 
show the extra energy levels due to a single interstitial impurity symmetrically located 
between two lattice points of varying strength y. From Saxon and Hutner, 1949, [404]. 
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Next we turn to impurity scattering. We are looking for scattering solutions 
'P".A,y,Ak, a, x) of -L1",A,y,z fulfilling (2.6.18) and the boundary conditions 
(2.6.19) and (2.6.20) for a = + 1 and a = -1 separately. Again for x E IR - {z} 
solutions ljJ(k) of -L1",A,y,zljJ(k) = PIjJ(k) also solve -L1",AIjJ(k) = PIjJ(k). 
Thus we are led to the ansatz 

'P (k + 1 x) = {5;.l,A,y,Ak)'P",A(k, + 1, x), 
",A,y,z, , 'P",A(k, + 1, x) + 9l~,A,y,Ak)'P",A(k, -1, x), 

'P (k -1 x) = {'P",A(k, -1, x) + 9l~,A,y,Ak)'P",A(k, + 1, x), 
",A,y,z, , :!Ir (k)'P (k -1 x) 

a,A.y,z a.A' " 

x> z, 

x < z, 

x> z, 

x < z. 
(2.6.45) 

Insertion of (2.6.45) into (2.6.20) yields (suppressing 0:, A, y, z in 5;.~<t2,y,Ak) for 
a moment) 

and 

:!I1(k)'P",A(k, + 1, z) = 'P",A(k, + 1, z) + 9l\k)'P",A(k, -1, z), 
(2.6.46) 

:!Ir(k)'P",A(k, -1, z) = 'P",A(k, -1, z) + 9lr(k)'P",A(k, + 1, z), 

:!Il(k)'P~,A(k, + 1, z+) - 'P~,A(k, + 1, z-) - ~l(k)'P~,A(k, -1, z-) 

= (y + O:bz,A):!I1(k)'P",A(k, + 1, z), 
(2.6.47) 

'P~,A(k, -1, z+) + 9lr(k)'P~,A(k, + 1, z+) - :!Ir(k)'P~,A(k, -1, z-) 

= (y + o:bz,A):!Ir(k)'P",A(k, -1, z). 

Employing again (2.6.24) we obtain 

[:!I1(k) - 1]'P~,A(k, + 1, z+) - 9l1(k)'P'(k, -1, z+) 

- y:!ll(k)'P",A(k, + 1, z) = 0, 
(2.6.48) 

[1 - :!Ir(k)]'P~,A(k, -1, z+) + ~r(k)'P~,A(k, + 1, z+) 

- y:!lr(k)'P",A(k, -1, z) = O. 

Solving (2.6.46) and (2.6.48) finally leads to 

Theorem 2.6.7. Let 0:, y E IR - {O}, z E IR. Then the unitary on-shell scatter
ing matrix ~,A,y,Ak) in 1[2 associated with the pair (-L1",A,y,z, -L1",A) reads 

Y'. (k) [5;.l,A,y,Ak) ~~'A,y,Ak)J k2 E a(-L1 ) 1m k > 0 (2.6.49) 
",A,y,z = ~l (k):!Ir (k)' ",A' -, 

IX,A,y.z IX,A,y,z 

where 
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We emphasize that the vanishing of the denominator in (2.6.50)-(2.6.52) 
yields precisely the bound state condition (2.6.26). Using (2.6.27) and (2.6.11), 
the results (2.6.50)-(2.6.52) can be rewritten in terms of () and k. We omit the 
details. 

As y ~ 00, the Dirichlet boundary condition at z implies 

Y(k) = [ 0 - 'I'""A(k, -1, z)/'1'""A(k, + 1, z)]. 
- 'I'""A(k, + 1, z)/'1'""A(k, -1, z) 0 

(2.6.53) 

Obviously, the result of Theorems 2.6.4-2.6.6 and Theorem 2.6.7 can be 
derived using the finite difference approach described in Theorem 2.1.5. To 
illustrate this fact we consider the case of two half-crystals as in Sect. 2.4 with 
an impurity added at the beginning of one of the half-crystals. More precisely, 
let -a",-+,A describe the two half-crystals in (2.4.2) and add a c5-interaction of 
strength Y E IR - {O} at the origin (i.e., at the beginning of the right half
crystal). The resulting Hamiltonian in L2(1R) is denoted by -a",-+,A,y. Then 
we obtain 

Theorem 2.6.8. Let the c5-type impurity be concentrated at zero with coupl
ing constant Y E IR - {O}. Then the essential spectrum of -a",-+,A,y is purely 
absolutely continuous and coincides with the spectrum of - a",-+,A 

Ciess( -a",-+,A,y) = Ciac ( -a",-+,A,y) = Ci( -a",-+,A), 

Cisc ( -a",-+,A,y) = 0· 
(2.6.54) 

Moreover, there is at most one simple surface state in each gap of 
Ciess( -a",-+,A,y)' 

The corresponding bound state equation reads 

(-1r+{[(a+ /2k)2 - 1] sin2(ka) + (a+ /k) sin(ka) cos(ka)p/2 

+ (-1r-{[(a- /2k)2 - 1] sin2(ka) + (a- /k) sin(ka) cos (ka)} 1/2 

= [(a- - a+ - 2y)/2k] sin(ka), 1m k ~ 0, (2.6.55) 

where ()± satisfy (cf (2.4.25» 

cos(O±a) = cos(ka) + (a± /2k) sin(ka), 

1m O± > 0, Re O± = m±n/a, m± E No. (2.6.56) 
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PROOF. In order to obtain (2.6.55) we have to solve (suppressing the k-dependence 
for a moment) 

I/Ij+l + I/Ij-l + Iljl/lj = 81/1j, I/Ij E C, j E Z, 

{

Il+, j = 1,2, ... , 

8 = 2 cos(ka), Ilj = Il~' j = 0, 

II, j = -1, - 2, ... , 

(2.6.57) 

110 = -(a+ + y)k-1 sin(ka), k #- mn/a, mE Z. 

For the surface state we make the ansatz 

1m 8± > 0, Re 8± E (n/a)Z. (2.6.58) 

Insertion of (2.6.58) into (2.6.57) yields 

2 cos(8+a) = (8 - 11+) for j;:::: 1, (2.6.59) 

c+e i8+. + c_e i8_. = (8 - Ilo)c+ for j = 0, 

c+ + c_e2i8_. = (8 - 1l-)ce i8_. for 
(2.6.60) 

j = -1, 

2 cos(8_a) = (8 - 11-) for js -2. (2.6.61) 

Calculating the determinant associated with c± in (2.6.60) we get 

[e 2i8_. _ (8 - 1l-)e i8_.] [e iD+. - (8 - 110)] - ei8_. = (8 - 110) _ ei8_. _ ei8+ •• 

(2.6.62) 

Taking (2.6.62) equal to zero and eliminating 8+ with the help of (2.6.59) and (2.6.61) 
yields (2.6.55). Since necessarily 1m 8± > 0, to-get an [2-falloff as j ---> ±oo we infer 
from (2.4.6) that -~a-+.A.Y has no eigenvalues embedded in its essential spectrum. 
This together with Theorem 2.6.2 and the remark about the absolutely continuous 
spectrum in the proof of Theorem 2.4.1 yields the result. • 

In the "true" half-crystal situation where rx- = 0, (2.6.55) simplifies to 

cot(ka) = - i[1 + 2(y/rx+)] + (y/k) [1 + (y/rx+)]. (2.6.63) 

Generalizations placing the impurity in the interior of one of the half
crystals can now be obtained in an analogous manner (although quite tedious 
from a calculational point of view). 

Notes 

Section 111.2.1 
Self-adjointness of the operator -d",r defined in (2.1.6) follows, e.g., from 
[208], [345] (cf. also Appendix C). A numerical study of spectral concentration 
in the case where the points in YM,N are equally spaced appeared in [397] (cf. 
Figure 40 in Sect. 2.3). The connection between -d",r in L2(1R) and the 
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discrete operator (2.1.49) goes back to Phariseau [373] (cf. also [400]) and 
Bellissard, Formoso, Lima, and Testard [70] (see also [478]). Our version of 
Theorem 2.1.5 is taken from [439]. 

Finite difference operators are discussed, e.g., in [46], [120], [122], [214]. 
The Kronig-Penney model on a Fibonacci lattice has been studied in 

[301]. 

Section 111.2.2 
Theorem 2.2.1 is taken from Albeverio, Gesztesy, H0egh-Krohn, and Kirsch 
[21]. Its proof is based on results of Morgan [345] and subsequent generaliza
tions due to Kirsch [286] (cf. also Appendix C). 

Section 111.2.3 
Direct integral decompositions and basic material in connection with periodic 
one-dimensional systems are treated in [54], [55], [160], [300], [326], [334], 
[391]. General periodic Schrodinger operators H = - Ll + V in L 2 (lRd) are 
usually treated in p-space when d ~ 2, while x-space analysis is best adapted 
when d = 1, cf. [391], Sect. XIII. 16. 

Some generalizations of the Kronig-Penney model [307] (see also [185], 
[219], [449], [450], [486]) are studied, e.g., in [313], [384], [500], [501]. 
(For additional references in connection with surface states of half-crystals 
and random Kronig-Penney models we refer to the notes of the following 
sections.) The density of states (2.3.46) has been discussed in [215] using 
a different approach. (The sum (2.3.53) has been evaluated in [440].) The 
recursion scheme (2.3.64) and (2.3.65) appeared in [478]. A detailed treatment 
of mono- and diatomic lattices together with extensive illustrations can be 
found in [404]. In this paper the conjecture about the validity of Theorem 
2.3.5 for binary alloys was also formulated. The proof of Theorem 2.3.5 in the 
special case of binary alloys actually appeared in [329] (cf. also [159]). That 
this result need not hold in general has been shown in [284] (cf. also [402]) 
using alloys consisting of certain square well interactions. The actual extension 
to general interactions taking into account the labeling of gaps involved 
appeared in [286]. Theorem 2.3.5 in the case of general alloys (consisting of 
equally spaced b-interactions) is taken from [206] where a slightly different 
proof has been given. Theorem 2.3.6 is also taken from [206]. Other generali
zations of Luttinger's theorem to general alloys of equally spaced b-functions 
of definite sign of the coupling strengths (i.e., all I'n ~ 0 or I'n ::; 0, n = 1, ... , 
N) appeared in [286], [288], and [408]. Related, although not equivalent 
theorems on gaps in such alloys are treated in [254], [255], [256], [257], 
[259], [488], [489]. For the impossibility of the so-called inverse Saxon
Hutner conjecture, see, e.g., [166], [168], [169]. Lemma 2.3.8 is a standard 
result (see, e.g., [158], p. 1486). 

In contrast to the three-dimensional treatment in Sect. IILl.4 we did not 
discuss the e-expansion around the Kronig-Penney model. It is the purpose 
of the following to indicate how to fill in this gap. First of all, one easily 
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computes that 

gk(8X, e) = I Gk(8X + an)e-i9an 
neE 

= (i/2k){[1 - ei(k-9)arleik.x + [1 _ ei(k+9)arle-ik'X _ eik.lxl} 

.fo {sin(ka)/2k[cos(ka) - cos (ea)] } 

- (8/2){[1 - ei(k-9)ar I X - [1 - ei(k+9)ar I X + Ixl} + 0(81 ), 

8X E (-a, a), kl ¢: jr + ell, 1m k > 0, e E X = [ -b/2, b/2]. 

Moreover, in analogy to (1.4.126)-(1.4.130) with Y = {O} we introduce in 
U(IR) 

H',A = -~ + A(8)8-1 I V((· - A)/8), 8> 0, 
AeA 

with VE U(IR) being real-valued, supp(V) compact, and A(8) analytic near 
8 = 0 with A(O) = O. Then obviously 

- --1 lIB de OUH.,AOU = bH',A(e), 
[bll,bll) 

where (cf. (I.3.2.19)) 

(H.,A( - e) - kl r1 = gk(e) - 8-1 A(8)A.(k, e) [1 + B.(k, e)]-1 C.(k, e), 

Here 

8> 0, kl E P(H.,A( -e)), 1m k 2 0, e E [-b/2, b/2]. 

gk(e): L 2([') --+ L 2([,), 

A.(k, e): Ll(lR) --+ L l ([,), 

B.(k, e): L 1(1R) --+ U(IR), 

C.(k, 8): U(f) --+ U(IR); 

820, kl ¢: Ir + e1 2, 1m k 2 0, e E [ -b/2, b/2] 

are operators with integral kernels 

gk(V - v', e), 

A.(k, e, v, x) = gk(V - 8X, e)v(x), 

B.(k, e, x, x') = 8-1 A(8)U(X)gk(8(X - x'), e)v(x'), 

C.(k, e, x, v) = U(X)gk(8X - v, e); 

820, k2 ¢: Ir + ell, 1m k 2 0, x, x' E IR, v, v' E [', e E [ -b/2, b/2]. 

Thus B.(k, e) is analytic with respect to 8 near 8 = 0 in Hilbert-Schmidt norm. 
Consequently, one can follow the proof of Theorem 1.3.3.1 in order to infer 
that for 8 > 0 small enough and IX = X(O) J ~ dx V(x) E IR - {O}, all eigenvalues 
E.,A,m(e), mEN, of H.,A(e) are simple and analytic in 8 near 8 = 0 

E.,A,m(e) = E:;A(e) + 0(8), e E [ -b/2, b/2), mEN. 

The first-order term in 8 can be computed similarly to that in Theorem I.3.3.1. 
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The Stark effect in connection with the Kronig-Penney model is studied 
in [79], [352]. 

Section m.2.4 
Scattering theory for general systems with different spatial asymptotics as 
Ixl ~ ±oo has been considered in [118], [124], [136], [201], [401]. Spectral 
properties of one-dimensional half-crystals of b-interactions are extensively 
treated in [3], [4], [5], [140], [212], [225], [304], [305], [340a], [343a], 
[356a], [372],[374],[376],[377],[422],[452], [453],[454], [458a],[458c], 
[460], [473], [474], [475], [478a], [487]. Theorem 2.4.2 appears to be new. 

The Stark effect in connection with half-crystals of b-interactions is studied 
in [58], [73], [76], [77], [455], [458], [458b]. 

Section m.2.S 
The idea of exploiting the condition between h(A, e, r/J) and - fl y(8,tP), A in the 
quasi-periodic case is due to Bellissard, Formoso, Lima, and Testard [70]. 
Theorem 2.5.1(a) has been suggested by Aubry [48] and was proven by Avron 
and Simon [56]. Theorem 2.5.1 (b) is also due to [56] (cf. also [439]). Theorem 
2.5.1 (c), (d) is taken from Bellissard, Lima, and Testard [71]. For discussions 
in the physics literature, cf. [48], [49], [57], [238], [246], [263], [447], and 
[448]. 

Section m.2.6 
Theorem 2.6.1 in the context of three-dimensional point interactions appeared 
in Albeverio, H0egh-Krohn, and Mebkhout [31]. Depending on the decay 
properties of Gk,ex, y(x, Zl), k2 E p( - flex, y), 1m k > 0, as I x I ~ 00, formula (2.6.4) 
extends to infinitely many impurities in a discrete set Z with IZI - zl'l 2:: d > 0 
for all Zl -# Zl" Z/> Zl' E Z, along the lines of Theorem 2.1.3. 

The number of impurity levels in gaps of the essential spectrum is discussed 
in [137], [258], [296], [404], [411], [423], and [459]. 

Tunneling phenomena are treated in [409], [410], and [461]. 
The Kronig-Penney Bloch wave functions (2.6.11) and their derivation has 

been taken from Saxon and Hutner [404]. In this paper the corresponding 
Bloch wave function of a diatomic lattice (i.e., the sequence a is periodic with 
period two, aj+ 2 = aj' j E 7L, ao = a, a 1 = p, a -# p, a, p E ~) is also given. 
Lemma 2.6.3 is taken from Schrum and Peat [411]. The results of Theorems 
2.6.4-2.6.6 together with numerical illustrations can be found in [404] and 
[411]. See also [281a] for a discussion on impurity levels. Substitutional 
impurities in a diatomic lattice are also discussed in [404]. We note that 
b'-type interstitial impurities can be treated in analogy to Theorem 2.6.6. 

The explicit results on impurity scattering in the Kronig-Penney model in 
Theorem 2.6.7 appear to be new. Again an interstitial b-interaction could be 
replaced by an interstitial b'-interaction. The result (2.6.54) (for a- = 0) and 
other generalizations together with numerical illustrations are contained in 
papers by Aerts [3], [4], [5]. 



CHAPTER 111.3 

Infinitely Many ~'-Interactions in 
One Dimension 

Now we derive the main results of Ch. 2 for ~'- instead of ~-interactions. We 
shall closely follow the strategy for ~-interactions and only present detailed 
proofs if the arguments differ substantially from those in Ch. 2. 

Let J c Z be the index set of Sect. 2.1 and Y = {Yj E /R1j E J} be a discrete 
subset of /R satisfying (2.1.1) and the remarks after (2.1.1). In analogy to Ch. 
11.3 we introduce the minimal operator Ii~ in L2(\R) 

~(Ii~) = {g E H2,2(/R)lg'(y) = 0, Yj E Y,j E J}. (3.1) 

Then Ii~ is closed and nonnegative and its adjoint operator reads 

',* _ d2 

Hy - - dx2 ' 

~(Ii~*) = {g E H2,2(/R - Y)lg'(Yj+) = g'(Yj_)' Yj E Y,j E J}. 

The equation 

(3.2) 

Ii~*rjJ(k) = k2rjJ(k), 

then has the solutions 

rjJ(k) E ~(Ii~*), k2 E C - /R, 1m k > 0, (3.3) 

{
eik(X-Yi) x > Yj' 

(Mk, x) = _ eik(Yj~X), 1m k > 0, Yj E Y, j E J, (3.4) 
x < Yj' 

which span the deficiency subspace of Ii~. Thus Ii~ has deficiency indices 
(00, 00). According to Appendix C a particular type of self-adjoint extensions 
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of fI~ is of the type 

d2 

'='p,y = - dx2 ' 9.&(8p,y) = {g E H2,2(1R - Y)lg'(Yj+) = g'(Yj-), 

g(Yj+) - g(Yj-) = {ljg'(Yj),j E J}, 

{l = {MjEh -00 < {lj::;; 00, j E J. (3.5) 

By definition 8 p, y describes (j' -interactions of strength {lj centered at Yj E Y, 
j E J. The special case {lj = 0, j E J, leads to the kinetic energy operator - L1 
on H2,2(1R) whereas the case {ljo = 00 for some jo E J leads to a Neumann 
boundary condition at the point Yjo (i.e., g'(Yjo +) = g'(Yjo -) = 0). 

Since Theorems 2.1.1 and 2.1.2 immediately go through with -L1a,y, 

- L1"M.N, y M.N replaced by their respective analogs, we directly proceed to a 
description of the resolvent of 8 p, y. 

Theorem 3.1. Let {lj E IR - {O},j E J, and assume (2.1.1). Then 

(8p,y - k2 r 1 = Gk + L [f'p,y(k)Jjj~(Gk(' - Yr), . )Gk(' - Yj), 
j,rEJ 

P E p(8p, y), 1m k > O. (3.6) 

Here 

f'p,y(k) = [ -({ljPr1(jjj' + Gk(Yj - Yr)]j,j'Eh 

is a closed operator in F(Y) with 

1m k > 0, (3.7) 

[f'p,y(k)r1 E .1IUZ(Y)), 

and 

k2 E p(8p, y), 1m k > 0 large enough, (3.8) 

{
eik(X-Y) x > Y 

Gk(x - y) = (i/2k) ik(Y~X) , 
-e ,X<Y, 

Gk(x - y) = (i/2k)eiklx-yl, 1m k > O. 
(3.9) 

PROOF. One can follow the proof of Theorem 2.1.3 step by step since obviously 
1 Gk(x) 1 = 1 Gdx) I· • 

The analog of Theorem 2.1.4 then reads 

Theorem 3.2. Let {lj E IR - {O},j E J, and assume (2.1.1). Then the domain 
9.&(8p. y) consists of all elements IjJ of the type 

ljJ(x) = (Aex) + (i/k) L [f'p,y(k)]jj~rP~(Yj')Gk(X - Yj), (3.10) 
j,j' E J 

where rPk E 9.&( - L1) = H2,2(1R) and k2 E p(8p, y), 1m k > O. The decomposi
tion (3.10) is unique and with IjJ E 9.&(8p,y) of this form we obtain 

(8p,y - k2)1jJ = (-L1- k2)rPk' (3.11) 

Next let IjJ E 9.&(8p, y) and suppose that IjJ = 0 in an open set U ~ IR. Then 
8 p,yIjJ = 0 in U. 
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Having established some of the basic properties of SIl, y we now turn to a 
one-to-one correspondence between SIl,y and a certain discrete operator in 
[2(y). Actually, it will turn out that this discrete operator is almost identical 
to the one we discussed in connection with -Lla,y at the end of Sect. 2.1. Our 
strategy now will be somewhat different to that in Sect. 2.1 since we shall 
directly derive the corresponding difference equation without intermediate 
matrix transformations. As in Sect. 2.1 we assume without loss of generality 
J = 7L and suppose ±oo to be the only accumulation points of Y such that 
IR = Ujez.lj. We intend to solve 

(SIl,y - k2 )IjI(k, x) = 0, 

with boundary conditions 

1m k ~ 0, X E IR - Y, (3.12) 

IjI'(k, Yj+) = IjI'(k, Yj-)' IjI(k, Yj+) - IjI(k, Yj-) = pjljl'(k, Yj), Pj E IR, j E 7L. 
(3.13) 

On every intervallj +1 we obtain 

IjI(k, x) = IjI(k, Yj+) cos [k(x - y)J + IjI'(k, y)k- 1 sin[k(x - y)J, 

IjI'(k, x) = -IjI(k, Yj+)k sin[k(x - Yj)] + IjI'(k, Y) cos [k(x - Yj)], 

1m k ~ 0, X E Ij+l' (3.14) 

Thus we infer 

IjI'(k, Yj+l) = -IjI(k, Yj+)k sin[k(Yj+l - Yj)] + IjI'(k, Y) cos [k(Yj+1 - Yj)], 

IjI'(k, Yj) = - IjI(k, Yj-l +)k sin[k(Yj - Yj-dJ 

+ IjI'(k, Yj-l) cos[k(Yj - Yj-l)], 
(3.15) 

IjI(k, Yj-) = IjI(k, Yj-l +) cos [k(Yj - Yj-l)J + IjI'(k, Yj_d k- 1 sin[k(Yi - Yj-l)]. 

Using (3.15), a simple calculation then yields 

IjI'(k, Yj+1) = - [IjI(k, Yj-) + Pjljl'(k, Yj)]k sin [k(Yj+l - y)J 

+ IjI'(k, Yj) cos [k(Yj+l - Yj)] 

{ . sin[k(Yj+1 - Yj-dJ} , 
= - Pjk sm[k(Yj+l - Yj)] + . [k( . )J IjI (k, Y) 

sm Yj - Yj-l 

_ '/"( . ) sin[k(Yj+l - Yj)] 
'f' YJ-l . [k( )J' sm Yj - Yj-l 

1m k ~ 0, k i= nm(Yj - Yj-lrt, j, m E 7l., (3.16) 

or equivalently, 

sin[k(Yj - Yj-dJ IjIj+l (k) + sin[k(Yj+l - Yj)] IjIj-l (k) 

= {-pjk sin[k(Yj+l - Yj)] sin[k(Yj - Yj-l)J + sin[k(Yj+l - Yj-l)]}IjIik), 

1m k ~ 0, k i= nm(Yj - Yj-l rt, j, m E 7L, (3.17) 

IjIj(k) == IjI'(k, Y), 1m k ~ 0, j E 7L. 
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We emphasize the great similarity of (3.17) and (2.1.49): The only difference 
concerns the term r/)k which goes into - f3j k. Defining 

and 

1m k ;;::: 0, j E 7L, (3.18) 

_ s~n[k(Yj~ - Yj)] ] 
sm[k(Yj Yj-l)] , 

° 
1m k ;;::: 0, k"# nm(Yj - Yj-lr\ j, m E 7L, (3.19) 

then (3.17) can be rewritten in matrix form 

Moreover, we get 

Theorem 3.3. Let f3j E lR,j E 7L. Then any solution t/J(k, x), k2 E IR, 1m k ;;::: 0, 
k "# nm(Yj - Yj-l r 1 ,j, m E 7L, of (3.12) and (3.13) satisfies (3.17). Conversely, 
any solution of (3.17) defines via 

t/J(k, x) = t/Jj(k)k-1 sin[k(x - Y)] 

a solution of (3.12) and (3.13). In addition, t/J(k) E U(IR) implies {t/Jj(k) = 
t/J'(k, Yj) Ld? E IP(7L) for p = 00 or p = 2. Moreover, exponential growth 
(resp. decay) of t/J(k, x) implies that of {t/Jik) LE Z and at the same rate 
(cf Theorem 2.1.5). In the special case of a lattice structure of Y, i.e., 
Yj+1 - Yj = a > 0, j E 7L, the last two statements may be reversed, i.e., {t/Jj(k) = 
t/J'(k, y)LEZ E IP(7L) implies t/J(k) E U(IR) for p = 00 or p = 2, and similarly 
for the exponential growth rate. 

