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Non-Relativistic Wave Function

1.1 fi 1ONG . . . v oyqe . . 1
Y% ormations

In quantum mechanics the physical state of a particle is represented
by wave function ¢ (x, ). In the Schrodinger picture we have y/(x, ) =
(x|y(1)), i.e. time evolution in this picture is contained in the state
vectors and base vectors are time independent (basis is rigid). On the
other hand, in the Heisenberg picture we have y/(x,1) = (x,f|y), i.e.
state vectors are time independent and base vectors evolve (basis evolves
in time). Consequently, in the Schrédinger picture the dynamics is
given by the Schrodinger equation, which prescribes evolution of state
vectors, while in the Heisenberg picture the evolution is given by the
Heisenberg equation which prescribes the evolution of the complete
set of observables (i.e., Hermitian operators). The later, in turn, imply
the time dependent base vectors (via corresponding eigenfunctions).

Choice of the representation is in quantum mechanics simply matter of
convenience (though work with Schrédinger equation is often simpler
due to its linearity) since these representations are unitarily equivalent.
This is essence of the so-called Stone-von Neumann uniqueness theo-
rem. We will see that the S-vN theorem is typically broken in quantum
theories with infinitely many degrees of freedom. This will have im-
portant consequences for the entire structure of Quantum Field Theory
(e.g., renormalization, non-trivial vacuum condensates, etc.).

Let us now explore behaviour of the quantum-mechanical wave func-
tion under two important transformations, namely rotation

R _
U(x) > yr(x) = ¥R 'x), (1.1)
and translation
In this text we will deal with act%&x{?an_s)— Va (x) - W(x B a) ’ (1 '2)

forppdien R IR R ein i WRAigRgument as it is immaterial for this discus-
the hase space is fixed and

Iy stat . .
sion. Time argumen’? Ixlzx)iﬁ,aﬁegwever, be important in the next chapter
Chan e 1n I'lgl as1s?

where relativistic transformation of state vectors will be considered.

Symmetry transformations are for (compact) groups implemented via
unitary operations:

Ya(x) = Us(@)p(x) = ¢(x —a), (1.3)

Yr(x) = Ur(O)y(x) = y(R7()x). (1.4)

If particles have spin (or other internal indices associated with them)
ie.
Y(x) > Yolx), acl. (1.5)
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In this case such wave function will change under rotation according
to R

Va(¥) = URa(x) = Dap(R)p(R™'x), (1.6)
here D(R) is an appropriate representation of the group element R ¢

SO(3), which acts on indices.

Example 1.1.1 For example, consider spin-3 particle, in this case
wave function index takes values @ = +1. From quantum mechanics
we know, that our transformation can be written as

D(R) — e—i9n~s ,

which is a matrix that acts on Pauli spinors. Here 6 is the angle of

rotation, n is axis of the rotation, and s = %0' = %(0'1, o7, 03) is the

vector of Pauli matrices, which are given by

(01 (0 =i (10
=1 0) 27 o) P70 -1

In this representation s3 = 3 ((1) _01) is diagonal, and so « has inter-

pretation of being the (eigen)value of s3.



Relativistic Wave Function

2.1 Relativistic Conventions

In this text we will assume so-called natural units, in whichc =% = 1.
In this system, E, p have units of @ = 5. Also the following
relativistic conventions are used:

» Space-time 4-vector will be denoted by x* = (x%, x) = (ct, x).
» 4-momentum will be denoted by p* = (p°, p) = (E, p).
» Scalar product is given by

a-b= gﬂva"b” =a'b, = a,b", (2.1)
1 0 0 O
0 -1 0 ©0 . .
where g, = g = 00 -1 ol~° diag(1,-1,-1,-1) is
0 0o 0 -1

a metric tensor, with g#” being inverse to the g,,,. We can im-
mediately derive a simple relation between metric tensors and
Kronecker delta:

8,87 =0,7. (2.2)

A Lorentz transformation L maps 4-vectors according to the relation

P L*, x". (2.3)

Here L¥, € SO(1, 3), so called Lorentz group. From that we can see
that

x’ = LM"x/” (2.4)

Thus L,” and L", are inverse to each other. From the fact that Lorentz
transformation preserve scalar product (as can be easily shown by the
reader), i.e. a’ - b’ = a - b, the following relations hold

7

gﬂM'L#VLll’V/ - gvv , (25)
g“LyL,) =g (2.6)

By taking determinant of both sides we arrive to the fact that
det? L =1. (2.7)

Hence we can classify two classes of Lorentz transformations - proper,
for which det L = 1 and impropert, for which det L = -1.
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Differentials

We will define differential to be given by

0
= dat —
d=dx " (2.8)

In relativistic notation we define 8, = 32, then differential can be
written as
d =dx*0,. (2.9)

Such definition of d is Lorentz invariant (as can be shown from the
fact that 9, = L,/ 9,). We define covariant 4-gradient operator to be

0
Ou=|7—,V], 2.10
H (0)60 ) ( )
and contravariant operator to be
o = (i,—V) . (2.11)
0xg

Using those we can define d’Alambertian operator via

62
2" 3,0, = 9,0" = (a—xg,—vz) =0. (2.12)

In the context of special relativity it is common to denote the metric
tensor g as p*” or simply .

2.2 Structure of Lorentz Transformation

We begin our study of Lorentz transformations by taking infinitesimal
limit of such transformation

LF, = 6", + b, (2.13)

which can be thought of as infinitesimal deformation from identical
transformation. Starting from (2.5) and raising indices by metric tensor
we get

L"™L,=g"". (2.14)

Then acting on it by g,,, from right

’

L Lo =g =06, (2.15)
This can be equivalently rewritten as
L)LY, =5, (2.16)

By using (2.13) we finally arrive to the following equation

0, +w, )" +0'y) = 67, (2.17)



2.3 Relativistic Wave Equations

If we restrict ourselves only to the first order in w

’ ’

& rw,) W, =06 (2.18)

a a’

Subtracting Kronecker deltas from both sides and lowering all indices
one gets
Way' + Wy = 0. (2.19)

This statement implies that w is a 4 x 4 antisymmetric matrix, which has
6 independent parameters in the case of infinitesimal Lorentz transfor-
mation. This fact also holds for finite Lorentz transformations.

Properties of Lie groups

The transformation laws of continuous groups (Lie groups) such as
rotation or Lorentz group are typically conveniently expressed in an
infinitesimal form. By combining successively many infinitesimal
transformations it is always possible to reconstruct from these the
finite transformation laws. This is a consequence of the fact, that ex-
ponential function e* can always be obtained by a product of many
small-x approximations: ¢°®* ~ 1 + dax, where 6a = «/M, M > 1.
Taking multiple product of infinitesimal steps we obtain (1 + ax/M)M.
Here x are so-called group generators. The finite group transforma-
tion is then given by L(a) = e**. One can also reverse the process
later on by taking % weo = which recovers the group genera-
tor.

Transitioning from infinitesimal to finite transformation we have the
form _ o
L, = (e-iM””ww) : (2.20)

T

We can fix M*” by comparing expression (2.20) in the limit of w — 0
(Wuy = —wy,,) with the infinitesimal form:

i
Lp‘r ~ 0 6p‘r - Z(Mﬂv)p-rw,uv = 5p‘r + wp‘r
Wyy—!
1
=&+ g8 Wy = &1+ 58S (@ = ) (2.21)
1
=6, + E(gp"é;’ — gk,

From this we have

(M*Y o = 2i (gPH67 — g7 6%) . (2.22)

2.3 Relativistic Wave Equations

A spinless relativistic particle can be described in terms of a scalar wave
function ¢(x, r). This wave function can’t posses any internal index,
which can bear information about other degrees of freedom, such as
spin. Relativistic particles satisfy the energy-momentum dispersion

relation
E = \Jm? + p2. (2.23)

5



6 2 Relativistic Wave Function

In classical relativity we do not consider
negative sign in the dispersion relation.

Klein-Gordon equation is just a reflec-
tion of energy conservation (similarly as
Schrodinger equation so, all relativistic
wave functions satisfy this equation. It
enforces the relativistic relationship be-
tween energy and momentum.

Both positive and negative energy solu-
tions are relevant in relativistic quantum
theory!

Recall that p* = (E, p) and that there exists a relativistic invariant given
by
Py = p% —p2 = m>. (2.24)

In the formalism of first quantization, quantum mechanics is brought
about by identifying operators with dynamical quantities

0
—iV, E —>i—. 2.2
PV E e (225)

Applying this process to the relativistic invariant in (2.24) we arrive to
the following equation

62 2 2
(—@ +V ) ¢(x) = m>p(x). (2.26)

From the fact that d,, = (%, V) we obtain another version of the same
equation
M = 0¢ = —m*¢. (2.27)

Finally, we arrive at the relativistic wave equation known as the Klein-
Gordon equation, given by

O+ m?)p(x) = 0. (2.28)

If we accept this equation and seek solution of a definite energy and
momentum, we get

¢(x) o e—ipx — e—iEt+ip-x — e—ipox(]+ip-x. (229)
Adopting d,¢ = —ip,¢ we get that [l¢ = —p%¢ and then
(-p> +m*)¢p = 0. (2.30)

So if ¢ # 0 we have condition that p? = m? and hence

E = +4/p? + m2. (2.31)

Why can’t we directly quantize relativistic energy relation?

A question may rise, why can’t we directly quantize dispersion
relation w, = E, = +/p?+m? using fact that p — —iV? To make
sense to such a function of operator we have to interpret it in terms
of the Taylor expansion:

2\12 2 4
Hp, = p2+m2=m(l+p—2) =m+ 2P (2.32)
n n

Unfortunately we can not form covariant wave equation, i.e. if
we formed a coordinate space (or momentum space) representa-
tion of a state vector |¢), the resulting wave equation would have
one time derivative and infinite series of increasing spatial deriva-
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tives. There is no way to put time and space on an "equal footing".
Nonetheless, let us go ahead and try to build a wave equation

2 (el () = / &p (x1p) (P H,p (1))
:/ b / &p (xlp) (plx’y (IH (W) (2.33)
_ 5.0 [ 5 PO
_/dx /d pw(x |Hp|';0(t)>

The matrix element (x’|H, |(t)) is proportional to the infinite sum
of (x’|p"|y(t)) = (=i)" a‘?:,, (x’|y(t)) elements. This in turn renders
wave function to be non-local. Since it must reach further and fur-
ther away from the region near x’ in order to evaluate the time
derivative. Eventually, the causality will be violated for any spa-
tially localized function (x| (¢)). Because of that we must abandon
this approach and work with square of Hp, i.e. w? instead. This
will remove the problem of the square root, but will introduce a
different problem - negative energies. This will still prove to be
more useful way to proceed.

Let us look at non-relativistic limit of Klein-Gordon equation. A mode
with E = m + & would oscillate in time as ¢ « e ¥/, In the non-
relativistic regime ¢ is much smaller than the rest mass m. We can
factor-out the fast-oscillating part of the ¢ away and rewrite it

$(x) = p(x,1) = e p(x, 1). (2.34)

Field ¢ is oscillating much more slowly that e in time. By inserting
this into Klein-Gordon equation and using the fact that £ e~ p(x, 1) =

e imt (—im + %) o(x,1):

0 : 0 . )
% [e_”m (—im + E) cp] — e MN2p(x, 1) + mPe” Mo =0

) 0 0 i i
pmimt (_l‘m + E) (_im + E) ©- e—lmtv290 + m2e_”"’<p -0 (2.35)

2 .0 82 2 2
—-m —21m5+ﬁ ¢—Vo+m-p=0.

2
Dropping 22 as small compared to —imt%—f we find that
ot By the way, the Klein-Gordon equa-

2 tion was actually discovered before
i ﬁ ¢ = —V—(,D (2.36) Schrodinger equation (by Erwin
ot 2m’”’ ’ Schrodinger).

and hence we recover the Schrodinger equation.

Let us focus on general solution to the Klein-Gordon equation, ¢(x).
Using Fourier decomposition it can be written as

d* o~
o0 = [ S ) (2.37)

To find the solution we need to solve the Klein-Gordon equation in



Here we use the well known property of
Dirac §-function, namely that 6(f(x)) =

i

8

S(x-x;)

el
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where x; are roots of f.

momentum space, i.e.

(p* —m*)¢(p) = 0. (2.38)
Equations of this form are solved by the Dirac 6-functions. Using this
knowledge, we can write our solution in momentum space as
¢(p) = f(P)6(p* —m?)
_ S0+ NPT ) f@po—NpP ) (2:39)

2yp? +m? 2+/p? + m?

Using this knowledge and denoting w,, = vp? + m?, we can write the
full solution as

d4
¢m=/ P 1-Wuwwwmw+mw%—%n

2n)3 2w
d3P 1 —iwpt+ip-x iwpt+ip-x
(271_)3 ﬁ e f(wp/p) +er f(_wprp)] (240)
d3p 1
s— L™ f(wp, p) +e'P* f(-wp,—p)]
(2n)? 2w, s =
fp) g(p)

Here p* = (wp, p).

From that we can see, that general solution of the Klein-Gordon equa-
tion is a superposition of positive and negative energy eigenstate
solutions. If we want to interpret ¢(x) as a wave function, we have
to find a non-negative norm, which will be Lorentz invariant and
conserved by time evolution. Let’s define norm of ¢(x) to be

A (a¢)*¢]. (2.41)

ax0 | 9x0

|ww—wm—3/&

The naturalness of this choice comes from the analogy with quantum
mechanics - continuity equation, which defines the probability density.
Consider the 4-current

Ju(x) = 5— [¢ 3t — (0u9)* 9] , (2.42)

where the factor 1/2m is only a convention that ensures a correct non-
relativistic limit [see Eq. (2.45)]. We know that each 4-current J,, = (p, J)
and hence it can be rewritten as

I = 5 (8°99 - (961, oy

p0) = 5 (6730~ (0901,

From Noether’s theorem we know, that each conserved current has a
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zero 4-divergence. Computing it we obtain

I (x) = i|0u(¢*0" ) — 0u(pd"¢")]
= i[(0u0" )" ¢) + ¢ 0P —(3, )0 ¢") — 3" ]
N—— N——
~mPg" —m g’
= 0. (2.44)

And hence from Noether’s theorem J,(x) is a conserved current.

Current in non-relativistic limit

In non-relativistic limit, where we assume that ¢(x) = e~ p(x, t)
beforementioned form of current will reduce to the well know form
for Schrodinger equation, namely:

Jnr(x) = ﬁ[ﬁvso—(vtp)*sd
pNR(X) = 2L [(=im)pe" + @00 — (im)pe”]
m
= 5 l-i2mpg’] = o . (2.45)
m

This norm is also time independent, since

0
- —/d3xp =/d3xv-J= / ds-J —o0. (2.46)
at Jy 14 av
S———— | —
Change in total Flux of J
probability inside V through the 6V

Are our integrals convergent?

We want to show that fv d3xp is finite. Since p = ¢*¢, we can
rewrite our integral in spherical coordinates as f dwdrr?|¢|?. Since
our fields behave as ¢ ~ r3/++s Our current then has to behave like
J ~ ¢V ~ M%ﬁ/% = ﬂ%g Since our 8V ~ R?, our J ~

total integral of limg_,« /av ds-J =0.

1
Rite and

The fact that our norm is relativistically invariant can be shown as
follows:

912 = / Lrp(x) = / d*x 8(10) p(x) =
——
5256(x0) (2.47)

0
_ 4
= / d xjaﬁG(nﬁxﬁ).
Here n# = (100 0). Define another wave function norm, ||¢||2 as

~ 0 ,
1312 = / 4 = 0 ). (2.48)
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Here n’ is a generic time-like vector. Taking difference between two
norm we obtain

101P = 11312 = [ dtxr o (00Fa - 00 %), (249

with n'# = L 4. Because d,J* = 0 (as was shown before) we can
rewrite expression under the integral sign as

l01P =182 = [ dxste [ 00 - a0 h|, @50

and using 4-dimensional version of Gaussian theorem we obtain that

101 = 11312 = [ s, [0 00830 - 0P| @251)
To show that this is zero, consider two possibilities:

1. J* is presumed to vanish if |[x| — co with fixed .
2. 0(n® xg) — o(n'® xg) vanishes for |t| — co with x fixed.

Hence, the difference is zero and norm is relativistically invariant.

Let us return to the general solution

43 . .
o(x) = / m[ﬂp)e-w + g(p)e™], (2.52)

and explore, what its norm would look like:

g1 = i / &x {[ / % (F 0167 + )

d3 . .
<[ ﬁ (F@) e + g(q)(iwq>e’qX)]

-| [ome o )32 (@ + g(g)e's)

" / M (7 @)™ +g*(p)(—iwp)e""’x)” .
(2.53)

Since our norm is time independent, elements of type e*(“»r*©a) must
cancel, and only terms of the type ¢*/(@r~“a)' should be considered.
Continuing

d3pd3q |
I|¢||2_,/d3 (27061; Lo [(f*(P)f(q)(—iwq)elx@—q)
+ 8*(P)g(q)(iwq)e—ix<n—q>)
- (f (@) f*(p)iw,)e* P~

+ g(@)g" (p)(—iwp)e 07 |

(2.54)

And hence our total norm is

d3
16112 = / S IR~ 1w (2.55)
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But this norm is not generally positive definite! However, if we re-
strict our attention to positive energy only, g(p) = 0, then ||¢||? is
positive definite.

In this spirit, the general scalar product between two states is

W, 0 =i / L [0 0 - d(ow)°] - (2.56)

Generally, p cannot represent probability density, it may well be con-
sidered (while satisfying continuity equation) as the density of charge
(or any other conserved quantity).

There is a second problem with Klein-Gordon equation. Any plane
wave function, i.e.
Y(x) = Neti@pt=px) (2.57)

satisfies Klein-Gordon equation, provided that E? = w,% = p? +m?.

Thus negative energies E = —/p? + m? are on the same footing as the
physical ones E = +/p? + m?. This gives a problem - energy spectrum is
unbounded from bellow. Of course even in classical physics, the rela-
tivistic relation E? = p%c? + m?c* has two solutions E = ++/p2c2 + m2c4.
However, in classical physics we can simply assume that the only phys-
ical particles are those with E > 0. This is because the positive-energy
solutions have E > mc?, while the negative ones have E < mc?. Hence
there is a finite gap between them and in classical (non-quantum)
physics there does not exist any continuous process that can take a
particle from positive to negative energy.

In relativistic quantum mechanics the problem is more pressing. As
Dirac pointed out in 1928 paper [P. A. M. Dirac, Proc. Roy. Soc. A117,
610 (1928)] the interaction of electrons with radiation can produce
transition, in which a positive energy electrons falls into a negative
energy state, with the energy carried off by two or more photons.
This brings about a problem. If we have a quantum particle whose
state satisfies the Klein-Gordon equation it is possible to extract an
arbitrary amount of energy from it (in the form of photons). This,
in turn, will lead to the perpetum mobile of first kind. In addition,
when particle reaches the negative energy states there is nothing that
would prevent it to decay to even lower energy state. Consequently,
the matter (together with us) would be unstable!

Negative energy states are culprits of
problems in relativistic quantum me-
chanics.
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2.4 Dirac Equation

Klein-Gordon equation is a second order equation in time derivative,
which leads to the norm not being positive definite. Dirac sought an
equation, that would remedy these "difficulties". It turned out, that by
"linearizing" relativistic wave equation, Dirac arrived (by coincidence)
on the wave equation for electron. Since the spins is involved, the wave
function is not anymore scalar (recall Pauli equation, where solutions
are two-component spinor wave function that is not scalar wrt. Galileo
group).

Dirac had two goals:

1. Equation for wave function that is linear and first order in time
derivative. Relativistic invariance then suggests that the equation
will also be of first order in spatial derivatives.

2. Positive definite norm of a solution.

Assume that this equation has the form

(iyO% +iy - v) W(x) = myp(x), (2.58)

simplifying this leads to the
(iy 0" —m)y(x) =0, (2.59)

and defining Feynman'’s slash notation ¢ = y,,0* this equation reduces
to the
(id —m)y(x) =0. (2.60)

Here {y*} = {y", 7} are some unspecified numbers or matrices. We
require that ¥(x) should also satisfy Klein-Gordon equation, since
Klein-Gordon equation is just statement of p,p* = m*. Multiplying
(2.59) by (iy,0” + m) we get

(iyy0” +m) (iy, 0" —m)y(x) =0

2.61
(—ww@“ﬁv - mz) Y(x) =0. 26D

We can rewrite y,, 040" as
\4 1 \4 1 v 1 v
Vlf}’vé)ya = E'}’y')’vaﬂa + E'}’v%ta ot = 5{7;1/ Y 1ota”, (2.62)

where {y,, v»} = Yu¥» + ¥»¥u. To obtain Klein-Gordon equation we
must impose condition

vt =28, Y7} = 28" (2.63)

And because y*y" 00" = 0,0 we get (L + m?*)(x) = 0.