PROOF. Using (2.1.51)-(2.1.53) and 

Ij/(k, Yj) = Ij/(k, x) cos[k(x - Yj)] + t/I(k, x)k sin[k(x - y)], x E Ij+l, 

[t/I(k, X)]2 + k- 2[t/I'(k, X)]2 = k-2[t/lik)]2 (3.22) 

+ k-2 sin- 2 [k(Yj+1 - y)J{ -t/lj+1(k) + t/lik) cos [k(Yj+1 - Yj)]P, X E Ij+l, 

(taking t/I real-valued) one can follow the corresponding proof of Theorem 2.1.5 

~~~ . 
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Next, we consider a periodic lattice and assume Y = A == all., a > O. In this 
case Mik) simplifies to 

k [
- f3j k sin(ka) + 2 cos(ka) 

Mi ) = 1 -1J o ' 1m k ;:::: 0, jEll., (3.23) 

and (3.17) becomes 

t/lj+1 (k) + t/lj-l (k) = { - f3j k sin(ka) + 2 cos(ka)} t/lik), 

1m k ;:::: 0, k =I- nmla, j, m E ll.. (3.24) 

Of course, the remarks after (2.1.55) apply as well in the present case. As 
our first concrete example we discuss the analog of the Kronig-Penney 
model for (j'-interactions. The corresponding Hamiltonian in L2(1R) reads 

£&(Sp.A) = {g E H2,2(1R - A)lg'(na +) = g'(na -), 

g(na+) - g(na-) = f3g'(na), n E ll.}, 

-00 < f3 s 00 (3.25) 

and we adopt the notation of Sect. 2.3. In analogy to (2.3.13) we also intro
duce in L 2« -aI2, aI2)) the family of self-adjoint operators 

d2 

Sp,A(O) = - dv 2 ' 

£&(Sp .... (O)) = {g(O) E H 2,2« -aI2, a12) - {O} )lg(O, -a12 +) = eiOQg(O, aI2-), 

g'(f.J, -aI2+) = eiOag'(f.J, aI2-), 

g'(O, 0+) = g'(O, 0-), g(B, 0+) - g(B, 0-) = f3g'(O, O)}, 

-00 < f3 s 00, 0 E [ -bI2, bI2). (3.26) 

Then we have 

Theorem 3.4. Let -00 < f3 s 00, 0 E [ - b12, bI2). Then the essential spec
trum of Sp,A(O) is empty, 

(3.27) 

and thus the spectrum of Sp.A(B) is purely discrete. In particular, its eigen
values Ef,;A(O), mEN, ordered in magnitude are given by 

mE N, (3.28) 

where k!·A(O), mEN, are solutions of 

cos(Oa) = cos(ka) - (f3kI2) sin(ka), 1m k;:::: O. (3.29) 

For f3 E IR - {O}, except for f3 = -a, m = 1, and 0 = 0, the eigenvalues 
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E!!;A(O) are simple with corresponding eigerifunctions 

1 _ -i8a -ik~A(8)a 
ik~A(8)v + i8a -ik~A(8)a e e -ik~A(8)v 

e e e '8 -'kP.A(8) e , e' ae ,~ a - 1 

-a/2 < V < 0, 

0< V < a/2, 

mEN, 0 E [ - b/2, b/2) and m ~ 2 for 13 = - a and 0 = O. 
(3.30) 

If 13 = -a, then El"a,A(O) = 0 is a twice degenerate eigenvalue with corre
sponding eigerifunctions 

A -a A {1 + V, 
gl,ai (0, V) = 1, gd (0, V) = 1 _ a + V, 

0< V < a/2. 

-a/2 < V < 0, 
(3.31) 

We have 

E~,A(O) = 0 < E~,A( -b/2) < E~,A( -b/2) = n2/a2 < E~,A(O) < E~,A(O) 

= 4n2/a2 < E~,A( -b/2) < Ei,A( -b/2) = 9n2/a2 

< Ei,A(O) < E~,A(O) = 16n2/a2 

< E~,A( -b/2) < ... , 13 > 0, 

E~,A(-b/2) < E~,A(O) < E~·A(O) < E~·A(-b/2) = n 2/a2 

< E~,A( -b/2) < E~,A(O) = 4n2/a2 

< Ei,A(O) < Ei,A( -b/2) = 9n2/a2 

< E~,A( -b/2) < ... , 

E~·A( -b/2) < 0, 

E~'A(O){<O, 1131 < a, 
=0, 1131 ~ a, 

E~'A(O){=O, 1131 ~ a, 
>0, 1131 > a, 

(3.32) 

13 < O. (3.33) 

All nonconstant eigenvalues E!!;A(O), 0 E [ - b/2, b/2), mEN, are strictly de
creasing with respect to 13 E lit 

For 13 = 0 the eigenvalues and eigenfunctions are identical to those given 
in (2.3.20). For 13 = 00 the Neumann boundary condition at zero implies 
simple eigenvalues E~,A for m ~ 2 and a twice degenerate ground state Ef,A 

{ 1 -a/2<v<0, 
gf:t(v) = 0', 

0< V < a/2, 
{o - a/2 < V < 0, 

gf:f(v) = 1', 
0< V < a/2, 



I1I.3 Infinitely Many b'-Interactions in One Dimension 313 

{ I -a/2<v<O 
g::,A«(), v) = C cos«m - l)nv/a) (_' 1)m-le-i9a, 

0< v < a/2, 

m = 2, 3, .. .. (3.34) 

PROOF. Since Sp,A(8) obviously has compact resolvent we infer (3.27). Since the 
results (3.30), (3.31), and (3.34) follow again from straightforward computations we 
concentrate on (3.29), (3.32), and (3.33). Nondegeneracy of the eigenvalues E!!;A(8) 
for 8 E (-b/2, 0) u (0, b/2) follows as in the proof of Theorem 2.3.1. In order to 
derive (3.29) one can either use an approach based on (3.26) or our difference 
equation approach. Since the latter works more quickly we use the ansatz 

1m 8(k) ;?: 0, j E 7L, (3.35) 

in (3.24) and (3.29) immediately results. As in the proof of Theorem 2.3.1 we now 
concentrate on the cases 8 = 0, -b/2. Thus we look for solutions of 

± 1 = cos(ka) - (f3k/2) sin(ka), k;?: 0, 

± 1 = cosh(Ka) + (f3K/2) sinh(Ka), k = iK, K;?: O. 
(3.36) 

This in turn is equivalent to solving 

sin(ka/2) = 0 or cot(ka/2) = - 2/f3k for 8 = 0, (3.37) 

sin[(ka + n)/2] = 0 or cot[(ka + n)/2] = - 2/f3k for 8 = - b/2; k;?: 0, 
(3.38) 

and for nonpositive energies to 

sinh(Ka/2) = 0 or 1 = ( - f3K/2) coth(Ka/2) for 8 = 0, 

1 = ( - f3K/2) tanh(Ka/2) for 8 = - b/2; k = iK, K > O. 

(3.39) 

(3.40) 

We study the case with nonpositive energy first. Obviously, (3.39) and (3.40) have 
no solutions for f3 ;?: 0 except K = O. For 13 < 0 we use 

x coth(x) ;?: 1, 

x tanh(x) ~ x, 

x coth(x) ;?: x, 

x tanh(x) ~ x coth(x), x;?: 0, 
(3.41) 

to infer that (cf. Figure 47(a)) (3.40) has precisely one solution Kl (f3) > 0,13 < 0, and 
(3.39) has as only solutions 

K2(f3) = 0, 0 < K3(f3) < Kl (f3) 

K2(f3) = 0 for If3l;?: a. 

for 0 < 1131 < a, 
(3.42) 

(If 13 = -a then both equations in (3.39) yield precisely zero as solutions.) Next we 
turn to nonnegative energies. We start with the simpler case 13 > O. Then (3.37) and 
(3.38) yield solutions k. = nn/a, n E No, and, since cot(ka/2) is strictly decreasing 
from +00 to -00 in (2nn/a, 2(n + 1)n/a), n E No, and cot[(ka + n)/2] is strictly 
decreasing from 0 to -00 in (0, n/a) and from +00 to -00 in «2n + 1)n/a, 
(2n + 3)n/a), n E No, one has precisely one additional solution in every interval 
(nn/a, (n + 1)n/a), n E No (cf. Figure 47(b)). This proves (3.32). Now we discuss 
13 < O. We start with 0 < 1131 < a. Then (3.42) exhibits two solutions K 2(f3) = 0, 
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0< "3(P) < "l(P), Concerning nonnegative energies we first note that due to 0 < 
IPI < a, cot(ka/2) = -2/Pk has no solutions in (0, n/a) since tan (x) > x for x E 

(0, n/2). All solutions of (3.37) and (3.38) are now given by k. = nn/a, n E "'0' and, 
due to the strict monotonicity of cot(ka/2) and cot[(ka + n)/2] mentioned above, 
by precisely one additional solution in every interval (nn/a, (n + 1)n/a), n E '" (cf. 
Figure 47(c)). This proves (3.33) for 0 < IPI < a. At P = -a, 8-a,A(0) has a zero
energy eigenvalue of multiplicity two (cf. the remark after (3.42)). The remaining 
eigenvalues are obtained identically as in the case 0 < IPI < a. For IPI > a, (3.42) 
implies one solution "2(P) = O. The only change compared to the qualitative dis
cussion of the nonnegative eigenvalues in the case P = -a now concerns the 
degeneracy mentioned above. Since IPI > a, cot(ka/2) = -2/Pk now has precisely 
one solution in (0, n/a) and hence this degeneracy is removed (cf. Figure 47(d)). 
Thus (3.33) is proved. • 

o "a/2 

(a) -a < Pl < 0, P2 < -a 

~ ... o 
(,) 

(c) -a < P < 0 (d) P < -a 

Figure 47 



111.3 Infinitely Many b'-Interactions in One Dimension 315 

+~1+-__ ~~ __________ ~~~ __ 

~O~~--~----~------~E 
-1 

(a) p = 0 (b) P'= 2.8 

+~1~ __ ~L-__ ~ ________ ~ __ 

-1 

+ 1"'-,k-----f------\----------+ __ 

-1 

(c) P = -0.8 (d) P = -1 

(e) P = -1.4 

Figure 48 F(E) = cos(jE) - (pjE/2) sin(jE), 1m jE ~ O. 

In Figure 48 the right-hand side of (3.29) is plotted as a function of E = k2 

(a = 1). Whenever F(E) lies in [ -1, 1] for some E one can find a 0 E A such 
that cos(O) = F(E) and we observe the familiar band structure with infinitely 
many gaps. 

For a plot of Ee;A(O) cf. Figures 49 and 50. 
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--+-----'''''-+-=------+--> () -----t==-j---===+___> () 
-n -n 
(a) {J = 0 (b) {J = 1.2 (c) {J = -0.8 

-n n () -n 

(d) {J = -1 (e) {J = -1.2 

Figure 49 The eigenvalues Ee;z(()) = [k!·Z(())]2, m = 1, ... ,5, of BfI •z(()) as a function 
of (), - n ::; () < n. 
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E E E 

+-""--------~(} -+~~------->(} --n-+-'----+"'----------->(} 

(a) f1 = 0 (b) f1 = 1.2 (c) P = -0.8 

E E 

~n~~=-----~(} _n;;;+---=-F------- (} 

(d) f1 = -1 (e) p = -1.2 

Figure 50 The energy E = k2 as a function of (} ~ 0 for P = 0, 1.2 and of (} ~ -n for 
P = -0.8, -1, -1.2. 

In complete analogy to Theorem 2.3.2 we now get 

Theorem 3.5. Let -00 < p ::;; 00 and A = alL, a> O. Then 

-- --1 fEll dO_ l71i':='p,A I7Ii = -b ':='P,A(O). 
[-bt2,bt2) 

(3.43) 

The analog of Theorem 2.3.3 now reads 

Theorem 3.6. Let P E IR and A = alL, a > O. The Sp,A has purely absolutely 
continuous spectrum 

ao 

O"(Sp,A) = O"ac(Sp,A) = U [a!,A, b:,AJ, 
m=l 

(3.44) 
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Here for fJ > 0 

ap,A _ {E!,A(O) = (m - 1)2n2/a2, m odd, 
m - E!,A( -b/2) = (m - 1)2n2/a2, m even, 

bp,A = {E!,A( -b/2), m odd b!,A < m2n2/a2; mEN, 
m E!,A(O), m even, 

and for fJ < 0 

{-a IfJl ~ a, ag,A = Eg,A(O) - , 
>0, IfJl > a, 

p,A _ {E!,A( - b/2), 
am - E!,A(O), 

a!,A > (m - 2)2n2/a2, 

modd, 

m even, 

m;:::: 2, 

bf'A = E~'A(O){<O, IfJl < a, 
=0, IfJl;:::: a, 

mEN, 

modd, bP,A _ {E!,A(O) = (m - Ifn2/a2, 

m - E!,A( -b/2) = (m _ 1)2n2/a2, m even, 
m=2,3 ... , 

(3.45) 

(3.46) 

with E!,A(8) the eigenvalues of 3 p,A(8) described in Theorem 3.4. As m -+ 00 

the length of the mth gap a!';l - b!,A resp. the width of the mth band 
b!,A - a!' A asymptotically fulfill 

a!';l - b!,A m':;'", 2mn2a-2 - [(Sa/lfJl) + n2]a-2 + (S/afJm) + O(m-2), 
(3.47) 

For fJ E IR - {O}, 3 p,A has infinitely many gaps in its spectrum. Since 
E!,A(O), E!,A( -b/2), mEN, are simple for fJ # -a, all possible gaps in 
a(3p,A) occur in this case. For fJ = -a, 3-a,A(0) has a degenerate zero
energy eigenvalue and thus the first gap closes at zero. Due to the simplicity 
of E;;.a,A(O), m;:::: 2, and E;;.a,A( -b/2), mEN, all other possible gaps do 
actually occur. For fJ = 0, 3 0,A equals - Ll on H 2,2(1R) and due to the 
degeneracy of E~,A(O), m;:::: 2, and E~,A( -b/2), mEN, all gaps close (cf. 
(2.3.37)). For fJ = 00, 3""A equals the Neumann Laplacian on IR - A and 
hence reduces to an infinite direct sum of Neumann Laplacians on (ma, 
(m + l)a), mE Z. Thus its spectrum is pure point with each eigenvalue of 
infinite multiplicity 

aC(3oo,A) = 0, 
(3.4S) 

Furthermore, we note a strict mono tonicity of a(3p,A) with respect to fJ 
(being a consequence of the monotonicity of E!,A(O), E!,A( -b/2), mEN, 
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with respect to f3 E ~ as mentioned in Theorem 3.4) 

<T(Sp,A) C <T(Sp'.A)' 

<T(Sp,A) :;:) <T(Sp',A)' 

o :s; f3' < p, 
- 00 :s; P' < p:s; -a. 

(3.49) 

The band edges a!'\ b!'\ mEN, are continuous with respect to f3 E ~. 

PROOF. Since one can follow the proof of Theorem 2.3.3 step by step we omit any 
details. • 

The spectrum of Sp,A as a function of the coupling constant P E IR is 
illustrated in Figure 51. 

E 

________ -=~I'=---------- p 

Figure 51 The band spectrum of SP,il' as a function of P (cf. also Figures 49 and 
50). 

We would like to stress the curious fact that for P < 0 the lower band edges 
of Sp,A are given by E!,A( - b/2), i.e., by the antiperiodic eigenvalues and not 
by the periodic eigenvalues E!,A(O). The reason for this is clear from (3.36) 
since the discriminant behaves atypical as E = - K2 -+ -00 for P < 0, viz, 

!~~ [cosh(Ka) + (f3K/2) sinh(Ka)] = { ~:: P ~ 0, 

f3 <0. 
(3.50) 

This phenomenon is connected with the fact that Sp,A(O) has a ground state 
which changes sign for v § O. Hence the usual positivity preserving argu
ments (cf. the proof of Theorem XIII.8ge in [391]) break down. 

The density of states dpP ,A/dE of Sp,A at a point E = P with E!,A«(}) = E, 
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mEN, is then given by 

dpp,A 1 dB sgn(p) 1 sin(ka) 1 

~ = 2nk dk = 2nlkl 1 sin(Ba) 1 {I + (fJ/2a) [1 + ka cot(ka)]}, 

Re k ~ 0, 1m k ~ 0, k2 E 0'(3p,A)' (3.51) 

Here B = B(k) is extended from ° to 00 for fJ ~ ° and from -n/a to 00 for 
fJ < 0: 

+1 1 . {mn/a, m odd, 
B(k) = (-lr a- arccos[cos(ka) - (fJk/2) sm(ka)] + ( ) / 

m - 1 n a, m even, 

fJ ~ 0, k2 E (a!·A, b!,A), Re k ~ 0, 1m k ~ 0, mEN, (3.52) 

1 . {(m - l)n/a, m odd, 
B(k) = (-lra- arccos[cos(ka) - (fJk/2) sm(ka)] + ( 

m - 2)n/a, m even, 

fJ < 0, k2 E (a!' A, b!,A), Re k ~ 0, 1m k ~ 0, mEN. (3.53) 

Again the density of states behaves like dpP,A/dE = O(IE - Eml- 1/2) near the 
band edges Em E {a!,A, b!,A}meF\!' 

Next we briefly indicate how to construct the resolvent of 3 p,A(B) in mo
mentum space. Similar to the corresponding two- and three-dimensional 
problem (and in contrast to the Kronig-Penney situation in (2.3.49)-(2.3.56)) 
this approach requires a certain renormalization procedure. We start with 
the operator in z2(r) (cf. also the end of Appendix G) 

(I1W(B)g)(y) = (y + B)2g(y) + JiW(Xw(' + B)(· + B), g)Xw(Y + B)(y + B), 

y E r, co> 0, 

and Xw( . ) has been defined in (2.3.50). From Lemma B.5 we infer that 

(I1W(B) _ P)-1 

(3.54) 

= Gk(B) - [(JiWfl + (Xw(· + B)(' + B), Gk(O)Xw(' + 0)(' + B))]-I. 

'(Gk(B)Xw(' + B)(' + B), ')Gk(B)Xw(' + B)(· + 0), OEA, (3.55) 

where Gk(B) has been defined in (2.3.52). Since 

(Xw(· + B)(' + B), Gk(O)Xw(' + B)(' + B)) = L (y + B)2 
yer (y + B)2 - P 

ly+81$w 

j[[coa]], 0 E A - {O}j 
= 2 2n k2 L 1 

[[coa]] 1 B _ ° + yer (y + B)2 - k2 
2n +, - ly+81$w 

(3.56) 
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we choose the renormalized coupling constant to be 

OEA_{O}) 
f3-1 -a , 

0=0 
-00 < f3:::;; 00. 

(3.57) 

(Here [[x]] denotes the integer part of x, cf. Sect. 2.6.) Thus we get the final 
result 

())-+oo 

cos(ka) - cos(Oa) -_-
= Gk(O) - (f3la) cos(Oa) _ cos(ka) + (f3kI2) sin(ka) (Fk(O), . )Pk(O), 

k2 E P(~P,A( -0)), 1m k ~ 0, 0 E A, -00 < f3 :::;; 00, (3.58) 

where 

PiO)(y) = «y + 0)2 - k2t 1(y + 0), 

p ~ !r + 01 2, 1m k ~ 0, 0 E A, y E r. (3.59) 

The rest of Sect. 2.3 now goes through in the (j'-case as in the (j-case, since 
due to the similarity of(3.17) (resp. (3.24)) and (2.1.49) (resp. (2.1.55)) one model 
can be transformed into the other by the substitution 

jEll., (3.60) 

keeping Y fixed. As an example of this substitution we mention, e.g., the analog 
of Theorem 2.3.6. 

Theorem 3.7. Let f3 = {f3i Lez be a bounded sequence of real numbers, 
A = all., a > 0, and assume U to be open. If 

(3.61) 

Since the analog of Lemma 2.3.6 for (j'-interactions also trivially holds we 
omit further details and turn directly to half-crystals. We assume the notations 
(2.4.1) and (2.4.2) except that we replace the symbol oc by f3 to obtain consis
tency with our earlier treatment in this chapter. Then the analog of Theorem 
2.4.1 for the spectrum of 8 p-+,A is obviously true and hence we pass immedi
ately to the analog of Theorem 2.4.2. Again we rely on the difference equation 
(3.24). Since now I/Iik) = I/I'(k,ja) (in contrast to Sect. 2.4 where I/Iik) == 
I/I(k,ja)) the analog of the ansatz (2.4.5) and (2.4.9) now reads 

j=-1,-2, ... , 

j = 0, 1, 2, ... , 1m O± ~ 0, 
(3.62) 
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j = 0,1,2, ... , 

j = -1, -2, ... , fJ ° (3.63) 
1m ± ~ . 

As in Sect. 2.4, (3.24), (3.62), and (3.63) in the cases j :s; - 2 and j ~ 1 immedi
ately lead to 

(3.64) 

where now 

8 = 2 cos(ka), 
_ {Jl+, j = 0,1,2, ... , 

Jlj - -. 1 2 Jl, ]=-,-, ... , 

k =f. mn/a, mE 7L. (3.65) 

The rest of the calculation is thus identical to that in Sect. 2.4: In fact, formulas 
(2.4.23)-(2.4.32) directly apply in the present <5' -case if ,gf!1(r) are replaced by 
_,gf!I(r) in (2.4.24), (2.4.28), and (2.4.31) (cf. (3.62) and (3.63)) and IX± by - p± P 
in (2.4.25), (2.4.29), and (2.4.32). (Actually, the replacement ,gf!1(r) ~ - gtl(r) and 
IX -+ - pP in the N -center scattering matrix (1I.2.4.7) of - Aa, y immediately 
yields the N-center scattering matrix (11.3.31) of Sp,y.) The reason behind the 
substitution IX -+ - Pk2 is of course the fact that 

LPk2, y(k) = - f/l.Y(k), 1m k > 0, (3.66) 

where ra,y(k) (resp. fa,y(k)) are defined in (2.1.18) (resp. (3.7)). 
Finally, we turn to the analog of Sect. 2.6, i.e., to defects and impurity 

scattering in the context of <5' -crystals. We replace - Aa, yin (2.6.1) by Sp, y and 
at the same time -Aa,y,l,Z in obvious notation by Sp,y,l,Z (in particular, all 
additional interactions of strength Yl at the impurity points Zl E Z, 1 = 1, ... , 
M, are represented by <5' -boundary conditions so that no mixture of <5- and 
<5'-interactions occurs). Then Theorems 2.6.1 and 2.6.2 immediately extend 
to the <5'-case. In fact, using again the above trick that the first derivative of 
a wave function corresponding to a system of <5-interactions described, e.g., 
by - Aa, y is proportional to the corresponding wave function of Sp, y if 
after differentiation IX is replaced by - Pk2 (i.e., IXj -+ - Pj k2 for all j E J) 
reproduces all results of Sect. 2.6 for the present <5' -case. As a simple example 
we give the Bloch wave function associated with Sp,A (i.e., the analog of 
(2.6.11)). In fact, 

'l'p,A(k, (1, x) 

= '1" (k, (1, 0)(p/2)e·9axe-·9ax' , . . {e i9aa cos(kx') - cos[k(x' - a)]} 
p,A cos(fJa) - cos(ka) 

x' = x - a[[x/a]], x E IR, 1m k ~ 0, (1 = ± 1, 1m fJ ~ 0, Re fJ ~ 0, 
(3.67) 

satisfies 

- 'I'/i,A(k, (1, x) = k2'1'p,A(k, (1, x), 

1m k ~ 0, (1 = ± 1, x E IR - A, (3.68) 



and the boundary conditions 

\{Ip,A(k, (1, na+) = \{Ip,A(k, (1, na-), 

\{Ip,A(k, (1, na + ) - \{Ip,A(k, (1, na -) = {3\{1p,A(k, (1, na), 
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1m k 2: 0, (1 = ± 1, n E N. (3.69) 

Taking the left (or right) derivative at x = 0 in (3.67) immediately yields (3.2.9). 
Since x' is periodic with period a, (3.67) indeed represents a Bloch wave. The 
analogs of the remaining results in Sect. 2.6 are now a simple exercise of the 
above-mentioned substitution a -+ - {3k2 (bearing in mind that reflection 
coefficients in (2.6.51) and (2.6.52) pick up an additional minus sign, as is clear 
from the discussion after (3.65)). 

Notes 

The results of this chapter are taken from Gesztesy, Holden, and Kirsch [205], 
[206]. 



CHAPTER iliA 

Infinitely Many Point Interactions in 
Two Dimensions 

The presentation in this chapter is modeled after the three-dimensional case, 
Ch. 1. In order to make the presentation short, we will concentrate on the 
existence of - A .. , y when 

(4.1) 

with 

(4.2) 

and on the crystal and the polymer where we explicitly compute the spectrum. 
The existence theorem now reads 

Theorem 4.1. Let Y = {Yjl j EN} C 1R2 be discrete in the sense of (4.2) and 
let a: Y - IR. Then the strong limit 

s-!im (-A",i - k2rl, (4.3) 
yey 

lil< 00 

over the filter of all finite subsets Y of Y exists, where a = ali and 
(-A",i - pr1 is given by (11.4.22). The limit equals the resolvent of a 
self-adjoint operator - A .. , y which has the resolvent 

00 

(-A .. ,y - k2)-1 = Gk + L [r .. ,y(k)]i./(Gk(· - Yj')' ')Gk(' - Yj), 
j,j'=l 

k2 E p( -A .. ,y), 1m k > 0, aj E IR, Yj E Y, j EN, (4.4) 

324 
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where r ... y(k) is the closed operator in F(Y) given by 

r ... y(k) = [(rxj - -21 ('1'(1) -In(k/2i)))bjj, - Gk(Yj - Yj')].. ' 
n hfeN 

1m k ~ 0, (4.5) 
and 

Gk(x) = {Gk(X), x =F 0, 
0, x = 0, 

Gk(X) = (i/4)H&1)(klxl), x -:F 0, 1m k ~ 0. 

(4.6) 
We have 

P E p( - A ... y), 1m k > ° large enough. 
(4.7) 

If rx is bounded, then r .. ,y(k) is analytic in k for 1m k > 0. Let 

-li y = !!F[ - A y]!!F-1 
~ ~, 

where!!F is the Fourier transform, 

!!F: L2(~2) -+ L2(~2), 

(!!Ff)(p) = s-lim (2n)-1 r d2x f(x)e- ipX, 

R-+oo Jlxl:SR 

Then -li ... y has the resolvent 

(b, (-li .. ,y - k2r 1!) = (b, (p2 _ P)-l!) 

00 

+ L [r ... y(k)]j/(b, Fk,y) (F_k'YJ" !), 
j,j'=l 

(4.8) 

k2 E p( -li ... y), 1m k > 0, rxj E~, Yj E Y, j EN, j, b E L2(~2), (4.10) 

where 

P E ~2, Yj E Y, j E N. (4.11) 

PROOF. The proof is similar to that of Theorem 1.1.1 since we still have the 
estimate 

IGk(x)1 ~ ce-Imklxl, 1m k > 0, 

for large Ixi and some constant c > 0 ([1], p. 378). 

(4.12) 

• 
The explicit characterization of the domain ~(-A .. , y) and the locality 

property still carries over to the case of infinitely many centers, as the next 
theorem shows. 

Theorem 4.2. Let Yj E Y, IYj - Yj'1 ~ d > 0, rxj E ~,j =F j',j,j' E N. Then the 
domain ~( - All, y) of - A .. , y consists of all functions t/I such that 

00 

t/I(x) = rA.(x) + L aj(k)Gk(x - Y), x E ~2 - Y, (4.13) 
j=l 
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for some k with 1m k > 0 where 

00 

aik) = L [r<z,y(k)]jj~IJVYj')' 
j'=l 

Furthermore, this decomposition is unique, 

j E N. 

(4.14) 

(4.15) 

and if t/J = 0 in some open domain U ~ [R2, then also - ~<z, yt/J = 0 in U. 

PROOF. Similar to that of Theorem 1.1.2. • 
We now turn directly to the periodic case, i.e., we will analyze the one

electron model of a two-dimensional crystal with point interactions. The 
general discussion of Sect. 1.3 is, except for normalization constants, still valid, 
and our presentation will follow the first part of Sect. 1.4. First, we have to 
introduce the basic quantities. Let A be a Bravais lattice, i.e., 

(4.16) 

a l and a2 being two linearly independent vectors in [R2. The dual lattice r 
is given by 

(4.17) 

where 

j,j' = 1,2. (4.18) 

The dual groups A, the Brillouin zone, and t equal 

A = [R2;r = {slbl + s2b2 E [R2lsj E [-!, !),j = 1, 2}, (4.19) 

t = [R2/A = {Slal + S2a2 E [R21Sj E [-!, !),j = 1,2}, (4.20) 

respectively. For simplicity, we specialize to Y = {o}. Then the analog of 
(1.4.30) reads 

(HW(O)g)(y) = Iy + OI2g(y) -ltl-lJl(co)(q}W(O), g)q}W(O), 

o E A, y E r, g E lo(r), co > 0, (4.21) 

where 

(4.22) 

(XW being the characteristic function of a closed ball in [R2 with radius co and 
center at the origin). The problem is now to choose Jl(co) such as to obtain a 
nontrivial self-adjoint operator in [2(r) in the limit co -+ 00. This is the content 
of the next 
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Theorem 4.3. Let HW((}) be the self-adjoint operator (4.21) in 12(r) with 
domain 

Pfi(HW((}» = Pfi( - ~((}» = {g E 12(r) I Y~r Iy + (}1 4 Ig(yW < 00 }, () E A. 

(4.23) 

If 

{ 1 }-l 
I1(W) = Il( - 2n ['JI(1) + In 2 - In w] , Il( E IR, w > 0, (4.24) 

then HW((}) converges in norm resolvent sense for all () E A as w ~ 00 to a 
self-adjoint operator - ~". A ((}) with resolvent 

(-~".A((}) - k2)-1 

= Gk ((}) + Ifr1 [Il( - 2~ 'JI(1) - gk((})Tl (Gk((), . ), . ) Gk ((}, .), 

k2 E p( -~",A((}»' 1m k ~ 0, () E A, Il( E IR, (4.25) 

where 

Gk ((}): 12(r) ~ 12(r), 

(Gk((})g)(y) = Gk ((}, y)g(y) = (Iy + (}1 2 - k2tlg(y), 

k2 1= Ir + (}1 2, 1m k ~ 0, () E A, y E r, 9 E F(r), (4.26) 

and 

gk((}) = (2nt2 lim [ L I ~~I_ p - 2n In w], 
"'--+00 YEr y + 

ly+9l:o;w 

k2 ¢ Ir + (}1 2, 1m k ~ 0, () E A. (4.27) 

PROOF. Applying Lemma B.5 we have 

(H"'((}) - k2)-1 = Gk ((}) 

Since 

- [I tl p(W)-l + (I/J"'((}), Gk((})/fo"'((}))T1(Gk((})I/J"'((}), . ) Gd(})I/J"'((}), 

k2 E p(H"'((})), 1m k > 0, (} E A. (4.28) 

Itlp(wfl + (l/J"'(lI), Gk((})I/J"'((})) 

= It I ta - ~ [':1'(1) + In 2] + ~ In w - (2nf2 I I~I 2} 
2n 2n YEr Iy + (}I - k 

ly+91,;", 

---> It I [a -~ ':1'(1) - 9k((})] (4.29) 
"'--+00 2n 

exists due to Lemma 4.4, the rest ofthe proof is similar to that of Theorem 1.4.1. • 

Also in two dimensions we shall make use of the Poisson summation 
formula. 
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Lemma 4.4 (Poisson Summation Formula). Let PEe, 1m k > 0, and 
() E A. Then 

(2nr2 lim [I ~~I k2 - 2n In w] 
W-+OC! YEr Iv + I -

Iy+ol,;w 

= I Gk(A)e- iO ). + ~ In(k/i). (4.30) 
).EA 2n 

PROOF. Let 

).#0 

f(w) = Y~f Iy + 81 2 _ k2 ' 

ly+9I,;<o 

(k E C, 1m k > 0, and 8 E A will be fixed), and define 

w ;?: 0, (4.31) 

foo e-ly+8114~ 

F(r,) = e-<o2/4~ df(w) = I 2 2 ' 
o yef Iy + 81 - k 

1'/ > O. (4.32) 

The Poisson summation formula ([94], Theorem 67, and eq. (19), p. 260) then gives 

It I i 2 2 It I " i 2 2 '),0 F(I'/) = - 21'/ d x Gk(x)e-~X + - L... 21'/ d x Gk(x - A)e-~X e-' 
2n ~2 2n AeA ~2 

A#O 

[ 
1 foo e-t/4~ 1 . ] 

= It I - dt --2 + - I Gk(A)e-· A8 + 0(1) as 1'/ ..... 00. 
4n 0 t - k 2n AeA 

(4.33) 

Define 

(4.34) 

Then 

= It I I Gk(A)e-U8 + 0(1) as 1'/ ..... 00, (4.35) 
AeA 

and hence 

(4.36) 

• 
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Theorems 4.1 and 4.3 give rise to two self-adjoint operators, namely - !IZ,A 
and Sf d2 (J [ - !IZ,A«(J)], respectively, which are expected to be unitarily equiv
alent. However, since they are obtained via different nontrivial limit proce
dures, this has to be verified. 

Theorem 4.5. Define tJU to be the unitary operator 

tJU: U(1R2) -+ L2(A, 12(D) == J\$ d2(J 12(D, 

(tJU!)«(J, y) = !(y + (J), y e r, (J E A, ! E L 2(1R2). 
(4.37) 

Let (X E IR. Then 

tJU[ -!IZ,A]tJU-1 = J\$ d2(J [ -!IZ,A«(J)], (4.38) 

where -!IZ,A and -!IZ,A«(J) are given by (4.10) and (4.25), respectively. 

PROOF. Similar to that of Theorem 1.4.3. • 
We will now compute the spectrum of - !IZ,A' In order to analyze 0'( - !IZ,A)' 

we first study in detail the spectrum of -!IZ.A«(J). 

Theorem 4.6. Let (X E IR and (J e A. Then the spectrum of - !IZ,A«(J) is purely 
discrete, i.e., 

(J e A, (4.39) 

and can be characterized as follows: Let 
00 

IR - jr + (J1 2 = U I,,«(J), (4.40) 
,,=0 

where I,,«(J), n E No, are open intervals, and jr + (J1 2 is defined in analogy to 
(1.4.24). In each interval I,,«(J), -!IZ.A«(J) has exactly one simple eigenvalue 
E:·A«(J) = [k!·A«(J)]2 with eigenfunction 

"'E~A«(J)«(J, y) = [Iy + (J1 2 - E:·A«(J)rt, 

E:·A«(J) is the unique solution of 

1 
(X - 2n '1'(1) = gk~A«(J)«(J), 

(J E A, y E r. (4.41) 

1m k:·A«(J) ~ 0, E:·A«(J) = [k:· A«(J)]2 e I,,«(J). (4.42) 

E:·A«(J), () E A, n e N, is strictly increasing in (X E IR. In addition, EA«(}) e 
jr + (}12 is an eigenvalue of -!IZ.A«(}) of multiplicity m ~ 1 iff there exist 
m + 1 points Yo, ... , Ym E r such that 

(4.43) 
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The corresponding eigenspace is spanned by the eigenfunctions 

t/llil(9)(Y) = ()YYj - ()YYO' 

-Lia,A(8) has no other eigenvalues. 

8 E J..., y E r, j = 1, ... , m. 

PROOF. Similar to that of Theorem 1.4A. 

(4.44) 

• 
Remark. The proof of Theorem 4.6 actually provides a natural numbering 
of the eigenvalues of -Lla•A (8), cf. the remark after Theorem 1.4.4, p, 192. 

Our next result is the computation of the spectrum of - Lia,A' 

Theorem 4.7. Let A be a lattice in the sense of (4.16) and let 0: E IR. Then the 
spectrum of the operator -Lia,A is purely absolutely continuous and equals 

0'( -Lia,A) = O'ac( -Lia,A) = [EO,A(O), EO,A(8o)] U [E~'A, (0), 

0: E IR, (4.45) 

where 

(4.46) 

and 

E~,A = min{Eb~A(O), ilb_n = mi!1 EtA(8), (4.47) 
9EA 

where b_ E {b1 , b2 } is such that 

Ib_1 ::; Ibjl, j = 1,2. (4.48) 

We have that 

O:EIR (4.49) 

and 

(4.50) 

with 

(4.51) 

Furthermore, the spectrum is monotone increasing in 0: in the sense that 

In addition 

0:- 00, 

0:- -00, 

0:- 00, 

a- -00, 

oEa,A 
__ 1_ > 0 

00: - . 

a- 00, 

0: - -00, 

(4.52) 

(4.53) 
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and hence there exists an (J(l.A E IR such that 

0"( -.1cr.A ) = [Eo-A(O), 00), (4.54) 

PROOF. Similar to that of Theorem 1.4.5 except for the fact that in three dimen
sions there are infinitely many (j's satisfying (1.4.120) (all lying on a line), while in 
two dimensions we can find exactly one (j such that (1.4.120) is fulfilled. • 

The difference in the computation of 0"( - .1cr. A) in two and three dimensions 
sheds some light one the Bethe-Sommerfeld conjecture [450]. This conjecture 
states that Schrodinger operators with periodic interactions have infinitely 
many gaps in their spectrum in one dimension, while they only have finitely 
many gaps in their spectrum in higher dimensions. We have now seen that 
the Schrodinger operator with periodic point interactions fulfills the Bethe
Sommerfeld conjecture. However, as we have observed it was more difficult 
to "close the gaps" in two dimensions than in three dimensions, and it is not 
possible at all in one dimension for the Kronig-Penney model. In this sense 
the periodic [)' -model of Ch. 3 also fulfills the Bethe-Sommerfeld conjecture 
since there are always infinitely many open gaps (although the first gap might 
close). 

Finally, we discuss the infinite straight polymer in two dimensions, i.e., the 
analysis of - .1cr.A , where 

Al = {(O, na) E 1R21n E Z}, a >0. (4.55) 

To decompose -.1cr.A , we introduce the unitary operators 

0lI1 : L2(1R2)-+L2(Al' L2(1R x rd)= fA$ dOL2(1R x r 1 ), 

A, ~5~ 

(OlIj)(O, p, y) = /(p, y + 0), 0 E A1, y E r 1, p E IR, / E L2(1R2), 

where 

The fiber of the resolvent of the free Hamiltonian -.1 with respect to the 
decomposition defined by (4.49) then reads 

Gk(O): U(IR x r 1 ) -+ L 2(1R x rd 

(Gk(O)g)(p, y) = [I(p, y + OW - pr1g(p, y), 

OEA1, k2¢[02, 00), Imk;;::O. (4.57) 

We can then state the following 

Theorem 4.8. Let Al be given by (4.55). Then we have 

0lI1[ -.1IX• A,]0lI11 = fA$ dO [-.1cr,A,(O)], 
A, 

(4.58) 
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where -LiIX.At(O) is the self-adjoint operator in L2(~ x r 1 ) with resolvent 

(-LiIX.At(O) - k2)-1 

{ 1 }-1 
= Gk(O) + r.t. - 2n ['1'(1) + In 2J - gk(O) (Gk(O), . ) Gk(O), 

OEA1 , PEp(-LiIX.At(O)), Imk~O, (4.59) 

where 

1m k ~ O. 

(4.60) 

PROOF. Following the proof of Theorem 1.4.8 we find (4.59) with 

gk(B) = L Gk(A)e- iA8 - ~ In(k/i), 
AEA, 2n 

1m k > O. (4.61) 

Using the Poisson summation formula, Lemma 4.9, the result follows. • 

Lemma 4.9 (Poisson Summation Formula). Let PEe, 1m k > 0, and 
o E AI' Then 

L Gk(A)e-i.l.O = (2nr2 lim [ L a - 2n In OJ]' (4.62) 
.. eAt ru-+oo yert Jly + 01 2 - k2 

ly+ol:$; ru 

PROOF. Similar to that of Lemma 4.4. • 
From (4.59) we read off the spectral properties of - LiIX.At (0). 

Theorem 4.10. Let r.t. E ~, 0 E AI' Then the essential spectrum of - LiIX.At (0) 
is purely absolutely continuous and equals 

O'ess( - LiIX.At (0)) = O'ac( - LiIX.At (0)) = [02, <Xl), O'sc( - Li IX • At (0)) = 0· 
(4.63) 

In addition, - Li IX • At (0) has one simple eigenvalue EIX.At(O) = [k lX • At(0)]2 < 02 

which is the unique solution of 

1 
r.t. = - ['1'(1) + In 2J + gkO.At(O)(O), 

2n 

The corresponding eigenfunction reads 

t/lE •. At(O)(O, p, y) = [I(p, y + OW - EIX.At(O)rl, OEA1, PE~, YEr1· 
(4.65) 

EIX.At(O), 0 E AI, is strictly increasing in r.t. E ~. 
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PROOF. Similar to that of Theorem 1.6.3. • 
As the final result in this chapter we compute the spectrum of - !Il,A,. 

Theorem 4.11. Let IX E IR and Ai be given by (4.55) Then the spectrum of 
-!Il,A, is purely absolutely continuous and equals 

IX~IXA" 

IX< IXA" 

(4.66) 

with EIl,A,(O) < 0, IX E IR, and EIl,A,(O) < EIl,A,( -n/a) < 0 provided IX < IXA, 

where IXA, equals 

2n W"'oo yer, n 
IXA, = ~ ['P(1) + In 2J + (2n)-2 lim [ L 1 a 1- 20 In w]. 

IY-H~W y - ~ 

(4.67) 

Furthermore, the spectrum of - !Il,A, is monotone increasing in IX E IR in the 
sense that 

(4.68) 

PROOF. Similar to that of Theorem 1.4.5. • 
Notes 

The presentation is taken from Albeverio, Gesztesy, H0egh-Krohn, and Holden 
[19]. The discussion of the infinite straight polymer can partly be found in 
[227]. The Bethe-Sommerfeld conjecture has been proved for a general class 
of potentials in two and three dimensions by Skriganov [442J, [443J, [444J, a 
generalization in two dimensions also appeared in [130J. 

The two-dimensional crystal in a homogeneous magnetic field has been 
studied in [196J. 



CHAPTER 111.5 

Random Hamiltonians with Point 
Interactions 

111.5.1 Preliminaries 

In this section we recall general properties of the spectrum of ergodic random 
Hamiltonians. 

Let (Q, $', P) be a complete probability space. Furthermore, let Ye be a 
separable, complex Hilbert space and let {H",} '" E II be a family of P-a.s. self
adjoint operators in Ye. The family {H"'}"'Ell is called measurable iff ill ~ 
(H", - zft is weakly measurable for all z E C - IR, i.e., iff 

~, I/J E Ye, z E C - IR, (5.1.1) 

is measurable. Quite generally, we call a family of bounded operators {A",} "'Ell 
weakly measurable iff ill ~ (~, A",I/J), ~, I/J E Ye is measurable. It is straight
forward to prove that ill ~ (H", - zft is weakly measurable for all z E C - IR 
if ill ~ (H", - zoft is weakly measurable for some Zo E C and for P-a.e. ill E Q 
the distance d(zo, (J(H",)) 2: 6 (independent of ill). We start with 

Lemma 5.1.1. Let {H"'}"'Ell be a family of P-a.s. self-adjoint operators in 
Ye. Then the following assertions (i)-(iv) are equivalent. 

(i) ill ~ (H", - zft is weakly measurable for all z E C - IR. 
(ii) ill ~ E",(A.) (the spectral projections associated with H",) is weakly meas

urable for all A E IR. 
(iii) ill ~ eitHw is weakly measurable for all t E IR. 
(iv) ill ~ f(H",) is weakly measurable for any bounded, measurable function 

f: IR ~ IR. 

334 
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PROOF. It suffices to recall that 

(I/J, ei'Hrol/l) = L d(l/J, E",().)I/Ik'\ t E IR, (5.1.2) 

(I/J, (H", - Z)-ll/1) = ± 1" dt e±i"(I/J, e+i'Hwl/l), 1m Z ~ 0, (5.1.3) 

fA+6 

= lim lim (2n0-1 dt(l/J, [(H", - t - ier1 - (H", - t + ier1] 1/1), 
6-1-0 e-l-O -00 

). E IR; I/J, 1/1 E Yf, (5.1.4) 

and the fact that f± = (If I ± f)/2 is a uniform limit of appropriate step functions 
fn(±) with 0 S; fn(±) S; f±· • 

Remark. Here OJ --+ (r/J, (Hro - zt11/J), OJ --+ (r/J, Ero().)I/J), etc. are only defined 
in the complement of a set of P-measure zero. On this set we may simply 
define these functions to be zero. This convention will always be used from 
now on. 

Lemma 5.1.2. 

(i) Assume that OJ --+ Aro, OJ --+ Bro are weakly measurable, bounded operators 
in .!It. Then OJ --+ AroBro is also weakly measurable. 

(ii) Assume the family {HroLEf! of bounded, P-a.s. self-adjoint operators 
in .!It to be weakly measurable. Then the family {Hro}roEf! is in fact 
measurable in the sense defined in (5.1.1). 

PROOF. Let {l/Jn}neN be an orthonormal basis in Yf. Then 

(I/J, A",B",I/I) = I (I/J, A",l/Jn)(l/J., B",I/I), (5.1.5) 
neN 

proves (i). 
In order to prove part (ii), we note that (i) implies that {H:::}",eo, mEN, and 

hence polynomials 

M 

P(x) = I amxm, am E C, m = 1, ... , M, X E IR, (5.1.6) 
m=O 

are weakly measurable. Applying the Stone-Weierstrass approximation argument, 
we infer that for bounded, continuous functions f: IR --> C, {J(H",)}",eo is weakly 
measurable. In particular, by choosing f(x) = ei'x, t E IR, we see that (ii) follows using 
Lemma 5. 1.1 (iii). • 

Another useful result for the final applications we have in mind is 

Lemma 5.1.3. For each n EN, let {H2'lLEO be a family of P-a.s. self
adjoint operators in .!It which is measurable. Assume that for P-a.e. OJ E fl, 
m:) converges in weak (and hence also in strong) resolvent sense to a self
adjoint operator Hro in.!lt. Then the family {Hro}WEO is measurable. 
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PROOF. Since P-a.e. limits of measurable functions are again measurable, the 
result follows from 

¢J, 1/1 E.Yl', Z E IC - ITt (5.1.7) 

• 
Without further assumptions, the various types of spectra associated with 

Hw in general will strongly depend on w. In order to get spectra which are 
nonrandom sets we introduce the notion of ergodicity: Let I be some index 
set and suppose that {'Ij LEI is a family of measure preserving, ergodic trans
formations on (n, ff, P) in the sense that 

P(1j-l B) = P(B), BE ff, j E 1, (5.1.8) 

and that 

AEff, j E 1 implies P(A) = 0 or P(A)= 1. (5.1.9) 

In addition, we assume the existence of unitary operators ~,j E 1, in Yf 
which are related to 1j,j E 1, by the equation 

j E 1. (5.1.10) 

If these assumptions are satisfied and if {HW}WEn is measurable, we call 
{HW}WEn an ergodic family of P-a.s. self-adjoint operators in Yf. 

We state 

Lemma 5.1.4. Let {HW}WEn be an ergodic family of P-a.s. self-adjoint 
operators in Yf and let {EW(A.)}WEn, A. E ~, be the corresponding spectral 
projections. Then there is a subset no £ n with p(no) = 1 such that for all 
W E no and all A., j.l E Q, A. ~ j.l, dim {Ran [Ew(A.) - E",(j.l)]} equals a constant 
CA,/l (possibly infinite) on no· 

PROOF. Denote by 

f;..iw) = dim{Ran[E",(A) - E",(J.l)]} = Tr[E",(A) - E",(J.l)], 

A,J.lEIR, A;:::J.l, wEg, (5.1.11) 

where Tr(') abbreviates the trace. Clearly, 

fA,p.(7jw) = f;.jw), j E I, (5.1.12) 

since (5.1.10) implies 

~E",(A)Wl = ETJ",(A), A E IR, j E I. (5.1.13) 

Moreover, f;.,p. is measurable since 

/;.,p.(w) = I (r/J., [E",(A) - E",(J.l)]r/J.), (5.1.14) 
•• IIJ 

where {¢J.} •• IIJ is any orthonormal basis in.Yl', because w - (¢J., E",(A)¢J.), A E IR, is 
measurable by assumption. Since {7jL.I is ergodic, (5.1.12) implies that f;.,p. is 
P-a.s. constant (cr., e.g., [388], Sect. 11.5). Thus there exists a subset g;.,p. c: g with 
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P(Ql..lt) = 1 such that Il.,It(OJ) = Cl.,lt for all OJ E Ql.,lt' Introducing Qo = nl.,1tEO Ql.,1' 

we finally get 

Given Lemma 5.1.4 we are able to formulate the first main result 

(5.1.15) 

• 

Theorem 5.1.5. Let {HW}WED be an ergodic family of P-a.s. self-adjoint 
operators in Yl'. Then there are sets l:, l:ess, l:d S IR such that 

(5.1.16) 

(5.1.17) 

(5.1.18) 

for P-a.e. WEn. (Here O'd(') = 0'(.) - O'ess(') denotes the discrete spectrum.) 

PROOF. Using the strong right continuity of spectral projections we have 

A. E (J(H",) ¢> "Ie > 0: E",(A. + e) - Eco(A. - e) =F 0 

¢>VX, A." E Q, 

¢>VX, A." E Q, 

A." < A. < A./: Eco(X) - Eco(A.") =F 0 

A." < A. < X: Il.',l."(OJ) =F o. (5.1.19) 

But Il.',l." is P-a.s. constant by Lemma 5.1.4. Hence A. E (J(H",) is P-a.s. independent 
of OJ E Q. Similarly, we obtain 

A. E (Jess(Hco) ¢>"Ie > 0: dim{Ran[E.,(A. + e) - E",(A. - e)]} = 00 

¢>VX, A." E Q, A." < A. < X: Il.',l."(OJ) = 00. (5.1.20) 

Hence, again by Lemma 5.1.4, A. e (Jess(H",) is P-a.s. independent of OJ e O. Since 
(Jd(H",) = (J(H",) - (Jess(H",), (5.1.18) follows from the above. • 

In order to extend this result to the continuous, absolutely continuous, and 
singularly continuous spectrum of Hw , we need the concept of analytic sets as 
introduced, e.g., in [341], Ch. III. For a proof of the following result see, e.g., 
[286], [287], [341]. 

Lemma 5.1.6. 

(i) Let S be a complete, separable metric space, (n, ff) a measurable space, 
and let d(ff) (resp. d(&I(S) x ff» denote the ff- (resp. &I(S) x ff-) 
analytic sets in n (resp. S x n) where &I(S) denotes the Borel IT-algebra 
of S. Then for A E d(&I(S) x ff) we have 

prn(A) = {w E nl3x E S: (x, w) E A} E d(ff). (5.1.21) 

(ii) If (n, ff, P) is a complete probability space, then d(ff) = ff. 
(iii) Assume, in addition, that S is a complex Hilbert space and SOlis 

a closed subspace of s. Suppose that {«D, w) E S x nl(D E 8 m } is 
&I(S) x ff analytic. Then Pt! , the projection onto COl' is weakly 
measurable. " 



338 I1l5 Random Hamiltonians with Point Interactions 

Remark. One can show under the hypotheses of Lemma 5.1.6(i) that ff £; 

d(ff) and also 91($) ® ff £; d(91($) x ff) [341] where 91($) ® ff denotes 
the u-algebra generated by 91($) x g-. Hence, in order to satisfy the hypo
theses of Lemma 5.1.6(iii), we only need to show that {ffo, w) E $ x nlffo E $w} 
is measurable in the sense that it belongs to 91($) ® ff. 

Lemma 5.1.6 implies 

Lemma 5.1.7. Let {Rw}wen be a measurable family of P-a.s. self-adjoint 
operators in Yf'. Moreover, denote by P:;', P:,c, P!C, Pf/ the. projections onto 
the continuous, absolutely continuous, singularly continuous, and pure point 
spectral subspace associated with Rw' Then {P:;'}wen, {P:'C}wen, {P!C}wen, 
and {P~P}wen are weakly measurable. 

PROOF. Since a bounded, continuous and monotone function on IR is uniformly 
continuous and spectral projections are strongly right continuous we get 

{(~, w) E.J'l' x nl~ E P~.J'l'} 

= {(~, w) E.J'l' x nlA ..... (~, E",(A)~) is continuous on IR} 

= {(~, w) E.J'l' x nlVm EN, 3n EN, S.t. VA, A.' E IR: 

IA - A'I < n-1 => I(~, [E",(A) - E",(A.')]~)I < m-1 } 

= {(~, w) E.J'l' x nlVm EN, 3n EN, S.t. VA, A.' E Q: 

IA - A'I < n-1 => I(~, [E",(A) - E",(A.')]~)I < m-1 } 

= nun {(~, w) E.J'l' x nll(~, [E",(A) - E",(A.')]~)I < m-1 }. 
me 1'\1 nel'\l l,l'eQ 

Il-l'l <n- 1 

(5.1.22) 

Since {H",}", en is measurable, the functionf(qI, w) = (qI, [E.,(A) - E.,(A')]qI) is meas
urable for fixed ~ E .J'l', A, A.' E R Moreover, f is continuous with respect to ~ E .J'l' 
and hence f is (simultaneously) measurable with respect to (~, w) E .J'l' x n. Con
sequently, the set 

(5.1.23) 

and hence also the set 

{(~, w) E.J'l' x nl~ E P~.J'l'} (5.1.24) 

is ~(.J'l') ® § measurable. Now we only need to apply Lemma 5.1.6(iii) and the 
remark following it in order to infer the weak measurability of {P~}.,eo. Next we 
note that 

{(~,W)E.J'l' x nl~EP;c.J'l'} 

= {(~, w) E.J'l' x nl3g E L1(Bl), S.t. VA E IR: (~, E.,(A)~) = fXl dt g(t)} 

= {(~, w) E.J'l' x nl3g E U(IR), s,t. VA E Q: (~, Ew(A)~) = feo dt g(t)} 
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= prKXn({(g,~, w) E Ll(lR) x £ x QI'v'A. E Q: (~, E.,(A.)~) = foo dt g(t)}) 

= prJ/" x n (DQ {(g,~, w) ELl (IR) x £ x nl(~, E.,(A.)~) = foo dt g(t)}). 

(S.1.2S) 

The function f(g, ~,w) = (~, E(J)(A.)~) - J~oo dt g(t) is measurable in wand con
tinuous in (g, ~). Hence the set 

{(g,~, w) E U(IR) x £ x nlf(g,~, w) = O} (S.1.26) 

is .9l(Ll(lR)) ® .9l(£) ® $' measurable and thus analytic. Consequently, {(~, w) E 

£ x nl~ E P;C£} is .9l(£) ® $' analytic by Lemma S.1.6(i). Lemma S.1.6(ii) then 
proves that {P;C}", EO is weakly measurable. Since P!,P = 1 - P:;,and p;,c = P:;' _ p;c, 
the proof is complete. • 

For an alternative approach to Lemma 5.1.7, cf. [119J, [128]. 
Now we are able to extend Theorem 5.1.5 and state 

Theorem 5.1.S. Let {HCO}COEn be an ergodic family of P-a.s. self-adjoint 
operators in :It'. Then there are sets ~c' ~ac, ~sc' ~p ~ ~ such that 

uc(Hco) = ~c' 

uac(Hw) = ~ac, 

usAHw) = ~sc, 

for P-a.e. (J) E n. 

PROOF. Define in analogy to (S.1.11) 

where 

f).~Il(w) = Tr[E~(A.) - E~(JI)], 

fI.~(w) = Tr[E;:,"(A.) - E:'C(JI)], A., JI E IR, A. ~ [1., WEn, 

(5.1.27) 

(5.1.28) 

(5.1.29) 

(5.1.30) 

(S.1.31) 

E~(A.) = E.,(A.)P:;', E::'C(A.) = E",(A.)P;c, A. E IR, WEn. (S.1.32) 

By Lemma S.1.2(i), {E~(A.)}"EO and {E::'C(A.)}COEO' A. E IR, are measurable, implying 
measurability of Nil and f).~~. Moreover, (S.1.10) implies 

U.pacU.- 1 = pac J. E I 
J ., J Tj "" , 

(S.1.33) 

and hence 

(S.1.34) 

Since {1j} j e I is ergodic, we can follow the last part in the proof of Lemma S.1.4 and 
the proof of (S.1.16) to infer that H",P:;' and H",P!C have P-a.s. constant spectrum. 
The fact that up(H",) = u(Hco[l - P:;']) and usc(Hco) = uc(Hco[P:;' - P;C]) then com
pletes the proof. • 
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Finally, we study the discrete spectrum in more detail. Let {l!i}jel be a 
family of unitary operators in JIf. We call {l!iLel complete iff there exists an 
infinite subset 10 S 1 such that 

d 10 = {(6 E JlfI(l!i*(6, l!i"i'(6) = O,j "# j',j,j' E lo} (5.1.35) 

is total in JIf. Since JIf is separable, 10 is necessarily countable. 
We have 

Lemma 5.1.9. Let {Pro}roeCl be an ergodic family of (orthogonal) projec
tions in JIf and assume the associated family of unitary operators {l!i}jel to 
be complete. Then either dim[Ran(Pro)] = 0 P-a.s. or dim[Ran(Pro}] = 00 

P-a.s. 

PROOF. Since Tr(p.,) is measurable and invariant under {1j} jeJ> dim [Ran(P.,)] = 
Tr(P.,) is P-a.s. constant. Hence 

Tr(P.,) = E(Tr(P.,» P-a.s., (5.1.36) 

where E(') denotes expectation with respect to P. Let 10 = U.}.eN be such that 

.9110 = {tP E £'1(~:tP, ~!tP) = 0, n * m, n, mEN} (5.1.37) 

is total in £'. Choose tP E .9110 with IltPll = 1. Then {tP. = ~:tP}.eN is an orthonormal 
basis in £'. Hence 

N 

Tr(P.,);::: L (tP., P.,tP.), NEN, (5.1.38) 
n=1 

and thus 
00 

Tr(P.,) = E(Tr(P.,»;::: L E«tP., P.,tP.» P-a.s. (5.1.39) 
.=1 

Since 1j,j E I, are measure preserving we infer 

E«tPm P.,tP.» = E«tP, ~ftP" ~:1tP» 

= E«tP, PTjft.,tP» = E«tP, P.,tP», nE N. (5.1.40) 

Hence either E«tP, P.,tP» = 0 for all tP E .9110 or Tr(P.,) = 00 P-a.s. In the first case 
we conclude that (tP, P.,tP) = 0 P-a.s. for all tP E .9110 , Since .9110 is total in £' we finally 
get P., = 0 P-a.s. • 

Thus we obtain 

Theorem 5.1.10. Let {Hro}roeCl be an ergodic family of P-a.s. self-adjoint 
operators in JIf and assume the associated unitary family {~Lel to be 
complete. Then 

I:d = 0, (5.1.41) 

i.e., CTd(Hro) = 0 for P-a.e. co E n. 

PROOF. Assume 1 E ~d' Then there exists an e > 0 such that [1 - e, 1 + e] n ~ = 

o and 

(5.1.42) 
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is the projection onto the eigenspace of H", associated with A.. Since {P",({A.})}roEO 
is ergodic, Lemma 5.1.9 applies. Moreover, since A. is an eigenvalue of H"" 
dim{Ran[P",({A.})]} #- 0 P-a.s. Thus dim{Ran[Pro({A.})]} = 00 P-a.s. which con
tradicts the assumption that A. E Ld· Thus Ld = 0. • 

Theorem 5.1.11. Let {HW}WEO be an ergodic family of P-a.s. self-adjoint 
operators in Yf. Fix A E R Then A is an eigenvalue of Hw either with probabi
lity zero or probability one and the dimension of the corresponding eigenspace 
is P-a.s. constant. If, in addition, the associated family of unitary operators 
{~LEI is complete, then the dimension of the eigenspace corresponding to A 
is P-a.s. zero or infinite. 

PROOF. Let 

Then 

P",({A.}) = s-lim [Ew(A. + e) - Ero(A. - e)). 
../.0 

dim{Ran[P",({A.})]} = Tr[P",({A.})]. 

dim{Ran[PTjro({A.})]} = Tr[PTj",({A.})] = Tr[U;P",({A.})U;-l] 

(5.1.43) 

(5.1.44) 

= Tr[Pw({A.})] = dim {Ran[Pro({A.})J} (5.1.45) 

is a measurable function invariant under {1j}jEI' Consequently, dim {Ran[P",( {A.})]} 
is P-a.s. constant. If, in addition, {U;LeI is complete, then Lemma 5.1.9 proves the 
last assertion in the theorem. • 

Theorem 5.1.10 shows that P-a.s. there are no isolated eigenvalues of Hw of 
finite multiplicity. Theorem 5.1.11, on the other hand, shows that each A E IR 
is P-a.s. no eigenvalue of H", with finite multiplicity. Clearly, this does not 
imply that there are no eigenvalues of finite multiplicity P-a.s. In fact, Theorem 
5.1.11 asserts, for any A E IR, the existence of a subset Q;. ~ Q with P(Q;.) = 1 
such that A is no eigenvalue of finite multiplicity of H"" W E Q;.. Thus for all 
WE n;'EIRQ;., provided n;'EIRQ;. -# 0, H", has no eigenvalues of finite multi
plicity. But in general p(n;'EIRQ;.) < 1. (In fact, in certain one-dimensional 
systems it is known that p(n;'EIRQ;.) = 0 [217].) 

We also emphasize that in general (Jp(H",) strongly varies in WE Q. Only its 
closure (Jp(H",) equals a nonrandom set Lp P-a.s. 

111.5.2 Random Point Interactions in Three Dimensions 

The main purpose of this section is to construct random point interactions in 
three dimensions, to show that the results of Sect. 5.1 apply and to investigate 
the spectrum of this model. 

Let (0, ff', P) be a complete probability space. Assume {Y(W)}WEO to be a 
countable random subset of 1R3 of the form Y(w) = {Yj(w) E 1R 31j E N} where 
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the Yj,j EN, are [R3-valued random variables such that 

inf IYiw) - Yj'(W) I = d > 0, 
j,j' e N 
j#j' 

WEn. (5.2.1) 

Moreover, let a(w) = {ayj(w) E [Rlj E N} be an Y-indexed family of real-valued 
random variables. Then 

(5.2.2) 

is a well-defined self-adjoint operator in L 2([R3) whose resolvent is given by 