Dirac’s derivation

Dirac started with the following ansatz:

i‘z—‘f = (%a.vwm)w =Hpy, (2.64)

where H p, is Dirac’s Hamiltonian, which should be Hermitan (and
hence @ and g are Hermitan). Klein-Gordon equation implies that
{&i,ax} =0, {e;, B} = 0and a? = p* = 1 fori # k. Here {A, B}
is a symmetric combination of A and B. This operation is called
anti-commutator. By rewriting Dirac equation explicitly

(iyoao Lyl — m) v =0, (2.65)
multiplying by the inverse of y* we get
(iyo’_lygﬁo +iy"lylo; - yo’_lm) Yy =0. (2.66)
And finally this is equivalent to the
idoy = (%yo’_lyiﬁi e yo’_lm) . (2.67)
And hence we can see that @ = y;'y and 8 = ;. Because {y°,y°} =
2, we see that y° = y;'. From anti-commutation relation for y° and

y' we have that %y’ = —y'y0 and from Hermiticity we also have
that y%' = (%) = y7)0%. And from that we see that y%yiy? =

y'T = —y!(°)* and hence we get another important condition, that
Oy =1
Relation

vy =28" (2.68)

is known as Clifford algebra CL; 3(IR). This particular algebra is also
known as the Dirac algebra. We can ask ourselves, what is the smallest
dimension of y* in 4-dimensional space. In fact, matrices ¢’ and 8 have
eigenvalues equal to +1 (i.e. they are Hermitan). For i # j we have

det(aia-’) = det(—afai) =(-1)* det(a-’o/) (2.69)

det(aiﬁ) = (-1)® det(ﬂai). (2.70)

The dimension of o, i = 1,2,3 and 8 must be even. Since for d = 2
there exists only 3 anti-commuting Hermitian matrices - Pauli matrices,
we have d > 4. There are many representations of CL; 3(R) with d > 4
(altought they are rarely used in practice). An explicit representation
with d = 4 is provided by matrices

yoz(; _01),‘}/2(_(:7_ ‘g) @2.71)

Here o are Pauli matrices. This representation is known as Dirac

2.4 Dirac Equation 13

Pauli matrices by themselves generate
Clifford algebra CLo3(IR) via relation
{0a,0p} = 264p1. This algebra is
known as Pauli algebra.
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Recall that 6;1

_ oxY o
~ 9x'H oxV

— v_o
_LH

oxV "

representation and is useful when discussing non-relativistic limits of
the theory. The useful technical trick, for calculating gamma matrices
in Dirac’s representation is based on properties of tensor product ® on
matrices. Because

(A®B)-(C®D)=(A-C)®(B-D) (2.72)
and from Pauli matrix identity
olol = 6V +igik ok (2.73)
we can rewrite our gamma matrices as

W=0301 y=ic’e0. (2.74)

2.5 Lorentz Invariance of Dirac Equation

Recall that a non-relativistic particle with spin has a wave function
Ya(x) (Weyl spinor) which transforms under rotation R as

Va(x) S DasRWs(Rx). (2.75)

In a similar way, the Dirac wave function under a Lorentz transforma-
tion L transforms as

Y(x) S yr(x) = SLp(L ), (2.76)

where S(L) is an appropriate representation of the Lorentz group, that
acts in the vector space, in which the Dirac wave function takes its
values. From this we have that S(L) should be a 4 x 4 matrix. We want
to show that if we apply Lorentz transformation on Dirac equation,
that we will get

(iy" 8y —m) yp(x) = 0. (2.77)

Let us rewrite this expression explicitly:

L.H.S. = (iy"d, — m) S(L)y (L x)
= S(L) [iS L)y 8, S(L) — m] y(L™'x) (2.78)
= S(L) [iST (L)y*8,S(L) = m] y(x"),

where x” = L™!x. If we can find an appropriate matrix S(L) such that

STHL)Y*8,S(L) =y, 2.79)

then
(iy“@,, - m)yr(x) = S(L)(iy“é’/; —my(x"). (2.80)

Since y is a Dirac wave function, then
(iv 0, = m) () =0 = (iy"8 = m) y(x) = 0. (2.81)

So also . is Dirac’s wave function and thus Dirac’s equation is rela-
tivistically invariant. To find such S(L) we have to explore properties
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of Lorentz group in greater details.

Lorentz group

From the condition (2.5) we know that there exist 2 kinds of Lorentz
transformations - proper (those with det L = 1) and improper (those
with det L = —1). We can expand this classification even further by
following approach:

3
1=L°L° g =(L°)? - Z(LO,.)Z. (2.82)
i=1
Rewriting we arrive to the condition
3
(L2 =1+ Z(Loi)z. (2.83)
i=1

Lorentz transformations for which L° ) > 1 are called orthochronous
transformations, those with LO0 < —1 are called non-orthochronous.
We can’t switch between those transformations using continuous pro-
cess, only via discrete transformations such as parity or time reversal.
Recall from section 2.2. that Lorentz group has 6 independent parame-
ters in infinitesimal transformation form. Using those we can construct
finite Lorentz transformation as

L, = (e_gwww)p ' (2.84)

T

Here M*” are so-called generators of Lorentz transformation fixed by
comparison with the infinitesimal transformation when wj,,, — 0:

(MM = 2i (8757 — g7 ) - (2.85)

Let us review rotation group first. Element of a rotational group are
defined by

R = (e-m"kfk)ij - (e—iwkfk)ij. (2.86)

Here n is a unit vector defining the axis of rotation. J; here satisfy
angular momentum commutation relations

[Ji, Jj] = igijpd k- (2.87)

Recall from quantum mechanics that vector operators are sets of 3
operators, rotated according to

UR)Vi(x)UR) = )" RijVj(x). (2.88)
J

For infinitesimal rotation one obtains
I+io )Vl —ioi) = 1 —iw(J 1))V ;- (2.89)

Here Jj are operators of angular momentum, acting on state space (e.g.

Here U(R) is a representation of rotation
group which acts state space (e.g. L2(R))
and R;; is a representation of rotation
group that acts on the operator indices.
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L2(R)) and (J 1) j is a vector representation of angular momentum in
3D, which is defined by (J ;)ix = isijk, i.e.:

0 0 O 0 0 +1 0 -1 0
J1=il0 0 -1, J2=i 0 0], J3=ill 0 0]. (290)
01 0 -1 0 0 0 0 O
After algebraic manipulations in (2.89) we obtain
i [Jk, Vil = —ioc(J )iV, (2.91)
which then simplifies to
(i, Vil = =(Jr)ijVj = —igu;V; = iejV ;. (2.92)

From this follows the fact, that Lie generators themselves are vector
operators.

Adjoint representation

Representation where elements of algebra (generators) are defined
via structure constants as (a;)jx = cix; are called adjoint or regular
representation.

From the above representation of the generators we can deduce the
commutation relations determining the Lie algebra. We find

[M*, M) = 2i {g"P M + g"* MMP — gl M"P — g"P i} . (2.93)

For M¥,i,j =1,2,3 we have

[Mlz, M13] — 21M23

2.94
[M23,M12] — _2lM31 ( )

etc. Defining
1 . . .
Ji = ZgijkMJk — MJk = Zglkl.]i- (295)

Then we have

[J3,(=J2)] =iy,
[J2,J3] = i1, (2.96)
[J1,J3] = —iJ>.

Generally we have
[Ji, J )] = igijkd k. (2.97)

From this we can see, that J; are generators of rotations in 3D, since
they close the familiar algebra of rotations, i.e., SO(3) ~ SU(2) algebra.
Similarly we can define

M% = 2K (2.98)



2.5 Lorentz Invariance of Dirac Equation 17

From this we can see that
(M, M%%] = -2iM"? — [K',K?] = -i]?, (2.99)
and hence generally
[K',K/] = —ie"* Ji = [K; K;] = —igijxJ . (2.100)

Here K; are generators of boosts in i direction. To close the algebra we
also need commutators of the type [K, J]. It can be shown that

[Ji K;] = i€ijiKk. (2.101)
So we can equivalently rewrite the algebra (2.93) as
(i, ;] =igijkd k,

[Ji, K] =igiiKy, (2.102)
[K;, K;]=—igijxJ k.
Those commutation relations define SO(3, 1) algebra. First commuta-
tion relation forms a subalgebra of SO(3, 1) algebra, namely algebra

SO(3). But boosts do not form a subalgebra of SO(3, 1), so we need
both boosts and rotations to form closed algebra.

Group of Lorentz transformations

Defining or fundamental representation of SO(3, 1) group is given

by

xTx = (Lx)T(Lx) = xTLTLx = invariant. (2.103)
From this we can explicitly write that LTL = 1 (LM"L” e =06",)
and hence LT = L™'. From this we can see that L are orthogonal
matrices preserving structure xg = ?:1 x2. Those matrices are of
O(3,1) type and since det L = 1 for proper transformations, we
stress this extra fact in "S" in SO(3, 1) group.

Commutation relations can be diagonalized via transformation This diagonalization doesnot provide
Hermitian generators!

N; = %(Ji +iK;), NI = %(Ji —iK)).

From this follows that
[Ny, Ni1=0, [Ni,N;l=isixNe, N[, Ni]1=isipN;. — (2104)

The relation [N;, N;] = ig;jx N (and the same for N ") belongs to the
SU(2) algebra. Hence we can see that SO(3,1) ~ SU(2) & SU(2) ~
SL(2,C). For SU(2) algebra we can define Casimir operator. For N;
(N7) it can be defined as Y2 | N2 = n(n +1) (or X3, Ni* = m(m +1)).
Constants n (m) describe nothing but the size of the angular momenta
(or spin). The representation of SO(3, 1) can be then denoted with the
pair (n, m). Note in particular that the transformation with respect to
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S(L)S(L™Y) = $(1) = 1. Hence S(L7!) =
S~(L).

Again we are dealing with connected
part of the Lorentz group.

This should determine the Dirac repre-
sentation generators o#”.

spatial parity is given by

Jl' — J,' and Kl' i —K,', (2105)
N — |-
Pseudovector Vector
and hence » b
Ni & NI = (n,m) & (m,n). (2.106)

Generally representations of Lorentz group are not parity invariant
(for example parity is violated in weak interactions). In addition, since
Ji=N;+N j we can identify the spin of representation (n + m), e.g. spin

1 particle can have representations (1/2,1/2) or (1,0)or (0,1) .
——— —————
Parity invariant Parity non-invariant

Lorentz Invariance of Dirac Equation Continued
Our goal is to show that the Dirac equation is invariant under

W(x) S v (x) = SLWL " x), (2.107)

where S(L) is a representation of the Lorentz transformation on the
space of y, i.e. S(L1)S(L2) = S(L1Ly). The invariance of the Dirac
equation depends on showing that

STHLY*S(L) = L* y". (2.108)
If we consider an infinitisemal Lorentz transformation
L=1- L%M’“w,w, (2.109)
then correspondingly
S(L)=1- io-"”’wﬂ,,, (2.110)
where " are the generators of the Lorentz group in the representation

that is appropriate to Dirac space (space of Dirac’s wave functions —
bispinors) and of course

sHL)y=S(L =1+ iaﬂvwﬂv. (2.111)
Putting this into (2.108) we obtain that
(1 + ia’“’ww) P (1 - j—LO'“Vwﬂ,,) = (67 + ) y". (2.112)

Hence .
i[tf’”w,w,yp] =wiy", (2.113)

or by writing

1
Wy = W gy = 5@ (807" ="y, (2.114)



This reduces to the following relation

o 1= 5 @Y g0, @115)

This condition is satisfied if o*” = %[y", v"]. This can be shown using
well known commutation identity [AB,C] = A{B,C} - {A, C}B:

i (i i
1 E[Y“VV,VP]—E[VW",VP] =

= —é Y Ay =YY =y Y Y Y )
(2.116)

1
= 3 (21 g™ —2gHPyY — 29" gh? + 2g"PyH)
1
= z()’vg”p—Vyng)-

We also can show, that condition o** = %[y*,"] is appropriate for
Lorentz generators, i.e. we can show that it satisfies the correct algebra

[, 0] = 2i {g"ﬁam +g %P —ghagP g"ﬁ(r’“} . (2117)

From all of that, for finite Lorentz transformation in Dirac space we
have

i

S(L) = e 17" @ur | [ = o= iM" ouy (2.118)

And hence (2.108) is Lorentz invariant.

2.6 Dirac Bilinears

Dirac bilinears are relevant for construction of observables in quantum
field theory. First, general Dirac wave function has form

Ya(x)
Ya(x)
Y3 (x)
Ya(x)

Y(x) = ) = W] (0, 05 (0, Wl (), w ) (x)). (2.119)

We define spinor adjoint to ¢ as
U(x) =y (. (2.120)

How y/(x) transforms under the Lorentz transformation? To under-
stand this we use two simple facts, namely

Y(x) S yr(x) = SLW(L )

e ) (2.121)
() =y () =y oS WL).

Now, we can multiply the second equation by y° on the right, i.e.

U =y (Y0 Syl (on° = u L 0)ST (L)Y . (2.122)

2.6 Dirac Bilinears

19
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We might now use the fact that since S(L) = e 17" 0w then ST(L) =
ei@ 0w where (o4 is

i

. + .
(aw)*:(éw,m) = =2y a29)

Problem, however is, how do we “rotate” y*' to y”?
By writing Dirac equation in Schrodinger like form, i.e.
iy = —iy’y' 0y +y°my = Hpy, (2.124)

(H p is a Dirac Hamiltonian) we get from the presumed hermiticity of
H p (as already seen in "Dirac’s derivation" note) that

¥ = 50f (2.125)
yoyi — ,yiT,}/OT — ,yif,yO (2.126)
Y=y = (2.127)

Those identities are valid irrespective of chosen representation and
a particular example of y-matrices that satisfy these conditions is
provided by the oldest representation of Dirac matrices that is due to
Dirac himself, i.e.

1 0

0o_ 3 _
v =0 ®1 (0 1

. . l
),y‘zi(rz@o":( 0 ”). (2.128)

Properties of y-matrices

Here we summaries some important properties of y-matrices.

> ,y() — ,y(],—l, ,)/0,2 =1 and (,y())'(r — ,y()

> () =—

> 20Ty =000 =90

> Y)Y = =0y =

Y H)iy0 = y#

Y)Y = Y03, )T = Ly’ =y yH} = o

vy

Now consider
YOS(L)T0 = ed@w? @Y = ghowa™ — (). (2.129)
So yS(L)Ty? = §71(L) = S(L™'). From this it follows that

() =y ()L YT L)STL)Y° =y (LT x)y0YOS(L)Ty°

= y(L'x)Ss™NL). (2.130)



So finally we have the following transformation rules
v(x0) 5 yr(x) = SMWL ),
I 5 U0 = PL DS, (2.131)

These relations are key in forming bilinears.

Classification of bilinears

First, we begin with scalar bilinears

PP S L) = P DS ST e o
= (L WL x) = s(x).
Which can be rewritten as

s(x) 5 sp(x) = s(L71y). (2.133)

This is transformation property of scalar field. Next, the vector fields
(or vector currents) are defined as

JH(x) = Yoy g (x). (2.134)

Transforming this current we obtain

JH(x) S ) = Ty () = BLTST Ly L ),
(2.135)
Recall that from the proof of Lorentz invariance for the Dirac equation
the following holds

STH LY S(L) = L* y". (2.136)
Thus we can rewrite
T(x) = gL )L,y w(L7 ) = L 9L )y (L), (2137)
Therefore
B = Ly (L )y w(L %) = LY, 7" (L7 x). (2.138)

This is the correct transformation law for a vector field.

In order to discuss pseudoscalars and pseudovectors, we will intro-
duce a new y-matrix

1
Y =iydyly P =olel= ((1) O) . (2.139)

Properties of y°

» () =9

2.6 Dirac Bilinears
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detA = Zh Tn EJ1 7nA1J1"'Aan'

.....

Table 2.1: Table of bilinears

> ()P =1

> (¥, ¥}=0
Now, the bilinear
P(x) = §(x)y°(x) (2.140)

is a pseudoscalar, i.e. under standard (orthochronous) Lorentz trans-
formation it behaves like a scalar and changes sign under the parity
transformation. To see this, let us realize that

l
Y’ = —ivy'y"%y? =iy!yYyyt = 11w Y YTV, (2.141)

and also that
ghvoT 5 _ = iy yvy(ry‘r (2142)

Here &, is a Levi-Civita symbol. g,,o+ = 1 if (uvo7) is even permu-
tation of (0123) and &,vor = =1 if (uvo7) is odd permutation of (0123),
otherwise &, = 0. Continuing from (2.140) we have

P(0) = 500y () 5 Ty urx)
= YL S HLY S(L)W(L x). (2.143)

We can rewrite term S1(L)y°S(L) as follows:

STHL)yS(L) s,,ms YLyy*y yTy"S(L)

4!
= Zs,,m(S‘l(L)yﬂS(L» L (STHL)YTS(L))
Wy o T

i
= ISﬂVO'TLMH’LVV'La-O"LTTy YyTy
= y°(detL), (2.144)

and hence

P(x) = 5(x)y°u(x) 5 det Ly, (x)y°wi(x) = det LP(L™1x).  (2.145)

So, the function P(x) is a Lorentz scalar for proper Lorentz transforma-
tions (detL = 1).

Now, for the Lorentz transformations involving parity reversal
=diag(1,-1,-1,-1), (2.146)

the transformation changes sign (det L = —1). Complete set of bilinears
is given in the following table.

Bilinear | Transformation properties
Yy (x) Scalar
(x)y w(x) Pseudoscalar
U (x)yHyu(x) Pseudovector field
W(x)yH(x) Vector field

w(x)[y",y" ¥ (x) | Antisymmetric tensor field




2.7 Current for a Dirac wave function

All bilinears have the form y(x)['¥(x), where T is one of 16 possible
matrices - 1, y*, [y*,y”], ¥° and y>yH.

2.7 Current for a Dirac wave function

Main motivation of Dirac was to have consistent probability current
with positive definite probability. There is now a natural candidate for
a probability current, namely

Ju(x) = Y () (x). (2.147)

The norm can be defined via current as
W) = WIP = [ &) = [ dvirs, o (2.148)

The last integral is over a space-like slice orthogonal to the 4-vector n*
(time-like). We want to show the following:

» This is a Lorentz invariant norm.
» Such norm is time independent - 9, J*(x) = 0.

Proving that this is the case will show, that this norm is independent
of the space-like slice (i.e. Lorentz invariant).

First, let us show that d,,J#(x) = 0:
0 (PP 0 (0) = (0,0(0)) Yu () + FY* (Bux) . (2149)
Recalling that (iy#d, — m) ¢(x) = 0 and hence
PO (x) = —imi(x) (2.150)
For the adjoint wave function we obtain an equation of motion

(i3 ~m) w(x)]" =0 (2.151)
=00 (x) ()" = my(x) = 0. (2.152)

Taking advantage of the fact that
Y)Y =y = (y)" =y, (2.153)
we can rewrite

(100 )"+ my () ¥ = 0

0
(ia,lw(x)yov" + mtﬂ(x)yo) =0 (2.154)
(0 Cyy* +mig(x)) = 0

W(x) (i)/"a, + m) =0.

23
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From this we see that
(a,,a(x)) - (2.155)

Plugging this into the (2.149) we obtain

(8u0) P (6) + T (B () = im0 (x) = imp () (x) = O
(2.156)
Another possible current is

JH(x) = Oy Y (). (2.157)
It can be shown that in this case 9, J#(x) = 2imy(x)y°y(x). If m = 0, this
current (often called the axial vector current) is also conserved.
Let’s return back to the norm. Choose n = (1, 0, 0, 0), then

W) = / Lrdo(x) = / L () (x) =
(2.158)

- / Lo (7w (x) = / Ly (W (x) > 0.

From this we can see, that such norm is a positive definite. Norm is
also clearly time independent, since

> / d3xp / d3xv.-J = dS J —0. (2.159)
%,_/
Change in total Flux of J
probability inside V through the 6V

Here we use same argument as in Klein-Gordon equation case. At last,
norm is relativistically invariant

u]P = / Lrp(x) = / d*x 8(10) p(x) =
S——

25 0(x0) (2.160)
0 0
=/d4xJ ﬁ@(l’lﬁx;;).
Defining
191 = [ atereoubxg) (2161)
x(l’
we finally obtain
WIE-101E = [t (00 - 0P )

Bul2=0 / dhr =2 |00 x5) - 0P x|
- / dS(, J“{e(nﬁxﬁ)—a(n’ﬁxﬁ)}]. (2.162)

To show that this is zero, consider two possibilities:

1. J* is presumed to vanish if |[x| — oo with fixed .
2. 0(nPxg) — 6(nP xg) vanishes for || — co with x fixed.
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Hence, the difference is zero and norm is relativistically invariant. To
define related scalar product we take

W1, ¥2) = / dvn, J*12)(x), (2.163)

where JH12)(x) = gy (x)y o (x).

Plane Wave Solutions of Dirac Equation

We know that because y(x) satisfies Dirac equation, it also satisfies
Klein-Gordon equation. Wave functions of definite energy and mo-
mentum are plane waves of the form

Wy (x) = u(p)e™P* = u(p)e "“r"'P¥ (positive energy),

. o (2.164)
¥, (x) = v(p)e'’* = v(p)e'r'"'P* (negative energy),

where pg = wp, = /p? +m? > 0. For the plane wave id, — p,, and given
that (iy*d, —m) ¢, = 0 we obtain

(Ypu—m)u(p) =0 & (p—m)u(p) =0, (2.165)

(Y'pu+m)v(p) =0 < (p+m)v(p)=0. (2.166)

In order to have a non-trivial solutions we require det (p — m) = 0 and
det (p +m) = 0. We will use the following trick for computation:

det (y*p, —m) = det( >y (Y pu —m))
= det(y" (v =m) V) (2.167)
= det ( Y'pu —m) 575)

=det (y"py +m).

The second equation follows from property of determinant and the
third from anticommutativity. From this we can see that

det [ (7 pu —m) (¢ pu +m)] = det® (y*pu £ m). (2.168)
Using properties of gamma-matrices we can further show that
Y'Y pupy —m* = = {7 Y'Y pupy —m* = p* —m?, (2.169)

and hence
det? (Y puxtm) = (p* -m?)* = 0. (2.170)

Last condition is known as on mass shell condition.

25
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Positive Energy Solutions

From the representation of the y* we find that

_((E-m)1 —-o-p
()’l‘p,u—m)—( - p _(E+m)1). (2.171)

Take u(p) to have form of

u(p) = (X ) (2.172)
[

here x and ¢ have 2 components each. From this we can rewrite
equation (2.166) as a system of two coupled equations

(E-m)y—-0o-pp=0, (2.173)

o-pxy—(E+m)g=0. (2.174)
The condition p? = m? ensures, that these two equations are equivalent.
Indeed multiplying (2.173) by (E + m) we obtain

(E2-m*) y—0-p(E+m)p=0 (2.175)
N—————

PZ

Similarly, by multiplying (2.174) by o - p we get
O'ia'jp,-pj)( —o-p(E+m)p=0. (2.176)

Using the fact that oo/ p;p; can be rewritten as 3 {c, o/ }p;p; = 6" pip; =
p?* we get that those two equations are indeed equivalent and any of
the two equations is okay to use. From the second equation we obtain

o-p
= 2.177
E+m”" ( )
which implies that
u(p) o ( oh ) . (2.178)
EvmAX

We fix the normalization of u(p) so that

u(p) = VE +m ( oo ) . (2.179)

E+m

Other Normalizations

Often the normalization is chosen differently, namely

E+m
E+m om X
u(p) =\ = ((,_jf ):( o ) (2.180)
E+m X \/Zm(E +m) X

This gives nicer normalization for uu and vv.