(1.1.6) with (a, Y) replaced by (a(w), Y(w».In fact, at this point, Hro is just the 
usual Hamiltonian of Sect. 1.1 depending on an additional parameter w. Since 
we are particularly interested in the case where {Hro} ro E n is an ergodic family, 
we ha~e to strengthen our hypotheses considerably. In fact, we shall consider 
a particularly simple case where Y(w) is the level one stochastic set A(w) of a 
countable family of independent, identically distributed (i.i.d.) {O, 1 }-valued 
random variables {X.,J). E A' A the Bravais lattice (1.4.3). In other words, 

A{w) = {A E AIX).(w) = I}, WEn, (5.2.3) 

represents the occupied sites in A. We also assume {a).} ).eA to be i.i.d. random 
variables with sUPP(Pao) compact (Pao the distribution of ao, i.e., Pao(A) = 
P(ao1(A», A E g;). From now on the random point interaction Hamiltonian 
Hro is always given by 

WEn, (5.2.4) 

with a{w) as just defined above and A(w) described in (5.2.3). This means that 
in the notation of Theorem 1.4.4 we have restricted ourselves to the simplest 
case where Y = {O}. In the special case where A(w) = A, WEn, Hro models 
point interaction alloys with randomly distributed coupling constants over 
the lattice A in the one-body approximation. In the general case, Hw describes 
in addition random point defects. 

Since {a).} ).eA, {X).} ).eA are i.i.d. random variables we can think of(n, g;, P) 
as the canonical space for the joint field {a)., X).}).EA' i.e., (n, g;, P) = 
[LEA (n)., :#';" P).) where (n)., g;)., P).), A E A, are identical copies of the same 
probability space. Then the points WEn can be looked upon as points in a 
discrete Cartesian product W = II).EA w). and we call w). the Ath component 
of w. In this representation w). = (a).(w), X).(w». 

Next let {T).}).EA be the shift operator on n defined by 

We remark that 

cx).(T).,w) = cx).-Aw), 

WEn, A,A'EA. (5.2.5) 

WEn, A, A' E A. (5.2.6) 

Then T). is a measurable transformation which preserves P. Moreover, let 
A E g; be a {T).}).EA invariant set, i.e., T).-l(A) = A, A E A. Then A is in the tail 
a-algebra (cf. Appendix I) of the random variables {cx)., X).LEA' Since ()()., X)., 
A E A, are independent, we get peA) = ° or peA) = 1 be Kolmogorov's 0-1 
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law (cf. Appendix I). Thus {T),}),eA is a family of measure preserving, ergodic 
transformations. Let {V),}), e A denote the family of unitary translation opera
tors in L2(~3) 

(V),g)(x) = g(x - A.), (5.2.7) 

Clearly, {V),} ),eA is complete in the sense of Sect. 5.1. We get 

Lemma 5.2.1. Let {Hw}weo be defined as in (5.2.4). Then {Hw}weo is an 
ergodic family of self-adjoint operators in L2(~3) and 

WEn, A.EA. (5.2.8) 

PROOF. Measurability of {H",}",eo simply follows from Theorem 1.1.1 and 
Lemma 5.1.3. Moreover, approximating H", by scaled, short-range interactions 
H.,A("') with 

WEa, A,A'EA, (5.2.9) 

in norm resolvent sen.se (cf. Theorem 1.2.1), observing (5.2.6), we infer 

and hence 

U;.(H", - k2r 1U;.-1 = (HT ,,,, - k2 )-t, 

PEIC-IR, WEa, AEA, 
(5.2.10) 

k2 E IC - IR, WE a, A E A. (5.2.11) 

• 
Thus Theorems 5.1.5, 5.1.8, 5.1.10, and 5.1.11 immediately apply and we get 

Theorem 5.2.2. Let {Hw}roeo be defined as in (5.2.4). Then u(Hro), u.ss(Hro), 
uc(Hw), uac(Hw), usc(Hw), and up(Hw) all equal certain nonrandom sets ~, ~ess' 
~c, ~ac, ~sc' and ~p S ~ for P-a.e. WEn. Moreover, ud(Hw ) = 0 for P-a.e. 
WEn. In addition, for any r E ~ there exists a subset n, s n with p(n,) = 1 
such that r is no eigenvalue of finite multiplicity of Hro , WEnt. 

In the rest of this section we shall investigate ~ = u(Hro) for P-a.e. WEn in 
more detail. For this purpose we introduce some more notations. Let us 
denote <I>(w) = {IX),(W), X),(w)} ),eA, WEn. Then <I>(w) determines the positions 
and strengths of the random potential sources, hence we call <D(w) the stochas
tic potential. By H(<I>(w)) we denote the operator -AIX(W),A(W) with positions 
and strengths given by <I>(w), i.e., IX(W) = {1X),(W)})'eA' A(w) = {A. E AIX),(w) = 
I}. A sequence t/J = {(~,l.' '1,l.) E supp(PIXO) x {O, 1} },l.eA is called an admissible 
potential. The set of all admissible potentials is denoted by .91. For each t/J E 
.91 we denote by H(t/J) the operator -AIX,A(IP) with IX = g,l.},l.eA' A(t/J) = 
{A. E AI'1,l. = I}. Next we call t/J Ed periodic (with periods L 1 , L 2, L3) ifthere 
exist linearly independent Lm E A - {OJ, m = 1,2,3, such that 

A. E A, m = 1, 2, 3. 

Finally, let f!jJ denote the set of all periodic, admissible potentials, 
Given these preliminaries we are able to formulate 

(5.2.12) 



344 111.5 Random Hamiltonians with Point Interactions 

Theorem 5.2.3. Let <I>(w) be the stochastic potential defined above. Then 

(i) 

(ii) 

a(H(l/J)) ~ L, l/J E d. 

L = U a(H(l/J)) = U a(H(l/J)), 
,pEd ,pEf7' 

where L = a(H(<I>(w))) for P-a.e. WEn. 

(5.2.13) 

(5.2.14) 

PROOF. Let <I>(w) be the given stochastic potential and let ¢> = {(~l' I'll)} leA E d. 
Then (1.1.6) and (1.1.7) imply 

(H(¢» - k2)-1 = Gk + I {[1k(¢>)]-1 - 1[A(¢)l'}U,(Gk(' - Yl'), ')Gd' - Yl)' 
l.l'eA 

k2 E p(H(¢>)), 1m k > O. (5.2.15) 

Here 1M denotes the identity on a set M ~ A, [A(¢>)]C = A - A(¢», and 

1k(¢» = r~,A(,p)(k) + 1 [A(¢)]" 

A, A' E A(¢», 1m k > O. (5.2.16) 

Next let 

Q1 = {w E Qla(H(<I>(w))) == ~}. 

By Theorem 5.2.2, Q1 has probability one, i.e., p(Q1) = 1. Define 

Since IXl are i.i.d. random variables we get 

P(Q~) = II P({w E Q!llXl(W) - ~ll < n-1 }) 

Ill:s· 

= n P( {w E QlIlXo(w) - ~ll < n-1 }), 

Ill:s· 

By assumption ~l E supp(p.o)' A E A. If we assume that 

nE N. 

nE ~. 

P( {w E QlIlXo(w) - ~ll < n-1 }) = 0 for some n EN then 

P.o((~l - n-l, ~l + n-1 )) = 0 

(5.2.17) 

(5.2.18) 

(5.2.19) 

would imply the contradiction ~l f supp(p.J Hence P({w E Q!llXo(w) - ~ll < 
n- 1 }) > 0 implying P(Q~) > O. In particular, Q1 n Q~ '* 0 (since otherwise P(Q1 U 
Q~) = 1 + P(Q~) > 1 yields a contradiction). Pick w. E Q1 n Q~. Then 

a(H(<I>(w.))) = ~. (5.2.20) 

Using the definition of Q~, one then proves that 

{['T;K(<I>(W.))]-l - 1 [A(<I>(<On))]' } .~oo' ['T;K(¢>)]-l - I[A(~)]" 

K> 0 large enough, (5.2.21) 

in F(A). Here 1k(<I>(w.)) (which is defined in analogy to (5.2.16)) is associated with 
H(<I>(w.)) like 1k(¢» is associated with H(¢» (cf. (5.2.15)). Similarly, A(<I>(w.)) = 
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{A. E AIX;.(w.) = 1}. Assertion (5.2.21) is shown by first proving T;,,(W(w.» .~a! 
T;,,«(J) on vectors of 12(A) of compact support (i.e., on I~(A». Since T;,,(W(w.», T;,,«(J), 
I(; > 0, are bounded and self-adjoint, this finally proves (5.2.21). Using (5.2.21) and 
the fact that {(Gt (' - A.),f)} ;'EA E 12(A), f E U([R3) (cf. (1.1.24) and the following 
arguments) one proves that H(W(w.» converges in weak (and hence in strong) 
resolvent sense to H«(J) as n --+ 00. This finally implies, using Theorem VIII.24 of 
[388], that 

u(H«(J» S; U u(H(W(w.))) = ~. 
.EN 

In particular, (5.2.22) implies 

U u(H«(J» S; ~. 
~EJJI 

Next let WI E gl and let 

with 

11;. = X;.(w1 ), 

Then (Jl Ed and thus 

A. E A. 

U u(H«(J»;:2 u(HW» = u(H(w(w 1 ))) = ~. 
~EJJI 

(5.2.22) 

(5.2.23) 

(5.2.24) 

(5.2.25) 

(5.2.26) 

Together with (5.2.23) this proves the first assertion in (ii). To prove the second 
assertion in (ii) we first prove· that for any (J E d we can find a sequence {(J.}nE I'll C f7jJ 

such that H«(J.) converges to H«(J) in strong resolvent sense as n --+ 00. For that 
purpose we define 

«(J.h = (~1, 111) = (~l> 11;.), A. EA., 

A. = {n1Q 1 + n2Q2 + n3 Q3 E Allnml ~ n, nm E lL, m = 1,2, 3}, nE N, 
(5.2.27) 

and continue periodically outside A •. Take", E I~(A) = {g E 12(A)1 supp(g) com
pact}.Then 

(5.2.28) 

since ~1 = ~;. for A. E A. and", has compact support. Hence 1k«(Jn) .~a! 1k«(J). Take 
k = iI(;, I(; > O. Then T;,,«(Jn) and T;,,«(J) are bounded and self-adjoint, implying 
convergence of T;,,«(J.) to T;,,«(J) in the strong resolvent sense as n --+ 00. As in the 
argument following (5.2.21) this proves that H«(J.) converges to H«(J) in strong 
resolvent sense as n --+ 00. The result together with Theorem VIII.24 of [388] shows 

u(H«(J» S; U u(H«(J.». (5.2.29) 
.EN 

Using (5.2.26) this implies 

~ S; U u(H«(Jn»· (5.2.30) 
.Ei1P 
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On the other hand, f'jJ ~ d and (5.2.23) then shows 

~;2 U a(H(¢J)). (5.2.31) 

Taking closures, this and (5.2.30) complete the proof. • 
Theorem 5.2.3 (ii) shows, in particular, that L only depends on supp(P~o) and 

not on other properties of P~o' In addition, it shows that L has a band structure 

of the type L = Ume N [am, bmJ, am < bm, mEN, and hence L is the closure of 
the open set Ume N (am, bm )· 

Next we turn to a detailed study of the negative part of the spectrum of 
H(<I>(w)) as one removes point interactions. 

Lemma 5.2.4. Let Jl = inf[supp(P~o)]' v = sup[supp(P~o)], and let An, 
n E N, be defined as in (5.2.27). Let ¢In E d be the admissible potential 

¢In= {Kl.,1],,)ESUpp(P~o) X {O, l}}"eA' 

1]" = 1, A E An, 1]" = 0, A E A - An' n E N. (5.2.32) 

Then 

a(H(¢Jn)) n ( -00, 0) ~ [El),A(O), E(')A(8o)] n (-00,0), n E N, (5.2.33) 

where we used the terminology of Theorem 1.4.5 on the right-hand side of 
(5.2.33). 

PROOF. By Sect. 11.1.1, the negative eigenvalues E',n = kf.n < 0, 1= 1, ... , Nn, of 
H(¢Jn) are in one-to-one correspondence with zero eigenvalues of r~,A(~Jk"n)' 1= 
1, ... , Nn • Denote by Emax,n(~) (resp. Emin,n(¢)) the largest (resp. smallest) of these 
eigenvalues E1,n, I = 1, ... , Nn. Because all eigenvalues of r~,A(~JiK) are strictly 
increasing in K, K > 0, we get that Emax,n(~) (resp. Emin,n(O) is the unique eigenvalue 
such that 

sup[a(r~,A(~n)(iK))] = 0 (resp. inf[a(r~,A(<pn)(iK))] = 0), K> 0, (5.2.34) 

for k2 = - K2. Moreover, by the monotonicity of r~,A(~n)(iK), K > 0, with respect to 
~ and by Rayleigh's theorem ([391], p. 364) we infer 

sup[a(rv,A(iK))] ;::: sup[a(r~,A(<Pn)(iK))], 

K > O. (5.2.35) 

Clearly, E~,A(eo)(resp. Eg,A(O)) is the value of k2 = - K2 for which sup [a(rv, A(iK))J = 

o (resp. inf[a(r~,A(iK))] = 0) (cf. Theorem 1.4.5). Thus 

Eg,A(O) :::; Emin,n(~) :::; Emax,n(~) :::; E~,A(eo), 

and hence Theorem 1.4.5 implies (5.2.33). 

Next we state 

n E~, (5.2.36) 

• 

Lemma 5.2.5. Assume the hypotheses of Lemma 5,2.4, Let X c A and define 
¢JnA E d to be the admissible potential 

¢JnA = {(~",1],,)ESUpp(P~o) X {O,l}}"eA, 

1]" = 1, A E An - X, 1]" = 0, A ¢ An - X, n EN. (5.2,37) 
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Then 

u(H((P"f» £; u(H(t/J,,», nE N. (5.2.38) 

PROOF. Since r~,A(~(k) is the restriction of r~,A(tI")(k) to a subspace, it follows 
from Rayleigh's theorem ([391], p. 364) that 

sup[u(r~,A(~)(iK))] :s; sup[u(r~,A(tI")(iK))], 

inf[u(r~,A(!Ml(iK))] ~ inf[u(r~,A(tI")(iK))], K > O. 
(5.2.39) 

Define E~in,,,(~), E~a.,,,(~) in analogy to Emin,,,(c;), Ema.,,, (C;) in the proof of Lemma 
5.2.4 (replacing rfJ" by rfJ~'). The fact that all eigenvalues of r~,A(tI")(iK), r~,A(~)(iK) are 
strictly increasing in K, K > 0, together with (5.2.39) then yields 

Emin,,,(c;) :s; E~ln,n(c;) :s; E~a.,n(c;) :s; Emax,n(c;), 

This proves 

c; E supp(p.o)' n E N. (5.2.40) 

{u(H(rfJf)) n (-00, On c {u(H(rfJ,,)) n (-00, O)}, nE N. (5.2.41) 

But since both H(rfJf) and H(rfJ.) only describe a finite number of point interactions 

[0, (0) 5; {u(H(rfJf» n u(H(rfJ.»)}, nE N, (5.2.42) 

and the proof is complete. • 

Lemma 5.2.6. Let Jl = inf[supp(Pllo)]' v = sup[supp(p .. o)]. Then 

I: n ( -00,0) £; [E~,A(O), EO,A(OO)] n (-00, 0). (5.2.43) 

In particular, if v < O(O,A (cf (1.4.101» then 

I: n [EO'A(OO)' 0) = 0. (5.2.44) 

PROOF. Let ~ in ,p., rfJf of Lemmas 5.2.4 and 5.2.5 be periodic with periods L t , L 2 , 

L3 E A - {O}. Arguing as in the proof ofTheorem 5.2.3 we infer that H(rfJ.) - H(rfJ) 
and H(rfJf) - H(rfJA) in strong resolvent sense as n -+ 00. Here 

rfJ = {(C;;., '1;.) E supp(p.o) x {O, 1}1'1;. = 1, A. E A}, 

rfJA = {(e;., '1;.) E supp(p.o) x {O, I} 1'1;. = 1, A. E A - X, '1;. = 0, A. ¢ A - X}, 

eHLm = e;., A. E A, m = 1,2, 3, (5.2.45) 

(Le., A(rfJ) = A, A(rfJA) = A - X). By Lemmas 5.2.4 and 5.2.5 we get 

U(H(rfJA)) n (-00,0) 5; u(H(rfJ)) n (-00,0) 

(5.2.46) 

Next let cI>(ro) = {cx;.(ro), X;.(ro)};'EA be a stochastic potential and A(ro) = {A. E 

AIX;.(ro) = I}. By Theorem 5.2.2 we have u(H(cI>(ro l ))) = ~ for some rol En. Let us 
now choose 

X = [A(rol )]C, 

Then cI>(ro l ) = rfJA and hence (5.2.46) implies (5.2.43). 

Next we state 

A. E A. (5.2.47) 

• 
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Lemma 5.2.7. Let -~a.Y+A be the operator defined in Theorem 1.4.3 and 
assume CL :::;; ri.j :::;; ri.+, ri.± E lR,j = 1, ... , N. Let if E 0"( -~a,Y+A)' Then there 
exists an & E [ri._, ri.+] such that if E 0"( -~~,A) (where -~~,A is defined in 
Theorem 1.4.4). 

PROOF. Let Vi = VE Cg'(1R3) be real-valued,j = 1, ... , N, and V:5: O. Denote by 
He,Y+A (resp. by He,A) the operators in (1.4.116) which by Theorem 1.2.1 approximate 
- ~., Y+A (resp. - ~y,A)' Y E IR, in norm resolvent sense as e! O. In addition, we 
assume H = - ~ + V to be in case II with t/J the corresponding zero-energy reson
ance function and choose 

e > 0, j = 1, ... , N, (5.2.48) 

in He,Y+A and 

Jc(e) = 1 - I(v, t/JWye, e > 0, y E IR, (5.2.49) 

in He.A- Because of the above-mentioned norm resolvent convergence of He,Y+A to 
-~.,Y+A as e! 0, we can choose e > 0 small enough such that for given 8 > 0, the 
distance d(E, a(He,Y+A)) :5: 8. Next we vary rt.j in such a way that either all rt.j ! rt._ or 
all rt.j i rt.+,j = 1, ... , N. Using the min-max principle and the fact that the spectrum 
of He,Y+A depends continuously on rt. 1, ... , rt.N , we infer that in the first case a(He,Y+A) 

moves to the left whereas in the second case it moves to the right. Taking into 
account that a(He,A) also depends continuously on y and moves to the left or right 
ify is decreased or increased (and that He,A = He,Y+A ify = rt.l ='" = rt.N), we get 
the existence of an ii E [rt._, rt.+J such that d(E, a(He,A)) :5: 8 where He,A equals He,A 

with y = ii. Since 8 > 0 was arbitrary we obtain d(E, a( - ~.,A)) = O. Since a( - ~oi,A) 
is closed we finally get E E a( -~.,A) as desired. • 

Now we are ready to give a precise description of L. We start with the case 
where all lattice sites are occupied, i.e., where P(Xo = 0) = O. 

Theorem 5.2.8. Let f.1, = inf[supp(Pao)]' v = sup[supp(Pao)]' and suppose 
that P(Xo = 0) = O. Moreover, assume that either EO,A(O) :::;; EI),A(oO) or that 
supp(Pao) = [f.1" v]. Then 

L = [EI)'V(O), EO'A(oo)] U [E~,A, 00) = 0"( -~I',A) U 0"( -~v,A)' (5.2.50) 

If, in addition, v < ri.O,A then 

L n ( -00, 0) = [EI)·A(O), EO,A(oO)]' (5.2.51) 

If, in addition, f.1, ~ ri. 1,A then 

(5.2.52) 

PROOF. Since (5.2.51) and (5.2.52) are easy consequences of(5.2.50) and the mono
tonicity of E~,A(O), E~,A«(JO) with respect to rt. E IR, we concentrate on (5.2.50). By 
(5.2.14) we obviously have 

~ 2 a( -~~.A) U a( -~v,A)' 

On the other hand, by Lemma 5.2.7 we get 

a(H(t/J)) ~ U a(-~.,A) = a(-~~,A)Ua(-~V.A)' 
'E[~,vl 

(5.2.53) 

t/J E [l/J. (5.2.54) 

By taking the union over all t/J E [l/J and the closure the proof is complete. • 
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Finally, we treat the case where 0 < P(Xo = 0) < 1 (the case P(Xo = 0) = 1 
corresponds to the free Hamiltonian - ~). 

Theorem 5.2.9. Let J-l = inf[supp(P",o)]' v = sup[supp(P"'o)], and suppose 
that 0 < P(Xo = 0) < 1. Moreover, assume that either EO·A(O) ::;;; E~·A(OO) or 
that supp(P"'o) = [J-l, v]. Then 

~ = [E~·A(O), EO·A(OO)] U [0, <Xl) = 0"( - ~I'.A) U 0"( - ~v.A) U [0, <Xl). 
. ~~ 

If, in addition, v < aO.A then (5.2.51) holds If, in addition, J-l ~ a l •A then 
(5.2.52) also holds. 

PROOF. For ~ n (-00,0) we only need to combine Lemma 5.2.6 and (5.2.14). For 
~ n [0, (0) we argue as follows. Since P(Xo = 0) > 0 by hypothesis, the event that 
X). = 0 for A E An' n EN (cf. 5.2.27)) has positive probability no matter how large n 
is. Thus 

On = {w E 013Ao E A, S.t. VA E AO + A.: X). = O}. (5.2.56) 

has probability one, P(On) = 1, since it is invariant with respect to shifts 1';" A. E A. 
Thus the set 

0",,= nOn (5.2.57) 
neN 

has probability one, P(O",,) = 1. But for W E 0"" we find subsets AO + Am, AO E A, 
mEN (perhaps far away) of arbitrary large size without point interactions contained 
in them. Hence a standard argument based on Weyl trial functions (cf., e.g., [391], 
Ch. XIII) shows that [0, (0) £; t1(H.,), W EO"". Let 0 1 be defined as in (5.2.17). Then 
0 1 no"" "# 0 since both sets have probability one. Consequently, for Wo E 0 1 n Oco 
we obtain 

[0, (0) £; t1(H.,o) = ~. (5.2.58) 

• 
For J-l ~ a1•A , we get the surprising result that the spectrum of Hw in 

Theorems 5.2.8 (where P(Xo = 0) = 0) and 5.2.9 (where 0 < P(Xo = 0) < 1) 
coincides and equals 0"( - ~I'.A) for P-a.e. wen. In other words, starting from 
the random Hamiltonian Hw with centers at the points of the lattice A creating 
point interactions of random strengths and switching ofT some of the centers 
in a random way does not change the spectrum in the case where J1. ~ al.A-

Both Theorems 5.2.8 and 5.2.9 can be viewed as generalizations of the 
Saxon-Hutner conjecture (cf. Sect. 2.3 and the following one). 

III.S.3 Random Point Interactions in One Dimension 

Here we derive the analogous results of the foregoing section for random {}
and {}' -interactions in one dimension. 

Let A = alL., a> 0, and consider -~"'(w).A and Ep(W).A in L2(~) where 
a(w) = {aj(w) E ~}jEZ, P(w) = {Pj(w) E ~LEZ, and aj' Pj' jElL. are i.i.d. real
valued random variables on the canonical probability space (n, fF, P). As-
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sume supp(P"'o) and supp(PfJo ) to be compact. Then 0 is chosen to be 0 = 
[supp(p"'o)]l (resp. 0 = [supp(PfJo)]l) and hence 0 is a compact topological 
space with respect to the product topology. Thus we may speak of the support 
of the probability measure P. 

Since in almost all of the following results, - Ll",(w), A and SfJ(w),A can be 
treated on exactly the same footing, we now introduce the following unifying 
notation: First of all, we replace IX(W) and {J(w) by y(w) = {Yj(w) E IRLel with 
Yj,j E lL, Li.d. random variables with compact support. Moreover, because of 
the above identification 0 = [supp(pYo)]l, any WE 0 is given by W = njel Wj 
and Wj = Yj(w), jEll, in this representation. The operator Hw in L2(1R) then 
represents - Llw,A or Sw,A (Le., Wj = Yj(w) now plays the role of IXj(W) or {Jiw), 
jEll). The corresponding deterministic operators - Ll""A and SfJ,A are in 
general represented by the symbol H~,A' 

Next let {1JLel be the shift operator in 0 defined by 

W E 0, j, I E lL, (5.3.1) 

such that 

W E 0, j, I E lL. (5.3.2) 

As in Sect. 5.2, {1JLel is a family of measure preserving, ergodic transforma
tions. Moreover, let {UJLel denote the family of unitary translation operators 
in L2(1R) 

(UJg)(x) = g(x - ja), g E U(IR), jEll. (5.3.3) 

As in Sect. 5.2, {UJLel is complete in the sense of Sect. 5.1 and 

WE 0, jEll. (5.3.4) 

Since the proof of these statements and of the analogs of Theorems 5.2.2 and 
5.2.3 can be translated into the present situation word by word (some techni
calities even become simpler since Gk(O) is bounded in one dimension) we have 

Theorem 5.3.1. Let {Hw}weQ be defined as above. Then (J'(Hw), (J'ess(Hw), 
(J'e(Hw), (J'ae(Hw), (J'se(Hw), and (J'p(Hw) all equal certain nonrandom sets 1:, 
1:ess ' 1:e, 1:ae , 1:se , and 1:p for P-a.e. W E O. Moreover, (J'd(Hw) = 0 for P-a.e. 
WE O. For any T E IR there exists a subset Ot £ 0 with p(nt) = 1 such that 
T is no eigenvalue of Hw , W E Ot. 

PROOF. As mentioned above only the last assertion concerning the fact that any 
't" E IR is P-a.s. no eigenvalue of H", needs a proof. But this holds since any eigenvalue 
of H., has multiplicity less than or equal to two. • 

In order to state the analog of Theorem 5.2.2 we again introduce the concept 
of stochastic (resp. admissible) potentials. A sequence ~(w) = {Yiw) E IRLez, 
W E 0, with Yj' jEll, Li.d. random variables and supp(PYo) compact is called 
a stochastic potential. In contrast to Sect. 5.2 there is now no need to intro
duce the stochastic variables Xj' jEll, since Yiw) = 0 is possible whenever 
P(Yj = 0) > O. The class .91 of admissible potentials then consists of elements 
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rP = {ej E supp(PYo)}jeZ' The class f!J' of all periodic admissible potentials is 
then given by all rP E .91 such that the corresponding sequence {ej}jeZ satisfies 

jE 71., (5.3.5) 

for some L E 71. - {O}. For rP E .91, H(rP) denotes the Hamiltonian Hw with Yj(w) 
replaced by ~j,j E 71. (i.e., H(rP) = H~.A)' Then we get 

Theorem 5.3.2. Let <I>(w) be the stochastic potential as defined above. Then 

(i) 

(ii) 

u(H(rP)) s :E, rP E .91, 

:E = U u(H(rP)) = U u(H(rP)), 
t/JeJil t/Je9 

where:E = u(H(<I>(w))) for P-a.e. WEn. 

(5.3.6) 

(5.3.7) 

As remarked before, one can follow the proof of Theorem 5.2.3 step by step. 
We also note that Theorem 5.3.2(i) above simply means 

WE supp(P) 

since W E supp(P) implies that rPw defined as 

rPw = {wJjeZ E .91, W = n Wj' 
jeZ 

is an admissible potential. 
Next we state 

Theorem 5.3.3. Under the assumptions of Theorem 5.3.2 we get 

:E = U (1(H~.A)· 
~ e supp(P'o) 

(5.3.8) 

(5.3.9) 

(5.3.10) 

PROOF. Since H~.A = H(¢J) with ¢J = gj = e E supp(PYo)}jez Theorem 5.3.2(ii) 
implies 

(5.3.11) 

where 

(5.3.12) 

Conversely, there is a ¢J = {ej E supp(PYo)}jeZ E d such that u(H(¢J)) = ~ (this is 
even true for P-a.e. OJ = {OjeZ E Q). By Theorem 2.3.6 we know that if(e, d) n ~o = 

o then also 

(e, d) n ~ = (e, d) n u(H(¢J)) = 0. (5.3.13) 

Thus 

(5.3.14) 

In the rest of the proof we show that ~o is closed implying ~ = ~o. By Theorems 
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2.3.3 and 3.6 we have 
00 

(J(H ) = U [a y·A bY•A ] y,A m 'm , a;,;A < b;;,·A s a'/,;~l' Y E IR, mEN. (5.3.15) 
m=l 

Thus 

Bm = U [a;;A, b~,A] ~ [a~-''', b~+,A] (5.3.16) 
~. supp(P,o) 

for some ~± E supp(PyJ Here we used the compactness of supp(Pyo) and the con
tinuity of a;;A, b~,A, mEN, with respect to ~ E IR. Let {xn}n. N C Bm be a Cauchy 
sequence. Then there is a Xo E [a~-·A, b~+·A] such that limn_oo Xn = Xo and Xn E 

[a~"·A, b~"·A] for some gn}ne N ~ supp(PyJ By the compactness of supp(Pyo) there 
is a subsequence {~n}neN of gn}neN such that limn_oo ~n = ~o E supp(Pyo )' Because 
of a~"·A S Xn S b~"·A, and the above-mentioned continuity with respect to ~, we 
infer a~o.A S Xo S b~o.A. Thus Xo E Bm and hence Bm, mEN, are closed. Taking into 
account the constraints on a;;A, b~''', mEN, as described in Theorems 2.3.3 and 3.6 
we finally infer that ~o = U::;=l Bm is closed. • 

Corollary 5.3.4. Assume the hypotheses of Theorem 5.3.2 and denote by 
Jl = inf[supp(Pyo)]' v = sup[supp(pYo)]. Then we have 

00 

(i) ~ = U [am, bm], 
m=l 

(ii) If Jl ~ 0, then 

(5.3.18) 

(iii) u(Hro) has infinitely many open gaps for P-a.e. WEn unless ° E 

supp(Py). If ° E supp(Pyo) then 

[0, (0) S ~ (5.3.19) 

and there are at most finitely many gaps in (-00,0). 
(iv) Assume supp(Pyo ) = [Jl, v] (or bf·A ~ ar· A ). If v :s; ° then 

~ = [ai· A, ar· A ] U u( -Av.A) (5.3.20) 

in the case where Hro = -Aro.A represents c5-interactions. If v :s; -a 

in the case where Hro = Sro.A represents c5'-interactions. 

PROOF. (i) follows from the fact that 

~= U 
~esupp(p,o) m=l 

with a~·A b~·A -----+ 00. 
m , m m-+oo 

(5.3.21) 

(5.3.22) 

(ii)-(iv) follows from (5.3.10) and the monotonicity statements in (2.3.39) and 
(3.49). • 

Finally, we prove the Saxon and Hutner conjecture for random systems. 
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Theorem 5.3.5. Assume the hypotheses of Theorem 5.3.2. Let r c ~ be open 

and r £ nAesupp(p'o)p(HA•A ). Then 

r n ~ = 0. (5.3.23) 

PROOF. We only need to combine Theorems 2.3.6 and 5.3.3. • 
Notes 

Section ill.5.1 
The entire material is taken from work of Kirsch and Martinelli [286], [287]. 
Their results extend earlier results by Pastur [368] and Kunz and Souillard 
[309] for the discrete Schrodinger operator. Another approach for the non
randomness of the spectrum of ergodic Schrodinger operators appeared in 
[170], [311]. For an extensive survey on random Schrodinger operators, cf. 
[119] and [128], Ch. 9. 

Section ill.5.2 
This section is based on work of Albeverio, Hl2legh-Krohn, Kirsch, and Mar
tinelli [30], [287], [288], [289]. Our presentation closely follows [20]. We also 
emphasize the fact that every result in this section stated for the three
dimensional model has a word-by-word translation into the corresponding 
two-dimensional system. 

A discussion of point interactions on random manifolds is given in [14]. 
Applications to statistical mechanics of polymers and quantum field theory 
appeared in [13], [14]. 

For a general study of the Laplacian with boundary conditions on small, 
randomly distributed spheres, cf. [181], [182], [183] and the literature therein. 
Multiple scattering of waves by randomly distributed point scatterers has been 
discussed in [186]. 

Some applications in quantum chemistry appeared in [80]. 

Section 111.5.3 
In the case of c5-interactions the material is based on work of Kirsch and 
Martinelli [286], [287], [288], [289], in the case of c5' -interactions it is based 
on [205] and [206]. Our presentation closely follows [206] (cf. also [20]). The 
general formulation of the Saxon and Hutner conjecture in Theorem 5.3.5 is 
due to [206]. Earlier results in the case of c5-interactions in [286], [287], [288], 
[289] used additional restrictions on the sign of the coupling constants (i.e., 
A.j ~ 0 or A.j ::5: O,j E Z). A result essentially implying Theorem 3.5.3 in the case 
of c5-interactions was given in [165], [168]. As shown in [206], the results of 
this section can be extended to the case where {yJjeZ is an ergodic (Le., 
metrically transitive) stochastic process with I Yiw) I ::5: C,j E Z, WEn. Theorem 
5.3.1 immediately extends to this situation. The rest of this section also extends 
to this situation provided supp(P) = n = [supp(pYoHz (assuming supp(pYo) to 
be compact). The last hypothesis is, e.g., satisfied by a stationary Markov 
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process {yJjEl with transition function p(x, A) > 0 for all x E supp(PYo)' A c 

supp(PYo)' A open. Another extension we would like to mention is the possibi
lity of including random deviations from lattice positions as discussed in 
[289]. 

There has been considerable interest in the problem of determining the 
nature of the spectrum of Hcr In the case of (j-interactions, P-a.s. exponential 
localization of the spectrum (i.e., the existence of a complete set of exponen
tially decaying eigenfunctions in L2(1R)) has been proven [143], [144] under 
the assumptions that {ocjLe:z are i.i.d. random variables with a density r 
satisfying Ilrlloo < 00 and that 

p = sup{x > OIE(I·n < oo} > O. 

For earlier results in this direction cf., e.g., [217]. Applying the methods of 
[144] these results are expected to extend to the (j'-case. 

Another problem that has been studied intensively was the nature of the 
spectrum of random (j-interactions in the presence of an external electric field 
as a function of the field strength F. Then the Hamiltonian in L2(1R) is given by 

Hro(F) = - ~a(ro).A + Fx, F :s; O. 

As proven in [143], [144] under the assumptions ofthe preceding paragraph, 
for Fl < F < 0, Hro(F) has P-a.s. a pure point spectrum with power decaying 
eigenfunctions. For sufficiently strong fields, F < F2 < Fl and p > 2, Hro(F) 
has P-a.s. a purely continuous spectrum. This transition from a pure point 
spectrum (for sufficiently weak electric fields) to a purely continuous spectrum 
(for sufficiently strong electric fields) is quite remarkable, since for one
dimensional Schrodinger operators with LjelOCj(w)(j(x - ja) replaced by a 
sufficiently smooth Vro(x), the system does not exhibit localization at all. In 
fact, in this case the spectrum turns out to be purely absolutely continuous 
[75J, [118J, [119]. Numerical studies of this transition mentioned above have 
been reported in [78], [382], and [451]. A numerical study of resonances in 
such systems appeared in [73], [74], [78]. 

Finally, we note that there exists a vast number of papers in the physics 
literature dealing with random (j-interactions. Mainly two cases have been 
studied in great detail: Random alloys (i.e., the systems described in this section 
where the positions form a deterministic lattice A and the coupling constants 
are random variables) or liquid metals (i.e., deterministic coupling constants 
but random positions). Random alloys are treated, e.g., in [6], [116a], [230], 
[236], [241], [254], [255], [256], [257], [258], [259], [282], [303], [361], 
[408], [476] [492] and liquids in [66], [91], [92], [102], [103], [104], [105], 
[163], [189], [236], [240], [273], [291], [319], [330], [336], [361], [373], 
[375], [393], [476], [477], [491]. For a critical survey of some of these results, 
cf. [174] (see also [164], [173]). Mathematical results on the density of states 
associated with these two types of systems can be found in [163], [164], [222], 
[223], and [268]. 

Multiple scattering of waves by randomly distributed point scatterers ap
peared, e.g., in [40], [63], [64], [65], [234], [235], [337], [337a], and [403]. 
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APPENDIX A 

Self-Adjoint Extensions of 
Symmetric Operators 

Assume A to be a densely defined, closed, symmetric operator in some Hilbert 
space Jf' with deficiency indices (1, 1). If 

A*tP(z) = ztP(z), tP(z) E ~(A*), z E C - IR, (A. 1) 

we have 

Theorem A.t. All self-adjoint extensions All of A may be parametrized by 
a real parameter (J E [0, 2n) where 

~(AII) = {g + ctP+ + ceilltP_lg E ~(A), ceq, 
(A.2) 

Ao(g + ctP+ + cei°tP_) = Ag + ictP+ - iceilltP_, 0:::;;; (J < 2n, 

and 

tP± =,tP(±i), (A.3) 

Concerning resolvents of self-adjoint extensions of A we state 

Theorem A.2 (Krein's Formula). Let Band C denote any self-adjoint 
extensions of A. Then we have that 

(B - ZFl - (C - zt1 = A(Z)(tP(Z), . )tP(z), Z E p(B) n p(C), (A.4) 

where A(Z) '" 0 for z E p(B) n p(C) and A and tP may be chosen to be analytic 
in z E p(B) n p(A). In fact, tP(z) may be defined as 

tP(z) = tP(Zo) + (z - Zo)(C - zt1tP(zo), z E p(C), (A.S) 

357 
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where rP(zo), Zo E C - IR, is a solution of (A.l) for Z = Zo and A(Z) satisfies 

A(ztl = A(zTl - (z - z')(rPCz), rP(z'», z, Z' E p(B) n p(C), (A.6) 

if rP(z) is chosen according to (A.5). 

Next we turn to the general case and assume that A is a densely defined, 
closed symmetric operator in yt with deficiency indices (N, N), N E N. Let B 
and C be two self-adjoint extensions of A and denote by A the maximal 
common part of Band C (i.e., A obeys A s; B, A s; C and A extends any 
operator A' that fulfills A' s; B, A' S; C). Let M, 0 < M ::;; N, be the deficiency 
indices of A and let {rPl (z), ... , rPM(Z)} span the corresponding deficiency 
subspace of A, i.e., 

rPm(Z) E !0(A*), m = , ... , M, Z E C - IR, (A.7) 

and {rPl (z), ... , rPM(Z)} are linearly independent. Then the analog of Theorem 
A.2 reads 

Theorem A.3 (Krein's Formula for Deficiency Indices N > 1). Let B, C, 
A, and A be as above. Then 

M 

(B - Z)-l - (C - zt1 = L Amn (z)(rPn (z), . ) rPm (z), Z E p(B) n p(C), 

(A. 8) 
m,n:;;:;l 

where the matrix A(Z) is nonsingular for Z E p(B) n p(C) and Amn(Z) and rPm(z), 
m, n = 1, ... , M, may be chosen to be analytic in Z E p(B) n p(C). In fact, 
rPm(Z) may be defined as 

m = 1, ... , M, Z E p(C), 
(A.9) 

where rPm(ZO)' m = 1, ... , M, Zo E C - IR, are linearly independent solutions 
of (A.7) for Z = Zo and the matrix A(Z) satisfies 

[A(Z)];;;! = [A.(z')];;;! - (z - z')(rPn(z), rPm(z'», m, n = 1, ... , M, 

Z, Z' E p(B) n p(C), (A.I0) 

if the rPm(z), m = 1, ... , M, are defined according to (A.9). 

In general, we have 

N 

(B-zt 1 -(C-zt1 = L Imn(z)(~n(z), ·)~m(z), zEp(B)np(C), (A.11) 
m,n=l 

where now ~m(z), m = 1, ... , N, are linearly independent solutions of 

~m(Z) E !0(A *), m = 1, ... , N, Z E C - IR, (A.12) 

and, in general, det l(z) == o. 
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Notes 

Self-adjoint extensions of densely defined, symmetric operators are discussed 
in various monographs ([8], Ch. VII, [158], Ch. XII.4, [353], Ch. IV.14, [389], 
Ch. X.l, [494], Ch. 8; see also [38], [267], [267a], [299], [356], [398], [399], 
[470], [471]. 



APPENDIX B 

Spectral Properties of Hamiltonians Defined 
as Quadratic Forms 

Let Ho be a self-adjoint, semibounded operator in some separable (complex) 
Hilbert space.7e. We denote by PA(.7e) and PAoo(.7e) the spaces of bounded and 
compact operators in.7e, respectively, and by PAp(.7e), p ~ 1, the set of compact 
operators whose singular values are in [P. Assume the condition 

(I) EJ, Fj, j = 1, ... , N, N E N, are closed operators in .7e which are 
infinitesimally bounded with respect to IHoll/2. 

We then define in .7e 
N 

. '" * H = Ho + L.. Ej Fj 
j=l 

(B.l) 

by the method of forms ([283J, Ch. VI, [434J, Ch. II) (in general H is not 
self-adjoint) and introduce in.7eN = E87=1 .7e the family of bounded operators 
K(k) E PA(.7eN ) 

gj E.7e, j = 1, ... ,N, (B.2) 

here 

Kjj'(k) = Fj(Ho - k2r 1 E;, k2 E p(Ho), 1m k > 0, j,j' = 1, ... , N. (B.3) 

(Uno confusion arises we always identify operators of the type (Ho - k2r1 Ej 
and [Ej(Ho - p)-l J*, etc.) Next we assume 

(II) Kjj,(k) E PAoo(.7e), j,j' = 1, ... , N, for all 1m k > 0, P E p(Ho). 

360 
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Then we have 

Theorem B.I. 

(a) Suppose condition (I) holds. Then 
N 

(H - k2r 1 = (Ho - k2r 1 - I (Ho - k2r1Ej*FiHo - prl, 
j=1 

k2 E p(H) n p(Ho). (B.4) 

(b) Assume hypothesis (I) and (II). Then 

(H - k2r 1 = (Ho - k2r 1 

and 

N 

- I (Ho - k2r 1 En1 + K(k)Jjj~ Fj'(Ho - k2rl, 
j,j'=1 

1m k > 0, k2 E p(H) n p(Ho). (B.5) 

(B.6) 

(c) Assume conditions (I) and (II) and let Eo = k~ E p(Ho), 1m ko > 0. Then 
H has the eigenvalue Eo with geometric multiplicity M if and only 
if K(ko) has the eigenvalue -1 with the same geometric multiplicity 
M. In particular, if K(ko)<I>o = -<1>0' <1>0 = (¢J01' ... , ¢JON) E YfN then 
1/10 = If=1 (Ho - k~)-1 E!rPoj fulfills 1/10 E ~(H), Hl/lo = Eol/lo. Con
versely, if H/fio = Eo/fio, /fio E ~(H), then $0 = (~01' ... , ~ON) E YfN, 
~Oj = - Fj/fio, j = 1, ... , N, fulfills K(ko)$o = -$0 and /fio = 
If=1 (Ho - k~r1 Ej~oj' 

In order to treat resonances of H we need, in addition, hypothesis 

(III) Let n s C be open and connected, n;2 {k E C1lm k > 0, k2 E p(Ho)}, 
ko En for some ko with 1m ko < 0. Assume that K: n ~ :?Ioo(YfN). 

By Theorem B.1(c) there exists a one-to-one correspondence between 
eigenvalues E1 = ki, 1m k1 > 0, k1 En, of H and the eigenvalue -1 of K(kd. 
For resonances we introduce the following definition: 

Assume hypotheses (I) and (II). Then k2 E n, 1m k2 < 0, is called a resonance 
of H if and only if K(k2) has the eigenvalue -l. 

For a discussion of multiplicities of eigenvalues and resonances we add 
assumption 

(IV) In addition to condition (III) assume that K is (norm) analytic in n 
and that K: n ~ :?Ip(YfN) for some pEN. 

Theorem B.2. Assume hypotheses (I) and (IV). Then, if for some ko En, 
K(ko) has an eigenvalue -1, [1 + K(k)r1 has a norm convergent Laurent 
expansion around k = ko, viz. 

00 

[1 + K(k)r1 = I Km(k - ko)m for some mo E N u {O}. (B.7) 
m=-mo 
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Here Km E Pl(.tfN} for each m ~ -mo and for -mo ~ m ~ -1, Km is 
of finite rank. Moreover, -1 E u(K(ko)) if and only if detp[1 + K(ko)] = 0 
and the geometric multiplicity of the eigenvalue -1 of K(ko} coincides 
with the multiplicity of the zero of the (modified) Fredholm determinant 
detp[l + K(k}] at k = ko if and only if mo = 1. In particular, if H is self
adjoint and ko E n, 1m ko > 0, then mo = 1. 

That mo need not be one (e.g., if resonances collide) has been discussed in 
[365] and [385]. In fact, if mo > 1 then v(ko}, the order of the zero of 
detp[1 + K(k}] at k = ko, strictly dominates the geometric multiplicity ofthe 
eigenvalue -1 of K(ko}. (In general, v(ko) ~ mo} [262]. On the other hand, 
[1 + K(k}r.1 has a simple pole at k = ko if and only if [1 + K(ko} + 
(k - ko}K'(ko)]-l has a simple pole at k = ko. In addition, if the geometric 
and algebraic multiplicity of the eigenvalue -1 of K(ko) coincide, then 
[1 + K(k}r1 has a simple pole at k = ko if and only if P(ko}K'(ko} (or 
equivalently if K'(ko)) is injective on Ker[l + K(ko)] [262]. (Here P(ko) = 

-(2nif1 tlz+ll=.dz[K(ko) - zrl, e > 0 small enough, denotes the projec
tion onto the algebraic eigenspace of K(ko} to the eigenvalue -1 and Ker[T] 
denotes the kernel of some T E Pl(.tfN}.} 

Given hypotheses (I) and (IV) we therefore define the multiplicity of a 
resonance ko E n, 1m ko < 0, of H to be the multiplicity of the zero of the 
(modified) Fredholm determinant detp[1 + K(k}] at k = ko. 

Finally, we discuss perturbations of eigenvalues and resonances and 
introduce condition 

(V) Let A !;;; C be open and connected and suppose Ej , ... FJ, ... j = 1, ... , 
N, fulfill hypothesis (I) for all A E A. Moreover, assume Kjj.,.,(k} = 
FJ,;.(Ho - k2r 1 E;, ... j, j' = 1, ... , N, to be (norm) analytic in n x A, 
and for some pEN, Kjj.,;.(k} E Plp(.tf}, j, j' = 1, ... , N, for all (k, A) E 

n x A. 

In analogy to (B.l) we then define 

A E A. (B.8) 

It turns out that if ko E n corresponds to a bound state (1m ko > O) or 
to a resonance (1m ko < O) of H;.o for some fixed Ao E A then, for IA - Aol 
small enough, H;. has bound states (resp. resonances) k(A} E n with k(A} = 

ko + O(A - AO}' The functions k(A} are given by solutions of detp[1 + K;.(k)] = 

o near (ko, AO)' More precisely, we have 

Theorem B.3. Assume hypothesis (V). If for some (ko, AO) E n x A, K;'o(ko} 
has an eigenvalue -1 such that the multiplicity of the zero of detp[1 + K;'o(k}] 
at k = ko equals M then, for IA - Aol small enough, there exist M (not 
necessarily distinct) functions kl(A} E n, I = 1, ... , m, which are all the 
solutions of detp[l + K;.(k}] = 0 for (k, A) near (ko, AO)' They are given 
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by convergent Puiseux expansions near A = Ao, i.e., there are functions hi 
analytic near A = Ao, hl(O) = 0, I = 1, ... , m, such that 

kl(A) = ko + hi ((A - Ao)l/m,) 

00 

= ko + L al,r(A - Aoy/m" 
r=l 

m 

ml ;:::: 1, I = 1, ... , m, L ml = M. 
1=1 

(B.9) 

If, e.g., ko corresponds to a simple bound state or resonance of HAo (i.e., if 
M = 1), then k(A) is analytic in A near A = Ao, viz. 

(B.10) 

where 

If 1m ko > 0, Ao E A n ~, and HA is self-adjoint for A in a real neighborhood 
of Ao, the additional constraint EI(A) = kl(A)2 < 0, I = 1, ... , m, for A E ~, 
IA - Aol small enough, in fact leads to ml = 1, i.e., kl(A), 1= 1, ... , m, are 
analytic near A = Ao (Rellich's theorem). 

We note that (<Do, <1>0) -=1= 0 and (<Do, [(%k)KAo(k)]lk=ko <1>0) -=1= 0 by the 
remarks following Theorem B.2 since M = 1. 

Finally, we note a general theorem concerning Puiseux series, part (b) of 
which is a part of Rellich's theorem. 

Lemma B.4. Let h: U -+ C, U ~ C, a complex neighborhood of zero, be an 
analytic function, let r E N and consider the multivalued function 

(B.12) 

(a) If g(z) E ~ for all z > 0 sufficiently small for all the r branches of g (i.e., 
by taking all the r rth roots zl/r in the definition of g), then r = 1 or r = 2. 

(b) If g(z) E ~ for all z E ~ sufficiently small for all the r branches of g, then 
r = 1 and g is analytic in U. 

Remark. The constraint g(z) E ~ for z > 0 or z E ~ can be replaced by 
g(z) E O(~ for z E {f3x E ([:Ix > O} or z E f3~ for arbitrary 0(, f3 E C - {O}. 

We have frequently been using a formula which is related to the so-called 
Weinstein-Aronszajn determinant 
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Lemma B.S. Let Je be a separable (complex) Hilbert space, let A be a closed 
operator in Je and rPi' I/Ii E Je,j = 1, ... , N. Then 

where 

N 

= (A - Z)-l - L [M(z)li!([(A - zt1 ] *rPj' , ')(A - zF1l/li' 
i,i'=l 

Z E p(A), det[M(z)] t= 0, (B.13) 

(B.14) 

Finally, we recall Sobolev's inequality. 

Lemma B.6. Let 0 < A. < n, n EN, and suppose that 9 E £p(~II), h E U(~II) 

with p-l + q-l + A.n-1 = 2 and 1 < p, q < 00. Then 

Notes 

[ d"x d"x'lg(x)llh(x')llx - x'I-;':s; C(p, q, A., n)llgllpllhll q • (B.15) 
JR2" 

The entire material is taken from [21] and [200]. Theorem B.1 in the case 
N = 1 appeared in [302] (note that Ho need not be semibounded) and has 
been widely used in quantum mechanics [391], [434]. For N = 2 it first 
appeared in [295] and [297] and for general N E N in [245] and [250] in the 
context of the multiple well problem. 

Theorem B.2 is based on [262] and extends results in [357]. 
Theorem B.3 for N = 1 first appeared in [26] and has been abstracted in 

[200]. The proof given in [200] directly extends to the case N > 1. 
For a discussion of resonances in the context of abstract analytic scattering 

theory see also [271]. 
Fredholm determinants are reviewed in [436], [438]. 
The first part of Theorem B.4 has been used in [386], while the second part 

enters in a crucial way in the proof of Rellich's theorem (see, e.g., [391], 
Theorem XJI.3). 

Lemma B.6 can be found, e.g., in [434], p. 12 and [389], p. 31. 



APPENDIX C 

Schrodinger Operators with Interactions 
Concentrated Around Infinitely Many 
Centers 

We first consider Schrodinger operators H in L 2 (IJ;n, n E N, with count
ably infinitely many local singularities of the potential which are uniformly 
separated from each other by a positive distance. Due to the local character 
ofthe interaction each singularity separately contributes to the total deficiency 
index of H: 

Theorem c.l. Let J s; 7L - {O} be a finite or countably infinite index set 
and Jo = J u {O}. Assume 

(i) Lj c IRn, n E N is a compact set of Lebesgue measure zero for all j E J 
and suppose LO = 0. 

(ii) Jj E Lroc(lRn - Lj) are real-valued,j E Jo, and 
(a) supp Jj compact for all j E J, or 
(b) Jj are bounded from below on every compact subset of IRn - Lj for 

allj E Jo. 
(iii) For some e > 0: dist( {supp J-j U LJ, {supp J-j, U Ld) ~ e for all j,j' E 

Jo,j #- j'. 
(iv) WE L oo(lRn) is real-valued. 

Define the minimal Schrodinger operators iIj and iI in L2(lRn) by 

where 

iIj = -d + J-j, 

iI= -d+ V+ W, 

f0(iIj ) = Cg'(lRn - Lj ), 

f0(iI) = Cg'(lRn - L), 

V(x) = L J-j(x), 
jeJo 

(C.1) 

(C.2) 

(C.3) 

365 
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If Hj (resp. H) denotes the closure of iIj (resp. iI) then 

def(H) = L def(Hj)' 
jeJo 

(C.4) 

Since lj, v, Ware real-valued, Hand Hj , j E Jo, commute with complex 
conjugation and hence have equal deficiency indices. 

In the text, we mainly use the above result with V = lj = W == O,1:j = {Yj}, 
1: = Y, j E Jo £; 7L (except in Ch. 1.2 where Vo = W = 0, J = {1}, 1:1 = {Y}, 
V1(x) = ylx - yl-l, y E~, X, Y E ~3, x#- y). 

We now turn to the locality properties of certain self-adjoint extensions of 
symmetric operators. 

Lemma C.2. Let N c ~n be a closed set with zero Lebesgue measure, and 
let H be any self-adjoint extension of -AICg'(i\ln-N)' Then H is local in the 
following sense: If U £; ~n is open and f E f0(H) satisfies f = 0 in U, then 
also Hf = 0 in U. 

PROOF. Suppose first that U n N = 0. Then 

(Hf, g) = (f, -Ag) = 0 

for any g E CO'(lRn) with supp(g) c U. Hence 

Hflu..l CO'(U) 

(C.5) 

(C.6) 

which implies that Hf = 0 in U. If U n N *- 0, we consider the open set U - N. 
By the above argument Hf = 0 in U - N, but N being of zero Lebesgue measure 
implies that Hf = 0 in U. • 

To estimate the norm of countably infinite matrices, the following estimate 
is often useful. 

Lemma C.3. Let:lf = EB~l Jtj, Jtj being separable (complex) Hilbert 
spaces and consider the bounded operator A = [Ajj']j,j'eN' Then 

IIAII ~ IIAIIH' 
where the Holmgren bound IIAIIH is defined by 

IIAIIH = [:~~ j~ IIAjj' II ~~~ j~l IIAjj.IIT/
2. 

(C.7) 

(C.8) 

Note that IIAIIH does not provide a norm as can be seen from the following 
counterexample. Let 

1 ........ 1 

2-1 ...... 2-1 0 
A = n 

2-(n-1) ..• 2-(n-1) (C.9) 

0 0 



Appendix C Schrodinger Operators 367 

Then 

IIAn + AJIIH = n + 2[1 - r n], IIAnliH = IIAJIIH = [2n(1 - 2-n)] 1/2 (C.lO) 

and hence the triangle inequality is violated for n sufficiently large. (Here AJ 
denotes the transposed matrix of An.) 

Our next result generalizes (B.5) to the case where the total interaction is 
an infinite sum of potentials with nonoverlapping support. First, we introduce 
some notation: Let 

00 

.Yr = ED L2(1R3) (C.ll) 
j=l 

and define bounded operators 
00 

Ak = L (Uj' . )Gk, 
j=l . 

Bk : .Yr ~ .Yr, Bk = [UPkVj' ]jj' E N, (C.12) 

Ck : L 2(1R3) ~ .Yr, 

where the potentials satisfy 

Ck = [(Gk , • )vjJe ~J, 1m k > 0, 

supp ~ compact, supp ~ n supp ~, = 0, 

I ~I ::; V, VE R, j =F j', j,j' EN. 

Then we state 

(C. 13) 

Theorem C.4. Let~, j EN, be real-valued and satisfy (C.13). Then the 
self-adjoint operator 

00 

H= -A+ L ~ (C.14) 
j=l 

has the resolvent 

P E p(H), 1m k > O. (C.15) 

Next we study form perturbations of - A on H2, 2 (IRn), n E N, in more detail. 
Let Y = {Yj}jeJ> J c zn, denote a discrete subset of IRn such that 

inf IYj - Yj'1 = d > 0, Yj' Yr E Y, j,j' E J. (C.16) 
j,j' e J 
j#j' 

Let Co = {x = (xl, ... , xn) E IRn l2x l E (-1,1],1 = 1, ... , n} denote the corre
sponding unit cell and define Cj = Co + j,j E zn. Assume q to be a symmetric 
form bounded with respect to the form of -A on H2,2(lRn). The form q is 
called summably form bounded with respect to - A if, in addition, there are 
constants aj ;:::::: 0, bj ;:::::: 0 such that 

L (aj + bj) < 00 (C.17) 
jeln 

and 

jEJ, (C.1S) 
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for all,p E H2,1(~n) with supp(,p) c UIi-/lsl C/. Introducing the notation 

/Yj(x) = f(x + Yj), qYj(J, g) = q(/Yj' gy), j E J, J, g E H2,1(~n), (C.19) 

we obtain 

Lemma C.5. Let q be summably form bounded with respect to - A on 
H2,2(~n) (with constants aj' bj,j E zn) and assume that q satisfies 

q(xf, g) = q(J, Xg) (C.20) 

for all J, g E H2, 1 (~n) and all X E co(~n). Then 

Q(J, g) = L qYj(J, g), P}(Q) = H2, l(~n) (C.21) 
jeJ 

is well defined and 

IQ(f,!)1 ~ DC~" aj) IIVfl1 2 + [E j~" aj + j~" bj] Ilf11 2 , fE H2,1(~n), 
(C.22) 

where D and E are constants only depending on the set Y. 

Next we specialize to one dimension and show that (1II.2.1.6) and (111.3.5) 
define self-adjoint operators in L2(~). For this purpose we adopt the conven
tions chosen after (1II.2.1.1) and define in £2(~) 

Clearly, Ny as a closed restriction of fIy in (111.2.1.2) and of fI~ in (111.3.1) is 
nonnegative and has deficiency indices (00, (0). We have 

Lemma C.6. Let Jo c J and let aj' bj , cj , dj , j E Jo , be complex numbers 
satisfying 

ajCj - bA = 1, 

Im(ajbj ) = Im(ajc}) = Im(ajdj ) = Im(bjcj) = Im(Cjdj ) = 0, j E Jo. 
(C.24) 

Moreover, let 

~((x) = 1, ~~(x) = x - Yj+l' 

Then the operator H~ in L 2(~) defined by 

d2 

H~ = - dx2 ' 