There is another, more physical way of solving (p —m) u(p) = 0 and
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(p +m) v(p) = 0. Let assume that m # 0. In the rest frame of the particle
p* = (m,0). Then Dirac equation reduces to

(vo - 1) u(m,0) =0, (2.181)

(70 + 1) v(m,0)=0. (2.182)

There are clearly 2 linearly independent solutions for both u and v,
namely

uD(m,0) = | |, u®(m,0)=|" |, vPm,0) =" |, v®(m,0) =

o O = O
O = O O

o O O
—_~
N'— o oo
—_

o ¢}

We could now boost these solutions from rest up to a velocity |v| = %

i

by a pure Lorentz transformation S(A) = e™«

Ty M

Relativistic Velocity

From p* = (£,p) = = =(c, ). Setting ¢ = 1 we finally have that
1-

Wl

c

Ipl

vl =0

It is simpler to observe that

(p—m) (p+m) =p*—m*=(p+m) (p—m) =0. (2.184)
Hence
-m) (p+m)u? =0, 1=1,2. (2.185)
P p
This implies that
E+m -o-
@) - P ),@
(p +m) uY(m,0) (0’-p _(E_m))u (m, 0)
(E + m)pW
= ( o pgd | (2.186)
¢ V(m, 0) N (o
Here we take uY(m, 0) = 0 and ¢ is either ( 0) or ( 1). Neg-
0
ative energy solution is obtained similarly
E-m -o-
_ @) - p %)
@m0 = (70 D )0
@y
_ —0O-px
= (—(E . m))((’l)) . (2.187)

Where in analogy with positive energy solution, we have v\Y(m, 0) =

27
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0
0 and W is again (1) or (0) Relation with our former
x'“(m,0)
normalization is obtained when
u prm @ m,0 2.188
(p) = m (m,0), ( )
v W m, 0 2.189
(p) = m (m,0). ( )

Relation to the Schrodinger Equation

In this part we will assume that we work with free particle. Recall that
positive and negative energy solutions to the massive Dirac equation
have the form

uy=VE +m ((,),S” ): (”L) (2.190)
E+m X4 us
Note that ug = £-2-u; . Similarly for negative energy solution we have
gp v
vi=VE +m (E+m *"*) - ( S) , (2.191)
¥a VL
and vg = vL In the non-relativistic limit |p| < m and so us < uy,

and vy < vL Hence the subscript "S" references to the small compo-
nent and the subscript "L" to the large component.

The positive energy solutions satisfy

ml  o-p\(ur) _ [ur
7o () - (). (2192)

This equation can be rewritten as

o pus = (E—-mug, (2.193)
o-pu; = (E+mus . (2.194)

Substituting (2.194) to (2.193) gives

(o-p)o ~p)uL

o = (E —muy, . (2.195)
Since |p| < m and E ~ m we obtain
P2
S—ur =(E-muy = Engur. (2.196)
2m

This is the usual Schrédinger equation for a free non-relativistic parti-
cle.
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Applications of Lorentz Transformations on Dirac

Wave Functions

We will begin with rotations of Dirac wave functions. We know that

{R} c {L}. Further on w, (R) will denote parameters of the rotation.
where the generator of rotations was

We have seen that L = e~ iM"" @y

connected with MV (i, j = 1,2,3) as
1 .
Ji= Zsijijk/
Mk =2k,
In particular, when M7* acts on 4-vectors
(M2, =21 [g8" .~ g "]
This gives us
i . .
Uife = sein |g76" g8
E.g. for third component

i

(13)p‘r = >

£3jk [gpjfskr —gpk5jr] .

(2.197)

(2.198)

(2.199)

(2.200)

(2.201)

From this we see, that j has can be either 1 or 2, k can be 2 or 1. Hence
non trivial contributions to the (J3)’, come only from components

p=12,7=2,1. Namely

i

12 & 12 _ .
53128 05 — -&3218 05 = —i.

(13)12 = 5

i

2

i

2.1 21 _ .
£32187°01 — 53128 6y =1

(J3)21 =

Thus we can finally write our J3 in explicit form as

0 0 0 O 1 0 0 0

0 0 - O 0 cosf® -—-sinf O
=10 i 0 o770 sino cose o

00 0 O 0 0 0 1

Similarly we obtain

0 00 O 10 0 0

0 0 0 O 01 0 0
Ti=1o 0 0 =i| 7% 7|0 0 coso —sino|

00 ¢ O 0 O sin@ cos@

0O 0 0 O 1 0 0 0

0 0 0 i 0 cosf® O sinéd
2210 0 0 0|7% 0 0 1 o |

0 -i 0 O 0 —-sinf 0 cosé

(2.202)

(2.203)

(2.204)

(2.205)

(2.206)

Do not forget that [J;, J ;] = ig;jx Ji -ie.
there is an algebra of rotations.

Upper index signifies rows, lower index
signifies columns.
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_: 0
Recall that Ji =i S| . On the other hand
Lo R=e iwuiM g3t wiidic _ p=i0" Tk (2.207)
Where we have defined 6 = 1¢7/% ;. From this we can see that
2 J

Ry = e707s, (2.208)

and generally _
R =7 (2.209)

We can equivalently write that
0'J; =6n'J,, (2.210)

where n is a unit 3-vector and 6 is rotation angle around that direc-

tion.
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Deriving Explicit Form of Matrix Exponential

We can obtain explicit form of matrix exponential by summing up
all terms in Taylor expansion

3\n n 3\2n+1
i3y, ( 10) ( 10) ( 10) 2n+1
— (03)2n+1J
nZ:: Z (2n 1)1
= cos0’1-isin6%J;. (2.211)
The spinor representation of rotation is given by
L=e iM"0u 5 (L) = ¢ i @ (2.212)

R=c -IMVw;; _ e ion' Ti S(R) = ’Z(rij‘”'lf = eiignia-" . (2.213)

Here 6 = teijn0/* & o0/* = 26U7%5;. Let us find explicit form of &;.
Starting from the definition of o/ fori # j:

o' = % [v' ¥] =iv'y

—; 0 (o] 0 gj - —0i0j 0
B —0; 0 —0j 0 B 0 —0i0j (2214)
_ [Tk 0 &
= 0 oL ijk-
Using definition of 0 we get

A 1 Im _ 1 Imp Op 0 _
Ok = 45klm0- = 45klm5 0 oy

= }Islmksl’"p (O(-)p O(_J ) =
P (2.215)

Lo om0 O
- 4(6m6k 6m5k)(0 o_p)
_1 Tfk 0

- 210 Ok ’

Rotation in Bispinor Space

Taking commutator

A 3 [ow, 1] 0 ) i (O'm 0
Eklm

[0k, 61] = 0 %[Uk,O'z] =5 0 a_m) = &m0 m-

(2.216)
Hence 6-; are generators of rotations in bispinor space.
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By denoting
26 =% = ((g" (Sk), (2.217)
we obtain that
i . —inka'k
S(R) = o5 Tk _ (6 20 e—ggk”k) . (2.218)
Now, consider action of S(R) on u(p):
¢~ Ik 0
SRu(p) = ( . e_é-,,m) u(p)
= E+m eiénkck »O X
o e (g
50 %
= VE+m Aoy e (2.219)
E+m e ? X

Define yg = e 29"y, where % are generators of rotations in rep-
resentation with spin 1/2. At this stage we can recognize correctly
rotated 2-component spinor (Pauli spinor) with spin 1/2. We have the

Compare this relation to the now know following transformation relationship
relation S"HLWHS(L) = L*, =
,yv Ll‘v . i i i
e—ié)n-(ro. . peif)nﬂ' — a.e*len'-’ -p. (2220)

From this we finally get rotated spinor as

S(R)u(p) = (iﬁ{‘x ) = ug(p). (2.221)

E+m
ur(p) is constructed from the rotated spinor yg and pp, is the rotated

1 0 .
0) and y_ 1= ( 1) (Pauli spinors)

and denote them generally as ya, 1 = t%. Then

4-momentum. Let’s introduce X1 = (

uy(p) = VE +m ( o ) ) (2.222)
p

E+mX

and A = +3 has meaning of the "third component of spin".

Action of Rotation Generators on Free Solutions of Dirac Equa-
tion

Let us look what happens, when we apply generators of rotations
(angular momentum operators) on a free solutions of Dirac equa-
tion in the rest frame. We know that those solutions have general

form of -
—lkot+ik -x
yi(x) = V2m (“) — (2.223)
0 vax
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ikot—ik -x

e 0)\e
Yy (x) = \/271()0) —\/273 , (2.224)

with k - x being zero at rest and ko = m. We also know that

P 1 g 0
Jiobo=3 ( o (ri) , (2.225)
and in particular
~(t 0 (2.226)
7= 1) :
This leads to . .
Jsut =yt Tyt = -yt (2.227)
2 2 2 2 2 2
_ 1 _ R
Jsyi =y, JsyT, =Sy, (2.228)
2 2 2 2 2 2

This shows that indeed Dirac’s bispinors describe particle with spin
1/2.

2.8 Lorentz Boosts and Dirac Wave Function

Lorentz boost in x can be written as

t"=y(t-vx), & xj=7vy(x—px),
X =y(x-vt), o x =y(x-pBx),
Y=y

!’
zZ =2,

(2.229)

where v = Band -1 < 8 < 1 (note that we use the notation ¢ = 1).

The Lorentz transformations are often also written in a way that re-
sembles rotations in 3D using hyperbolic functions. This is possible,
because § and y satisfy identity

Y-y =y (1-p)=1, (2.230)
which allows us to take y = cosh ¢ and y8 = sinh {. Then we get

x) =xpcosh{ —xsinh{,

x" =xcosh - xgsinh ¢,

) (2.231)
y =y
7 =z
Note that
1
cosh =y = \/ = = ,
1- 2
F \/ 1-tanh™¢ (2.232)
tanh ¢ = m === tanh_lﬁ

"~ cosh¢

33



34 2 Relativistic Wave Function

Rapidity is a standard parameter to mea-
sure relativistic velocities in particle ac-
celerators. In 1D motion, rapidities are
additive whereas velocities must be com-
bined by Einstein’s velocity-addition for-
mula.

and since 8 € (-1,1), we get { € (-0, ). The new variable ¢ is called
rapidity.

Similar equations can be also gained for boost in z direction

x) = xgcosh { —zsinh ¢,

’

x' =x,
, (2.233)
y =Y
7/ = zcosh ¢ — xgsinh Z.
Transformations can be written using boost matrices
cosh —sinh 0 O
_|=sinh coshy 0 0
L,= 0 0 1 ol (2.234)
0 0 01
coshf 0 0 -sinh¢
0 10 0
L,= 0 0 1 0 (2.235)
—sinh 0 0 cosh¢

and L, similarly.

Consider now standard four-momentum of a particle with mass m in
its rest frame, i.e. p* = (m, 0,0, 0). After boosting the four-momentum
in z direction, we get

coshs 0 0 -sinh{)\(m E
, _ 0 10 0 0l _ |0
p=Lp= 0 0 1 0 ol=lol (2.236)
—sinh 0 O cosh? /\O q
where E = mcosh! = my and g = —-msinh¢ = —mvy (relativistic

three-momentum). So, in this example, tanh { = —¢/E.

If ¢ is infinitesimal (« 1), it allows us to simplify the equations (e.g.
for a boost in z direction)

1 00 —¢ 0 00 -1
0 10 0 00 0

Lo 01 o710 0 0 o0 2237)
200 1 100 0

At the same time, we can use the Eq. 2.109 to compare the result above
to

L o~1- inMW -1- i(w%M‘B + M) =1- %wogMOS (2.238)

because w,, = 0 except for wgz = —~w3p = . We remind that K’ = %M 0i
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holds. Therefore, it is obvious that

0 0 0 -1 0 0 0 -1
0 0 0 O 0O 0 0 O
3 _ 03 _ n:
K’ =i 0 00 ol M™ =2i 0 00 0 (2.239)
-1 0 0 O -1 0 0 O
We can go back to the finite transformations in the form
0 0 0 -1
a i 03| _ 0 00 01._
L,= exp( 2w03M ) =expi/¢ 0o 00 oll~=
-1 0 0 O
(2.240)
coshs 0 0 -sinh/
3 0 10 0
B 0 0 1 0 !
—sinh 0 O cosh/(

where in the last step we used a fact that the matrix (_01 _01) is

involutive.

In the spinor space then the corresponding matrix is
S(L) = exp {—iww,o’”’} , (2.241)
which means that specifically in the z direction

S(L) = exp {—%{0’03}, (2.242)

where 0% = £ [0,9%] = iy%y?, s0

S(L;) = exp {—%{ iyovs} = exp {gyof} . (2.243)

Let us try to compute the explicit form of S(L,). Firstly, we can calculate
&°7*’ = ¥"*y%? = -°%°¥*»* = -1(-1) = 1, which means that y°»?
is an involutive matrix. We will now use the important identity

eN = (coshx)1+ (sinhx) N (2.244)

which is valid for the matrix N which is involutive (N2 = 1). Hence

S(L;) = cosh g +79%3 sinh g (2.245)

Secondly, using geometric half-angle formulae, one can write

é_\/cosh§+1 _\/E/m+1 _\/E+m
cosh 5= > = 5 = o (2.246)

This derivation served as an indepen-
dent control that the result is consistent
with Eq. 2.235.

The matrix S(L) is non-unitary. This is
closely connected to a fact that there are
no finite dimensional unitary representa-
tions for non-compact groups of which
boosts are an example.

Note that in spinor representation S(L),
the arguments of hyperbolic sine and co-
sine are /2 whereas in fundamental rep-
resentation L, the arguments are just £.
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Now the q is a three-vector. In the previ-
ous calculations g was just its z compo-
nent (the direction in which we boosted
the system).

and

_ — 2 _ 2
sinh 4 _ \/Coshg 1 _ \/E m _ E%?—-m
2 2 2m 2m(E + m)

q2
= \amE Ty (2.247)

since cosh ¢ =y and E = ym we have that cosh ¢ = E/m. Here m is rest
mass and ¢ relativistic three-momentum. From these results

_ |E+m q
So) =\ [1+E+m77]. (2.248)

Thirdly, we can compute

3
Y7 = (@ 902 ® o) = (Pic? 8 ) = (;’3 ‘f,)- (2.249)

Thus we can finally write the explicit form of boost in z direction in
spinor representation as

E+m 1 q_ g3
S(Lz)=\/—2m (q o2 E+r; ) (2.250)

E+m

This might be generalized for a boost in general direction with velocity
v for which the matrix takes the form

S(L) = ,/Ez% ( o b%) . (2.251)

E+m

As an example, consider the rest frame of a particle where its four-
. - m :
momentum is again p* = ( 0) (now the line above denotes the rest

frame), so the Dirac spinor for the particle is (in form of plane waves)

() = V2m (’6‘) . (2.252)

When boosting system by a velocity v in z direction we get
/ (2.253)

then we claim that

ua(p) = S(LJua(p) = Ez;m(qis ’gi'm)\/z_m(’“), (2.254)
E+m

so we have

X1

qo3
E+m A

uy(P)=vVE+m , (2.255)
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as we know it should be.

2.9 Spin Sums and Projection Operators

First of all, we remind that negative energy solution were defined as

va(p)e'P* = vy eiort=Px (2.256)

where amplitude v(p) satisfies

o+ my(p) =0 = V(p):\/Eer—(%)m)‘ (2.257)

Xa

We have the following "ortho-normality" relations

ur(p)uy(p) =2mén, (2.259)
vapva(p) = =2mév, (2.260)
a(pva(p) =0, (2.261)
va(p)uy(p) =0, (2.262)

where 7a(p) = u}(p)y°, Va(p) = vy(p)y".
We already know that y/(x)y(x) is a Lorentz scalar, and so is u1(p)ua(p),
vi(p)va(p). Indeed,

w1 (p)va(p) u (L7 p)S T L)S(Lyva(L ™' p)

= m(L ' pva(L 7 p). (2.263)

Hence to find the result we can go to rest frames where

1 0
—0 —1
ul/Z(m/O) = V2m ol’ u—l/Z(m/O) = V2m ol
0 0
0 0
v12(m,0) = V2m (1) , vo12(m,0) = V2m 8 . (2.264)
0 1

These relations imply that 4-spinors are linearly independent. They
form a complete basis for any Dirac bi-spinor.

Consider the operators

A (p) = Y umap)iia(p) (2.265)
A
A () = D i), (2.266)

A

Index A denotes different spin projection

("degrees of freedom"). We have 1 = i%

with yqp = ((1)) and x_12 = ((1)) being
eigenvectors of S3 = %0'3 because

1 P

503X = S XA (2.258)

Depending on literature, one can also
finds notation A = +1 or A = {1,2}.
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Note also that

£Tr(y* py)
2m

Tr (A*(p)) =

L P
T 2m T

where we used the fact that

Try* =0.

+2

We will show some properties of these operators now.

A Puap) = > uy PRT(Pua(p) =2m Y 1y (p)S 1y = 2mu(p).
vy A

A (pvap) = Yy D) iz (p)va(p) = 0. (2.267)
/1/ %,—/
0

By comparing this with action of the operators (y*p,, + m) we find out
that following identities hold

At (p) = ) uy Dy (p) = ¥ pu+m, (2.268)
<

A(p) = Y va(pIva(p) = ¥ pu — m. (2.269)
A

Let us now define the operators

Yipu +m _ A ()
2m (2.270)
-(Y'pu—m) A (p) . _
2 = om AW
m m

These operators are projection operators as they fulfill the necessary
conditions for projection operators, in particular:

(Y pu £m) > (P pu)? £ 2y pum + m?
S e Z
) o 2m : 4m? (2.271)
_x=(YHpuEm)
- om =A (p) ’
AT (p)+A(p) =1, (2.272)
A*AT =0 (2.273)

Above projection operators project over positive and negative energy
states.

2.10 Electromagnetic Coupling of Electrons

Non-relativistic Charged Particle

For a free particle of a mass m, the Hamiltonian is given as Hy = p?/2m.
If the particle has a charge ¢, then in the presence of an electromagnetic
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field the Hamiltonian becomes

(p _ QA)Z Using minimal substitution (minimal cou-
H=—"—+q¢, (.274)  Pling).
2m

where A (¢) is the vector (scalar) potential.

Moreover, we also have to insist on a gauge restriction V-A = 0

(so called Coulomb gauge). The magnetic field is connected with the Since E = -V¢- %4, VxE = -8
vector potential via B = V x 4, so a situation of zero electric field thanks to the fact that V x (V¢) = 0.
and constant magnetic field can be expressed for example as ¢ = 0,

A =1B(-y,x,0)and B = (0,0, B).

To the first order in ¢, the Hamiltonian becomes

1
H=o-|p"- 9pA+ Ap)] + O0(). (2.275)
m C

In quantum mechanics, pA # Ap, but we can relate these two expres-
sions via piAi = Aipi + [pi/Ai]/ where [pi/ A,] =—ih [Vi,Ai] =—ihV-A =

0 (using Coulomb gauge condition). Then Generally, the commutator of a function

2 f with the derivation [%,f ] is equal to
H = é’_ — iAp + 0(q2)' (2.276) % since (operating on a function u)
m mc
d | [d _pdu _
. N e} u—(a(fu)) =
Evaluating explicitly df du  du [df
(e r e = ()

1 B B
A-p= EB(_yr X, 0)(Px/[7yfl’z) = E(xpy - ypx) = ELZ' (2'277)

Thus we can write the Hamiltonian as composed of two parts H =
Hy + Hgym, where

Hpv = —-1B-L. (2.278)
2mc

It is conventional to write this as

Hom=-2"L g ol B-_u.B, (2279)
2mc h h
where ug = ehi/(2m,c) is the Bohr magneton (m,. denotes the electron
mass). We call g the g-factor (here g = 1) and p the orbital magnetic
moment of an electron. The term y = gug, which relates magnetic mo-
ment and angular momentum of a particle, is called the gyromagnetic
ratio.

Atomic physics tells us that (i) electrons have spin and (ii) the gyromag-
netic ratio for spin is twice the gyromagnetic ratio for orbital angular
momentum (i.e. g = 2). As we will see later in this section, the great
achievement of Dirac was to show that his equation predicted these
results.

Minimal Electromagnetic Coupling

In the classical (non-relativistic) physics, we "substitute" a momentum
pwithp-2A(ifh=c=1,-iV— -iV-gA,ie. V- V-igA).
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When considering a relativistic situation, we have to work with the
four-potential A,. The minimal coupling prescription is then given by

p,u - p[l - qA;l/ a/J - aﬂ + iCIA,,, (2280)
where p* =i % or py = ia%, respectively.

We can impose the gauge condition d,A* = 0 (Lorentz gauge), thanks
to which [d,, A*] = §,A* = 0.

The Dirac equation for a particle of a charge g becomes iyd — iy(0 +
iqA), therefore

liy(0 +igA)—mly(x) =0 & [y(p—qA)-mly(x)=0. (2.281)

This equation is still Lorentz covariant since both vector expressions
transform in a same way; i.e.

3, = LYo, AL(x)=LYAx). (2.282)

If we multiply (2.281) by [y(p — gA) + m]¥(x) = 0, we get

{ly(@— qA)P - m?} y(x)

= [¥"Y (Pu — 4A) Py — gA) - m?| Y(x) = 0. (2.283)
We can rewrite the product as

YY" (pu — qAL)(py — qAy)

1 1 1 1
(EY”YV - 57”7" + 57“7” + 57”7" ) (pupv + @ AuAy — apuA, - qupv)

1 1 1
(E Y+ 5 [y”,yv]) [pypv + P AL A, - E(qpyAv +qAupy)—

1 1 1
_E(QPVA/J + ‘]Avp,u) - E(qp,uAv - unpv) + E(quA/J - CIAVP/I)} , (2.284)

where we have split each term into its symmetric and anti-symmetric
parts. Now, since for a symmetric matrix A = (g;;) and an anti-symmetric
matrix B = (by;), the relation a;;b;; = 0 holds, and using the defining
relation for the Dirac algebra (2.68), the product further equals to

g (%(pu - qA;z)(pv -qA))+ %(pv - aAv)(pu - qul)) +

q% ¥, 7] (—% [Pu, AV] + % [Py, Aﬂ]) =

(p - qA)z - % [7’1/ VV] ([8;11 Av] - [61// Ay]) =

. iq v
(la - qA)2 - Z [7’1/7 ](a,uAv - 6VA/1)'

If we recall the definition of the electromagnetic tensor Fj,,, we can
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finally write Eq. (2.283) as

{(ia — gA)? - izq (Y, Y] Fuy = mz} ¥ (x)
- {(ia _gA? —m? - go—WFW} w(x) = 0,  (2.285)

where we have used the expression for the commutator of two gamma
matrices, i.e. 5 [y*,y"] = oH”.

The first term is what would be the energy from minimal coupling to
the Klein-Gordon equation. The second term reflects the spin of the
electron (which is not present in Klein-Gordon equation). The term
o F,, is a spin coupling to the electromagnetic field.

If we take F°' = E' and F¥ = gkimB,, (where klm is an even permuta-
tion of 1,2,3), we get

{[(p - qA? -m?*| = gEB +iqa - E} y(x) = 0, (2.286)

where a = yy.

As anon-relativistic limit, consider now slow electrons passing through
weak, slowly varying electromagnetic fields. Assume no high mo-
menta in the Dirac equation, then

(p—qA)? = (p° - qA%)? - (p — gA)? = {po =H+m}
= (H - qA” + m)*> = (p — gA)* ~ m* + 2m(H - qgA°) — (p - qA)?,

where the non-relativistic Hamiltonian H is effectively small in com-
parison to m, and so we neglected the second order term H?.