P}(H~) = {g E H2,2(~ - Y)I 

'Vj E Jo: W(g, ~{)Yj+ + ajW(g, ~tl)Yr = bjW(g, ~tl)Yr' 

W(g, ~~)Yj+ + cj W(g, ~tl )yr = dj W(g, ~tl )yr; 

'Vj E J - Jo: either g(Yj±) = 0 or g'(Yj±) = O} (C.26) 
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(W being the Wronskian) is a self-adjoint extension of Hy. (In obvious notation 
the last boundary conditions in (C.26) should be omitted in case Jo = J.) 

It remains to apply Lemma C.6 to - .1 .. , y and Sp, y. Without loss of generality 
we may assume Jo = J (implying !Xj' Pj E ~ for allj E J). In the case of -.1 .. ,y 
we choose 

!Xj E~, j E J, (C.27) 

and for Sp,y we choose 

dj = (Yj - Yj+l) - Pj' 

Pj E~, j E J. (C.28) 

Taking into account that 

W(g, ~{)Yj+ = -g'(Yr), 

W(g, ~tl )Yj+ = g(Yr) - g'(Yr)(Yj - Yj+l), (C.29) 

W(g, ~tl )Yr = g(Yj- ), j E J, 

one immediately verifies that the boundary conditions in (C.26) are equivalent 
to those in (111.2.1.6) and (III.3.5). 

Finally, we show that -.1 .. ,y is the operator uniquely associated with the 
form in L2(~) 

Q .. ,y(f, g) = (1', g') + L !Xjf(Yj)g(Yj), 
jeJ 

(C.30) 
~(Q .. ,y) = H2,l(IR). 

For this purpose we recall that 

~o( -.1 .. ,y) = {g E ~(-.1 .. ,y)lsupp(g) compact} (C.31) 

is a core for - .1 .. , y{ cf. the discussion following (111.2.1.10». On the other hand, 
since by Lemma C.5 Co(~ - Y) is a core for Q .. ,y, we infer that ~o( -.1 .. ,y) is 
also a core for Q .. ,y. But for rP, t/J E ~o( -.1 .. ,y) the equality 

(C.32) 

is easily shown by integration by parts. This proves the above claim concerning 
-.1 .. ,y and Q .. ,y. 

Notes 

Theorem C.1 appeared in [115J and is based on corresponding results of [67J 
for the Dirac operator (see also [278J). We also refer to [345J for the stability 
of operator- and form-bounds in connection with Schrodinger operators with 
separated singularities of the potential. For general stability results of the 
deficiency index, cf. [68J. The explicit determination of deficiency indices of 
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singular Schrodinger operators is discussed in [69J, [378J, [470J, [471J, and 
[512]. In the special case of spherically symmetric interactions, see, e.g., [158J, 
[353J, and [389]. General self-adjoint extensions of elliptic operators with 
boundary conditions on a closed set of measure zero are treated in [299J, 
[470J, [471J. 

Lemma C.2 is due to J. Brasche (private communication). 
The proof of (C.7) can be found in [251J. 
We are indebted to P. Deift for the counterexample following Lemma C.3. 
Theorem C.4 is due to [251J. 
Lemma C.5 follows from Satz 4 in [286J which extends previous results of 

Morgan [345]. 
Lemma C.6 is a special case of a much more general result (including 

potentials strongly singular on a discrete subset of ~) proven in [208]. 



APPENDIX D 

Boundary Conditions for Schrodinger 
Operators on (0, (0) 

In L2((0, (0» we consider the minimal Schrodinger operator 

. d2 
h = - dr2 + A(A - 1)r-2 + yr- 1 + r:x.r-a + W, ~(h) = Cg'((O, (0», 

WE LaJ((O, (0» real-valued, r:x., y E~, 0< a < 2, !:::;;; A < l (D.1) 

Due to our conditions on A, the closure of h, denoted by h, has deficiency 
indices (1, 1). In order to determine all self-adjoint extensions of h we study 
solutions of the equation 

-I/I"(r) + [A(A - 1)r-2 + V(r)] I/I(r) = 0, r> 0, (D.2) 

where 

V(r) = yr-1 + r:x.r-a + W(r). (D.3) 

The regular solution F;.(r) associated with (D.2) satisfies 

where 

and 

F;.(r) = F1°)(r) - t dr' g~O)(r, r') V(r')F;.(r'), (DA) 

(0) _ -r n r, { 
1/21 

G;. (r) - (2A _ 1)-l r l-'-, 
'-1. A - 2, 

! < A <!, 
(D.S) 

(D.6) 
371 



372 Appendix D Boundary Conditions for Schrodinger Operators on (0, 00) 

By iterating (DA) one proves 

c1(ro)r;' ~ I F;.(r) I ~ c2(rO)r", (D.7) 

for appropriate constants ro > 0, cj(ro) > 0, j = 1, 2. The irregular solution 
G;.(r) corresponding to (D.2) is then given by 

(D.S) 

implying 

(D.9) 

Iteration and explicit integration in (DA) (using (D.3» yields an asymptotic 
expansion for F;.(r) as r ! 0 which in turn after insertion into (D.S) gives a 
corresponding asymptotic expansion of G;.(r) as r ! O. Let Gf(r) denote the 
asymptotic expansion of G;.(r) up to the order rt, t ~ 2A - 1. Then we have 

Theorem D.I. Assume conditions (0.1). Then all self-adjoint extensions hv 
of h can be characterized by 

d2 

hv = - dr2 + A(A - l)r-2 + yr-1 + ar-a + W, 

!2(hv) = {g E L2«0, oo»lg, g' E AC1oc((0, (0»; vgo,;' = g1,;'; 

_gil + A(A - l)r-2g + yr-1g + ar-ag E L2«0, oo»}, 

-00 < v ~ 00, t ~ A <~, a, y E IR, 0 < a < 2. (D. 10) 

Here the boundary values go,;' and g1,;' are defined as 

go,;' = lim g(r)/GiO)(r), 
,-!-o 

g1 ;. = lim [g(r) - go ;. Gf(r)]/F1°)(r), g E !2(h*). 
, ,-!-o ' 

(D.ll) 

The boundary condition go,;' = 0 (i.e., v = (0) represents the Friedrichs 
extension of h. 

We end up with two special cases in which the computation of Gf(r) is 
particularly simple. These cases are sufficient for our purposes in the text (for 
the general case, cf. [115]): 

(A) A = t (the s-wave SchrOdinger operator in two dimensions, cf. 
Ch.1.5) 

Then 

G~/2(r) = G~~l(r) = _r1/2 In r, r> O. (D.12) 

(B) A = 1, a E (O,~) - {I} (the s-wave Schrodinger operator in three 
dimensions, cr. Sect. 1.2.1) 
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Then 

G~(r) = 1 + 0([(2 - a)(3 - a)]-l [1 + 2(1 - ar1 Jr2 - a + yr In r + (yI2)r, 

r > 0, 0(, Y E IR, a E (O,~) - {1}. (D. 13) 

In particular, if A. = 1 and 0( = Y = 0 (cf. Sect. 1.1.1) then the boundary values 
for g E ~(h*) take on the familiar form 

gO,l=g(O+), gl,l = g'(O+). (D.14) 

Notes 

The results in Appendix D are based on [115]. The special case 0( = 0 has 
been treated earlier in [392J, using different techniques. 
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Time-Dependent Scattering Theory for 
Point Interactions 

By a simple trick we reduce the problem of existence and asymptotic com
pleteness of wave operators and the connection between time-dependent and 
time-independent (stationary) scattering theory for point interactions to the 
corresponding problem of trace class (in fact, finite rank) perturbations of 
certain self-adjoint operators. 

We rely on 

Theorem E.1. Let Al ?: 1, I = 1, 2, be self-adjoint operators in a complex 
separable Hilbert space JIt. Assume that 

(E.1) 

for some n E N. Then the strong limits 

t-+ ± 00 t-+ =+= 00 

= s- lim eitA,n e -itA~n Pae(Am), 
t-+oo 

I -# m, I, m = 1, 2, (E.2) 

exist and equal each other (invariance principle). Here Pae(AI) denotes the 
projection onto the absolutely continuous subspace corresponding to AI, I = 

1,2. In addition, the wave operators defined as 

374 

Q± (AI' Am) = s- lim eitAle-itA~ Pac (Am), 
l-+ ± 00 

1-# m, I, m = 1,2, (E.3) 
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are asymptotically complete, i.e., 

Ran Q+(A1, Am) = Ran Q_(AI' Am) = Pac(A/)~' I =f. m, I, m = 1, 2. 
(E.4) 

Since (-1\ .. ,y + E)-l - (-1\ + E)-I, for E > 0 large enough, is of rank N 
in the N-center case (in n = 1, 2, 3 dimensions), Theorem E.1 (with m = 1) 
immediately applies (analogously for Sf/,y), Replacing (-1\ .. ,Yo -L\) by 
« - 1\ .. , y + E)-I, ( - 1\ + Etl ), E > 0, sufficiently large, one can use the known 
eigenfunction expansions of -1\ .. ,y (resp. Sf/,y) together with Abelian limits 
to establish 

(Q±( -1\ .. ,y, -1\)g)(x) = (Q+« -1\ .. ,y + Etl, (-1\ + Etl )g)(x) 

= s-lim (2ntn/2 r kn- l dk r dw'P .. 7y(kw, x}g(k), 
R-+oo J Ikl";R J s(n-l) 

n = 2, 3, (E.5) 

where 

'P;y(kw, x) = 'P .. ,y(kw, x), 'P~y(kw, x) = 'P .. ,y( -kw, x) (E.6) 

(cf. (111.5.1) and (11.4.32)). The fact that 

~ [e it(-& •. r+E)-1 e-it(-HE)-1 J (E.7) 
dt 

is of finite rank considerably simplifies the analysis. The associated unitary 
scattering operator 5"( -1\ .. ,y, -1\) in L2(iijn), n = 2, 3, is then given by 

n = 2, 3. (E.8) 

Using (E.5), the invariance principle, and (E.7) one then shows by a standard 
procedure that 5"( -1\ .. ,y, -1\) is unitarily equivalent to the direct integral of 
the on-shell scattering operator y",y(k), k > 0 in L 2(s(n-2». Of course the 
analogous construction works for -1\ .. ,y and Sf/,y in one dimension. 

Notes 

Theorem E.1 is due to Birman [90J, for extensive discussions see [390J, Ch. 
XI.3. 

The standard way to derive (E.5) for three-dimensional potential scattering 
is described in [434J, Ch. V.4 (cf. also [39J, Ch. 10 and [390J, Ch. X1.6). The 
corresponding connection between 5"( -1\ .. ,y, -1\) and y",y(k) using (E.5) is 
discussed in great detail in [434J, Ch. V.5. Since in our case one can utilize 
(E.7), all arguments parallel the case where -1\ is perturbed by a finite rank 
interaction also called a separable potential (one only needs to exchange -1\ 
and ( - 1\ + E)-I, E > 0 large enough). 

Eigenfunction expansions and scattering theory for general nonlocal inter
actions have been treated in [39J, Ch. 8.3, [84J, [270J, and in [480J, Chs. 3.4 
and 3.6. 

One-dimensional scattering theory is extensively discussed in [407]. 



APPENDIX F 

Dirichlet Forms for Point Interactions 

In this appendix we sketch how to obtain point interactions by the use oflocal 
Dirichlet forms in n = 1, 2, 3 dimensions. 

Let fjJ E Lfoc(lRn), n E N, be real-valued and define the minimal energy form 
E,p in L2(lRn; fjJ2 dnx) by 

E,p(g, h) = r fjJ2(X) dnx (Vg)(x)(Vh)(x), f0(E,p) = CJ(lRn). (F.1) 
J~n 

If E,p is closable, we denote its closure by E,p and the unique self-adjoint, 
nonnegative operator in L2(lRn, fjJ2 dnx) associated with E,p by H,p. Obviously, 
H,p = V*V where V denotes the closu~e of Vlcl,(lRn) in L2(lRn; fjJ2 dnx). A 
sufficient condition for closability of E,p can be obtained as follows. Let 
~ c IRn be a closed set of Lebesgue measure zero and assume in addi
tion V fjJ E Lfoc(lRn -~) (V the distributional gradient in COO(lRn -~)' the 
dual space of COO(lRn - ~)). Then a careful investigation shows that 
[-V - 2rl(VfjJ)]lc6(~n-I:) is a formal adjoi~t of Vlc6<~n) in L2(lRn; fjJ2 dnx). 
Since CJ(lRn - ~) is dense in U(lRn; fjJ2 dnx), E,p is closable. More precisely, we 
have 

Theorem F.l. Let ~ c IRn, n E N, be a closed set of Lebesgue measure zero, 
let fjJ E Lfoc(lRn) be real-valued, and let VfjJ E Lfoc(lRn - ~). Then E,p is closable 
in L2(lRn; fjJ2 dnx) and 

f E CJ(lRn - ~). (F.2) 

If, in addition, fjJ2 > 0 almost everywhere with respect to dnx (i.e., if fjJ2 dnx 
and dnx are equivalent) then the isometry g -+ rig between L2(lRn) and 

376 
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L 2(~"; ,p2 d" x) takes H,p into a self-adjoint, nonnegative operator H in L 2(~") 

H = ,pH,p,p-1 = ,pV*V,p-1. (F.3) 

In particular, if ,p E L2(~"), then H,p1 = 0 implies 

H,p = O. 

Next we apply this result to the one-center point interaction. Let 

x, Y E~, at: E ~, n = 1, 

{
H&1) [2ie[-2""+'I'(1 11 Ix - yl], 

1, 

X E ~2 - {y}, 
at: = 00, n = 2, 

{
e4""IX-YI/lx _ yl, 

1, 

X E ~3 - {y}, at: E~, 

at: = 00, n = 3. 

at:E~, 

Then ,p",y > 0 and ,p",y fulfills the hypotheses of Theorem F.l with 

_ {{y} if at: # 0 for n = 1 resp. ifat: E ~ for n = 2, 3, 

~ - 0 if at: = 0 for n = 1 resp. if at: = 00 for n = 2, 3. 

(F.4) 

(F.5) 

(F.6) 

Hence E,p." is closable. In the following we exclude the trivial case ,p",y(x) = 1. 

Let g E CJ(~") with g(y) = 0, n = 1, 2, 3, then ,p;'~g E CJ(~") c ~(V) and a 
computation shows 

E (",-1 ",-1) ,p." "'",yg, "'",yg 

[ {

at:2/4 

= [ n d"x I(Vg)(x)12 + 4e2[~2""+'I'(1)1, 
J IR (41tat:)2, 

n -1} ] n = 2 Ig(xW . 
n=3 

(F.7) 

For g E C~(~") with g(y) = 0 this implies ,p;';g E ~(H,p.) and 

[ {
at:2/4' n = 1}] 

(,pa.,yH,p.",p;,~)g = -A + 4e2[-2",,+'I'(111, n = 2 g. 
(41tat:)2, n = 3 

(F.8) 

As a consequence, 

n=1}] n = 2 ,p;'~ 
n=3 

is a self-adjoint extension of - A defined on g E C~(~") with g(y) = O. For 
at: < 0 if n = 1,3 and for all at: E ~ if n = 2 we have ,p",y E L 2(~n) and hence ,p",y 
is the ground state of Ha.,y, i.e., H",y,pa.,y = O. Thus H",y = - Aa.,y in these cases. 
Actually, since ,p",y satisfies the boundary condition for elements in ~( - A",y) 
in a neighborhood of the point y we obtain Ha.,y = - Aa.,y for all at: E ~, n = 1, 
2, 3. In the case at: ~ 0 for n = 1, 3 (i.e., in the case where ,pa.,y f. L2(~"» ,p",y 
represents a resonance function of - Aa.,y' If at: > 0, n = 1, 3, then ,p",y can as 
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well be replaced by the corresponding zero-energy scattering wave function 
(cf., e.g., (1.1.4.11)) 

'I' 0 x _ {(X-1 + Ix - y1/2, 
",y(, ) - 1 + (4n!Xlx - ylrt, 

n = 1, 
n = 3; 0 < (X ~ 00. 

(F.9) 

The N -center case is more involved as shown below. Let us first concentrate 
on the case n = 3 and without loss of generality assume that l(Xjl < 00, j = 
1, ... , N. Take k = iK, K E ~, and consider r", y(iK). Since 

~r (iK) = (4n}-1[e-rclyrYi'IJl!.,_ > 0 K> 0, (F.10) OK ",y ],J -1 , 

is positive definite (this follows from e-rc1yl = cJ[R3d 3k K(k2 + K2r2eiky, 
C, K > 0, cr., e.g., [437], p. 35) all eigenvalues of r". y(iK} are strictly increasing 
with respect to K > O. Moreover, since the off-diagonal elements of r",y(iK}, 
K E ~, are all negative, r", y(iK} generates a positivity preserving semigroup 
e-tr.,y(irc>, t ~ 0, K E ~,in eN ([391J, p. 21O). Consequently, the smallest eigen
value of r",y(iK} is nondegenerate and we may choose a corresponding non
negative eigenvector. Assume that there exists a Ko E ~ such that r",y(iKo} has 
zero as its smallest eigenvalue. Call (c 1 , ... , CN), Cj ~ 0, j = 1, ... , N, the 
associated nonnegative eigenvector of r", y(iKo}. Then rP", y defined as 

N 

rP",y(x} = L cje-rcoIX-Yjl/lx - Yjl, 
j=1 

X E ~3 - Y, (F.ll) 

fulfills all the assertions of Theorem F.1 with I: = Y. (Actually we even have 
cj > O,j = 1, ... , N, since cjo = 0 for somejo would imply the vanishing of the 
point interaction at Yjo' a fact which contradicts l(Xj I < oo.) Consequently, the . ° 
form E4J.,y is closable and its closure gives rise to a uniquely associated operator 
H4J.,y in L2(~3; rP;'y d3x}. Again we have 

A. [H - K2]A.-1 = -Ll Y'rx., Y ;(J.r 0 'Pa., Y IX, y. (F. 12) 

Incase Ko > 0, rP",y E L2(~3) and hence it represents the ground state of - A",y. 
If Ko ~ 0 (i.e., if rP",y f/; L2(~3)}, then rP",y is a resonance function of -A",y, If 
no Ko ~ 0 exists, then rP", y can always be replaced by the zero-energy scattering 
wave function (cf. (11.1.5.1)) 

N 

'I'",y(O, x) = 1 + L [r",y(0}1;!(4n lx - Yjlrt, 
j,j'=1 

X E ~3 - Y. (F. 13) 

Since by hypothesis all eigenvalues of r". y(iK}, K ~ 0, are strictly positive 
(i.e., inf cr(riX,Y(iK)) > 0, K ~ O}, [r". y(0}r1 is positivity preserving implying 
'I'",y(O, x} ~ 1. 

For n = 1, 2 one can use similar arguments. Assume for simplicity that 
!Xj "# 0 if n = 1 and (Xj E ~ if n = 2, j = 1, ... , N. First of all, the eigenvalues of 
r",y(iK), K > 0, are again strictly monotonously increasing for increasing K > 0 
SInce 

-: Girc(y) = C r d"k K(k2 + K2r2eikY, C, K > 0, Y E ~"- {O}, n = 1,2. 
uK J[Rn 

(F.14) 
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Second, r",y(iK), K > 0, again generates a positivity preserving semigroup 
e-tr •.• (iK>, t ~ 0, in eN since all off-diagonal elements of r",y(iK), K > 0, are 
negative. Hence one can construct a positive ground state (resp. a positive 
resonance function) of -,1",y along the lines of(F.ll) in case a suitable Ko E ~ 

exists. One can also look for positive zero-energy scattering solutions. For 
example: if n = 1 the corresponding zero-energy solution (if it exists) reads 

'I'",y(0,X)=C{1 + j'~1 [y",yl?IX-Yil/2}, CE~, (F.15) 

where 

(F.16) 

generates a positivity preserving semigroup e-ty ••• , t ~ 0, in eN (since its 
off-diagonal terms are negative). A careful check in the two-center case if 
-,1",y has no bound states explicitly shows that 'I'",y(O, x) can be chosen to 
be strictly positive if [y", y] -1 exists. A case distinction in the special case where 
det(y",y) = ° shows that in this case too one can always find a strictly positive, 
locally absolutely continuous solution of -,1",yt/l = ° which generates an 
appropriate local Dirichlet form for -,1",Y' 

If n = 2 no positive zero-energy scattering solution exists since In Ix - Yjl 
has no definite sign. In this case one always finds a strictly positive ground 
state of - ,1", y as discussed in Theorem H.4.2. 

Notes 

Theorem F.1 and the one-center treatment for n = 3 are taken from [32]. For 
further literature we refer, e.g., to [23], [25], [27], [33], [35], [192], [193], 
[396], [462], [495]. The possibility of constructing Dirichlet forms with 
zero-energy resonance (resp. zero-energy scattering wave functions) (cf. (F.9) 
and (F.13» has been studied extensively in [23]. In the case of more general 
boundary conditions as discussed in [129], associated Dirichlet forms were 
constructed in [108]. 



APPENDIX G 

Point Interactions and Scales of 
Hilbert Spaces 

Let Hm(lRn), n EN, mE 7L, denote the Sobolev spaces in momentum repre
sentation 

Hm(lRn) = L2(lRn; (p2 + I)m dnp), 

yielding the scale of Hilbert spaces 

n EN, mE 7L, (G.I) 

Since we are interested in "bn(· - y)-interactions" which correspond to plane 
waves in p-space 

p, Y E IRn, n E N, (G.3) 

we note 

ei E H_1(1R) c H_2(1R), 

e~ f. H -1 (IRn), e~ E H_2(lRn), n = 2, 3, (G.4) 

e~ f. H_2(lRn), n ;?: 4. 

In one dimension one can, in addition, study "15'(. - y)-interactions" (i.e., 
"dipoles") since 

p, Y E IR, (G.5) 

fulfills 

(G.6) 
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We incidentally note that e! ¢ H-2(~") for n ~ 4 is intimately connected with 
the fact that - L\lcO'(~n-{y}) is essentially self-adjoint in L 2(~"), n ~ 4, and hence 
ordinary point interactions are confined to dimensions 1,2, and 3. Similarly, 
the exceptional case er E H-l(~) is the reason that quadratic form methods 
are sufficient to discuss o-interactions in one dimension. To simplify the 
notation we suppress the n-dependence in Hm(~") and simply write Hm from 
now on. 

Let 

R(E) = (p2 - Etl, E E C - [0, (0), (G.7) 

with R(E)1!2 the positive square root for E < o. We note 

Lemma G.t. Let E, E' < O. Then 

(i) R(E) satisfies the identities 

R(E) - R(E') = (E - E')R(E)R(E'), d~ R(E) = R(E)2. (G.B) 

(ii) R(E): Hm -+ Hm+2, m E 7L, is a topological isomorphism (i.e., a bounded 
onto map with bounded inverse). 

(iii) R(E)1!2: Hm -+ Hm+1, m E 7L, is a topological isomorphism. 

In the usual way the scalar product in Ho can be extended to some pairs of 
vectors in H-2 making H-2 a partial inner product space: Let,p, 1/1 E H-2 such 
that,p E H, and 1/1 E H_, with -2:::; r :::; 2. Then 

r d"p ,p(p)I/I(p) = r d"p (p2 + 1y!2,p(p)(p2 + 1)-,!21/1(p) (G.9) 
J~n J~n 

is absolutely convergent and defines the partial inner product 

<,pll/l) = r d"p ,p(p)I/I(p). 
J~n 

(G. 10) 

We observe that 

<,pIR(E)I/I) exists for all,p, 1/1 E H_1, E E C - [0, (0), (G. 11) 

while 

<,p'IR(E)21/1') exists for all ,p', 1/1' E H_2, E E C - [0, (0). (G.l2) 

Next we define the notation of a dyadic operator 11/1') < 1/1" I, 1/1', 1/1" E H - 2 as 
follows: Let H,. (resp. H,n) be the smallest space H, that contains 1/1' (resp. 1/1"). 
Then 11/1') <1/1"1 denotes the bounded map 

11/1') <1/1"1: H_,n -+ H,., (11/1') <I/I"I)(,p) = <I/I"I,p)I/I'. (G. 13) 

Consequently, for any 1/1', I/I"EH_ 2 the symbol R(E)II/I')<I/I"IR(E) is a 
bounded operator in Ho because its action on g E Ho by definition yields for 
E E C - [0, (0) 

(R(E) 11/1') <I/I"IR(E»(g) = <X"IR(E)g)R(E)I/I' E Ho, (G.l4) 
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since R(E)g E Hz and R(E)t/I' E Ho. Obviously, sums of dyadics and products 
with scalars can be defined in a straightforward way. The following shorthand 
notation turns out to be useful: Let 

'1" = (t/I~, ... , t/I~) E H~2' '1''' = (t/I~, . .. , t/I~) E H~z (G.15) 

(i.e., t/lj, t/lj' E H-z, j = 1, ... , N) and B = [Bjj·Jfj'=l be any N x N matrix in 
eN. Then I'I")B<'I'''I is defined by 

N 

I'I")B<'I'''I = I It/lj)Bjj·<t/ln (G.16) 
j,j'=l 

and analogously R(E) 1 '1") B <'1''' 1 R(E) denotes the bounded operator in Ho 

N 

R(E)I'I")B<'I'''IR(E) = I R(E)It/lj)Bjj·<t/lnR(E), 
j.j'=l 

E E e - [0, (0). 

(G.17) 

If As,r denotes a bounded map from Hr £; Ho to Hs 2 Ho its natural restric
tion A is defined as the restriction of As,r to the domain 

(G.18) 

For instance, let 

r E 71.. (G.19) 

Then the natural restriction T of L 1 ,l (mapping H1 into H-d equals the 
kinetic energy operator with !0(T) = H2 its operator domain (i.e., T = To,z). 
In general, we note 

Theorem G.2. Let <I> = (,pi>"" ,pN) E H~l and B = [Bjj.Jfj'=l be an in
vertible matrix in eN. Then the natural restriction of L 1,l + 1<1» B<<I>I 
(mapping H1 into H-d denoted by S is a closed operator in Ho. The resolvent 
of S is given by 

(S - E)-l = R(E) - R(E) 1<1» [Q(E)r1 <<I>I R(E), 

E E e - [0, (0), det[Q(E)J =F 0, (G.20) 

where 

j,j' = 1, ... , N. (G.21) 

Moreover, S is self-adjoint in Ho if B is Hermitian in eN. 

In the case 'I' E H~z but 'I' ~ H'!.l we get 

Theorem G.3. Let t/lj E H-z, t/lj ~ H_ 1,j = 1, ... , N, be linearly independent 
over Ho (i.e., no nontrivial linear combination I7=1 Ajt/lj lies in Ho), 'I' = 
(t/ll>"" t/lN)' If B is any invertible matrix in eN, the natural restriction of 
To,z + I '1') B<'I' I (mapping Hz into H_ 2) is given by the restriction of 
To,z = T to the domain 

{g E H21<t/I)g) = O,j = 1, ... , N}. (G.22) 
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Next let I/Ii E H_ 2 ,j = 1, ... , N, be linearly independent over Ho and define 
Yii,(E) to be any solution of 

d 2 
dE y(E)ii' = -(I/IiIR(E) I/Ii')' E E C - [0, (0), j,j' = 1, ... , N. (G.23) 

Clearly, the most general solution of (G.23) is of the type 

y(E) + A, (G.24) 

where A is an arbitrary complex N x N matrix. In the special case where also 
I/Ii E H_1,j = 1, ... , N, eq. (G.23) has the particular solution -(I/Ii' R(E)I/Ir)' 
j,j' = 1, ... , N. 

Theorem G.4. Let I/Ii E H_ 2,j = 1, ... , N, be linearly independent over Ho, 
'P = (1/11, ... , I/IN) and let y(E), E E C - [0, (0), be a solution of (G.23). Define 
the bounded operator Ri in Ho by 

Ri(E) = R(E) + R(E)I'P) [y(E)r1('PIR(E), 

E E C - [0, (0), det[y(E)] -:F 0. (G.25) 

Then Ri(E) is the resolvent of a closed densely defined operator Ty'P in Ho 

Ri(E) = (Ty'P - Et1, E E C - [0, (0), det[y(E)] -:F 0. (G.26) 

1fy(E) is Hermitian for E < 0, then Ty'P is self-adjoint. Define y*(E) = yT(£), 
then (Ty'P)* = Ty'f. Moreover, let Eo E C - [0, (0), det[r~o)] -:F 0. Then the 
domain of Ty'P consists of all elements g of the type 

(G.27) 

where gEo E H2. The decomposition (G.27) is unique and with g E ~(Ty'P) of 
this form we obtain 

(G.28) 

Finally, let 

(G.29) 

Then 

(G.30) 

Next we discuss approximations for Ty'P. Let I/Ii E H_2> j = 1, ... , N, be 
linearly independent over Ho and assume that ifl/" E H-1' ill > O,j = 1, ... , N, 
converge to I/Iiin H_ 2-topology as ill -+ 00, i.e., limw .... oo lIifl/" - I/Ii ll-2 = O,j = 1, 
... , N. A family MW of complex N x N matrices is called a counterterm for 
'PW = (iflf, ... , iflH) iff 

lim [(ifl/"IR(E)ifll') + MJ;.Jr,r=l (G.31) 

exists for some (and hence for all) E E C - [0, (0). 
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Theorem G.S. Let "'j E H_ 2 ,j = 1, ... , N, be linearly independent over Ho, 
'II = ("'1' ... , "'N) and t/JJ" E H-l' co> O,j = 1, ... , N, with 

lim Iit/JJ" - "'jll-2 = 0, j = 1, ... , N. (G.32) 
W-+oo 

Moreover, let the complex N x N matrix MW be a counterterm for 4IW = 

(t/Jr, ... , t/J;) such that MW is invertible for co > 0 large enough. Define 

j,j' = 1, ... , N. (G.33) 
W-+oo 

Then y(E) satisfies (G.23) and hence defines an operator 1'.;" and 