Then for ¢ = A° we insert the previous relation to our equation (2.286)
and get

{2m(H - qg¢) — (p — qA)* - gEB +iga - E} y(x) = 0,

which implies

_ 2
- (”2—‘“‘) v b+ 2i23 —iaE|y. (2.287)
m m

Hy
This is effectively the non-relativistic Hamiltonian which emerges
from the Dirac equation. In the absence of an electric field and in the
presence of a static magnetic field, the Hamiltonian takes the form

_p-q4? q

H
2m 2m

rB. (2.288)

By realizing that the large component of the Dirac bispinor dominates
in the non-relativistic limit,

(P-qA? 4
H |large comp. = — 5 T m

oB, (2.289)
2m m

where we recall that the spin operator is equal to § = 0.

41
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Exercise: Consider a relativistic particle
of a charge ¢ moving in a central poten-
tial for which the Dirac Hamiltonian is
given by

V) o1y
C

=po=ap+p+

Q‘m>

where @ = 9% and B = mecyy and
V(r) = q¢(r) for a particle in an elec-
trostatic field. Show that L. = # x p is
not a constant of the motion, but J =
L +8is, where S; = 64 = %sijkcrjk =

n (i 0
210 o)

A more general coupling leads to dipole
and higher multi-pole terms. If we
would add e.g. term o*” F,,,, it would
provide non-minimal coupling.

Recall the origin of the non-relativistic calculation, where we assumed
H = Hy + Hgpm. Now we have

Hiv = -2 BL+2-L 5B, (2.290)
2m 2m

where the two factors in front of the scalar products are the gyro-

magnetric ratios for the orbital angular momentum and for the spin-

angular momentum, respectively. Neglecting sign, the orbital gyro-

magnetic ratio for the electron is equal to ¢/2m (the Bohr magneton),

whereas the spin gyromagnetic ratio equal to e¢/m (twice the Bohr

magneton)!

Various Important notes related to Dirac Equation

In this section, another approach to the description of coupling of a
relativistic electron to an electromagnetic field will be given. We will
start directly from the Dirac equation.

The minimal coupling prescription tells us to replace

Pu—Pu—qAu =1, < 0, d,+iqA,, (2.292)
where p, is referred to as the canonical momentum and I, as the
kinetic momentum. The Dirac equation then takes the form

(id — qA —m)y(x) = 0, (2.293)
where g = —|e| is the electron charge.
This can be written in the Schrodinger form
i = a(-iY - gA)+ B+ g1y
= lap+pmly +[-qaA +qdly
= (Ho+ Hint) ¥ - (2.294)

To extract more physics, let us concentrate at the non-relativistic limit.

We write ¢ = ("D) and use the Dirac’s representation. Then from
X

iaa—‘t” - [(2 ‘5) (=iV — gA) + (‘”’g’” q¢0—m)] y,  (2.295)

we get two coupled equations
i(??—(’: =0 -y + qopp+mey, (2.296)
iaa—)::0'~l'[<p+q¢/\(—m)(. (2.297)

Similarly as for the free particle we pass to the limit by factoring from
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¥ the fast oscillating factor, i.e.

cf)ee) e

where we expect that ¢ and y are changing slowly in time. So the
equation (2.297) reduces to

06
za—": = o Ij+qé@, (2.299)
ox L g _

ZE = o-Ng+qpy—-2my, (2.300)

where in the second equation the 2m y term dominates over id i /dt. So,
the second equation may be approximated for kinetic energies

. oll _ g¢ _ oll
= 2m"0+2mX ngo, (2.301)

where the latter approximation holds thanks to the fact that the inter-
action energy g¢ is much smaller than the rest-mass energy mc?, so
qé/2mc* < 1.

Inserting this into the first equation, we get

i%:(w)ww&%ww’ &. (2.302)
m m

This can further be reduced by using an analogue of the well known
identity identity

(o-a)(o-b)

a'iO'jaibj = (6ij+ieijk0'k)aibj

a-b+io-k(a><b)k

a-b+io-(axb), (2.303)

which is true only if @ and b are c-numbered vectors. For operators,
this identity must be modified. In particular, if @ and b are generic
vector operators we should write

(o-a)o-b) = }1 {O'i,O'j} {ai,bj} + 31 [O'i,O'j] [a[,bj] , (2.304)

where we used the decomposition into a symmetric and an anti-
symmetric parts. Specifically for the scalar products of o with the
kinetic momentum, we get

1

(o - I)(o - ) 1

254 {Hi,nj} + }IZiEiij'k [Hi/Hj]

1.
= Mm%+ Elsijko'k [pl- —qA;, pj — qu]

1.
= T2 Sieyeq ([pr, Aj] + [Arps])
5 1
= | | qu-keijk (VlAj - VJAt)

= M?-qo(VxAp =I7-go-B. (2.305)

Notice that (VX A)r = eximO1Am, i.e.
2AVX A = ekim(01Am — Om Ay).
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Note that the only spin dependence is
through the interaction with a magnetic
field o - B.

The current result is equal to g/2 =
1,0011596521....

Exercise: Determine the energy levels in
a uniform magnetic field (relativistic gen-
eralization of Landau levels).

Thus, the first equation finally becomes

08 _|(p—q4)? qo-B

o o o T4%| ¢ (2.306)

which is nothing but the Pauli equation of the non-relativistic quantum
physics. Hence we gain certain confidence that we are on the right
track.

Restoring the factors 7 and c,

B
Hyac = —Z%Ca-B - _u-B, (2.307)

where u is the magnetic moment. We remind here that ¢ = gup ‘%,
where up is the Bohr magneton, g is the g-factor and gus is the gyro-
magnetic ratio. Since the latter equals 2ug, g = 2 must hold.

The fact that g = 2 is a nontrivial prediction of Dirac theory derived
within the non-relativistic context of the Pauli equation.

The g-factor has now been measured to something like 12 figures of
accuracy and it is not precisely 2, it differs by a tiny amount. The
understanding of the difference goes beyond simple Dirac theory into
quantum field theory.

2.11 Representations of Gamma Matrices

We have the following Clifford algebra
vy = 28" (2.308)

Further on, we will explore different representations of gamma ma-
trices. First, we will note that there exists a fundamental theorem of
Clifford algebra:

Theorem 2.11.1 If two distinct sets of y-matrices are given, that both
satisfy the Clifford algebra relation

0 y"y = 28", (2.309)
then they are connected to each other by similarity transformation
yH = §TIyHS. (2.310)
If, in addition, the matrices are (anti)unitary (as in our particular case
¥ =907, 0y = yiT90 which implies y* = —y'") then S itself is unitary,
ie.
yH = Uy U. (2.311)

This transformation is unique up to a multiplicative factor of absolute value
1.
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Let us now review most typical representations of y-matrices. Before,
let us recall what Pauli matrices look like

0 1 0 —i 1 0
0'1—(1 0),0’2—(i O),O‘3—(O _1). (2.312)

Dirac’s Representation

First representation of y-matrices in known as Dirac’s representation
and it is given by

1 0 . 0 o 01
0 _ i _ [ 5 _
7 _(0 -1)’7 _(—07 0)’7 ‘(1 0)' (2.313)

By using properties of tensor product, we can conveniently rewrite
those matrices as

y020'3®1,y:i0'2®0', y5:0'1®1. (2.314)

This representation is particularly convenient for taking the non-relativistic

limit, e.g. for a free particle we have already seen that in this represen-
tation
(Uj{ ) iy (XNR) . (2.315)
E+mAX 0

The corresponding Lorentz group generators, as we know, have the
explicit forms

e IMKTk 0
S(R) = ( 0 e—énkcrk)’ (2.316)
S(B) = Eﬂ 1 gﬁ-% (2.317)
BT '

Chiral (Weyl) Representation

Another well known representation is chiral representation given by

0 1 ; 0 o -1 0
0 _ i_ i 5 _
Yy —(1 0),)/ —(_ i 0),7 —(0 1). (2.318)

And again, we can rewrite this representation in terms of tensor prod-
ucts as
YW=0®l y=ineo, Y’ =391 (2.319)

This representation is important for description of massless spin 1/2
particles. Even more, it is important for the discussions about Lorentz
group. Recall that

S(R) = e 2@uE = gmiwijot (2.320)

isfies Clifford algebra relation and are
(anti)hermitan, then also y’# = UTy*U
also satisfies those relation and are
(anti)hermitian and vice versa. Problem-
atic part is to show existence and unique-
ness of U.
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Recall that (xoq ® 1)(ion ® 03)
(zio10p @ 03) = F03 ® 03.

with o/ = %[yi,yf] and IV = %&'jk (0(—)]{ o(_)k) By defining
= %gi,szk =L (2.321)
we get -
S(R) = &0 = (”Z"” eég(igk) = e

It has the same structure as in the Dirac’s representation, because ¥,
i =1,2,3 remain the same.

General boost is given by
S(B) = e~ i@ (2.323)

For instance, for a boost in 3rd direction

Flo
S8y = b - [
0 et

p= O

03) . (2.324)

It seems we do not need to work with bispinors, but it would be
enough to work with spinors only. This, indeed, is true for massless
particles. For massive particles the issue is more complicated and is
related to parity and time reversal. Next, we will focus on discrete
elements of Lorentz group.

Space Reflection (Parity) Transformation
Parity transformation is acting on 4-vector as follows:
= (1, x) D 6 = (1, -x). (2.325)

From this we can see, that this transformation has matrix form of

1 0 0 O
0 -1 0 0 ,

LY, = 0 0 -1 ol° " =g, (2.326)
0 0 0 -1

This satisfies the defining property of Lorentz group
La'ugvaV,B = g(zﬁ/ (2327)

and hence it is an element of Lorentz group. We can also see, that
det L = —1. With respect to the Dirac equation covariance, we require
that

S(ILPyHSWLP)y = LY #y”. (2.328)

In this case, we cannot solve the equation in terms of infinitesimal
transformations. Fortunately, it can be solved directly. In this case note
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that
SLPyy*s~ (LP) = —(—1)%m0yH (2.329)

Using the fact, that {y°,y#} = 2g%, we obtain that
Yoy = =y + 28
- 142-1=1, m=0 (2.330)
==y m#0,m=i.

Take S (L?) = y°, then (2.329) reduces to the

YOpHy Ol = ) 0yhg)0 = _(_1)8v0y, (2.331)

Most generally, we can chose S (L) to be
s (L”) = 61?0, (2.332)
Then transformed wave function takes form

W (x) =y (=x,1) = &Y (x,1). (2.333)

This can be rewritten as

Up(x) = /(X)) = ey (x, 1) = y (L7 x). (2.334)

Here y,(x) is a spatially reflected bispinor. If one requires that after
two reflections one gets to the original state, i.e.

S(EP)u0) = v(x) = ey 2(x) = ey() = u(x),  (2.339)

then this implies that ¢ = 0 or ¢ = 7 ( mod 2x). Thus in this case we
take
s (LP) = 49" = 1,9°, (2.336)

where 7, is an internal parity, another quantum number of particle.
For rotations, we know that

—%940’ 0

Y'(x') = SR (x) = (e 0 e_;,,.(,)w(x). (2.337)

Thus for 27 rotation around second axis we get:

e imo3 0

0 e—ino’3

S(R, 0 = 2, around 2-axis)y(x) = ( ) Y(x).  (2.338)

Under parity transformation the positive Dirac wave function of mo-
mentum p transforms as

u(p, Ve P* — yOu(p, e P*r = u(p,, 1)e "Pr~. (2.339)

Rewriting this in more detail and recalling that in Dirac representation

Note that 6,0 and y* are not Einstein
summed.
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Recall that e~i793
isin(mr)os = -1.

cos(m) +

1 0 Xa
0= I :
y (0 _1) and also u(p, 1) « (gf:n)(/l)

. =1 -0 =lop, . (2340)
(0 Y\ \zmxal  \zmmixe
That is, the spatial part of the momentum has been reflected, but the

spin state has been unaltered. Which is what we would expect from
parity transformation. For negative energy solutions we would get

v(p, DeP* — yv(p, D)e'P¥r = —v(pp,/l)ei”"x. (2.341)

Using the same argument as for positive energy solutions we can see,
that positive and negative energy solutions have relative opposite
parities. After the reinterpretation of negative energy solutions this
will mean opposite intrinsic parities for particle and antiparticle.

Parity of a Scalar Particle

For a complex wave function ¢(x) of a relativistic scalar particle

B(x) = npdp(x), (2.342)

with ¢, (x) = ¢(x,,)". E.g. for a state of definite momentum ¢(p, x) =
e~'P* we get that

¢p(p, x) = {e7P P} = ¢7PPX = ¢(p,,, X). (2.343)

Now, consider 2r rotation not around second axis:

S(R,0 = 27, not around 2-axis) = ( 0 _01) w(x) # (3 (1)) v(x).

(2.344)
Hence, one should rotate by 47 around to get original bispinor. 4x
rotation can be analogue of 4 reflections by assuming, that only after 4
reflections the electron will be in its original state y(x). Thus we finally
get that

S (LP) w(x) = iy yw(x) = iy u(x). (2.345)

Time Reversal

Time reversal transformation action on 4-vector can be described as
X = (1, x) 5 6 = (—t,x). (2.346)
This transformation has matrix form of
-1

LY, = =-g"=-g,. (2.347)

o O = O
O = O O
_ O O O

0
0
0
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This again satisfies the defining property of Lorentz group
L) gL 5 = 8ap/ (2.348)

and also detL = —1. Again, we can see that L," is an element of a
Lorentz group. Under the time reversal transformation, the following
quantities are transformed as

T T T
vovr=-v, popr=-p, J—oJr=-J. (2.349)

In non-relativistic quantum mechanics we know that the complete
effect of a linear operator can be determined by specifying its action on
a basis set of the vector space of physical states and then its application
by exploiting the linearity of the maps. Similarly, the complete effect of
an antilinear map can be determined by specifying its effect on a basis
and extending the results using its antilinearity. Take for instance the
momentum basis |p). Then T |p) = |-p). A generic state then would
look like

Wy = u(p)Ip). (2.350)
p
From this we can see, that effect of time reversal is then
Tlw) =T ) 4p)Ip) =) 0" )T Ip)
p p

=XV @-p) =D 0 p)p) (2.351)
P p

= > 0rp)Ip) = lyr).
p

Hence we see that y7(p) = y*(—p) for scalar wave functions. If the
state |¢) = %, #(p) |p) is defined similarly, then the scalar product

(@) = > 8 @)Wp) =) ¢ (-pWi(-p)
p p

*

(2.352)

= [Z o(-p(-p)| = [Z ¢r(p)Wr(p)
P p

=(orlyr)".

In order to get x-representation of our wave function we can apply
Fourier transformation as

Yr(x) = / yr(p)e™?*dp = / Y (=p)e”P*dp
4 Bt (2.353)
=/!lf*(p)e"’"‘dp = [/w(p)e"”"‘] =y (x).

In line with non-relativistic quantum mechanics, the effect of time
reversal on the Dirac wave function can be written in the form

Yr(x) = By (x7), (2.354)

where the matrix B acts on spinorial indices.

To find B we complex conjugate Dirac equation and take xp — —xp.

wT(xr 1) = [efthW(x/ O)]
= [ y(x,0)]" = v (x,~1) = ¢* (7).
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Matrices again satisfy Clifford algebra,
hence there exists similarity transforma-
tion.

This implies that
(iyo*c?, iy - m) v (xr) = 0. (2.355)
If we assume that the matrix B is defined so that
B (?’0*, _yi*) Bl= (yolyi) ) (2.356)
then with the definition of y7(x) in (2.354) we get
0=B (i70*6, — iy - m) U(xr) = (Y0, —m) yr(x).  (2.357)

So that yr(x) satisfies Dirac equation if y(x) does. Using the fact that

YW=y = ¥ =57, (2.358)
Yi=—y = ¥ =T, (2.359)

and
CyHTC7 ! = —yH, (2.360)

where C = iy’y? is a charge conjugation matrix (which will be derived
further on) we can write B in the form

Oy iy'y? = nryly?

B 0 0.1 0 0.3 B oy 0 (2361)
=nr ol 0 3 =Tnr 0 o)’

B =nrysC = inry

- 0

where 77 is intrinsic time reversal, i.e., another quantum number of the
particle (similarly as is intrinsic angular momentum — spin). Indeed

BY"B™ = y5Cy"TCys =9, (2.362)

By"B7! = —y5Cy'TC 5 = -, (2.363)
Since we require 7% =1we get

2

172 O) =21, (2.364)

BY =1 = 22

where we choose 17 = £1. The situation is the same both in chiral and
Dirac representation. Also, it can be easily shown that

BT =-B, B* = -B7. (2.365)

2.12 Charge Conjugation

Last of discrete symmetries is a charge conjugation, which

e — —e. (2.366)



This is best discussed when electromagnetic field is coupled via mini-
mal coupling, i.e.

[(id - ed) —m] y(x) = 0. (2.367)
Charge conjugated wave function . (x) must satisfy
[(id + ed) —m] ye(x) = 0. (2.368)
Note that from (2.367) follows that
(@) [=iy?t 8, — eyt A, - m] - 0. (2.369)

By multiplying this equation from right by y° and using y%y7y? = y
we get

W [ ~in B — ey Ay - m] =0,
¥(x) iw"ti +ey A +m| =0, (2.370)
[iv*T 3 + ey TA, +m] ¥ (x) = 0,
[~y T3, — ey T Ay —m] ¥ (x) = 0.
We might therefore assume that
Ye(x) = CY (x). 2.371)

C must be chosen so that ¢, satisfies Dirac equation with opposite
charge. From all above we get that

(—iC(yﬂ)Tc-la,, —eC(Y")TCTA, - m) We(x) = 0. (2.372)
Assuming C satisfies
CH)TC™ = -4, (2.373)
we get
(iy“(?u +eyto, - m) Ye(x)=0 (2.374)
(id + ed —m)ye(x) =0. )
When y(x) satisfies (2.367). It can be checked that
C=iy"? = (.0 ’“2) . (2.375)
ion 0
C Matrix in Chiral Representation
In chiral representation C matrix is given by
0 1 0 o2\ _ (—ion 0
ol )5 ) e
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C exists due to the Pauli theorem.

Often C is taken as C = iy%y".
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Note that
C=-Cl'=-C'=-CT. (2.377)

Yc(x) describes particle with the same mass and the same spin di-
rection, but with opposite charge and energy. Change conjugation is
antilinear transformation. Let us compute ¢ (x) for y(x) describing a
spin-down negative energy electron at rest in absence of external field.
Begin with

w(x)=e™| |, (2.378)

_ o O O

and take C = iy?y". Then y.(x) can be written as

Ye(x) = 1eCY" = iney YW (YT = n.CY°Ty* (x) = e (—y°)Cy (x)

0 1
= nc(=y)iy?yOe ™ 8 = e ™ 8 :
1 0

(2.379)

2.13 Dirac’s Hole Theory and Positron

Although we have shown that the Dirac theory accommodates nega-
tive energy solutions whose existence should not be ignored, we have
as yet not examined the physical significance of those solutions. Let
assume that real electrons are described only by positive energy states.
These are the states with E = /p2 + m?. All states of negative energy
are occupied by electrons - one electron in each state of negative en-
ergy and given p and spin projection A. In this way a real electron of
positive energy is prevented from falling into energetically lower and
lower states by radiation emission. This so called radiation catastro-
phe is averted by Pauli’s exclusion principle, which prevents these
transitions.

One might ask, what is the meaning of a hole in the occupied "sea" of
negative states. In absence of any field (electromagnetic, e.t.c.) the
vacuum represents the lower continuum ("Dirac sea"), whole states are
completely occupied with electrons. Occasionally one of the negative-
energy electrons in the Dirac sea can absorb a photon of energy fiw >
2mc? and transit into positive energy states. As a result, a “hole” is
created in the Dirac sea. The observable energy of Dirac sea is

Eops = Evac — (_|Ee|) =Eyuc t |Ee| (2380)

E,qc has increased, hence we expect that the absence of a negative-

energy electron appears as the presence of a positive-energy particle, a
hole.

Similarly, when a hole is created in Dirac’s sea, the total charge of the



Dirac’s sea becomes
0 = 0vac —€ = Qvac — (—le|) = OQvac + lel. (2.381)

Hole in the sea of negative-energy states looks like a positive-energy
particle of charge |e|. Once we accept that (a) negative-energy are com-
pletely filled under normal conditions, (b) negative-energy electron
can absorb a photon of energy > 2mc? (just as a positive-energy elec-
tron can) to become a positive-energy, we are unambiguously led to
predict the existence of a particle of a charge |e| with a positive energy.
This particle is called positron.

We may also consider a closely related process
ep0 = €rot+27, (2.382)

which is allowed when a hole is present in Dirac’s sea. We can relate
this to another process

€ps0t €hso — 2, (2.383)

i.e., process when both electron and hole/positron disappear and two
photon quanta are generated. This process, called e”e* annihilation is
often observed in solids.

Absence of momentum p¢ in the Dirac sea appears as a presence of
—p¢ momentum. Thus

P =Pvac — pel (2384)
or equivalently the moment of hole/positron is

Phole =P — Pvac = —P°. (2.385)
Similarly, the absence of spin up E < 0 electron is a presence of spin
down E > 0 positron. We can summarise the changes in dynamical
quantities in the table below.

| 2 | E|p| S | &
E < OElectronstate | —le| | -|E| | p | 3= | 2k
Positron state +le| | +IE| | -p | -2z | ix. %

2.14 Antiparticles

It would seem that only fermions can have antiparticles, in fact rela-
tivistic mechanics forces us to introduce antiparticle for any particle (be
it boson or fermion). Striking feature of the Lorentz transformations is
that they do not leave invariant the order of events.

E.g. suppose that event at x; occurs later that at x1 (i.e. xJ > x}). A
second observer who sees the first observer moving with velocity v
will see will see the event separated by the difference

x'z0 - x'l0 = Loi(v)(xé - xﬁ). (2.386)

2.14 Antiparticles 53

Even though the spectrum of energies is
identical for Klein-Gordon particle. Exis-
tence of Pauli exclusion principle means,
that no Dirac vacuum can be formed.

Table 2.2: Comparison of properties of
negative-energy electron and ensuing
hole/positron
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"Lorentz Boost Parametrized by Velocity"

For boost we can show that

i i (y-1
L i= 6]- =ViV; 2 (2387)
L’ =N\ =yv. (2.388)
L’ =y. (2.389)
Further on we can see that
xy) = x) = y(x9 = x9) + yv(xs - x1). (2.390)
This is negative if
v(xz —x1) < —(x3 - xY), (2.391)

which is a seeming paradox. Suppose that 1. observer sees a radiation
decay A — B+ C at x1, followed by absorption of particle B, e.g.
B+ D — E at x». Does the 2. observer then see B absorbed at x; before
it is emitted at x1?

The paradox disappears if we note that the speed |v| < 1, so that

(x5 = x%) < —v(x2 —x1)
% = %% < [p(x2 —x1)| < [V][|(x2 = x1)]| (2.392)

0_ .0
lxy — 7] < I(x2 —x1)|

But this is impossible because to travel from x; to x; would require
the average velocity greater than 1 (that is > ¢). Since
lx2 — x|

(2.393)
|x) —x

1
Temporal order raises no problem for classical physics, but it plays an

important role in quantum theories.

The uncertainty principle tells us that when we specify that a particle
is at position x1 at time #;, we cannot also define its velocity precisely.
There is a certain chance of particle getting from x; to x; even if
x1 — x7 is spacelike, i.e. |x; — x2| > [x{ — x}|. To be more precise, one
can obtain from QM commutation relations (setting (71, x1) = (0, 0) and
(t2,x2) = (t,x,0,0)) that

=2

’ ’ H
ct?-x? =22 -x*+ hzczT, (2.394)

~2 a2 . .
here H = p?c? + m*c*. Since H” > m?c* (in the sense of eigenvalues),
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we get for a time-like (or light like) interval ¢2¢? - x? > 0 that

iy =2 22

0<ci?-x? = H-x*+ thZ‘H4 < AP -x+ 4h ZC 2
m-=c
1 2
= Cztz — xZ + (E) . (2395)

Here 1 = - is the Compton wavelength of the particle.

Consequently, the particle can propagate over space-like interval pro-
vided that

2
1
0>c??-x2>- (E) . (2.396)

Generally, the so-called Weinberg formula holds in this case

2
0> c(ta—1)* - (x1 —x2)* > - (g) . (2.397)

Such space time intervals are very “narrow” even for elementary
particle masses, e.g. if m is the mass of proton, 1 = 2-107* cm. We are
thus faced again with a paradox; if one observer sees a particle emitted
at x1 and absorbed at x,, and if the Weinberg formula is satisfied, then
a second observer may see the particle absorbed at x, at a time 1,
before it is emitted at x; at time #1. There is only one known way out
of this paradox. The second observer must see a particle emitted at
x> and absorbed at x;. But in general the particle seen by the second
observer will necessarily be different from the first one.

For instance, if the first observer sees a proton turn into a neutron and
positive m-meson at x; and then sees 7* and some other neutron turn
into proton at x;, then the second observer must see the neutron at
x5 turn into proton and a particle of a negative charge, which is then
absorbed by a proton at x; that turns into a neutron. Since the rest
mass is a Lorentz invariant, the mass of the negative charged particle
seen by the second observer will be equal to 7.

For every type of charged particle there is an oppositely charged
particle of equal mass.

"Feynman-Stueckelberg Interpretation"

Uncertainty relations allow a particle tunnel from time-like to space-
like regions. In Feynman-Stueckelberg we assume that antiparticle
is particle with negative energy, mass, charge and spin moving
backward in time.

2.15 Central field problem: exact solution (fine
structure of atomic spectra)

Let us consider Dirac’s hamiltonian describing a particle in a cen-
tral scalar potential. The energy eigenvalue equation and conserved

This conclusion is not obtainable in non-
relativistic quantum mechanics, nor in
relativistic classical mechanics.
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angular momentum are

Hp¥Y=[a-p + Bm +V({)|¥Y =EY
—— ——

. 0 o1 0
Dirac rep.
o 0/10 -1

J =rxp+6
N~ ~——
Conserv. anpitalamentar momenta

Correct notation &¢ = %e}kyjyk i - &

€2 = 1, a = -1)= gi = Eeijky]y - 4Eijk\_[yj'7_/]

ol = e (-eg ol = iniTed «
o

i

(2.398)
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that
HY = E¥ +— ¢ 2/ {3l o= 3™y = o=ty
= if e 2l getlwe” — g
= [Juw;H] =0

i

= ¥'(x) = e 2" P(x) ()

same argument

(2.401)

so if J,, is a conserved angular momentum ¥ must transform as
)

In particular not 3oy, nor i(x,d, — x,d,) are conserved separately.

The first thing to note is that {Hp;J 2, Jz} may be simultaneously
diagonalized. In both Weyl Dirac representations of the y-mat. & is
diagonal and the angular momentum operator acts in the same way
on the upper and lower bispinor components

L+ico 0 pt
JY = ( 02 L+ %o-) (‘P‘) (2.402)
Proof:
o | {Im V() ok og-p (L + lo 0
(Hp; 1 = ( o-p [V(r)—m]]IzXz)'( 02 L+%0')]

=l p+pm o= SDN+[a-p+ V(YT xp]

e |-t e, B )
op m)'\0 io/| \ic po 2o lo (o p) 2o
L e N
Ho-piol 0 o olp: 0
=i a?(p o-gp)ziaxp

B:la-p+V(r);rxpl=[V(r);rxpl+a-p;rxp]

a) b)
L . o . L o . . ird oV
a): [V x pl = €5V rp/) = €577 [V(r); pl] = €47 (imvv)) = AT =0
N . X —_—— r or
i9;V(r) antisymsf_/

sym.
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b) : [V(r);r x ple = '™ [p';r'p™] = o' ™ [p'; 1] p™ = —ia ™ P = ~i(a x p)
N———
-is’!

= [Hp;J] =0 == [H; J*|& = [H; J/]

Also trivially [J?; Jz] = 0.

Consequently, a Dirac spinor angular momentum eigenstates are

JY=j+D)¥;, BY=J¥Y=m¥Y (me(-J,..J)) (2.403)

Must be composed of two-component Pauli spinors with the same
angular momentum eigenvalues

Remember
y=(E* jo 0
0 L+ %0'

There is another operator that commutes with Hp and J. Intuitively, we
expect that we must be able to specify whether the electron spin is par-
allel or antiparallel to the total angular momentum. In non-relativistic
QM these two possibilities are distinguished by the eigenvalues of

o-J=o(L+ %)(*) (2.404)

For a relativistic electron we might try 4x4 generalization of (*), namely
Y- J or 6 - J. Commutator of this with Hp is rather involved.

One might thus try SZ - J, which has the same non-relativistic limit as
X . J.Since

[H; 8011 = 5[HpiB) or [HpE-J1= 3[Hpifl  (2405)
Proof:
(Hp: B J) = [Hp; B16 - + BlHp; &1 - ] = ~2B(a - p)(@ - J) +iBla x p)-J

or

[Hp; BE - J] = =2B(a - p)(E-J)+2iB(a X p)-J
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since

(@-p)E-J)=(1®0-p)Iec-J)
= (1 ®(o-p)o-J)) =o1®00pl;

1 1
=0 ®(§ {oioj} + E[O'ia'j])pijj
——

N———
26;;

i€jk Ok

=(@p-J)+i(o1®0-(pxJ))

Yop-J ia-pxJ

=[Hp; BE - J1 = =2By°pJ - 2Blia - (p x J)) + 2if(a x p) - J
X X
==2py°pJ = -2By°(p - (L+3)=-28y’p - 5

1 1
= -2B(0 ®0')'P§ =—pa-p= E[HD/'ﬁ]

Therefore an operator k is defined as

B > 1 ¥ 1
k=pE-J-==BE(L+=)-2)=BEL+=—-2)
B 32 1ﬁ 27 2 B 2 2 (2.406)
=,8(ZL+§—§)=/3(ZL+1)

Does commute with Hp: [Hp; k] = 0. Furthermore, since J commutes
withpandZ-L = [J;k] =0= [J%k] =0.

= For Dirac’s particle in a central potential we can construct a si-
multaneous eigenfunctions of Hp; k; J 2 and J.. The corresponding
eigenvalues are denoted by E, —K, j(j + 1) and m.

Note that K and j are not totally independent (similarly as m €
[=j;JD-
Consider first

K>?=BE-L+1)BE-L+1)=p*X-L+1)

i J
@D n+z-L+1=| o7 O LiLj+2%-L+1
0 o'J\0 o/
olod 0
=l 0 o'/ |LL+22-L+1=L2+iZ%eV*[,1; +22L +1
. ‘
8% +ielik gk

=L?>-XL+2XL+1=L*+XL+1

(2.407)
At the same time, since
z 2 x?
JZ=(L+E)2:L2+§Z~L+Z=L2+Z-L+Z (2.408)

We have K2 = J%2 + }1.
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= eigenvalues J? and K? are related to each other by
2 _ s 1. 15
K :(](J+1)+Z:(]+§) (2.409)

=>IK== ( Jj+ %) = K is a non-zero integer which can be both positive

and negative.

K is explicitly given by

(2.410)

e [oL+1 0 \_(oJ-1 0
0 -oL+1) "\ 0 -oJ+3

Note:

Pictorially speaking, the sign of K determines whether the spin is
antiparallel (K > 0) or parallel (K < 0) to J in the non-relativistic
limit.

(picture)

= if the four-component wave function ¥ (assumed to be an energy
eigenfunction) is a simultaneous eigenfunction of K, J? and J, then

(cL+1)¥, =-K¥Y,; (cL+1)¥Y_=KY¥Y_

ky=-K¥
and
TV =(L+0/2)Y. o = j(j+ Do
J3‘I”+/, = (L3 + 0'3/2)2‘1"”, = m‘PJr/,
Note:

The operator L? = J°-X-L-3 = <(cL+1)+} = L* = J* -0 -
L- % when it acts on ¥, and ¥_.

1 1
LY, =j(j+1)‘1’++K‘IJ++Z‘I’Jr =>l+(l++1)=j(j+1)+k+z

1
L*Y_ =j(j+1)T_—KT_+}I‘I’_ = L(L+1)=j(+D)—k+

= s0 any two-component eigenfunction of oL + 1 and J? is also an
eigenfunction of L?

Thus, although the four-component ¥ = () is not an eigenfunction
of L2 (since Hp does not commute with Lz) ¥, and Y_ separately
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are eigenfunctions of L? whose eigenvalues are denoted by ,(; + 1)
and [_(I- + 1) resp. This implies that since (for each two-component
eigenfunction)

1,
L’=J)*-0c-L-==J>-R+-=L=J*-L*+=

:>—K:j(j+1)—l+(l++1)+}L

K:j(j+1)—l,(l,+1)+jz

using now the fact that K = + ( Jj+ %) we can determine [, and [_ for a
given K

I, L "ll"able 2.3: Relations among K, j, [, and

.1 .1 .1 _
SRPALNIEAR B
K=-(j+3) |j-5|J+3

For given j; I, we can assume two possible values corresponding to
two possible values of K, so instead of K one can use /, and [_.

After this preliminary we can write ¥ as

v=(y)

where Y7} stands for a normalized spin-angular function (i. e., r-independent

(2.411)

e
ifrYy

eigenfunctions of J 2 J5, L? and of course 62 = (%2)2) formed by the

combination of the Pauli spinor with the spherical harmonics of order
L

Let me remind the Clebsch-Gordan expansion

om0y = e fim = mi 2>GB 2’2>+ﬁ b _m —m1+2>9 2/ 2>
J3=Ls 3= Ly=m;=m;+}
(2.412)

for any /.

more explicitly, when j =1+ %

l+m+31 1 l-m+3% 0
m _ 2 ,mj—1/2 2 ,mj+1/2
=\t (0)+\J 2+1 ! (1) (2:413)
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In spherical coord. x has radial dir.
= x =re;} +0ey + 0y,
=x-p= —ir%

s 1 0
+ € 7sind I

andforjzl—%

l_m+1 -—1/2 1 l‘i‘n’l‘{‘l +1/2 0
Y= | ——— 2y Ayt 2.414
i =\ et t (0)+V 20+1 ) @4

We would like to substitute our solution to a Dirac equation and solve it
for the radial functions and find the spectrum. In Dirac representation
Dirac’s equation splits as:

Hp=[a-p+ Bm +V(r)] = Hp¥ = E¥ =
~——  ——

0 oy (T O
(0 0) (0 ]I) (2.415)

(op)¥- = (E-V(r)-m)¥,
(op)¥, = (E - V() +m)¥_

Note in this connection that

(0 x)(0 - %)
op=T T2 p)

—_————

_1 . 232
Ti0jxiXj = {00 }xiXj=x"=r

= (O-_'Zx)(a-io-j xiph) = @(x .p+io-L) (2416)
N—— r
S yielik gk
= ("r'zx)(—ir% tio-L)=(o-7) [—i% + ”’r’ L]

Note:
(0-x)
r

N——
projection of spin into the unit radius vector

is a pseudoscalar (under parity x — —x;r > r; o0 > o)

( ) 7y = sin 6 cos ¢
og-x . . . )
=0F =7 =sinfsing —(

R ~ le?sind —cosd
7, = cos 6

cosf e ¥sinf
"

First, the effect of (o - L on J7} is simple. Namely, observe

(2.417)

2 :ﬂ(Z‘.L+1)=(0—L+1 0 )
—_—

0 -oL -1

we already know
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= K¥Y - -K¥ » -K¥Y_ = (—oL-1)¥_
= oL¥Y_=(K-1)¥_
and - KY¥, = (oL +1)¥,;
= oL¥, = —(K+1)¥,

It is trickier to calculate the effect of the matrix factor

(o-x) ) cosd e ¥sinf
=gr = i .
r e'Ysinf —cos0

on the spinor wave functions. In principle, we can carry out the mul-
tiplication directly on J77. Then we would have various identities for
spherical harmonics ¥;"(6, ¢).

Note:

(|l,m) =¥"(0, ) = ¥"|Rt)

|7y = direction eigen vect.

((x[n, 1, m) = Ryu(r)¥"(6, ¢))

There is an easier way, however. Observe that o# commutes with J?,
12, §2 (: "TZ) and Js.

Proof:
[o-#;J%] = [ -0 L] + [# - 07; 0% /4] (2.418)
—_— T —
A B
1 2 (o] (o]
A :—oi[x;; L) = —Lj [x;; Lj] +— [xi; Lj] L;
r r r
—i€jik Xk —l€jik Xk
i .
= —[- g (Ljx+xcL;)] =0
r —_—— ———— ——
antisym. sym.

. i
B:[f-o; 0'2/4] = Zl {[O'i;O'j]a'j + 0',-[0',-;07]}
7
= Zl {Zl'EijkO'kO'j + O'jZiEijkO'k}
7
=12 €jk {oxoj+ojor} =0
4 —_—— ———— —
antisym. sym.

o -7, 3] =[o-F;L3|+[F-0;03/2] (2.419)
—_—— —— ——
c D
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i . N
C ZT [x,';Lg] = —1€3j0lj

N——
—iEginj
7 N L . R
D ) (07, 07] = i€arFiok = —iesikFiox = i€k 07k
——
2i€i3k Ok

So o is simultaneously diagonal with J2, J;. Since (o#)* = 1, its
eigenvalues are +1.

Since o F isa pseudo-scalar under rotation, if we evaluate its
S——

pseudo—vectorvector
effect at one particular 7 (say £), it should behave that way for all 7. 2

corresponds to 6 = 0 =

2[+1
Y0 =0,¢) =4 “in Om,0
T

see, e.g. Grandshteyn—Ryzhik

In which case

g1 |elEm+1p2 y"i _ 1 eIz E 172 b2
R BT | TEm+ 12 Y Vi | NIFm 172
or

m- U+1/2 i5m-1/2

- 0=0: R R ;

J];l=j il/z( 0; ‘P) A 6m;—1/2
=

- o i 12 [ £6map

02 mp@=00) = \/; ~Om;-1/2
o J20F6man| . om =0;
= _\/; Smi-1/2] “Yiizja1 (0 =0;9)

or by rotating both sides of the equation to general 7

= (0 -F) Jj’?l:j¢1/2(0; ®) = _er;;:jﬂ/z(e; ®) (2.420)

Thus
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(or)¥_

ilox)( .0 i(k-1) m
T (—laf + P f) Jj,l_
_ox . (0f (k-1)
= (5 " f)

of .. A=k . .,
= ol T 1

similarly

(ox)( .0 . m
(or)¥, = p —ZE+10'L ng/l+

_ox . dg  (k+1)
= ri'l+(l(9r l p g
.08 . .
=15Jj,l_+1

(k+1)

8/

By pluging to decoupled Dirac equation we get

f ( )f - (E V ”l)g (.)
dr r
__g+( )g—(E_‘/+m)f (..)
dr

As in non-relativistic QM we introduce the ansatzes

F(r)=rf(r);, G@r)=rg(r)

are supposed to be non—singular — f(r); g(r)N%, r<<1

dF(r) df df f _1dF(r)
=% Oy et e
dg g 1dG
TR
1d k
() = Sy = (E-VemGlr (1)
r ar r
dr

Note: The spin-angular functions com-
pletely drop out.
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- anomalous Zeeman ef.

- free spherical waves

- exact solution to the Coulomb scatter-
ing problem

- etc.

E = Egin. + Ep()tA +m

classically Ex ;. + Epor. = const for all
p,soifp =0 = const is negativ

= E-m<0= E2-m?2<0
orm?-E2>0

1d k
(o0) = —;d—f+—§;=(E—V+m)F/r /(1)
i—(r;+—G=(E—V+m)F

With this system of equations a variety of problems can be attacked.
We shall consider only one problem, i.f. electron bound to the atomic
nucleus by a Coulomb potential. This problem can be solved exactly.

e

Varey '
Solution: Let us first look at the asymptotic behavior of F and G at

ryr — &

Consider V(r) = _zTeZ, where e =

dG dr
5—(E+m)F, E——(E—m)G

d’G d’F
= - —(E?> -m*)G and 47 —(E?> -m?F

-Vm? _pE_szirive

=G, F~e

for r —0

— =—F and — =G
r

= kG =2¢*F and kF =2¢%G

= G and F have the same asymptotic at » — 0, due to regularity G, F

oc rs>0

To work with dimensionless quantities we can introduce the following
scaled variables

a1 =m+E), ax=(m-E), y=2*=7Z a =~ZJ137, p= Vayagr
——

fine structure constant

So, the coupled equations (e) and (e o) get a form
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1
vaiaz

(o):(%—é)F—[—(E—m)—%]GzO /-

dp p Var p

similarly

:(i_f)g_[ I P

[ Y

As in the non-relativistic treatment of the hydrogen atom, we seek
solutions in this form

"s" furthere constrained normalization

F=¢e* p° Z amp™; G=e"Pp’ Z byp™ condition for ¥
\/—/vm,:ﬂ m=0

ro0 0

Substituting this to () and (e ) we get recursion treat on

d ,
&F =-F+e* Z am(m + 5)p" 71

m=0
()= —e” Z amp™ +e7P Z am(m + 5)p" 7 — ke Z a1
m=0 m=0 m=0
—eP Z (bm ’a_2)pm+s +eP Z bmyp"”sfl =0
m=0 ® m=0
comparin coefficients at p**!
form#0(a>1)
(2]
am(m+5—Kk)—am_1+yby — | ,a—bm+1 =0 (2.421)
1
similarly
(8) = by(m + 5+ k) = byt + Ym — | -1 = 0 (2.422)
s
form=0

(&) = ap(s—k)+vyby =0

(e ®) = bo(s+k)—yap =0
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s—k vy ap\ _
- (—7 s+k)(b0)_0
Since ag and by must have non-trivial solution

ST Y s R i 0o s =Koy (2429)

=
-y  s+k

k = (j +1/2) =positive
(j=1/2;3/2;5/2..)
min(k?) = 1

Back to recurence equations.

We know that F and G must be normalizable well behaved functions,



2.15 Central field problem: exact solution (fine structure of atomic
spectra)

so particularly for large m we have
(o) = mam — am-1 +ybm — %bm—l =0
1

(o ) = mby, — b1 — yay, — ﬂam_1 =0/, /2 andsubtract
an [o4]

e

= (Varm + yvaz)a, + (Vary — myaz)b,, =
(m«/_—%/_)
(m\/_+7«/_)

= am =

Plugging this to (e ®) we get

e oo ()
i) [ e

For large m (large summation order) we have

2 2
= b, = = bp1 ~ —bm
m—y | —=
a
~——

for large m

an
am ~ b | —
V o1

. by 2 am 2
= sInce — = — = = —
bp1 m  ay1 m

(e8] (o]

= D an"~ ) %(ZP)'" ~ ¥

m=0 m=0

(o]
= Z bpp™ ~ €
m=0

= if }},o is infinite = F ~ ¢”, G ~ ¢ = diverges at r — oo (if wave
functions are nor normalizable)

= dn.s.t.forVn>n., a,, b, =0

We know that a,,, = /%bm, assume that

ne=m-1=ap =—|“2b,. (2.424)
@
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negative energies are occupied

a=e

52 —

2 Relativistic Wave Function

62
T ine

1

=137

(both series terminate at the same n.)

Now we know the ratio b , 50 N0 we are in position to use the recur-
rence equations to find on (’7) (??) to find relations between b, and

an, (Whose ratio we know). From this we get equation for E (since E
isin aq and ap).

Let us multiply the first recursion relation by @; and the second by
\Jajay, set m = n. and subtract, i.e.

() a1(s + ne — k)a,, — aran, — a1a,,-1 + a1yb,, —arazb, .1 =0

(%) Varaa(s + ne + k)b, — Varaza,, — Jarasya,, —aran.-1 =0

(- (") =

a1(s + ne — k)an, + oragya,, = Neraa(s +ne + k)b, — ar1yby,
San, [a1(s + ne — k) + Jarazy] = by, [Varaa(s + ne + k — ary]

[a1(s + ne — k) + Varaoy] = [Varaa(s + ne + k) — ary] (—\/Z:l)

—[a1(s+nc+k)-aq Z—;y

201(S+nc)=7(a1w/ﬂ—\/ala2) [ |22
(0%) [04]

2varas(s +nc) = y(ar — @2)
2Vm2 —E2(s +n) =y[m+ E —(m - E)] = 2yE
=Vm? — E?(s + n.) = Ey = quadratic eq.

_ m _ m _ m
\/1 . 2 _ 7% Z2a?
(s+nc) \/ﬂ)z \/(]T/Z)Z Z2a2)2

(2.425)

Note that E depends only on n. and j +1/2 = |k|. In order to compare
(2.425) with the corresponding expression obtained in the Schrodinger

theory, we define n = n. + (j +1/2) = n. + |k|.
———
we know it is integer

Since the minimum value of n. = 0, we have

0<ne=n=0+1/2)=>n=>(j+1/2) = |k|

which is at least unity. Expanding (2.425) we get
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1(Za)®> 1(Za)* 1 3
E=m|l1-= - : -2
2 n? 2 n3 \j+1/2 4n
>0
since
1azmc2 = {é2 =a= —62 } = 1m ¢ = e'm = ¢
B e 2 (4re)? 32n2€; " 87 ap

——

. 47 e
Bohrv radius =—3 =
mee

We see that "n" is indeed identical with the familiar "principal quantum
number” of non-rel. QM.

Note:

A catastrophe occures in the original formula for E when Z = 137

= +/(j + 1/2) — Z?a? becomes imaginar.