(Ty'l' - E)-l = n-lim (T -+ I4IW) [Mwrl (4IWI - Et1, E E C - ~, 
W-+oo 

(G. 34) 

where -+ denotes the form sum (i.e., the natural restriction of T-l,l + 
I4IW) [MWrl (4IWI mapping Hl into H-d. 

Finally, we tum to concrete examples: 

(a) <5-interactions in one dimension: 

"'ip) = eNp), p, Yj E ~, 

y(E)jj' = -(2Ktle-KIYrYJ,1 + Ajj" 

(b) <5'-interactions in one dimension: 

"'j(p) = diJ(p), p, Yj E ~, 

y(E)jj' = (K/2)e-KIYrypl + Ajj" 

(c) <5-interactions in two dimensions: 

(G.35) 
j,j' = 1, ... , N. 

j,j' = 1, ... , N. 
(G.36) 

j=j' (G.37) 

j "# j', j,j' = 1, ... , N, 

(Ko(') the modified irregular Bessel function of order zero [1]). 
(d) <5-interactions in three dimensions: 

{
(4nt1 K + Ajj, j = j' (G.38) 

y(E)jj' = -(4nIYj _ Yj'I)-l e-Klyr YJ,1 + Ajj" j"# j', j,j' = 1, ... , N, 

where A is any complex N x N matrix and E = _K2, Re K > O. 

We note that in this context the condition ("'jig) = 0 in (G.29) simply 
means that the inverse Fourier transform of g vanishes at the points Yj' 
j= 1, ... ,N. 

If A is not a diagonal matrix, then different points Yj are connected by the 
boundary conditions. On the other hand, if A is diagonal the point interactions 
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are independent (i.e., one has separated boundary conditions at each point y) 
and Ty'P coincides with - ~a. Y by identifying 

{ 

-(l/a)bjj" 

Ajj' = [2naj - In(2) - If'(l)Jbjj" 

ajbjj' , 

y(E) = r(il(), n = 1,2,3, 

Similarly, Ty'P coincides with Sp. y identifying 

n = 1, 

n = 2, 

n = 3, j,j' = 1, ... , N, 

Re I( > O. 

Ajj' = (l//3j)bjj" j,j' = 1, ... , N, 

y(E) = 1(2r(il(), E = _1(2, Re I( > O. 

(G.39) 

(GAO) 

(GAl) 

(GA2) 

In the three-dimensional case (G.38), approximations according to Theorem 
G.5 may be constructed as follows: Define the cut-off functions 

Ipi ~ OJ, (GA3) 

Ipi > OJ, OJ > 0, p, Yj E 1R 3, j = 1, ... , N. 

Then 

M1j. = -[t3 d 3 plpl-2Itfo/,(pW + ajJbjj' = -[(2n2r 1 OJ + aJbjj" 

aj E IR, j, j' = 1, ... , N, (GA4) 

represents a counterterm for <1>'" = (tfo'!', ... , tfot:). Thus 
N 

T + L Itfo/,) [ -aj - (2n2r1OJr1<tfo/,1 (GA5) 
j=1 

converges to Hi = -~a.y in norm resolvent sense as OJ ~ 00. 

Locality of point interactions in the general case where the matrix A in 
(G.24) is not necessarily diagonal is described in 

Theorem G.6. Let t/lip) = e:i(p), n = 1,2,3, or t/lj(p) = dP(p),j = 1, ... , N, 
If' = (t/l1' ... , t/lN) and let y(E) be any solution of (G.23). Then Ty'P is local, i.e., 
if g E £2(Ty'P) vanishes in an open set U ~ IR", then Ty'P g vanishes in U. 

The constructions in this appendix generalize to the infinite center case (the 
Kronig-Penney model and its two- and three-dimensional generalizations) 
[227]. We also emphasize that T can be replaced by any semibounded 
self-adjoint operator in Ho. 

Notes 

Appendix G is taken entirely from [226]. 
Partial inner product space are discussed, e.g., in [43J, [44J and in [45]. 



APPENDIX H 

Nonstandard Analysis and Point Interactions 

H.l AVery Short Introduction to Nonstandard Analysis 

Nonstandard analysis is essentially analysis over a larger field of numbers 
than IR (or C), namely a field *IR (or *C) containing, in addition, infinitesimals 
and infinitely large numbers. We can construct a model for *IR as follows. Let 
m be a finitely additive measure on N such that 

m(A) E {O, I}, As; N, (H.l) 

and 

IAI < 00 => m(A) = 0; m(N) = 1. (H.2) 

The existence of measures of this type follows from, e.g., Zorn's lemma. In fact, 
the existence of m is equivalent to the so-called ultrafilter theorem which is 
weaker than Zorn's lemma. We denote sets As; N with m(A) = 1 as "big" and 

with m(A) = ° as "small". Consider now sequences a = {an}ne!'\J' b = {bn}ne!'\J, 
an' bn E IR, and define the equivalence relation '" as follows 

a'" b iff m({n E Nlan = bn }) = 1 

and we write a = b m-a.e. With these definitions we have 

*IR = IR!'\J/",. 

(H.3) 

(HA) 

We call *IR the set of all hyperreals. For any sequence a = {an}ne!'\J we let <a) 
denote its equivalence class with respect to "'. One easily verifies 

<a) + <b) = <a + b), <a) <b) = <ab) (H.5) 
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if we define addition and multiplication pointwise in *IR. The zero for addition, 
denoted by 0, is the sequence with only zeros, while the unit of multiplication, 
denoted by 1, is the sequence with only ones. If <a) =F 0 we can define the its 
inverse <a) -1 by (a-1)n = (an)-l whenever an =F O. The above definitions make 
*~ into a field of numbers. *~ can be linearly ordered by defining 

(H.6) 

We can consider ~ as embedded in *~ by identifying any r E ~ with the 
sequence *r E *~ where all the elements equal r. This embedding is an order 
preserving homomorphism. From now on we will write r for the element 
*r E *~. It is easily seen that ~ is a proper subset of *~. For instance, we have 

(H.7) 

with 

(H.8) 

It is natural to call the number < {n} n E I'IJ) "positive infinite" since it is strictly 
larger than any real number r E ~, while it is natural to call the number 
< {lin} n E I'IJ) a "positive infinitesimal" since it is a positive number smaller 
than any positive real number r E ~. More generally, we define x E *~ as 
infinitesimal iff for all r E ~ 

-r<x<r. (H.9) 

(Note that 0 is an infinitesimal by this definition.) Furthermore, x E *~ is called 
infinite iff for all r E ~ 

Ixl > r, (H.lO) 

where Ixl = < {lanl}nEI'IJ) for x = < {an}nEI'IJ), and x E *IR is called finite (or 
near standard) iff there exists an r E ~ such that 

Ixl < r. (H.ll) 

It is easily seen that any finite x E *~ can be written uniquely as 

x=r+e (H.12) 

with r E ~ and e infinitesimal. r is then called the standard part of x and is 
denoted by 

r = st(x). (H.13) 

In fact, consider the set 

Sx = {s E ~ I s < x}. (H.14) 

Then Sx is nonempty since - s E Sx with s > I x I exists by assumption of x being 
finite. By Dedekind's completeness of~, Sx has a supremum r in ~. We will 
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show that r = st(x). In fact, 

r - t:::; x:::; r + t, t E (0, (0). (H.15) 

From this we infer that x - r is infinitesimal and thus r = st(x). To prove 
uniqueness we write 

(H.16) 

Then 

(H.17) 

is both infinitesimal and real, and hence it has to be equal to zero. We write 

x::::::y (H.18) 

if x _. y is infinitesimal. 
To do analysis on *IR, one has to show how to extend (in a natural way) 

sets, functions, etc. from IR to *IR. The simplest objects with respect to this 
extension are called internal objects. We call any subset A £;; *IR internal iff 
there are sets An £;; IR, n E N, such that 

(H.19) 

We write 

(H.20) 

Similarly, an internal function is a function F such that 

for some sequence {Fn}neN off unctions on IR. We write 

(H.22) 

As examples of internal sets and functions we may take, e.g., 

[a, b] = {x E *lRla :::; x :::; b}, a, b E *IR, (H.23) 

and 

(H.24) 

for any sequence {bn}ne N. However, e.g., the set of all infinite numbers and its 
characteristic function are not internal, and hence they are called external 
objects. 

For internal objects one can roughly transfer the elementary properties 
which can be formulated within first-order logic (allowing quantifiers only on 
numbers, not on sets). This is a special case of the so-called transfer principle, 
see, e.g., [14]. In particular, internal sets form an algebra under Boolean 
operations. Special types of internal sets and functions are the so-called 
standard ones. A set A £;; *IR is called standard iff there exist sets An £;; IR, 
n E No, such that 

(H.25) 
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We then write 

A = *Ao. (H.26) 

A function F: *IR --+ *IR is called standard if there exists functions Fn: IR --+ IR, 
n E No, such that 

(H.27) 

and we write 

F = *Fo. (H.28) 

With these notions at hand we can do most of classical elementary analysis, 
e.g., 

(i) Limit of sequences. 
Let s = {sn}, and consider s as the function s: 1\1 --+ IR. Then it 
has a nonstandard extension *s: *N --+ *IR, and the limit points of 
{sn} n E 1'\1 are exactly the points st(* sco) for some infinite W E * 1\1. Hence 
limn--+oo Sn = (J iff st(*sco) = (J for all infinite W E *N. 

(ii) Continuity of functions. 
Let f: I --+ IR, I s; IR. Then f is continuous at x E I iff *f(x) = *f(y) for 
all y E *1, Y ~ x. f is uniformly continuous on I iff *f(x) ~ *f(y) for all 
x, y E *1. 

(iii) Derivative of a function. 
Let f: 1--+ IR, I s; IR. Then (df/dx)(x) exists at a point x E I iff 

A*f(x) *f(x + Ax) - *f(x) 

Ax Ax 
(H.29) 

is finite for all infinitesimals Ax "# 0 and st(A*f(x)/Ax) is independent 
of Ax. In this case 

df ( ) = (A*f(X») 
dx x st Ax . (H.30) 

(iv) Riemann integral. 
Let f: [a, bJ --+ IR be a continuous function on [a, bJ s; IR. Then r dxf(x) = st (*t *f(x)Ax ), Ax ~ 0, Ax"# o. (H.31) 

However, to do more advanced analysis a more sophisticated construction 
is required. We define the so-called superstructure V(IR) over IR recursively as 
follows. Let 

v,,(IR) = v,,-1 (IR) U &,(v,,-1 (IR», n E 1\1, (H.32) 

where &,(B) means the power set of a set B, i.e., the set of all subsets of B. Then 

V(IR) = U v" (IR). (H.33) 

Since ordered pairs (x, y), x, y E IR, can be looked upon as {{x}, {x, y}} and 
as such they are elements of &'(&'(IR», we see that, e.g., the set of all functions 
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on IR is in V(IR). Let 

w" = {IE V(IR)Nlm({n E NI/(n) E v,,(IR)}) = 1} (H.34) 

and 

W= U w". (H.35) 
nEN 

We define an equivalence relation ~ on W by 

1 ~ g iff m({n E NI/(n) = g(n)}) = 1, (H.36) 

and as before we let <I) denote the equivalence class with representative f Let 

ILV(IR) = W/~. (H.37) 

We call IL V(IR) the bounded ultrapower associated with V(IR), and we have 

<I) = <g) iff 1 ~ g, 

(/)E<g) iff m({nE NI/(n)Eg(n)}) = 1. 
(H.38) 

Observe that 
00 

IL V(IR) = U (w,,/ ~ ); (H.39) 
n=O 

One can embed V(IR) in II _ V(IR) in a natural way. Namely, let x E V(IR), hence 
x E v,,(IR) for some n E No and consider the sequence {X}nEN with all elements 
equal to x. Then {X}nEN E w", and we define 

(HAO) 

The mapping i coincides with the *-mapping *: IR ~ *IR previously defined on 
Vo(lR). Furthermore, we will now embed 11_ V(IR) into V(*IR) where V(*IR) is 
defined as V(/R) but with /R replaced by */R. The mappingj is the identity on 
Wo/~ = *1R,andifjis defined on w,,/~,wedefinejon(w,,+1/~ - w,,/~)by 

j( <f» = {j( <g) )l<g) E <I)}· (HAl) 

In this way we obtain a mapping 

j: 11_ V(IR) ~ V(*IR), (HA2) 

Define now 

*: V(IR) ~ V(*IR), * ==j 0 i. (HA3) 

Then * is an embedding of V(IR) in V(*IR) which coincides with the usual 
*-operation on numbers r E IR, subsets A c IR, and functions I: IR ~ IR. 
Observe that 

*(V(IR» == *V(IR) -=I V(*IR). (HA4) 

We call elements in *V(IR) standard, and elements of standard sets are called 
internal, i.e., B is internal iff there exists an A E V(IR) such that BE *A. External 
elements are elements of V(*IR) which are not internal. For internal entities 
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there is a natural "transfer of properties". Consider, e.g., the statement: Every 
upper bounded subset of ~ has a least upper bound. This statement transfers 
into: Every internal upper bounded subset of *~ has a least upper bound. This 
statement would be false without the restriction to internal subsets. Consider, 
e.g., the upper bounded subset of *~ consisting of all infinitesimals. This set 
has obviously no least upper bound in *~. Actually, one can prove that 

Ac~, A internal iff A finite. (H.4S) 

Moreover, one has "overflow" in the sense that if A is internal and contains 
all positive infinitesimals, then A also contains some real positive number. 
Furthermore, one also has "underflow" in the sense that if A is internal and 
(0, (0) s;;; A, then A contains some positive infinitesimals. One also has 

A, B internal => A n B, AuB, A x B internal. (H.46) 

This ends our brief account of the basic principles of nonstandard analysis. 
In the next section we will show how this can be used to give a natural 
realization of the Hamiltonian with point interactions. 

H.2 Point Interactions Using Nonstandard Analysis 

In this section we will show how to construct the self-adjoint Hamiltonian 
-~a.O with one point interaction located at the origin with strength IX using 
nonstandard analysis. 

Heuristically, we want to give a meaning to the operator 

-~ + 20, (H.47) 

o being Dirac's delta function, and A. if!finitesimal. It is natural to attempt a 
standard realization ofthis operator in the internal version of L2(~3), namely 
*U(~3), which is well defined as an element of *V(~). The Laplacian -~ 
naturally extends by transfer to a self-adjoint operator in *L2(~3) which for 
simplicity we also denote by -~. The characteristic function 

X.(x) = {l, Ixl ~ 8, (0) 8E ,00, 
0, Ixl >8, 

(H.48) 

also has a well-defined corresponding function, again denoted by x. from *~3 
into {O, l} for any infinitesimal 8 =1= 0. Define 

(n)2 8nIX 
A. = A..(IX, p, y) = -(y + t)2 e + -8- + p, IX, P E~, YEN, (H.49) 

which is a certain infinite number in *~ when 8 is infinitesimal. For any real 
8 =1= 0, 

(H. SO) 

is a well-defined self-adjoint operator in L2(~3) bounded from below by 
min {O, A.}. Hence by transfer there exists a well-defined self-adjoint extension, 
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denoted by H;,., in *L2(1R3) with the same lower bound (as embedded in *IR) 
for any infinitesimal B > 0. 

Before we can state our main theorem we have to introduce some more 
definitions. A bounded operator T in *L2 (1R 3 ) is called near standard if 
for any fE *L2(1R3), f near standard (i.e., there exists g E L2(1R3) such that 
Ilf - *gll ~ 0) we have that Tfis near standard. A function f: *1R3 --+ *1R3 is 
S-continuous at a E *IR iff 

VB E (0, (0),3<5 E (0, (0), 

We then have 

Vx E *IR: Ix - al < <5 => If(x) - f(a) I < B. (H.51) 

Theorem H.t. Let B be a positive infinitesimal, and let A = A,(a, {3, y) be 
defined by (H.49). Then the operator 

(H. 52) 

is a self-adjoint operator in *L2 (1R 3 ) with lower bound ° if a ~ ° and -(4na)2 
if a < 0. The resolvent (H;,. - zr1 is near standard if z E C - IR, and its 
integral kernel is S-continuous outside the diagonal. Furthermore, 

st[(H;,.,(a.P.y) - k2r 1(x, x')] = (-da,o - k2r 1(x, x'), 

k E C - {4nai}, x =1= x', x, x' E 1R3, (H.53) 

independently of B, {3, and y. If a E *IR is finite, then 

1m k > 0, x =1= x', x, x' E 1R3. 
(H.54) 

If a equals a positive infinite number, then 

st[(H;,.,(a,p,y) - k2)-1(X, x')] = Gk(x - x'), 

1m k > 0, x =1= x', x, x' E 1R3, (H.55) 

independently of B, a, {3 and y. 

PROOF. We follow the decomposition of L 2 ([R3) with respect to angular momenta 
used in the proof of Theorem 1.1.1.1. Thus we can split L 2([R3) in a rotationally 
symmetric part ~ and its orthogonal complement ~.L. Since the perturbation AXe 
is rotation invariant it suffices (cf. the proof of Theorem 1.1.1.1) by transfer to study 
the restriction of H;,. = - A + AXe to *~. By transfer of the unitary equivalence 
(1.1.1.8) it is enough to study 

(H.56) 

in *L 2([0, ex); dr) with a Dirichlet boundary condition at the origin. To this end, 
we first consider 

a, 8 E [R, (H.57) 
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in L2([0, 00); dr) with both a and e real. A short computation then shows 

where 

and 

{

(2ib+kt1tA(e, a, x)IMe, a, x'), x::;; x', 

(h. - k2 )-1(X, x') = (2ib+kt1¢Jk(e, a, x')I/!k(e, a, x), x;;;: x', 

1m k > 0, x # x', x, x' E [0, 00), 

{
sin(jk2 - ax), 

tA(e, a, x) = b kx + b -kx +e _e, 

0::;; x::;; e, 
x;;;: e, 

0::;; x::;; e, 

x;;;: e, 

b± = ~e+ik£[sinjP - ae) ± ~ cos(jP - ae)} 

c = !(1 =+= k )e-i(k±~)£. 
± 2 ~ 

(H.58) 

(H. 59) 

(H.60) 

By transfer this also holds for x, x' E *[0,00), x # x', a E *IR, and e infinitesimal, 
e> O. Hence we infer that with the number a finite, st[(h. - k2t 1(X, x')] equals the 
integral kernel of the resolvent of the Laplacian on [0, 00) with Dirichlet boundary 
conditions at the origin. 

If a is infinite, we need b+ finite and b+ not infinitesimal to make 
(h. - k2t 1(X, x') near standard. From (H.58) we see that this requires sin(~e) 
and ~ cos(jk2 - ae) to be finite. But then cos(~e) has to be 
infinitesimal, which yields 

jk2 - ae = (y + t)n + '1, y E *N, (H.61) 

with '1 infinitesimal such that 

(-1)1 
a. = --~ cos(~e) 

4n 
(H.62) 

is near standard. Using (H.61) we see that a. is near standard iff ~ sin '1 is 
near standard which again is equivalent to '1e-1 being near standard. From (H.61) 
we have 

(H.63) 

Introducing 

(H.64) 

we get 

C( = st(a.) = -st (-1)1 cos[(y + t)n + '1] 
1 {(y + t)n + '1 . } 

4n e 

= -st (y + t)- sin '1 + ~ sin '1 -1 [n ] 
4n e 

(H.65) 
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Taking ~ E IR, we find 

a = -(y + W(~y + 8naG) + k2 _ ~2. 
With this choice we obtain 

and hence st[(b+ + b_)jk(b+ - b_)] = 1/4na. However, this implies that 

st --[lA(e, a, e)] 1 
rfJae, a, e) - 4mx' 

Writing 

!l>k(a, x) = st[rfJk(e, a, x)], 

we see that they satisfy 

-!I>~ - k2 !1>k = 0, 

with boundary conditions 

4na!l>k(a, 0) = !I>~(a, 0), 

This proves that 

'I\(a, x) = st['h(e, a, x)] 

(H.66) 

(H.67) 

(H.68) 

(H.69) 

(H.70) 

(H.71) 

st[(ha - k2)-1(X, x')] = (ho .• - k2)-1(X, x'), 1m k > 0, x # x', x, x' E [0, 00), 
(H.72) 

where ho •• is defined by (1.1.1.12). • 

Observe that H;. in the above theorem is given directly as a *-bounded 
perturbation of -A in *L2([R3), and that -A •. o is obtained by taking standard 
parts. 

Noticing that we can obtain o(x) using nonstandard analysis as 

( 4 )-1 
o.(x) = 37r: 83 X.(x) 

(if 8 > ° is real, O. is a o-sequence as 8 --+ 0) we can rewrite H). as 

H). = - A + l.(a, p, y)o" 

where 

(H.73) 

(H.74) 

(H.75) 

As our final result in this appendix we will shQw how to use nonstandard 
analysis to construct -A,..r with Y c [R3, I YI < 00, using the approach 
advocated in Sect. n.l.l. 

Theorem H.2. Let HW be the self-adjoint operator defined by (II. l. 1.15). 
Then 

st[(HW - k2r 1(x, x')] = (-.1.,r - pr1(x, x'), 

1m k > 0, x:f: x', x, x' E [R3 - Y, (H.76) 
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provided (J) is positive infinite and 

(Xj E IR, j = 1, ... , N. (H.77) 

PROOF. Let co be positive infinite. By transfer flo> is well defined in *L2 (1R 3) with 
resolvent given by (11.1.1.16). We have 

st[(~;;, (p2 - k2rl~;;.)] = Gbj - Yj')' j =F j', j,j' = 1, ... , N. (H.78) 

With /-lj(co) defined by (H.77) we get 

which proves (H.76). • 

Notes 

Nonstandard analysis can be looked upon as a mathematical realization of 
century-old attempts at using infinitesimal and infinite numbers in mathe
matics, without running into contradictions. It was introduced by Robinson 
at the end of the 1950s (important tools for Robinson's theory had been 
developed earlier in mathematical logic, in particular, in work by Skolem). 
Robinson's book [394] was very influential. A major development took place 
in the mid-1970s, through Loeb's decisive introduction of a suitable non
standard tool for measure theory and probability theory. As a consequence 
the theory of stochastic processes has become one of the main domains of 
applications of nonstandard analysis. The study of differential equations 
and dynamical systems by techniques of nonstandard analysis was greatly 
influenced by the work of Nelson [355]. The results reported in this appendix 
are based on [12] and the book [14] to which we refer for additional 
references. 



APPENDIX I 

Elements of Probability Theory 

We shall collect here some basic notions of probability theory needed in 
Ch. III.5. 

A probability space (0, .91, P) consists of a set 0, a a-algebra .91 of subsets 
ofO, and a a-additive probability measure P (i.e., a positive measure with total 
mass one). The sets A in .91 are called measurable sets or events. P(A) is the 
measure or probability of the event A. A statement which holds for all points 
w in the complement of a set with P-measure zero is said to hold P-almost 
surely (P-a.s.) or P-almost everywhere (P-a.e.). 

A random (or stochastic) variable X on (0, .91, P) with values in a measurable 
space (S, 91(S)), with S some set and 91(S) a a-algebra of subsets of S, is a 
measurable mapping from ° into S. In the case where S equals IR and P4(S) is 
the Borel a-algebra one speaks of a real-valued random variable, sometimes 
the same is also said when S equals ~ = IR u { ±oo}. P is called the underlying 
probability measure for X. The image Px of P under X, defined by 

BE 91(S), (1.1) 

is called the distribution (or measure, or law) of X (under Pl. One writes 
P(X E B) for P( {w E OIX(w) E B}). Thus 

P(X E B) = Px(B) = P(A) (1.2) 

with A = X-I (B). 

Remark. If S = IR one can also define the function Fx(x) = Px« -00, x)) as 
the distribution function of the random variable X. Fx(x) is thus the 

396 
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P-probability of the event {w E OIX(w) < x}. The mapping x --+ Fx(x) satis
fying Fx( -00) = 0, Fx( +00) = 1, is monotone increasing and left continuous. 
Vice versa any function with these properties uniquely determines a prob
ability measure on (IR, 91(IR)), where 91(IR) is the a-algebra ofBorel subsets of IR. 

For any family tff c .91 of events let a(tff) denote the smallest a-algebra 
containing tff. If X is a random variable one calls a(X) the a-algebra generated 
by X which is by definition the smallest a-algebra containing all preimages of 
sets in 91(S) under X, thus a(X) = a{X-l(B)IB E .1IJ(S)}. 

A family {A .. } .. el' I an index set, of events (in a probability space (0, .91, P)) 
is called independent if for any choice of finitely many indices oc 1 , ••• , OCn one has 

n 

P(A n··· nA ) = n P(A ) Cl1 (.En !Xk • (1.3) 
k=l 

A family {d .. } .. el of a-algebras is independent if every family {A .. } .. el> 

A .. E .91 .. , of events is independent. 
A family {X .. } .. el of random variables is called independent if the family of 

a-algebras {a(X .. )} .. el is independent. 
A stochastic process with index set K, state space (S, 91(S)), and underlying 

probability space (0, .91, P) is a family of random variables XI( on (0, .91, P) 
indexed by K. Thus, for each K E K, XI( is a (0, .91, P)-random variable with 
values in (S, 91(S)). 

If S is nice enough, e.g., a polish space (i.e., a complete, separable metric 
space) we have the following: Given an independent family of random vari
ables {X .. } .. el with values in S, it is possible to find a "coordinate" ("canonical") 
stochastic process {X .. Lel on the probability space (SI, 91(SI), p) such that 

p(X .. , E B1 , ••• , X .. " E Bn) = P(X .. , E B1 , ••• , X .. " E Bn) 
n 

= n P(X"k E Bk), Bk E 91(S). (1.4) 
k=l 

Here 91(SI) is the a-algebra generated by the cylinder subsets of SI, i.e., by all 
subsets of the form {w E SII(w(ocd, ... , w(ocn)) E Bl x ... x Bn}, with Bk E 91(S), 
OCk E I, k = 1, ... , n. (SI, 91(SI), p) can be looked upon as the product space 
n .. el(S", 91(S .. ), p .. ), where (S .. , 91(S .. )) is a copy of(S, 91(S)) and p .. = px •. The 
process (X, SI, 91(SI), p) can be viewed as a "realization" ofthe family {X .. } .. el 
inasmuch as X .. has the same distribution as X .. , since PxJB) = PxJB), oc E I, 
B E 91(S). This is a simple case of a more general theorem by Kolmogorov, 
see, e.g., [59]. 

The random variables X .. in a family {X .. } .. el are called identically distri
buted if their laws are identical, i.e., if px• is independent of oc. In the above 