Note:

First dominant contribution comes from

1 mc*(Za)? { &2 } 1 mc?Zz?e 72 &2 m
—_ =l = = = —— =
2 n? 4dneghc 2 n?(4reghc)? 2n2 41 Anegh?
—
a5

= Higher order corrections are due to spin and relativity removes the
energy degeneracy in an observable way.

For a give n, higher j-states are at higher energy levels.

In the Dirac theory each state of a hydrogen atom can be completely
characterized by n. (orn), «k and jz (only on the level of statevec-
——

[ and J
tors).

One can translate this classification scheme into the more familiar
spectroscopic notation.

It should be stressed that even though L? is not "good" in the relativistic
theory, it is customary to use the notation

nxj

_ Z2¢

j=n-nc-1/2
maxJ =n—-min(n.)—-1/2=n-1/2
1 n=12,.,7=1/2,3/2,..

mea

gp - most probable distance of electrons
from nucleus in its ground state

82aB
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Table 2.4

Table 2.5

n=nc+j+12=>n-j-1/2>0
=j-1/2

maxJ =1 +1/2<n-1/2

=l <n-1

n - principal quantum number n = 1,2, ...
x - orbital quantum number I, = (0,1,2,...) = (s, p,d, ...)
J - total angular momenta j = 1/2; 3/2; 5/2; ...

|

k=j+1/2 | j+1/2
=-(+1/2) | j-1/2

K

e g. 2]71/2

Note:

The orbital angular momentum /, of the upper two-component
wave function (in non-rel. case will correspond to Schrédinger-
Pauli theory) determines the orbital angular momentum in the
spectroscopic language.

n|ne=n—|k| 20| «k==%(j+1/2) | spectroscopic notation
1 0 -1 ]21/2, l+=0 1S1/2
2 1 1 j=1/2;1, =0 2512
2 1 1 j=1/21, =1 2p1)2
2 0 2 =321 =1 2p3)
3 2 a1 j=1/2,1,=0 3512
3 2 1 j=1/2, 1, =1 3p12
3 1 2 =3/ =1 332
3 1 2 j=3/21,=2 3d3)2
3 0 3 j=5/21,=2 3ds)

Fine structure of the spectrum is a new phenomenon w.r.t. s.e. It is the
difference between energy levels of different j but identical .

(picture)

Forn=2,Z=1

2

=4,53-107° eV

1a*me? [1 a*mc?
E(2p3jp —2p1p2) = ~57 8 [ ] =

2.16 Relativistic wave equations

Apart from K-G wave equation (for spin - 0 part.) and Dirac’s wave
equation (for spin - 1/2 part.), there exist a number of higher-spin
wave equations.

Examples include:

» "Maxwell equation” (for spin - 1 part.)

On0™A” = ¢¥y”¥ (in Lorentz gauge 9,A™ =0)
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also (without source)

. 0
i =10 AP

OE _ 1¢ . A( , 1
lgltB llS A(IB)<_>I%—\:‘=—.O'-A((,0)
lWZISA(E) l
———

Weyl equation for massless spin—1/2 part.

(Ei —iB) = (¢,¥)

(spin matrices S; play for the spin 1 electromagnetic field the
same role as Pauli matrices oy for spin 1/2)
» Proca equation (for massive spin - 1 part.)

Om(@™A” —¥A™) + mA” =0

for example (W*, Z bosons)
» Rarita-Schwinger equation (for massive spin - 3/2 part.)

e”Vp‘Ty5yV8p‘I’o- +m¥P™" =0

» Bargmann-Winger equation (for massive arbitrary spin free
particle)
- quite complicated system of equations

Wave equations of these types have a number of conceptual difficul-
ties.

» No simple way to include multi-particle interactions.
» Strictly single-particle description does not allows (is not appli-
cable for) unstable particles or resonances.
» Various paradoxes: "Zitterbewegung", klein paradox, problem-
atic probabilistic interpretations.
» Single-particle picture is not tenable beyond energies allowing Good reasons for abandoning wave
pair formation. equations.
» No fundamental particles observed beyond spin 1. (SUSY predict
e.g. 3/2-spin gravition).






Quantum Field Theory

3.1 Why Quantum Field Theory?

A1l. — First is because the combination of quantum mechanics and
special relativity implies that particle number is not conserved. Rela-
tivity necessarily brings in the possibility of conversion of mass into
energy and vice versa, i.e., the creation and annihilation of particles.
E.g., B decay of the neutron via n — p + e~ + ¥, or positron-electron
annihilation e*e™ — 2y. There are also situations when the number of
particles of given species is not conserved, even though the number of
particles of all types taken together is conserved.

The creation of particles is impossible to avoid whenever one tries to
locate a particle of mass m within its Compton wavelength. Indeed,
from Heisenberg uncertainty relation we find that

2 2
Op0y

v

1, A 1
7 A, XD =

<[ p%c2 + mzc4,x]>

v

2
= — <pxcz/ pxczc2+m2c4>

2 2.4
~ hz c+0(<mzc2> )62
PxC 1y
This leads to the well known relationship AEAx > . If we assume
that Ax ~ A¢c = %, then we have AE > mc?. Therefore, in a relativistic
theory, the fluctuations of the energy are enough to allow the creation
of particles out of the vacuum. In the case of spin 1 particle, the Dirac
sea picture shows clearly how, when the energy fluctuations are of

order m, electrons from the Dirac sea can be excited to positive energy
states, thus creating electron-positron pairs.

W
2

(3.1)

In order to discuss such processes, the usual formalism of many-body
quantum mechanics with wave functions of fixed number of parti-
cles, has to be augmented by including the possibility of creation and
annihilation of particles via interaction.

A 2. — Ordinary (non-relativistic) point-particle QM can deal with
the quantum description of a many-body system in terms of many
body wave functions. This is important, e.g., in atomic, molecular or
condense matter physics. Similar generalization for relativistic parti-
cles would be desirable. Problem with this generalization, however,
starts already at classical level. There does not exist any generalization
to relativistic invariant interacting many-body theory — not even for
2 interacting particles. This is known as Leutwyler’s no-interaction
theorem (Leutwyler 1965, Makunda 1984):

3.1 Why Quantum Field Theory?75
3.2 Some useful background from
quantum mechanics. . ... .. 77
33Fields . . ............ 82
3.4 Quantization of Scalar Field 84

Energy and Momentum Opera-

tors . ... . L o oL 87
Particle interpretation. . . . 90
Energy - Hamiltonian . . . . 92
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3.6 Multiplet of Scalar Fields . 98
3.7 Quantization of the Dirac

Field ............... 102

4-Momentum . ....... 106
3.8 Symmetry and Conserved Cur-
rents, Noether’s Theorem .. 109
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Any finite number of point particles cannot interact in such a way that
the principles of special relativity are respected, i.e. that the system
provides a representation of the Poincare algebra. Accordingly, classi-
cal relativistic point particles are necessarily free, as a consequence of
Poincare invariance.

Note: The only exception are two particles in one spatial dimension
confined to each other by a linearly rising potential.

In contrast to point particles, strings can interact relativistically in
higher dimensions, without violation of Leutwyler’s non-interaction
theorem. Hence, it is not surprising that particle physics is based on
Quantum Field Theory (i.e., infinite number of degrees of freedom)
rather than on relativistic point particle quantum mechanics.

A 3. — We know of classical field that is fundamental in physics — the
electromagnetic field. Analyses of Bohr and Rosenfeld show that there
are difficulties in having a quantum description of various charged
particle phenomena (such as those that occur in atomic physics) while
retaining a classical description of the electromagnetic field. One has
to quantize the electromagnetic field (e.g., to get Lamb shift correctly);
this is independent of any many-particle interpretation that might
emerge from quantization.

A 4. — Because all particles of the same type are the same. What we
mean by this is that two electrons are identical in every way, regardless
of where they came from and what they have been through. The
same is true of every other fundamental particle. Let me illustrate
this through a rather prosaic story. Suppose we capture a proton from
a cosmic ray which we identify as coming from a supernova lying
8 billion light years away. We compare this proton with one freshly
created in a particle accelerator here on Earth. And the two are exactly
the same! How is this possible? Why are not there errors in proton
production? How can two objects, manufactured so far apart in space
and time, be identical in all respects? One explanation that might be
offered is that there’s a sea of proton “stuff” filling the universe and
when we make a proton we somehow dip our hand into this stuff and
from it mould a proton. Then it’s not surprising that protons produced
in different parts of the universe are identical: they’re made of the
same stuff. It turns out that this is roughly what happens. The “stuff”
is the proton field or, if you look closely enough, the quark field.

There are two complementary approaches to field theory.

» We can postulate fields as the basic dynamical variables and
show that the result can be interpreted in many-body terms.

» One can start with point-particles as the basic objects of interest
and derive or construct field operator as an efficient way of
organizing the many-particle states.

We will work with the first approach as it brings us faster to the point.
The second approach is often a starting point in non-relativistic field
theory in condense matter physics. Approach a) is known as Quantum
Field Theory (QFT) or Theory of Quantized Fields, b) is known as
Second Quantization.
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3.2 Some useful background from quantum
mechanics

Let us first recall the familiar path to the quantization of a classical
dynamical system in particle mechanics. For the purpose of illustration,
consider a 1-D motion of a particle in a conservative potential. Let ¢
be the (generalized) coordinate of the particle, ¢ = Ccll—‘t’ the velocity,
and L(q, ¢) the Lagrangian. According to Hamilton’s principle, the

dynamics of the particle is determined by the condition

6S[q] = 6 / “diL(g,d) = 0, (3.2)

this equation determines the actual physical path ¢(z) from (g1, )
to (g2, 12). Action is stationary around classical trajectory, i.e. small
variations from classical path, g(t) — ¢(¢) + d¢(), leaving the action
unchanged to the first order in the variation.

Hamilton’s principle gives us the well known Euler-Lagrange equation
of motion

= -—==0. (3.3)

In order to carry out the formal quantization based on this equation,
we rewrite it in the Hamiltonian form, by defining the momentum p

conjugate to g as
oL

a_q./

and introducing the Hamiltonian by the Legendre transformation

p= (3.4)

H(p,q) = pq - L(q, ) (3.5)

Note, that H is not dependent on ¢ since

L . AL
dg - Z5dg. (3.6)

dH = (dp)g + pdg —
(dp)g + pdq 94 33

In terms of H, the Euler-Lagrange equation becomes

o0H
S H =— =9,
{9, H}pp aq q

oH
{p/H}PB = _E =D,

(3.7)

where {-,-}pp means a Poisson bracket. To quantize (3.7) we let ¢
become a Hermitan operator in a Hilbert space and replace p by —O%,
so that the conjugate momentum and coordinate satisfy a commutation
relation

[p/ C]] = _ih/ [q/p] = lh/ (38)

corresponding to the classical Poisson bracket {p, g} pp = =1 0r{q, p} pp =

1. The dynamics of particle is contained in the Schrodinger equation

iatﬁ(t)
or '

H(p,q)y(t) = (3.9)

This is analogous to the case when
df(x) = 0 implies that f(xg) = f(xo +dx)
to first order in dx.
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We will assume & = 1 further on.

where () is a wave function or state vector in the Hilbert space.
In this formulation all time dependence is carried by y while p and
g are not time dependent. This approach is called the Schrodinger
picture. Alternatively, we may transfer whole time dependence to
the operators ¢(¢) and p(z), ¢ is then time independent. This is called
Heisenberg picture. There also exist and intermediate pictures, like
Dirac picture or thermo-field dynamics picture, that will be discussed
later on. Both pictures are equivalent as they can be connected via
unitarity transformation. From Schrodinger equation it follows that

Ys(t) = e Mys(0) = e My (3.10)

Here the value of ys(r = 0) is set to coincide with yg. Similarly,
operators are connected according to

O (r) = ' Oge (3.11)

The unitarity transformations are constructed such, that matrix ele-
ments of all observables are identical. Solution of a dynamical problem
in quantum mechanics consists in finding, at a later time ¢, matrix
elements of operators which represent physical observables, provided
we know the matrix elements at some initial time (say t = 0). In
Schrodinger picture this is done by solving Schrodinger equation.

In Heisenberg picture, one solves the equation of motion for the Heisen-
berg operator Og(7)

40
- O i1, 040)]. (3.12)

As long as we deal with energy eigenfunctions in non-relativistic
theory, there is a little practical difference, as

HH(Z‘) =Hs=H, (313)
and in the absence of external time-varying forces we have ‘11—1;1 =0.
For energy eigenfunctions, the Schrodinger wave function is (g, 1) =
e~ “nty,(q). In relativistic field theory, we will see that the Heisenberg
picture is more convenient, since the explicit representation of the state
vector ¢ is considerably more complicated than in the non-relativistic
case (this y is a solution of the so-called functional Schrédinger equa-
tion), and the dynamics of operators is easier to prescribe than the
dynamics of .

Also, Lorentz invariance can be more readily implemented in the
Heisenberg picture, which puts the time together with space coordi-
nates in the field operators. In the Heisenberg picture it follows that
the CCR retain the form

[q(®), p()] = i. (3.14)

For an arbitrary t we have

0
(t) = —i——, 4(t) = q(¢) in g-representation, 3.15
PO = iS40 = g(0) in g-rep (315)
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0
A(t) = p(t), §(t) = i—— in p-representation. 3.16)
p(t) =p(), § ap() TPTep (
Equations of motion are of Hamilton-Heisenberg form
? =i[H, p(t)] in g-representation, (3.17)
? =i[H,q(t)] in p-representation. (3.18)

To completely determine the dynamical problem, we must specify the
matrix elements of p and ¢ at the initial time. Let us illustrate that on
the following problem. Consider Lagrangian of form

1 2
L= quZ - %qu (set m =1 for simplicity). (3.19)

Then the action is given by

N N B SRt B U S S
S = dr | =mgqg mq-| = di=m [q w'q ] . (3.20)
f 2 2 f 2

Requiring 6§ = 0 implies that

doL IL
- = 21
drdg 0q 0 (321)
which reduces to the
j+w?q =0. (3.22)
Which is equation in a configuration space. We get p from
dL o
p=Z-=mi=q. (3.23)
q

Constructing Hamiltonian from it we get

. . 1 w? 1
H(p,q) = pg-L(g,9) = p* = 5p* + 4" = 5(* +’").  (324)
Which is Hamiltonian of harmonic oscillator. Hamilton equations of

motion
dg _

_O0H _
dr B B

{q, H} ap P (3.25)

d _

dr
will yield us the same equation of motion as the one from Euler-
Lagrange equations. We can transfer to quantum mechanics by making
change {-,-} = —# [-,-], which implies that

H
oy =-22_ 2y (3.26)
dq

i
Oty =—7 [0/,0,]. (3.27)
This leads to the

G={q,Hy=p— [§,H] =inp, (3.28)

Sub-index H and hat over operators will
be suppressed further on.

{f/g} =d— [Ofrog] = ihOd.
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Further on we again proceed without
hats.

p=1{pH} = -w’q— [p,H| = ihw?§. (3.29)

This reduces to the operator equation
§ = -w?q. (3.30)

To solve for the coordinates we define

a(t) = % Annihilation operator (3.31)
w
al(r) = M Creation operator (3.32)

V2w

By simple algebra, we can also show that

q(t) = (a*(t) + a(t)) , (3.33)

1
V2w
(1) = i\/g (aT(t) - a(t)) ) (3.34)

The reason for that is the fact, that if a and a' satisfy relationship
[a,a’] = 2 € RY, then eigenvalues of a’a are 0,4,24,34, .... We can
see that

dT(t = aTt,H :—i[M,H}
) l[a'(t), H] TS
2
- W — iwd' (1), (3.35)
w
This implies that
a'(t) = a'(0)e'?, (3.36)
and similarly that
a(r) = a(0)e ", (3.37)
This means that we can rewrite ¢(¢) as
1 T iwt —iwt
q(t) = \/Z_(a ©)e' " + a(0)e™"), (3.38)
w

and similarly for p(). In terms of a(t) and a(¢) the Hamiltonian reads
H= %w (¢ (Datt) + a()a’ ()
_ %w (a'©)a(0) + a(0)a (0)) (3.39)
=w (aT(O)a(O) + %)

Suppose now that
H |n) = w, |n). (3.40)
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Applying a'(0) to |n) we get

H(@'(0)n)) = ([H,a'©0)] +a'(0)H ) In)
- (waT(O) + a*(())wn) In) (3.41)
= (@+w)a'(0) |n).

And similarly
H(a(0) [n)) = (wn = w)a(0) |n) . (3.42)

More generaly we have

H(a" |n)) = (wp — mw)(@" |n)), (3.43)

H(a"™ n)) = (@ + mw)(@™™ n)). (3.44)

For energy to have a lower bound (Hamiltonian is positive definite),
there must be a state |0), such that a |0) = 0. In this case,

1 1
H|0)=w (aTa + E) 10) = 510). (3.45)
Le. vacuum state |0) is the lowest energy state.

Cute note

2(nlH|n) = 2w, = (n|p*|n) + &* (nlq*|n)

(3.46)
=|lp In) 1> + llwg In) |* > 2||p In} ||lwg |n) ||.

Where last inequality follows from triangle inequality.

Virial theorem implies that (n|p|n) = (n|g|n) = 0. The latter is a direct
consequence of the fact that for any operator A and any eigenstate |n)
of H we have

(n|[A,H] |n) = (n|AH |n) — (n|HA|n) (3.47)
= wy, (n|A|n) — wy, (n|Aln) = 0.
Thusif A =gq
(nllg,H]|n) = (nlip|n) =0, (3.48)
orifA=p
(nl [p, H1|n) = ~ieo (nlgln) = 0. (3.49)
Hence
2(n|H|n) = 2||p|n) ||lwg |n) || = 2wApAqg > hw. (3.50)

Uncertainty relations prohibit (n|H|n) = w, in any energy eigenstate to
be smaller that Zw. State w, = 2w represent the so-called zero mode of
H (in this specific case we call them zero-mode fluctuation or ground
state fluctuation). Note, that no other states apart from that |n) with
eigenvalues w, = h(% + n)w is allowed (on account of the theorem
[a,a’] = 2, shown above). By applying creation operator on vacuum

81
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state we get

a0y o 1), (3.51)
and generally
(a')" [0) o |n). (3.52)
Using the fact that
1
H|n>=(n+§)w|n>,n=0,1,.... (3.53)

After normalization of states to the (n|m) = 6,,,, we get

_ @y

V!

This can be easily proven by induction.

)

|0). (3.54)

It is straightforward to generalize this procedure to n degrees of free-
dom. We introduce n Hermitan operators ¢;(¢), i = 1,...,n in the
Heisenberg picture and n conjugate momenta p;(t). The dynamics is
again given by the 2n classical equations of motion

oH oH
-—=pi, — =¢i, i=1,...,n 3.55
34, Di o qi, 1 n ( )
Again, our goal is to find the matrix elements of p; and ¢; at an initial
time, say ¢ = 0 with the restriction that

[p:(0), 4;(0)] = —idyj, (3.56)
[pi(0), p;(0)] =0, (3.57)
[4i(0), ¢;(0)] = 0. (3.58)

And we can write Heisenberg equations of motion as

pi(t)y =i[H,pi(1)], (3.59)
gi(t) =i[H, g;(1)]. (3.60)

3.3 Fields

A field is a quantity defined at every point of space and time (x, ).
While classical particle mechanics deals with a finite number of gen-

"nen

eralized coordinates ¢;(7), indexed by a label "i", in field theory we
are interested in the dynamics of fields ¢;(x, ), where both "i" and x
are considered as labels. We are thus dealing with a system with an
infinite (uncountably infinite) number of degrees of freedom - at least
one for each point x in space. Notice, that the concept of position has
been relegated from a dynamical variable in particle mechanics (so
called wave mechanics or first quantization) to a mere label in field

theory. Further we will review example of a well known field.

» Electromagnetic field
E(x,t) and B(x, 1), both of these fields are 3 spatial vectors. In
covariant treatment of electromagnetism E, B — A*(x,t) = (¢, A)



(u=1,...,4)so A" is a vector in spacetime. Here we can recover

E as BA
E=-V¢- , B=VXxA. (3.61)

We again start with Lagrangian (it is a convenient tool for a covari-
ant treatment - next semester and it also provides a simple passage
to Hamiltonian, i.e. canonical formalism). In the Lagrangian formal-
ism, the dynamics is governed by a Lagrangian, which is a function
of ¢i(x,1), d(x,1) and V¢;(x,1). We change our Lagrangian (L) to La-
grangian density (£), i.e.

Lg,q) — / L L(Gi(x, 1), 8,01(x, 1), (3.62)

In principle, we could consider also higher derivative terms (non-local
interactions), but in all systems, studied in this course, the Lagrangian
is of the form given above. The action is

15 %)
S = / drL = / dr / Px L1, 0u0) = / d*xL(di, ). (3.63)
n 151

In particle mechanics L depends on ¢; and ¢;, but not g;. In field the-
ory we similarly restrict the Lagrangian £ on ¢; and ¢;. In principle,
there is nothing to stop £ from depending on V¢, V2¢, V3¢, ... In
cases when we require Lorentz invariance, we will consider only de-
pendence of £ on V¢ (this is not needed in non-relativistic context).
Also we will not consider £ explicitly dependent on x* (no external
fields).

We can obtain equation of motion via least action principle as

4 oL
08 = / d [a@ * 3, ¢1>‘5(8"¢‘)}

p-p- oL oL oL
‘/ [aqs, 60i - (a(a,tasl)) 60:+ (a(aﬂ¢l)5¢)]

This leads us to the Euler-Lagrange equations of motion for field

(3.64)

oL 0L
—— |-—== 3.65
() 7 (069
As an example, consider the following Lagrangian
1 4
£=—n” 090, ¢——m #?
(3.66)

_1'__ 2__22
= 58" = 5(Vg)* - Sm’¢’.

Using previously derived Euler-Lagrange equation we arrive at the
Klein-Gordon equation.

As another example, consider Lagrangian with a complex field that is

3.3 Fields

83
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linear in time derivative (rather than quadratic)

L=5 Wy -9'y) - Vo' Vy —myy. (3.67)
This Lagrangian yields us the equation of motion in the form

N
i = VoY + my. (3.68)

This equation looks like Schrodinger equation, but it is not. It’s in-
terpretation is very different and field ¢ is a classical fied with no
probabilistic interpretation of wave function. As an exercise, try to
show that

L= S @A) A) + 500 (369)

reduces to the Maxwell equations.

3.4 Quantization of Scalar Field

We will be particularly interested in relativistic field theories. We have
seen that for relativistic (scalar) field theories, equations of motion, i.e.
Euler-Lagrange equations read

H( 9L ) 9L 670)

0ue)] B

Should this equation be covariant under Lorentz transformations, £
must transform as scalar density, i.e.

L(x) = L($i(x), u0:(x)) S Lr(x) = [det L| L(L ). (3.71)

Let us construct the simplest free scalar theory with maximally second
derivative in equation of motion.

The simplest L that is a scalar density and bounded from below po-
tential energy is

L= 20" u(39(x) ~ 2P () 6.72)

Proof of the fact that £ is a scalar density is quite simple. First we
realize that

#(x) 5 g1 = (L7 x)
9ud(x) 5 (L‘l)v 8,6(L 1 x). (3.73)
u
Thus

Q80,0007 5 (171)” a0 (L) g oo,

= 3y p(L ™ x)0s p(L ™ x)p°.
(3.74)
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. . . L
The potential term transforms in the same way, with ¢2(x) = ¢*(L71x).
Since |detL| = 1, it is indeed scalar density. Action is also invariant
under Lorentz transformation.

As before, the link between the Lagrangian formalism and canonical
quantum theory is via Hamiltonian formalism (of field theory). We
start by defining momentum z(x) conjugated to ¢(x) as

oL  6S[¢]

"0 = 550 T s

(3.75)

This should not be confused with total momentum, which will be
defined shortly. The Hamiltonian density is given by

H(x) = n(x)d(x)— L(x), (3.76)

where as in classical mechanics we eliminate ¢(x) in favour of n(x)
everywhere in H(x). The Hamiltonian is the simply

H = / dPxH(x). (3.77)

Quantization starts by identifying commutators via Poisson brackets.
We know that )
i

—= 107, 04] = Oty (3.78)

So [¢(x), m(x")] = i6(x — x’). In the second step, we construct Hamilto-
nian

H = / e [m(x)d(x) — L(x)] (3.79)
= / dBxr(x)d(x) - L. (3.80)
Since for our case m(x) = ¢(x),

H= % / P [7(x)* + (Vo(x)* + m*p(x)?] . (3.81)
Now we can shift to the Heisenberg picture

B(x) > ¢(x,1) = p(x) = e (x)e " . (3.82)

(Assume that Heisenberg and Schrodinger picture coincide at 7 = 19 =
0). Similarly for 7(x)

7(x) - n(x) = M r(x)e H (3.83)

Generally, we can derive equal-time commutation relations

i5(x —x’),
0.

[¢(x, 1), m(x",1)]
[¢(x, 1), ¢(x",1)]

(3.84)
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Equations of motion for Heisenberg picture fields are then
b0 =ilH, 0] =1 [ S [HE 0 000] . (689

To this we need to evaluate [H(x’, 1), ¢(x, )],

[H(x', 1), ¢(x,0)] = % [n2(x', 1)+ (Vo(x',0) +m2p*(x', 1), ¢(x, 1)

1

= 57w 0,6x,0)]
1

= E7r(x', 1) [n(x’, 1), p(x,1)]
+ % [ﬂ(x’r t)r ¢(x' t)] ﬂ(x/’ t)

= —in(x’,0)8(x —x). (3.86)

Thus

[H, ¢(x,1)] = —i / dBx'n(x’,1)6(x — x') = —in(x,1), (3.87)

which leads to
d(x, 1) = —i(in(x,1)) = n(x,1). (3.88)

Similarly
a(x,t) =i[H,n(x,1)] = i/d3x’ [H(x',1),n(x,1)] . (3.89)

For this we need

(HG, 0,701 = 3 [(Vote!, 02 (e, 1)
+ g [$, 0,70, 1)
= iV(x',)V'S(x - x')
+im*p(x’,0)6(x —x'), (3.90)
and hence
[H,n(x,1)] = —i / dBx{Ve(x',))VS(x — x") + m>p(x’, 1)d(x — x")}
= i{=iV2¢(x,1) +im*(x,1)} . (3.91)

This leads to the second equation of motion of the form
#(x,1) = V2p(x, 1) — m>(x,1). (3.92)
Recall that ¢(x, t) = n(x, ), then

$x, 1) = 71(x, 1) = V2P(x, 1) — m*(x,1). (3.93)



3.4 Quantization of Scalar Field

This is an equation of motion of the Heisenberg field, i.e.
¢-V2¢=-m*p & 8,0"¢+m’¢p=0. (3.94)
Which can be shortly rewritten as

(D + mz) = 0. (3.95)

Energy and Momentum Operators

Our Hamiltonian reads

H= /de'x [n(x)¢(x) - .E(x)]
(3.96)
= /d3x¢52(x,t)—L(x, 1).

Heisenberg field obeys ¢(x, 1) = e’ ¢(x,0)e""H!, which implies that

P(x, 7 —1) = e Hp(x,1)e' 7. (3.97)

The question now is, how does operator P, that affects spatial trans-
formation, look like? If we translate the physical system by a spatial
displacement a, then ¢(x, 1) — ¢(x — a, t). Idea is that P is the generator
of these translation. We therefore require

ePap(x, e P = p(x — a,1). (3.98)
Let a is infinitesimal. Then we can write
d(x, 1) +i[P-a,d(x,1)] + O(a?). (3.99)
But ¢(x —a,t) = ¢(x,t) — a - Vé(x,t) + O(a?). This implies that
i[P-a, é(x,1)]=—-a-Veo(x,1). (3.100)
Since a is arbitrary, we require

i [P*, ¢(x,1)] = =Vio(x,1). (3.101)

To construct P¥, we observe that because of the canonical commutation
relations

[7(x", )V o(x",1), 6(x,0)] = [n(x",1), ¢(x, )] V; $(x', 1)

, (3.102)
= —id(x —x")V; (x',1),

we can choose

Pt = - / dx'n(x’, )Vip(x’, ). (3.103)
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In such case,

[P, ¢(x,1)]

- / & [x(x, OVd(x', 1), B, )]

(~1)(=i) / Pr'5(x — x)WVid(x', 1) = iVe(x, 1),

(3.104)This is indeed what we required for Pk, This argument fixes Pk
modulo additive c-number (this fact will be relevant shortly).

By using the fact that
Vi=0 =-05 (k=1,2,3) = P = / Bxr(x, )0 p(x,1), (3.105)

we can check that P* is independent of ¢, by taking commutator of
[H, P]. Recalling that

H = / d3x [%nz(x,t) + %(qu(x,t))z + %m2¢2(x,t)] , (3.106)

we can directly calculate our commutator as

- / d3xd3x’

1 ’ 2 1 2 4207
FTO 0P + 300

[H, P]

n(x, )0 p(x, 1), (%nZ(x’, N+

/ d3x’ [H, n(x’,z)] 8% (x’, 1)+ n(x’, 1) [H, 8% e(x, t)]

d3x - iﬁ(x/ t)ak¢(x/ t) + ﬂ-(x/ t)ak [H/ ¢(x/ t)]
———
=—in(x,t)

i / d3x’ [(V'V'¢(x',z)—m2¢(x’,z)) 8k p(x, 1)

+ 1(x’, 08 (x, t)]

—i / BxVVe(x,1)Vid(x,1)

_i/d3x {_%Vk [Vl(l)(xrt)vl(p(xlt)]}

surface term

= 0. (3.107)

So, for a field that for any fixed f and |x| — oo goes quickly to zero, the
commutator of [H, P] = 0. Set P° = H, then we can combine the above
results for H and P to a 4-vector

Pt =(P°,P)= / dExT%(x), (3.108)

where
T = 01 pd" ¢ — g L(p(x), d(x)) . (3.109)
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From this last formula we have
7% = %3 — £ = 8,00, — L =nd— L =H, (3.110)

and
7% = 3%90%p = -V = -1V, (3.111)

which consistently implies

Pk = / Bx7%(x). (3.112)

In addition, it follows from the equations of motion that
0,T" =0. (3.113)

Indeed, expanding it we get

0T = 0y [6“¢6V¢ -8 (%(&zfﬁ)z - %m2¢2)]

= (0,0"9) 0" ¢ + 0" $0,0” ¢ — (0”0 $)0” ¢ (3.114)
——
—m2¢

= -m*¢3°¢ +m’$3"$ = 0,
Note that (3.108) can be written in explicitly covariant manner, namely
P* =P P)= / dVn,T" (x). (3.115)

Here, the measure dV is over the space-like slice (of the 4d spacetime)
that is orthogonal to the unit time-like vector n#. We claim that P* is
independent of n*. To see this, we can write

/ BxT™(x) = / dx 6(x0) T (x) = / dx

%eo«»] T (x)

= / d%%e(ngxa)TW(x). (3.116)

Here, nj = (1,0,0,0) is a time-like unit vector that is orthogonal to the
space-like slice over which we integrate. Now, we relabel x* in (3.115)

’ L ’
to x# and take the Lorentz transformation x* — x# = L¥ ,x”. With
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this we can write

/ d%’%@(ngx(’t)r’”(x’)

d
4 M Sy —1_7
/d x|detL|LVf’W@(no,aL“Bxﬁ)LvyL ST (L71Y)
X

a(nO,aLa xﬁ)
/d4x17;7Tf&(no,aL”ﬁxﬁ)L”é.Ty‘s(x)

L”d/d4xn/'35(n'x)TB6(x)
ng denotes time-like 4-vector orthog-
onal to space-like slice over which

we integrate. T#”(x) is called energy- — Lllé / an;gTB(s(x), (3.117)

momentum tensor and satisfies THY =
TVH.
. ’
with n'# = L¥,ny, so that

PH(ng) = PY(L"'n") = L*, / dVn, TP (x) = LM, PHn’y.  (3.118)

Thus, the above 4-vector (3.115) transforms as a true relativistic 4-
vector and hence the actual value of P* is independent of the space-like
slice over which we integrate.

Particle interpretation

Let us first Fourier decompose ¢(x) as

o) = [ dpeinap). @119
We get
0 2 =0 d4 —ipx(,2 2\ 7 -0
Q)0 =0= [ dtpe ™62 - () o120
= (p* - m*)@(p) = 0.
Solution of this equation has the generic form
$p) = [P -m?)
_ 2t NPT ) S NP )

) /I,2+m2 24/p? + m?

—
Wp
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This implies that

d*p _,
63) = [ 5200+ 0p) + SO0 - )]

14

3
— / ; p [e—iwpt0+ipr(wplp) + eiwptoJripr(_wP,p)] (3'122)
Wp

d3 ; ;
= [ 52 (e 0],

Here we have set g(p) = f(—wp, —p). We can rewrite

d3p —ipx ipx
¢(X)Z/M(a(p)e PX + b(p)e'? ), (3.123)

where

a(p) = @x)°f(p), (3.124)
bp) = 2nPs(p). '

By requiring that ¢ is Hermitian in order to have Hermitian Hamilto-
nian, we have that b(p) = a'(p), which gives

d3p

ey [a(p)e™P* + a’ (p)e'P™] . (3.125)

P(x) =

For conjugated momenta x(x) = ¢(x), we have

, ds3 . .
7(x) = ¢(x) = Q?ﬂTgw [(—iwp)a(p)e_’px + iwpaT(p)e’pX]
P
. d3 —ipx ipx
-2 / (2711))3 [a(p)e P — a'(p)e?~] . (3.126)

Canonical commutation relations are defined by

[¢(x/ t)/ 71'()’/ t)] = 16(x - y)
& [p(x,1),d(y,0)] = is(x - y) (3.128)
[p(x,1), ¢(y,1)] = [n(x,1), n(y,1)] = 0.
This also provides canonical commutation relations for a(p) and a’(p).
Let us make a statement about them:
la(p), a"(p")] = @2n)*2w,6(p - p’)

3.129
[a(p), a(p")] = [a(p), a'(p")] = 0. (3129)

The consistency check can be done easily.

The measure in the integral (3.125) is
manifestly Lorentz invariant. Indeed,
d3p d*p

P2, - @ap oW > )0,
P

(3.127)
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First, we will use the notation

d3p
; o / T2, (3.130)
Sppr = (212w, 6(p - p’), (3.131)
Z Spp' f(P), (3.132)
<
[a(p),aT(p’)] = pp- (3.133)
In this notation our field operator reads
o) = Y (alp)e™ + a' (p)e™) (3.134)
p
and
m(x) = ¢(x) = Z(—iwp) (a(p)e""’x + a*(p)e""") . (3.135)
p

Now set x = (¢,x) and y = (¢, y), which gives

[¢(x), 7(y)]

> (=iwp) |a(pre?, (=at (ppe” |
pp’

+(iwp) [ (e, a(pre™” |

Z [(,-wp)eip(x—w + (iwp)e—ip(x—y)]
p

&p 120 iy
(27)3 2w,

io(x —y). (3.136)

Similarly, it can be checked that

[¢(x), p(¥)] = [n(x), 7 (y)] = 0. (3.137)

Energy - Hamiltonian

Hamiltonian can be written in the form

It is normally tedious, however, we can _ 3 1 > 1 2 )
drop time-dependent terms. H= /d x Eﬂ- (x) + E(V(ﬁ(x)) +moe”. (3.138)

——
—— N——
Hs

Hy H>

Let us now compute the respective terms explicitly in terms of a and
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1
H1 = /d3x§7r2

= %Z(_iwp)(_iwp’)/d3xa(p)a(pl)e—i(P+P')X _ a(p)aT(p/)e_i(p_p')x
pp’

+a'l'(p)a'i'(p')ei(p+p/)x _ a_‘-(p)a(p’)ei(p_pl)x

= 3 D Copop) [~alp)a (2R 8 - p) - (e 27 60 - )]
pp’

= 5 Doy [ (o) + a (pap) .
p

H, = % / d>x(Ve)?

= %Z(ip)(—ip') / dxla(p)a’ (p)e™ P + a' (p)a(p)e ]
pp’

= % > pp'@r) 8 (p - pla(p)a’ (p') + @' (pa(p’)]
£

- % Z 2”— [a(p)a’ (p) + ' (pP)a(p)] , (3.140)
Hy = % > 2’”— la(p)a’ (p) + a" (p)a(p)] - (3.141)
p

which gives

H=Hi+H+H =5 (a(p)aT@) + a*(p)a(p)) . (3.142)
p

N =

Spatial momentum
Spatial momentum can be written as
- / dBx1(x)Ve(x). (3.144)

Analogous calculation as for H gives
1 5 s
=5 2P lap)d’ p) +d' pap)] , (3.145)
P

which does not suffer with vacuum divergences. Together with H, we
can form four-vector

= %Zl’” [a(p)a’ (p) +a" (pla(p)] - (3.146)
p

(3.139)

We could rewrite this as
N 1
D wp (a'P)ap)+ 58pp |, (3143)
p

which mimics the linear harmonic oscil-
lator, though now we have sum of in-
finitely many of them.

The term % will diverge, because at each
point in p space we get vacuum oscilla-
tion.
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Particle interpretation

Similarly as in linear harmonic oscillator, the physical states of our
quantum system are excitations over a ground state, which we identify
with the vacuum state |0). Here |0) satisfies a(p) |0) = 0 for all p.

Typical states are:

» |p) = a’(p)|0) - single-particle state, it creates excitation with
energy wp and momenta p. In linear harmonic oscillator, [1) =
a' |0) creates excited state with energy w - where no momenta is
included, thus one cannot really speak about particle,

> |p1,p2) = a'(p1)a’(p2) |0) - two-particle state, it creates two ex-
citations, one with energy wp, and momenta p;, second with
energy wp, and momenta p,.

In linear harmonic oscillator,

2) = “7‘; 0y, (3.147)

creates 2 excited states above |0) with energy w + w = 2w.

We can construct a particle number operator
Clearly an analogue of the energy-level
operator in linear harmonic oscillator d3 P

=af = _
H=a'a. (271_)320)}7

d'(pap) = 3 d'Palp).  (3.148)

p

This gives

[N, a"(p)] = ) la (p)a(p’), a' (p)]

2
= S d N =a' ). O
p N————
Spp’
So,
Na'(p) = a'N +a'(p) = a' (p)(N +1). (3.150)
Operator N counts particles in a given state. Indeed,
N0) = > a'(p)a(p)[0) =0, (3.151)

14

so for vacuum, N = 0. Similarly,

Np) = Na'(p)|0) = a' (PN +1)[0) =a'(p) [0) = p), ~ (3.152)

|p) is an eigenstate of N with N = 1.

Na'(p1)a' (p2)10) = &' (p1)(N + D)a' (p2) |0)

a'(p1)a’ (p2)(N +2) 10y = 2|p1, pa), (3.153)

N |p1,p2)
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|p1p2) is a 2-particle eigenstate of N.

Occupation number representation

_ (ap)" (ap,)">

[npy, pys ) = ﬁﬁ -0}, (3.154)
(a")"
In) = N 0) . (3.155)

» occupation number representation takes into account auto-
matically symmetric exchange of particles (bosonic indistin-
guishability),

» occupation number basis is an orthonormal basis on the
Hilbert space Hy for each fixed N = 3, np,,,

» normalization to 1 is intuitive (np,, ...np, ... |n;,1 .. .n;,k Loy =
0, where n’ = n for all p;.

The Hilbert space can be combined in the so called Fock space
ﬂ:ff{oeawlea%...z@m. (3.156)
N=0

The Hilbert space Hp only contains one element, the vacuum |0) =
|0,0,0,...0...).

Note: For instance, we have that

lpipy=] 0 0 ... 1 ...0... 1 0...0). (3.157)
——— ——

b1 b2 pi pj
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Vacuum energy is relevant only for the
gravitational field. If we neglect grav-
ity then the presence of vacuum energy
cannot be detected in experiment involv-
ing only transformation between excited
states.

The subtraction of the vacuum energy
does not, however, remove the vacuum
fluctuations of the quantum field. This
can be evaluated from the correlation
function

Ol (x;t)(y;1)0).

Similarly as subtraction of vacuum en-
ergy in LHO does not remove fluctuation
of p.

(3.161)

Note on vacuum energy

We have
! i i i 1
5 (@)’ )+ a'(p)a(p)) = @' Pla(e) + 5650 (3.158)
Now
(27)35(0) = / d3xe*P¥ |, / dBx=v (3.159)
this is divergence, given by the infinite volume. Then,
. 1
Oppr = energy density -V = 3 ; wWpOpp’
1 d’p 3
Cnpa ————(271)”2w,6(0)
d3
= —= 1
onp wpV, (3.160)

where w),V is the density of energy with given p in the entire space.
Compare:

» LHO

e wis p independent,
e there is only 1 or finite number of oscillators in volume
v,

» QFT

e frequency w, depends on p which changes smoothly
over R?,

e in a given volume V, there is infinity of oscillators with
different frequencies.

Vacuum energy density diverges at [p| — co. This UV divergence
arises because the "oscillators" with large momentum have very
large zero-point energy 1/2w,, = |p L

Typically one wishes to ensure that vacuum has 0 energy and momen-
tum. So, we subtract the ground state energy and define the Hamilto-
nian to be original Hamiltonian minus ground state energy. We wish
to set P* = 3, P“a’ (p)a(p). Now P |0) =0

Phipy = > pa'(pha(p)a’ )0y = > p [a'(pa(p’), ' (p)] 10)
r’ p’

D P ) [, d ()] 10y = ) pa (p')dpp 10)
r r

pla'(p)[0) = p*Ip). (3.162)

This means that |p) is an eigenstate of P* with eigenvalue p*.
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For two particle states:

Pllpipa) = Zp“’(a*ma@')a*(pl)amn)|0>
= Zp” [a"(p)a(p’), @ (pr)a’ (p2)] 10)
= Zp” (') [a(p), @ (pr)a’ (p2)] 10)
= Zpﬂ (0" [ (P2)8ppy +a" (P1)Spp, ] 10)

= (P'f +ph)a’(pr)a’ (p2) 0)
= (o +p5)IpLp2). (3.163)

This means that |p1, p2) is an eigenstate of P* with (p/ + p4) as eigen-
value.

Question: What about if some p; coincide?

3.5 Normal ordered product

We have ¢*(x) + ¢~ (x) with ¢*(x) = Yp a(p)e™'P* being positive fre-
quency part and ¢~(x) = Yp a’(p)e’P* being negative frequency part.
That gives us:

$P() = (@7 +¢7)x($7 +67)y = 17 + 818y +6,0) + $1dy. (3.164)
Normal ordering is defined as

Fp(0)B() 1= T ()PT(Y) + ¢ ()T (¥) + 6" ()¢T(x) + ¢ () ()
(3.165)
The key point in this relation is that (0] : ¢(x)¢(y) : |0) = 0. Because
¢ (x)¢~(y) and ¢~ (y)¢* (x) differ only by c-number (not by an operator)
and because (0|c-number|0) = c-number, we get

L p()P(y) 1 = p(x)$(y) = (0] ¢(x)¢(y) [0) - (3.166)

So,in: --- :wemoveall ¢*’s to the right and all ¢~’s to the left. Having
use of this notation we can write

PH = /dsx (THO - (3.167)
Here : T*"(x) : is defined as
T™(x): = :0"¢y(x)"y(x): - L(x):, (3.168)

so, in particular

Pt = %Zp" ca(p)a’(p)+a' (plalp) : = Zp"a;ap. (3.169)
I p

The change does not destroy the sig-
nificance of the previous calculations
with p#, since only commutators are in-
volved. Adjustment by a c-number does
not affect commutators.

The zero-point energy can be removed
automatically by interpreting product of
field operators (from classical formulas)
as normal ordered product.

For p? normal ordering is not needed

since Y p & =0.

This Hamiltonian and the one with
vacuum-energy contribution can be
viewed as an ordering ambiguity in mov-
ing from the classical to quantum theory.
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detA = eTrilogA}

Let me mention, as a side note that there is simple prescription for
a computation of E-M tensor (also known as stress tensor) that is
inspired by general relativity, namely 7, = V%(;;% — Hilbertian
stress tensor. This stress tensor is explicitly symmetric and covariantly
conserved 9,T"" = 0. Let this apply to our scalar-field situation. First
recall that

0S[g, ¢] _ dS[g+ed(x—y)]
5gh(y) der N (3.170)
then
0S[g, #] / 4 [6\/_3)6 2,2 58"’3()5) ]
/7 o @ | 22 (g%B 0, d0sd — mP ) + = Ba | -
a8 (y) o8 (y) (g %9 ¢ ) \/_g5g’”(y) %9
(3.171)
Here
f—>=L
0y=8x _ 0+—detgu(x) +/-detgr(x)
ogH (y) ogH (y) 0gH (y)
= %;3 div det(gh” + €”6(x - y))
\J—detgr %€ €=0
1 d T Vel §(x— 1
_ EEB e oTr{log(g +e 6(x—y)} _ E\'/_—ggw(s(x_y)
(3.172)
and
6g*(x) d

SO = G [P () +ePs(x - y)] =nifs(x—y).  (3.173)

Altogether

™ (y) = [%ﬁgw (ga/st'i‘”gﬁ(y)c?‘8 $(y) - m2¢2(y)) + V=80, ¢(y)8v¢(y)] :

(3.174)
If we set g*” = gV, then TH'(y) = 0" p()0” d(y) — 1** L(y). So T® =
np=L=Hand TY = 79'¢p = -1V, ¢.