case then, if X .. are independent and identically distributed, we have that p .. is 
independent of oc. 

Let {dn}neN be a sequence of a-algebras of events. The tail a-algebra 
(a-algebra of tail events) is by definition the a-algebra .9100 defined by 

.9100 = n a( U d m). (1.5) 
neN m=n 



398 Appendix I Elements of Probability Theory 

If d n is generated by X n, then 

.9100 = n u({Xmlm ~ n}). (1.6) 
neN 

A well-known theorem by Kolmogorov (Kolmogorov's 0-1 law) says that 
if the d n are independent then .9100 is P-trivial in the sense that P(A) = 0 
or P(A) = 1 for any A E .9100 • In particular, if {Xn}neN is a sequence of 
independent random variables the corresponding tail events have probability 
either 0 or 1. 

Applying this to Xn = Un' An independent events, n E N, we then 
get P(lim supn eN An) E {O, 1}. In fact, by the Borel-Cantelli lemma, 
P(lim supne NAn) = 0 holds iff Lne N P(An) < 00, P(lim supne NAn) = 1 iff 
Lne N P(An) = 00 (actually for Lne N P(An) < 00 => P(lim supne NAn) = 0 one 
does not need the independence assumption). 

A random field X with index a subset K of ~m is a family of random variables 
X"' K E K. If K is invariant under some subgroup of ~m and 

P(X"I+" E AI' ... , X"n+" E An) = P(X"I E AI, ... , X"n E An), 

Kj E K, Aj E .91, j = 1, ... , n, (1.7) 

then {X"},,eK is called K-homogeneous (or K-stationary). 
A measurable transformation T of a probability space (0, .91, P) in itself is 

called ergodiciffor any A such that T-1 (A) = A we have P(A) = 0 or P(A) = 1. 

Notes 

General references for probability theory are, e.g., [59], [109], [383]. A 
classical treatise on stochastic processes is [157]. For discussions of ergodic 
transformations see, e.g., [306], [312]. 



APPENDIX J 

Relativistic Point Interactions in 
One Dimension 

Following the strategy in Chs. III.2 and III.3 we briefly sketch how to 
analyze one-dimensional Dirac operators with point interactions by means of 
appropriate difference equations. 

Let Do denote the free Dirac operator in the Hilbert space L2(~) ® C2 

Do=D, 

p)(Do) = H2,1(~) ® C2, 

where 

-ic~l dx 
2 ' c 

2 

(J.l) 

(J.2) 

are Pauli matrices in C2 and c > 0 denotes the velocity of light. The corre
sponding free resolvent is then given by 

Rk = (Do - Zfl, Z E C - {( -00, -c2/2] u [c2/2, oo)} (J.3) 

with integral kernel 

Rk(x - x') = (i/2c) [ (C ') 
sgn x - x 

C(z) = [z + (c2/2)]/ck(z), 

sgn(x - X')] iklx-x'i 
C 1 e , 

ck(z) = [Z2 - (c4/4)]1/2, 

1m k(z) ~ 0, Z E Co (J.4) 
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Relativistic point interactions concentrated at a point y E IR can now be 
constructed as follows. Define the closed, symmetric operator (cf. (I.4.1)) in 
L2(1R) ® C2 

(J.5) 

Here g(y) = 0 abbreviates gl(Y) = g2(Y) = 0 where 

g(y) = [91 (y)] E H2,1(1R) ® C2. 
g2(Y) 

Then Dy has deficiency indices (2, 2) and hence a four-parameter family of 
self-adjoint extensions. Similar to our treatment of J- and J' -interactions for 
Schrodinger operators, we now select two special one-parameter families of 
self-adjoint extensions of Dy. The first family, denoted by Da,y, is defined as 

Da,y = D, 

~(Da,y) = {g E H2,1(1R - {y}) ® C2 1g1 E AC)oc(IR), g2 E AC)oc(1R - {y}); 

g2(0+)-g2(0-)= -(io(/C)gl(O)}, -00 <0(:::;; 00. (J.6) 

The second family is given by 

Tp,y = D, 

~(Tp,y) = {g E H2,1(1R - {y}) ® C2 1g1 E AC)oc(1R - {y}), g2 E AC)oc(IR); 

gl(O+) - gl(O-) = i/3cg2(0)}, -00 < /3:::;; 00. (J.7) 

Here AC)oc(Q) denotes the set of locally absolutely continuous functions on 
Q ~ IR. 

To analyze the above operators it suffices to describe their resolvents. We 
have 

where 

(Da,y - Z)-1 = Rk - [oc/2c(2c + ioc,)] Chf - y), . )fk(' - y), (J.8) 

(Tp,y - zt1 = Rk + [/3/2(2 - i/3cC1)] (gk(' - y), . )gk(' - y), 

z E C - {( -00, -c2/2] u [c2 /2, oo)}, 1m k > 0, (J.9) 

ik(x) = [ , ] eiklxl, 
sgn(x) 

h(x) = [ -, ] eiklxl, 
sgn(x) 

gk(X) = [s~~~X)]eiklxl, (h{x) = [s-=~~;JeikIXI, 

ZEC-{(-00,-c2/2]u[c2/2,00)}, Imk>O. (J.10) 

Spectral properties of Da,y and Tp,y can now be read off directly from (J.8) 
and (J.9). For instance, Da,y has an eigenvalue iff 0( < 0 

{{
C2 (4C2 - 0(2)} 

(J'p(Da,y) = 2(4c2 + 0(2) , 

0, 

0( < 0, 
(J.ll) 

0( ;;::; 0, 0( = 00, 
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and a resonance iff rx :;::.: ° whereas Tp,y has an eigenvalue iff P < ° 
P < 0, 

(1.12) 

P :;::.: 0, P = 00, 

and a resonance iff P :;::.: 0. Clearly, both spectra are purely absolutely contin
uous in (-00, -c2/2] u [c2/2, 00). Given (J.8) and (J.9) the analogs of all 
results in Sects. 1.3.1 and I.3.4 (up to (I.3.4.9» resp. those in Ch. 1.4 can now 
be established in a straightforward manner. 

Finally, we briefly discuss the nonrelativistic limit c ~ 00. Applying 
the strategy of [202], [203], one proves that (Da,y - (c 2/2) - Z)-l and 
(Tp,y - (c2/2) - ztl, Z E C - IR, are holomorphic with respect to c-l in norm 
and that 

n-lim (Da,y - (c 2/2) - Z)-l = (-Aa,y - ztl ® [1 OJ, rx E IR, (J.13) 
c-oo ° ° 

n-lim (Tp,y - (c 2 /2) - ztl = (8p,y - ztl ® [1 OJ, P E IR, (J.14) 
c-+oo ° ° 

In particular, the bound state energies Ea,y of Da,y, rx < 0, and Ep,y of Tp,y, 
P < ° (with rest energy c2/2 subtracted) turn out to be holomorphic in c-2 

around their respective nonrelativistic limits 

Ea,y - c2/2 = -(rx2/4)[1 + (rx 2/4c2)]-1, rx < 0, 

Ep,y - c2/2 = -(4/P2)[1 + (4/P2C2)]-1, P < 0. 
(J.15) 

Next we quickly turn to the N-center case. Obviously, the corresponding 
operators are defined by 

Da,y=D, 

£&(Da,y) = {g E H2,1(1R - Y) ® C2 1gl E AC1oc(IR), g2 E AC1oc(1R - Y); 

g2(Yj+) - g2(Yj-) = -(irxj/C)gl(y),j = 1, ... , N}, 

rx=(rx l , ... ,rxN), -00 <rxjS 00, j= 1, ... ,N, (J.16) 

Tp,y = D, 

£&(TiJ,Y) = {g E H2,1(1R - Y) ® C2 1gl E AC1oc(1R - Y), g2 E AC1oc(IR); 

gl(Yj+)-gl(Yj-) = -iPjCg2(Yj),j= 1, ... ,N}, 

P = (Pl' ... , PN), -00 < Pj SOC!, j = 1, ... , N, (J.17) 

where Y = {Yl' ... , YN} c IR. Their resolvents now read 

N 

(Da.y - Z)-l = Rk + L [Ma,y(knifCJ:C - Yr), . )J;k - Yj), 
j,j'=l 

Z E p(Da,y), 1m k > 0, (J.18) 
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where 

and 

N 

(Tp,y - zt1 = Rk + L [Mp,y(kn-:?Uh(' - Yj')' ')gk(' - Yj), 
j,j'=1 

(J.19) 

Z E p(Tp,y), 1m k > 0, (J.20) 

where 

Mp,y(k) = [(4IP)bjj' - 2icCleiklyrYrIJf,j'=I' (J.21) 

Again the analogous results of Sects. 1I.2.1 and 11.2.4 (up to (11.2.4.7» and 
Ch. 11.3 can now be obtained in a straightforward manner. Obviously, also 
(J.13) and (J.14) trivially extend to the present situation. Hence we turn to the 
infinite center case. In principle, one could now follow the beginning of Sect. 
III.2.1 or of Ch. 111.3 step by step but we prefer to proceed via the underlying 
difference equation scheme. In fact, due to the continuity of 11 in the model 
Da, y and the continuity of 12 in the model Tp, y we shall finally end up with 
difference equations completely analogous to those used in connection with 
-da,y and 8 p,y. 

Let Y = {Yj E IRlj E Z} be a discrete subset of IR satisfying (1II.2.1.1), 
Yj < Yj+1' j E Z, UjeZ [Yj' Yj+1J = IR. The corresponding models are then 
defined by 

and 

Da,y = D, 

{0(Da,y) = {g E H 2,1(1R - Y) (8) ([21g1 E AC1oc(IR), g2 E AC1oc(1R - Y); 

g2(Yj+) - g2(Yj-) = -(iIY)C)gl (Yj),j E Z}, 

!X = {!Xj}jEZ, -00 < !Xj :5: 00, j E 71, (J.22) 

Tp,y = D, 

{0(Tp,y) = {g E H2,1(1R - Y) (8) ([21g1 E AC1oc(1R - Y), g2 E AC1oc(IR); 

gl(Yj+) - gl(Yj-) = -iPjcg2(Yj),j E Z}, 

P = {PJjEZ, -00 < Pj S 00, j E Z. (J.23) 

At this point we would like to mention that the spectra of Da, y and Tp, yare 
closely related since one trivially infers that 

[1 (8) (j2JDa,y[1 (8) (j2r1 = - 'Fa/c2,y, IX = {IXjLeZ, -00 < IXj S 00, j E Z, 
(1.24) 

where 

-iJ o . (J.25) 
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Following now the approach of Ch. 111.3 step by step one arrives at 
the analog of Theorem 111.3.3 and a difference equation similar to (111.3.17) 
resp. (111.3.20) (or the corresponding statements of Theorem 111.2.1.5 and 
(111.2.1.48) resp. (111.2.1.49». Since we cannot analyze these difference equa
tions in general we only state the results in the special case where Y equals 
the lattice A = alL, a > 0. Then one obtains 

1m k ~ 0, k =F mre/a, j, m E lL, (J.26) 

where 

<D.(k) = [ 1/11 (k, Yj) ] 
J 1/11 (k, Yj-1) , 

1m k ~ 0, jElL, (J.27) 

and Mj(k) = Ml(k) for the operator Drz,A where 

Ml(k) = etlj/C)( sin(kal + 2 cos(ka) - ~ 1 1m k ~ 0, jElL, (J.28) 

(Drz, A I/I)(k, X) = EI/I(k, X), XE~-A, '/'(k ) = [1/11 (k, X)] 
'I' ,x 1/12(k, X) , 

1/12 (k, aj + ) - 1/12 (k, aj - ) = -(itlj/C)I/I1 (k, aj), 

jElL, E E~, 1m k ~ ° (J.29) 

in the case of model D(J.,A and where 

<Dik) = [ 1/12(k, Yj) ], 
1/12 (k, Yj-1) 

1m k ~ 0, jElL, 

and Mj(k) = M{(k) for the operator Tp,A where 

(J.30) 

MJ.T(k) __ [-pjce1 Sin(k
1
a) + 2 cos(ka) -01J, 1m k ~ 0, jElL, (J.31) 

(Tp,A I/I)(k, x) = EI/I(k, x), xE~-A, 

1/11 (k, aj +) - 1/11 (k, aj -) = ipjcI/I2(k, aj), 

jElL, E E~, 1m k ~ 0, (J.32) 

in the case of model Tp,A' Explicitly, the two difference equations read 

I/Ij+1 (k) + I/Ij-1 (k) = {(tlj/cK sin(ka) + 2 cos(ka)} I/Ij(k), 
(J.33) 

I/Iik) = 1/11 (k, aj), 1m k ~ 0, k =F rem/a, j, m E lL, 

in the case of D(J.,A and 

I/Ij+1 (k) + I/Ij-1 (k) = { - pjcC-1 sin(ka) + 2 cos (ka) } I/Ij(k), 
(J.34) 

I/Ij(k) = 1/12(k, aj), 1m k ~ 0, k =F rem/a, j, m E lL, 
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in the case of Tp,A' Thus we get completely analogous results to (111.2.1.54), 
(111.2.1.55) for -~a,A and to (111.3.23) and (111.3.24) for EIl,A' 

Next we analyze the energy band spectra of Da,A and JP,A in the periodic 
case where IXj = IX (resp. {3j = {3), j E 7L. First, we introduce the reduced 
operators Da,A(8), TIl ,A(8) in L2(( -aI2, a12)) ® (;2 by 

Da,A(8) = D, 

~(Da,A(8)) = {g(8) E H2,l(( -aI2, a12) - {O}) ® (;21 

and 

gn(8, -aI2+ )=e iOa gn(8,aI2- ),n= 1,2;gl(8,0+ )=gl(8,0-), 

g2(8, 0+) - g2(8, 0-) = -(iIXlc)g2(8, O)}, 

-00 < IX ~ 00, 8 E [ -bI2, bI2), (J.35) 

TIl ,A(8) = D, 

~(JP,A(8)) = {g(8) E H2,l(( -aI2, a12) - {O}) ® (;21 

Then 

gn(8, -aI2+ )=e iOa gn(8,aI2- ),n= 1,2;g2(8,0+ )=g2(8,0-), 

gl(8, 0+) - gl(8, 0-) = ifjcgz(8, O)}, 

-00 < {3 ~ 00, 8 E [ -bI2, bI2). (J.36) 

- --1 lEB d8 !JllDa,A!Jll = -b Da,A(8), 
[-bIZ,bI2) 

- --1 lEB d8 
!JllTIl,A!Jll = -b JP,A(8), 

[ -bI2.bIZ) 

(J.37) 

in analogy to (111.2.3.27) and (111.3.43) where dTt is now the analog of (1I1.2.3.8), 
mapping L2(1R) ® (;2 onto L2(A, b-l d8; LZ([ -aI2, a12)) ® (;Z). 

Spectral properties of Da,A(8) are summarized in 

Theorem J.t. Let -00 < IX ~ 00,8 E [ -bI2, bI2). Then the essential spec
trum of Da,A(8) is empty 

(J.38) 

and thus the spectrum of Da,A(8) is purely discrete. In particular, its eigen
values E~A(8), m E 7L - {O}, are given by 

E~A(8) = sgn(m)l[k~A(8)]ZcZ + (c 4 /4)11/2, 

E~,A(8) = [[k1,A(8)]2c2 + (c4 /4)r /2 , 

m E 7L - {O, I}, 
(J.39) 

where for m = 1 the branch of the square root to be chosen in (J.39) depends 
on IX and 8 and where k~A(8), mE 7L - {O}, ordered with respect to their 
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absolute values, are solutions of 

cos(Oa) = cos(ka) + [(X~(k)j2c] sin(ka), 

with 

Re k ~ 0, 1m k ~ 0, (J.40) 

~(k) = (E) = {sgn(E)[Pc2 + (c4j4)r/2 + (c2j2)}jck, (J.41) 

lEI ~ c2j2, 

lEI '5;. c2j2. 
(J.42) 

For (X E ~ - {O}, except for (X = -ac2, m = 1 and 0 = 0, the eigenvalues 
E';I\(lJ) are simple. If (X = - ac2, then E1ac2 ,1\(0) has multiplicity two. 

Let (X> O. For E ~ 0 we obtain 

c2j2 < E~,I\(O) < E~,I\( -bj2) = [(n2c2ja2) + (c4j4)]1/2 

< E~,I\( -bj2) < E2(0) = [(4n2c2ja2) + (c4j4)]1/2 

< E'3,I\(O) < E'3,I\( -bj2) = [(9n2 c2ja2) + (c4j4)]1/2 

< E4:I\(O) < .... 

For E '5;. 0 we get 

(J.43) 

E~NO) = -c2j2 > E~N-b/2) > E~~(-b/2) = _[(n2c2/a2) + (c4/4)]1/2 

> E~~(O) > E~~(O) = _[(4n2c2/a2) + (c4j4)]1/2 

> E~N -bj2) > E~t( -bj2) = _[(9n2c2ja2 ) + (c4j4)]1/2 

> E_4(0) > .... 

I n addition, 

(J.44) 

(X > 0, lJ E [ - b/2, b/2). (J.45) 

Next let (X < O. For E ~ -c2/2 we obtain 

E~,I\(O) < E~,I\( -bj2) < E~,I\( -bj2) = [(n2 c2ja2 ) + (c4j4)]1/2 

< E~,I\(O) < E'3,I\(O) = [(4n2c2/a2) + (c4/4)]1/2 

< E'3,I\( -bj2) < E4:I\( -bj2) = [(9n2c2ja2 ) + (c4j4)] 1/2 

< E4:I\(O) < ... , 

-c2j2 '5;. E~,I\(O) < c2j2, (X E ~, 

E1(2c) tanh(ac/4),1\(0) = 0, E~,I\(O) = - c2/2, (X '5;. - ac2, 

-c2j2 < E~,I\( -bj2) < [(n2 c2ja2) + (c4j4)r/2, (X E ~, 

E1(2C) coth(ac/4),I\( - bj2) = 0, 

(J.46) 
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For E .:<=;; -c2j2 we get 

E~t(O) > E~t(-bj2) = _[(n2c2ja2) + (c4j4)] 1/2 

> E~N-bj2) > E~~(O) = -[(4n2c2ja2) + (c4j4)] 1/2 

> E~~(O) > E~N -bj2) = - [(9n2c2ja2) + (c4j4)r/2 

> E~N-bj2) > "', 

E~,A(O) - , {
- -c2j2 

1 < -c2 j2, 

-ac2 .:<=;; rx < 0, 

rx < -ac 2 • 
(J.47) 

All nonconstant eigenvalues E~A(e), e E [ -bj2, bj2), mE 7L - {O}, are 
strictly increasing with respect to rx E ~. For rx = 0 the eigenvalues are given 
by 

E~':(e) = ±{[e + 2 sgn(m)llml- 1Ina-1]2c2 + (c4j4)} 1/2, 

mE 7L - {O}, e E [ - bj2, 0]. (J.48) 

They are only degenerate for e = - bj2, m E 7L - {O} and e = 0, Iml 2 2. 

PROOF. Since practically all arguments parallel those used in the proof of 
Theorem III.2.3.1 and Theorem III.3.4, respectively, we only concentrate on the 
derivation of (1.40)-(1.47). Using the ansatz (III.3.35) in (1.33) yields (1.40). Concern
ing (1.41) and (1.42) we used the resolvent (1.4). For lEI 2: c2/2 and e = 0, - b/2, 
(1.40) becomes 

sin(ka/2) = ° or cot(ka/2) = 2c/IX~(k) for e = 0, 

sin[(ka + n)/2] = ° or cot[(ka + n)/2] = 2c/IX~(k) for e = -b/2; 

k 2: 0. (1.49) 

Since 

~(k) = { - [P c2 + (c4 /4)] 1/2 + (c2/2)}/kc E ( - I, 0], 

~'(k) < 0, k > 0, (1.50) 

equations (1.43) and (1.44) follow immediately in the case IX > 0. 
For E E [_c2j2, c2/2] and e = 0, -b/2, (1.40) becomes 

± I = cosh(Ka) + [IX'1(K)/2c] sinh(Ka), e - {O, (1.51) 
-b/2, 

where 

K = -ik = [(c4 /4) - E2]1/2/C E [0, c/2], 

1/'1(K) = l/i~(iK) = KC/{[(c4 /4) - K2C2r/2 + (c2/2)} E [0,1], E E [0, c2/2], 

'1(K) = i~(iK) = { - [(c4 /4) - K2C2r/2 + (c2/2)}/KC E [0, 1], E E [ -c2/2, OJ. 
(1.52) 

Clearly, (1.51) has no solutions for IX > ° implying (1.45). Before we turn to the case 
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tx < 0 we first prove that Da•A «(}), tx E IR, has at most one eigenvalue in (-c2/2, c2/2). 
For that purpose we define the closed, symmetric operator Do in L2« -a/2, a/2)) ® 
C2 by 

Do=D, 

~(Do) = {g E H2.1« -a/2, a/2)) ® C2 Ig.( -a/2+) = eiOag.(a/2_), n = 1,2,g2(0) = OJ, 

() E [ - b/2, b/2). (J.53) 

By inspection def(Do) = (1,1), () E [ -b/2, b/2). Since both Da•A«(}) and DO•A«(}) are 
self-adjoint extensions of Do, and DO•A «(}) (the decomposed free Dirac operator) 
obviously has no eigenvalues in (-c2/2, c2/2) for all () E [ -b/2, b/2), Da•A«(}), tx E IR, 
() E [ -b/2, b/2), can have at most one eigenvalue in (-c2/2, c2/2) by Corollary 1 of 
[494], p. 246. 

Now we treat the case tx < O. Since the only nontrivial computations concern 
E~·A«(}) and E~·A( - b/2) we confine ourselves to a detailed discussion of the latter. 
We start with E~·A( -b/2). For E ~ c2/2, the first solution k1 of 

cot[(ka + n)/2] = 2c/tx~(k), k~O, (J.54) 

(cf. (J.49)) is strictly decreasing from k1 = n/a for tx = 0 to k1 = 0 for tx = -4/a. For 
E E [ -c2/2, c2/2] we have to analyze (J.51) and (J.52) in more detail. First of all, 
(J.51) is equivalent to 

coth(I<:a/2) = 2c/ltxl '7(1<:) 

tanh(I<:a/2) = 2c/ltxl '7(1<:) 

for () = 0, 
(J.55) 

for () = -b/2; E E [ -c2/2, c2/2], 

by taking into account that for () = 0, I<: = 0 is always a solution of (J.51) for all 
tx E IR whereas for () = - b/2, I<: = 0 is a solution of (J.51) iff tx = - 4/a. Moreover, 
we note 

'7/(I<:){:~: ::~: 
'7"(1<:) {>O, 0 < I<: < fic/4, 

< 0, fic/4 < I<: < c/2, 

E<O. 

'7"(J3c/4) = 0, E > 0, 

(J.56) 

Now we continue our discussion of E~·A( -b/2), tx < O. First, we prove that (J.55) 
for () = -b/2 has no solutions for -4/a < tx < O. This follows from 

(J.57) 

Next we prove that (J.55) for () = - b/2 and E E (0, c2/2) has no solutions for 
tx < -(2c) coth(ac/4). In fact, by the monotonicity with respect to Itxl we only need 
to prove that 

txo = -(2c) coth(ac/4) (J.58) 

has as only solutions I<: = 0 and I<: = c/2. Since [x-1 tanh(x)], < 0 for x > 0 we get 
indeed 

tanh(I<:a/2) > (I<:/2c) tanh(ac/4) 

> (I<:/2c){1 + [1 - (41<:2/C2)]1/2}-1 tanh(ac/4) = 2c/ltxol'7(I<:), 

o < I<: < c/2. (J.59) 
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In order to discuss the case E ---+ 0 we note 

t/(K) = 1 + sgn(E)c3/2[(c/2) - K]1/2 + O([(c/2) - K]). (J.60) 
K, ....... c/2-

Inserting (J.60) into (J.51) for (:J = -b/2 shows that 

{cosh(Ka) + [1Xt/(K)/2c] sinh(Ka)}I.=-(2c)Coth(ac/4) 

= -1 - sgn(E) coth(ac/4)c3f2 [(c/2) - KJ1/2 + O([(c/2) - K]). (J.61) 
K ...... cJ2-

Hence (0, e) n u(D.o.A) = 0, [-e, 0] c U(D.o,A) for e > 0 small enough, and 
IXo = -(2c) coth(ac/4). For E E [0, c2/2] and -(2c) coth(ac/4) ::;; IX ::;; -4/a, (J.55) 
for (:J = -b/2 has a unique solution as can be seen as follows. Near K = 0 we 
obviously get the inequality 

tanh(Ka/2) > 2c/IIXI t/(K), K > 0 small enough, (J.62) 

whereas for K ---+ c/2 - we have 

tanh(Ka/2) < 2c/IIXI t/(K), [(c/2) - K] > 0 small enough. (J.63) 

By the continuity properties of t/ there exists at least one solution of (J.55) for 
(:J = -b/2. But by the arguments following (J.53) there exists at most one solution 
proving the above claim. For E E (-c2/2, 0] and IX::;; -(2c) coth(ac/4), (J.55) for 
(:J = -b/2 has a unique solution since 2c/IIXIt/(K) is strictly decreasing from +00 to 
2c/IIXI and tanh(Ka/2) is strictly increasing from 0 to tanh(ac/4) as K varies from 0 
to c/2. Clearly, this solution tends to zero as IX ---+ -00. This completes the discussion 
of E~,A( -b/2). It remains to treat E~,A(O). For E E [0, c2/2) and -(2c) tanh(ac/4) ::;; 
IX < 0, (J.55) for (:J = 0 has a unique solution since coth(Ka/2) is strictly decreasing 
from +00 to coth(ac/4) and 2c/IIXIt/(K) is strictly increasing from 0 to 2c/IIXI as K 
varies from 0 to c/2. Inserting (J.60) into (J.51) for (:J = 0 yields 

{cosh(Ka) + [1Xt/(K)j2c] sinh(Ka)}I.=-(2c)tanh(ac/4) 

= 1 - sgn(E) tanh(ac/4)c3f2 [(c/2) - K]1/2 + O([(c/2) - K]). (J.64) 
K,-+c/2-

Hence (-e, 0) n U(D. 1,A) = 0, [0, e] c U(D. 1,A) for e > 0 small enough and IX1 = 

-(2c) tanh(ac/4). For E E [ -c2/2, 0] and -ac2 ::;; IX ::;; -(2c) tanh(ac/4), (J.55) for 
(:J = 0 has a unique solution by the following reasoning. Near K = 0 we infer that 

coth(Ka/2) < 2c/IIXIt/(K), K > 0 small enough, (J.65) 

whereas for K ---+ c/2 - we get 

coth(Ka/2) > 2c/IIXI t/(K), [(c/2) - K] > 0 small enough. (J.66) 

By the continuity properties of t/ we obtain at least one solution of (J.55) for (:J = O. 
Again by the arguments following (J.53) this solution is unique. Since for (:J = 0, 
K = 0 is a solution of (J.51) for all IX E IR the proof is complete. • 

The spectral properties of Tp,A(8) now can be derived from Theorem J.1 
since (cf. (J.24)) 

[1 ® u2]D",A(8) [1 ® U2r1 = -1'a./c2,A(8), 

-00 < IY. ::;; 00, 8 E [ -bj2, bj2). (J.67) 

Applying now (J.37) we get 
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Theorem J.2. Let a E IR and A = all, a > O. Then D~.A has purely absolutely 
continuous spectrum 

(J(D ) - (J (D ) - U [am~·A, bm~·A], ~,A - ac ~,A-

meZ-{O} 

(JsJD~,A) = 0, (JP(D~.A) = 0· 
Here for a> 0 

a~,A = {E~A(O), m odd, 
m E~A( -b/2), m even, 

a~·A > b~,A > a~,A 
-m -m - -(m+1), 

mEN, 

mEN, 

mEN, 

b~.A = {E~A( -b/2) = [(m2n2c2/a2) + (c4 /4)]1/2, m odd, 
m E~A(O) = [(m2n2c2/a2) + (c4/4)]1/2, m even, mEN, 

(J.68) 

(J.69) 

{E~~(O) = -[(m - 1)2n2c2a-2 + (c4/4)]1/2, m odd, 

a~'~ = E~~( -b/2) = - [(m - 1)2n2c2a-2 + (c4/4)r/2, m even, mEN, 

b~.A = {E~~( - b/2), m odd, 
-m E~~(O), m even, mEN, 

b':': < - [(m - 1)2n2c2a-2 + (c4/4)] 1/2, 

For a < 0 

-c2/2 :::; a~,A = E~,A(O) < c2/2, 

mEN. 

al(2c)tanh(ac/4),A = 0, 

~ A {E~A(O) = [(m - 1)2n2c2a-2 + (c4/4)]1/2, m odd, 
a,,; = E~A( -b/2) = [(m - 1)Zn2c2a- 2 + (c4 /4)]1/2, m even, 

m = 2, 3, 4, ... , 

b1(2c)coth(ac/4),A = 0, 

mEN, 

m = 2, 3,4, .,', 

A I A {= -c2/2, - ac2 :::; a < 0, 
a ':'1 = E~l (0) 2/2 2 < -c , a < -ac , 

a~' = A {E~~(O)' m odd, 
-m E~~( - b/2), m even, mEN, 

mEN, 

(J.70) 

(J.71) 

(J,72) 
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ba,A = {E~~( -b/2) = _[(m2 n2 c2/a 2 ) + (c4/4)] 1/2, m odd, 
-m E~~(O) = _[(m2 n2 c2/a2 ) + (c4/4)] 1/2, meven, mEN. 

For IX E ~ - {O}, Da,A has irifinitely many gaps in its spectrum. Except for 
IX = - ac2 , all possible gaps do actually occur. Only for IX = - ac2 one gap 
closes at E = -c2/2 since D_ ac2,A(0) has -c2/2 as an eigenvalue of multi
plicity two. For IX = 0, DO,A equals the free Dirac operator Do in (J,1) with 
spectrum 

(J,73) 

and due to the degeneracy of E~,A(O), Iml 22, and E~,A( -b/2), m E 7L - {O}, 
all gaps in ~ - ( - c2/2, c2/2) close. Furthermore, we note a strict mono
tonicity of rr(Da,A) with respect to IX (being a consequence of the mono tonicity 
of E~A(O), E~A( -b/2), mE 7L - {O}, with respect to IX as mentioned in 
Theorem J.1) 

rr(Da.A) c rr(Da',A), 

rr(Da,A) ~ rr(Da',A), 

o ::s; IX' < IX, 

-00 < IX' < IX ::s; -ac2• 
(J.74) 

Since (J.24) obviously applies in the present special case of periodicity, the 
spectrum of Tp,A immediately follows from Theorem J,2. 

Following [116J one easily proves that (Da,A - (c2/2) - zr1 and (Tp,A -
(c2/2) - zr1, z E C - ~,are hoi om orphic with respect to c-1 in norm and that 

n-lim (Da,A - (c2/2) - zr1 = (-L1a,A - zr1 ® [1 OJ, 
c .... oo ° ° IX E ~, 

(J.75) 

Moreover, first-order relativistic corrections of energy bands with respect 
to c-2 can be explicitly computed since E~A(lJ) - (c2/2), EI:;A(lJ) - (c2/2), 
lJ E [ -b/2, b/2), mEN, turn out to be holomorphic in c-2 around their 
nonrelativistic limits. In particular, the discriminant (J.40) and its analog for 
Tp,A(lJ), 

cos(lJa) = cos(ka) - [fk/2~(k)] sin(ka), Re k 2 0, 1m k 2 0, (J.76) 

are easily seen to reproduce (III.2.3.16) and (III.3.29) as c -+ 00. 

At this point we stop our analysis of relativistic point interactions in one 
dimension. In fact, since the difference equations for Da, y and Tp, yare of the 
same type as for - L1a, y and 3 p, y all results of Sects. 111.2.1, III.2.3, 111.2.4, 
111.2.6, and Ch. 111.3 extend to the present case. Explicitly, we mention that 
the density of states (cf. (III.2.3.46) and (I1I.3.51)), the Saxon and Hutner 
conjecture (cf. Theorems 111.2.3.6 and III.3.5), half-crystals, defects, and 
impurity scattering can now be treated by the same methods. Moreover, due 
to (J.42) spectral results for Tp, y immediately follow from that of Da, y. 
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Notes 

The entire material of this appendix is taken from Gesztesy and Seba [210]. 
Another type of self-adjoint extensions of jjy has been discussed extensively 

in the literature. Its boundary conditions read, e.g., in the case of a discrete 
subset Y c IR (as in (J.22) and (J.23)) 

gl(Yj+) = cOS(Yj)gl(Yj-) - i sin(Yj)g2(Yj-), 

Since in this case no linear combination of gland g 2 turns out to be continuous 
at Yj E Y,j E Z, our difference equation approach does not apply. Nevertheless 
this model can be analyzed directly. In the finite center case this type of model 
has been discussed in [232], [318], the purely periodic case in [51], [139], 
[175], [213], [421], [454], [456], [465], [469], the diatomic casein [421], 
[457], impurity states in [89], [139] and half-crystals and surface states in 
[138], [175], [400a], [425], [426], [454], [466]. The Saxon and Hutner 
conjecture in the special case N = 2 for this model has been proved in [465]. 
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