3.6 Multiplet of Scalar Fields

Now we have ¢(x) — ¢(x) = ¢,(x)'_, and ¢ = ¢,. Then we get
L0060, V8 = 3 5@ty 0, -~ (3175)

and the commutation relations are

[6r(x, 1), w5 (y, )] = i6,56(x - y),

(3.176)
[¢r(x,1), ¢s(y, )] = [7r(x, 1), 7 (y,)] = 0,

where

oSI9] _ 0L, V)
66, (x,1)  96p(x,1)

7 (x, 1) = (3.177)
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For Hamiltonian we get

Z / Bxr,(x, ) (x,1) — L

%Z / dx [72(x, 1) + (V,(x, )% + m?¢?(x,1)] . (3.178)

H

By analogy to a single-field case using usual normal expansion
o)=Y (a,(p)e-ipx + ai(p)efPX) : (3.179)
P

We get commutation relations
[a:(p), al(p)] = 6r56pp- (3.180)
Vacuum state |0) is defined is that
ar(p)|0) =0 (3.181)
for Vp, r. After appropriate normal ordering we have

PH = Z Pal(p)a,(p). (3.182)

rp

and operator of the particle number
pe ° particie ¢ Operator that counts only particles of r-

N = ). Gy
rp
Eigenstates of N and P* are typically of the form
ajlaﬁz ...|10) = |p1r1, par2, .. .) - (3.184)
Then
PY\pir, para, ...y = (pr+pa+...)|piri, para, .. ) (3.185)
N, is set of states r,, (p1), 1y, (P2), - - -

1

Nr |N1/N2/~-'/Nrr~-'/Nrn/*"> = an(p)lNer21~-~rNr/-">‘

P
(3.186)

Fock space another bite

In QM N-particle state contain clear information about which par-
ticle occupies which state. This is unphysical due to the indistin-
guishability of particles. With the construction of the symmetric (or
asymmetric) N-particle state this information is eliminated, and the
only information which remains is how many particles n, occupy
single-particle state (say |y,)). We thus may use a different notation
for the symmetric (antisymmetric) state. Notation in terms of the
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occupation number 7, of a single particle states.

As an example, consider the (normalize) set of wave functions |1) of
some single particle bosonic system. The corresponding N-particle

wave function for indistinguishable particles has form
1

.\/N!]'[,l(n,l)! 1
in state 1 My ) = e 3 0, p1) © 2, p2) - [Aap) . (3187)

VN!H,}(I/Z/I)! P

Let us order in the ascending sense moments |p1,ps ..., pn), Where
p1 < p2 < p3 < -+ < pu. So for instance, the state

is total number of particles

|P1,P1, P1, P2, P2, P3,P3, P3, P4, D5, P6 - - -) (3.188)

contains a redundancy and a more efficient encoding of the state might
read

|3P1/2P2/ 3173; 1P4/ 1P5/ 1P6/ .. > or |3l 2! 3/ ]-r ]-/ ]-/ .. > . (3189)

We will more generally denote the state as |[{rn,}), where {n,} is set of
occupation numbers. For free Hamiltonian commutes with the total
particle number operator N = }; aZak = > Hx, where shows alak
how many particles occupy the state k and ny is the particle number

operator for k-th moment.

Also N, iy, iy commute pair-wisely e.g.

[rik, k] = [azak,a;ak'] =a [ak,a;ak'] + [az,a;ak'] a
T (3.190)

=a, [ak,a]t,] ay + a;:, [a};,ak/] a, = 0.

In this derivation we have used [ak,az,] = Oxir and [ak,akz] = —Oir-

So, it is possible to find a common set of eigenstates for all of those com-
muting operators. These states are fully characterized by specifying
the particle set of occupation number {n,}, e.g.

A [{mic}) = ni l{mic}) (3.191)

and

NI}y = > ) - (3.192)

1

So the states [{ni}) form the basis of the Hilbert space. General struc-
ture of [{n,}) is

I{np}> = Hp(np!)_l/2 [af(P)]np |0) . (3.193)
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Generally, we can express action of a,t =af(k) on |n,) as

aTnpl Tnk+1
al |{np}) = = o
p
_\/(nk+1)! a;"l a1 o (3.194)
- T

=Nnme+1lnp , np,, ... 0 +1,..0),

and operator ay as

acl{np}) = DU IHD n' Y ax l{np))

{n'}

DUHY gy I,
{n’}

D\ 4168 e 1 D)
{n'}

= Vnglnp,...,ne+1,...). (3.195)

Let us now use the resolution of unity

1= > [{nh({n}l
{n}
= (0)O1+ > Hah)fntl+ . ) ... . (3.196)
>n;i=1 >ni=2

The resolution of unity can be also equivavently written in the form

&
1—|0><0|+Z ﬂ/(zﬂ)g,’z’ PLP2 - pa) (1P Pl

(3.197)
With this any state |) can be written as

d3p; n
|w>—|0><0|w>+Z ]‘[/(2 S KCTITAI A AY

m)3wp
(3.198)
Here f(") (p1,.-.,pn) are n-point wave functions that are (as can be
easily checked) symmetric in all their arguments. Note that |0) is a
vacuum state, i.e., state without any particle. The later is different from

the vacuum in the 1st quantized theory (despite of a similar notation),

which is the lowest-energy single-particle state. In particular, for the
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Note that z (| ¢ |0) also satisfies K-G
equation but for negative energies.

"First quantization’ means x,p, -+ —
%,P,.... 'Second quantization’ means
Y — .

matrix element (0| ¢ |y) of the field operator we have

Olglyy = ©O¢*(x)y)
_ d3k ikx dsp o
- <0|/Me a(k)/mhﬁfw ()
= Erdp i) 3
B me Iy (P2wi(27)’5(k - p)
d3k

ik 1)
_cr k
ot T ®

d*k
(2m)*

e 5(k - p)ok) £ (k)
= yW(). (3.199)

On the other hand, the field satisfies the equation (0% + m?)$ = 0 we
can write
018> +mM)$ly) =0, (3.200)

which implies that (9% + m?) (0| § [¢) = (6% + m?)yV = 0. So, ¢V cor-
rectly satisfies the Klein-Gordon equation, as the scalar-particle wave
function should. This provides a very important lesson. Field itself
must satisfy the 1st quantized wave equation because its single-particle
matrix element satisfies it. This will give us a useful guide for selecting
logically consistent field theories.

3.7 Quantization of the Dirac Field

Dirac field describes Fermions with spin % (e.g., for instance, electron
or positron), which (as will be seen shortly) posses antisymmetric
statistics (justifying thus the spin-statistics theorem). In order to quan-
tize this field, we can start with a classical field Lagrangian. Since we
know that the field must satisfy the 1st quantized wave equation (so
as to yield the correct one-particle state equation) we should use the
Lagrangian that can reproduce Dirac’s equation. The later has the form

L= / Sx T (19, —m) v(x). (3.201)
——
e

In analogy with the complex scalar field we treat ¥(x) and (x) as inde-
pendent fields. Now, we wish to compute fields canonically conjugate
to y(x) and ¥ (x). Following the usual recipe, we get

= (BCn°) = ilp00h, =i (e (3.202)

ﬂ'a(x) = X(l('x) = (Slflélix)

Note that J(x) does not appear in the Lagrangian (!) and so there is
no field conjugated to ¥(x). At this stage one may expect, that the
commutation rule is of the form

[Walx, 1), xp(y,1)] = i6(x = y)oap, (3.203)
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or equivalently

Va(x, 0,5, 1)| = Sapd(x - y). (3.204)

We shall, however, see shortly that one has to use anticommutators for
the Dirac theory.

The Hamiltonian is given by

H

/d3x<w ¢ X)L
N——
=0

/ &x (i5y" - Gy o + miy)

/ d3x (i%va + m@zﬁ)

/de w' (iyo'yV + myo) /S (3.205)

Here y = (y1,72,v3). By employing the properties of y-matrices and
integrating per-partes we see from the last identity that the Hamiltonin
is clearly Hermitian (as it should). With the Hamiltonian we can write

in the Heisenberg-picture the standard Heisenberg equations of motion [AB,C] = A[B,C] +[A,C]B
= A{B,C}-{A,C}B.

b=ilt =i [ Exliyvuemiu ], (6200
and similarly for y.

Now, because the fields satisfy the Dirac (and hence the Klein—-Gordon)
equation, the solution can be written in the form

) = Y (A@e " + Bp)E™)
p

Z( > alp, ulp, Ve P+ Y b (p, Av(p, Ve
p \1e{12}

Ae(1,2}

) (a(p, Dulp, Ve P* 1+ b*(p, Wv(p, /l)eipx) . (3.207)
P A

Here, 2 is the helicity index or alternatively spin index. This immedi-

ately implies that
Here (p — m)u(p, 1) = 0 and

w T i ; +m)v(p,A) =0.
U(x) = l//‘(x),yo = Z Z (b(p, v(p, /l)e_lpx +a*(p, Di(p, /l)esz> ) p p
p A1

(3.208)
Let us recall that we have already derived the following orthogonality
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relations:
u(p, Du(p, ') = 2md v, (3.209)
v(p, Dv(p, ') = =2méx, (3.210)
u(p, hv(p, ') =0, (3.211)
v(p, Yu(p, ') =0, (3.212)
iu(p, 1)y u(p, ') = 2wpd0, (3.213)
¥(p, )y"v(p, ') = 2w,6,x. (No change of sign!) (3.214)

To quantize, we promote ¢ (x) and ¥(x) to operators (along with a, a*
and b, b*, which are promoted to the q, a’ and b, b"). This also promotes
Hamiltonian to the operator. The above mode expansion of ¢ and
allows to formulate H entirely in the language of ¢, a* and b, b*. Indeed,
H can be then rewritten in terms of “creation” and “annihilation”
operators as

H =Y, (alparp) - bapb(p) (3:215)

pAa

If we would now use the presumed commutation rules for ¢ and
¥, then it can be easily checked that a,a’ and b,b" would obey the
commutation rules as well. This leads, however, to the problem since
the ensuing Hamiltonian would not be positive (even worse, it would
be unbounded from below). The particles a and b contribute opposite
sign to the energy, which means that this theory would not admit
a stable ground state. If we however assume that anticommutation
relations hold:

{aap), a0 = Savtpp,  (3216)
[ B0} = 6wy, (3217)
{afp), a0} =ty bap} = =0, (3218)

the Hamiltonian can be written as

H=) w, (aj (P)au(p) + b (p)b,l(p)) = 20, - (3.219)
pA p

Now that we needed only anticommutation rule for b particles, but
because ¢(x) and ¥(x) involve the sum over a and b' as well as a'
and b, we must take a and a' to have anticommutation rules as well
in order to have anticommutation rule y(x) and ¥(x). The later is, in
turn, consistent with various physical requirements (e.g. to get correct
Dirac’s equation of motion for Heisenberg fields). It can be shown, that
with the rules (3.218) the following anticommutation relations hold for
the canonically conjugated fields

{'rl/(t(x/ t)/ Xﬁ(yl t)} = l(saﬁé('x - y)
e {ulx,0,upx, 1)} = 6apd(x - y), (3.220)

and also

{w,u}r={y" vy} =0. (3.221)
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As a byproduct we might notice that (3.220) implies that

{Wpx,0,0s(y, 0} = vps6(x —y). (3.222)

Let us now see that these anticommutation rules provide expected
equation of motion. To this end we need to compute the Heisenberg
equations of motion for fields, i.e.

y=ilHyl=i / &S’ gy Vy + myy, g (3.223)
First, let us calculate (consider equal time is implicitly used)

Vo) W), Yp(0)} = (Yo (&), Yp(0)}a(x)

= - 6(x' - X)YgYalx), (3.224)

[ (x"), ()]

(we have used the identity [AB, C] = A{B, C} — {A, C}B). The second
commutator we need is

i {00 (), U ()} Yo VW15 ()
~i6(x" = XY YoV Yo(x). (3.225)

[0 (5" 46V W5 (x"), w5 (x)]

This leads to

bs = i / &’ [y + iy, v

i [ @ -0 7V ) =m0 o - x)
i [~ YV (0)g = m( w(x))g]

[Yr Yy (x) = imy s (x)] 5 - (3.226)

Which is the Heisenberg equation of motion. Multiplying this by iy’
we get

iy% (x) = iy Vi (x) + my (x)
e iy 0y (x) -y Vg (x)) — my(x) = 0
=3 (Y0 —mp(x) =0. (3.227)

Hence, the Heisenberg equation of motion is indeed the Dirac equa-
tion.

Note that when the field obeys the equation of motion, the Lagrangian
vanishes (L = 0). In such a case we can simplify the formula for the
Hamiltonian to the form

H= / dBxiy (x)y i (x). (3.228)
At this point we can introduce the tensor

TH = iy (x)y* 0"y (x). (This is not symmetric in pv!), (3.229)
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and define the 4-vector P¥ as
P’ = / dBx1(x), (3.230)
which explicitly means that

P =i [ @xT)y V()
e  P=i[dxy(x)dy(x). (3.231)
It can be checked that P* satisfies the relation
ePay(xe P = y(x +a), (3.232)
which in turn implies that it must be a generator of space-time transla-

tions, or in other words it is the total 4-momentum.

Relation (3.232) can be proved most easily by looking on the infinites-
imal version of the later. Namely, for |a| < 1 we have to the linear
order in a*

a;ﬂﬁ(x) =i [P;u lﬁ(x)] ’
O (x) =i [Py, (x)] . (3.233)

It can be easily checked that (3.231) satisfies both relations (3.233).

Furthermore, already from 1st quantization we know that we have a
conserved current (now the wave function is replaced with quantum
field)

() = Gy (). (3.234)

Again as in 1st quantization, by using the equation of the motion one
can show that

8, I (x) =0, (3.235)
and that
Q= / Pxs(x,1), (3.236)
is such that
[H,0]=0. (3.237)

i.e., Qis associated conserved charge. Note that in the 1st quantization
O represented total probability.

4-Momentum
If we carry out the calculations of P”

P’ = / dBx7%(x), (3.238)
we find that

P =" p{di(p)aap) - ba(p)b(p)} (3.239)
pA
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With this we can easily see that

P al(p) = [P, d\(p)] + d'(p)P” (3.240)
= al (PP + ). |

And similarly for P"bjl(p) = bfl(p)(PV + p”). Hence, ajl(p) and bjl(p)
create particles with the corresponding momenta and helicity.

It is easy to see that we also get

PYa,(p) = aa(p)(P” - p”),
P"b(p) = ba(p)(P” - p”). (3.241)

Thus, a,(p) and b,(p) annihilate particles with the corresponding mo-
menta and helicity.

Again, we wish |0) to have zero energy and momenta, i.e. p* |0) =
0. This can be done via normal ordering (which subtracts vacuum

energy):
P’ = /d3x T, where T* =i:g(x)y 0 v(x): . (3.242)
In the context of Dirac fields, normal ordering requires that we place

annihilation operator to the right and creation operators to the left, but
insert a factor of —1 for each operator interchange. E.g.

PY =1 ) P ay(p)aap) ~ ba(p)bh(p))
pA

. . (3.243)
= > P {a(P)aap) + by (p)ba(p)}
p,A
This should be compared with non normally ordered p”
P" = % prlai(p)ai(p) + by(p)ba(p) = Sppdanl . (3.244)
p,A
By noting that
ds
—va5pp5u = —2/ —3p p’(2n)* 2w,V
(27)2w,
P (3.245)
= —2/d3ppVV = (0|P"|0) .
we see that
P’ —:P":= P"—={0|PY|0) . (3.246)

Note that for spatial components (0|P|0) = 0, and so we need the
normal ordering only for P* = H.

Strictly speaking the normal ordering should be now employed for
any composite operator. In particular, we should also normally order

a’ and b7 create particles with the corre-
sponding momenta (and helicity).

a and b annihilate particles with corre-
sponding momenta.
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the conserved charge Q (cf. Eq. (3.236)). In this case we have

0=: / dBPx0x): =: / Exy (w(x) ;. (3.247)
We can again show that
0=3 |alP)aatp) = By pbaip)| - (3.248)
3
AWith this we have

0a}(p) = (M0 + [Q,a}(p)| = @+ 1),
0! (p) = Bp)Q + [0, BYp)| = BipQ-1).  (3249)

Let us remind that ajl(p) and bfl(p) create particles of type a and b with
the equal 4-momenta (hence also equal rest mass) and helicity. In this
respect particles ¢ and b are identical. Now from (3.249) we see that
they are not entirely identical because ajl(p) and b;@) create particles
with opposite charge. It will be seen that Q can be identified with the
electric charge. Consequently a and b are antiparticles to each other.
Conventionally we will call particles of the type a as particles and
particles of type b as antiparticles.

Spin-statistics connection

Due to the canonical relations {az,,a;} = {ap,a4} = {bT,b:‘I} =
{bp, by} = 0 we see that only possible occupation number of a state
|---p,A---)is 0 or 1. Indeed, take

|plr/ll"‘r"'pn//]-n"'>=|"' 0 > (3250)

——
pA

Now by action with creation operator

a;(p)|...0...>zc|...\1’/...>, (3.251)
pA
but .
a2+ = —2a§<p>a3<p)|---0--->. (3.252)
———
=0

Thus, we cannot create a state with the occupation number n,, > 2.
Similarly for particle with an opposite-charge state (antiparticle
state) generated b;(p).

Field theory of Dirac fields (spin ) automatically prescribes (or
implies) Pauli’s exclusion principle, i.e. Dirac fields need to obey
Fermi-Dirac statistics.
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3.8 Symmetry and Conserved Currents,
Noether’s Theorem

In field theory, symmetries and conservation laws are related. Our
starting point is Lagrangian

L= [ & L0090, (3.253)

with the ensuing equation of motion

0L 0L
% (awmr)) a0 0254

Any continuous symmetry transformation, which leaves the Lagrangian
£ invariant implies the existence of a current satisfying equation of
continuity

8, J"(x) =0, (3.255)

This in turn defines the charge

0= / dBxs0x, 1), (3.256)

that is conserved, because the surface term at infinity is negligibly
small, i.e.

Ocli_? _ / Py = / $xV-J=0. (3.257)

Particularly important is the case when the Lagrangian is invariant
due to internal symmetry, that acts on the internal indices r, i.e. the
action is invariant under transformation

¢r(x) = ¢1(x) = ¢ (x) + ¢ (x). (3.258)

Let us recall that for Lorentz group we had

W(x) S ' (x) = SIW(L ™ x) = Sap(L)p(L )

_ (eiwwwv)aﬁ L), (3.259)

Now for ¢, (x) S ¢/(x):

80) S 6(3) = SGrgy) = (7] 0 ()

E 14 ierT ), 6, (x) (3.260)

= 4 (1) + i€ T 6, ().
| —
6¢r(x)

€“ are (x-independent) small parameters and T'“ are generators of the
Lie algebra of the group G with

[14,T%] =ic*T*. (3.261)
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Eq. (3.269) is an example of a so-called
current algebra.

Here c%"¢ are the so-called structure constants of G. If the Lagrangian

is unchanged under the action of the group G, then §.L = 0 also for
infinitesimal changes 6¢,(x) specified above, i.e.

0Lx
0=0L,= /dy 6¢£(y)6¢r(y). (3.262)

Functional derivative term can be explicitly written as

0Ly = iﬁx((pr +6&0(x—y), au‘pr + ayfré(x -y)
6¢r(y)  de a0 (3263)
_ 9L o(x — )+—6£x 0, 0(x —y) '
69,0 T 8@ ()
So, when we employ the equations of motion we obtain
oL oL
0=0L=0y|777——|9%r ———— 0,00,
Ao KR e
0L
=0y | =————06¢, 3.264
o) (0260

a 0L a
=€ Bﬂ [mlTrq(bq(x)

Since this is true for arbitrary e we can identify a conserved 4-vector
quantity (conserved current) satisfying continuity equation 9, J*(x) =
0. This suggests defining a conserved current J* as

a . 0L a
J/J ()C) = —lWTrquq(x) . (3265)

The conserved charges are given by
Q¢ = / dxJg(x), (3.266)

and are (apart from being conserved — 0% = 0) also generators of
the symmetry group. Currents J;(x) and charges Q“ are known as
Noether currents and charges, respectively.

Let us further note that
JO = —im, T8 ¢, . (3.267)

From
[pa(x,1), mp(y, )] = i6apd(x —y). (3.268)

it can be then deduced that
[790x, 1), Ty, 1)] = ic®P< T x, 1)5(x - y). (3.269)

By integrating this realation twice on LHS and RHS we obtain

/d3xd3y [J“O(x,t), Jbo(y,t)] ic“b"/de’xdg’yJ"O(x)cS(x—y)

ic?PeQe . (3.270)
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Which finally yields
[0, 0"] = ic?P<Q°. (3.271)

So, the charges satisfy the same algebra as the original generators 7¢
of the symmetry. As an example we consider Lagrangian of the form

1 2 o 1 orn gy 1 s \2
L= 5 [0u017 + @u92)] - 5m (¢1 +¢2) -4 (q&l + ¢2) . (3272)
This is invariant under 2D-rotation transformation

¢1 — ¢ = p1cosa—¢asina,

. (3.273)
¢2 — ¢) = ¢1sina+¢ycosa.

Which is equivalent to

(qﬁ{) _ (cosaf —sina) ((ﬁl)‘ (3.274)

®5 sina cosa | \¢2

Here the rotation matrix is element of SO(2) ~ U(1) group. In this case
we can write

G(a) = el (3.275)
and we can obtain the corresponding generator via the usual prescrip-
tion

r=_; 46@ =(0, ’). (3.276)

de |, -i 0

For |a| < 1 we get
¢y = ¢ +ial ¢y = (1 +ial),, ¢q, (3.277)

and hence in this case our current acquires the form

. 0L
Jﬂ = —IWTrq¢q . (3278)

Knowing that only T, = —T'21 # 0 we can write

. 0L . 0L
Juo = —lmTu@ - lmTﬂ(ﬁl
= (0ud1)d2 — (Oud2)dh1 - (3.279)

The previous analysis can be alternatively (and conveniently) formu-
lated in terms of complex (or non-Hermitian) fields defined as

1

¢ = N (1 +i2), (3.280)
¢ = % (¢1—i¢2). (3.281)

In this case we can rewrite our original Lagrangian as

L= (0u0") ("¢) —m*(¢"¢) - A" ¢)". (3.282)

These generators act on a different rep-
resentation space than T7¢, T? and T°.
While T’s act on internal space, Q’s act
directly on the Hilbert space.
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This is clearly invariant under

¢_)¢/:eia¢’

* %/ —l g% (3283)
¢ =e "¢,

which we can again rewrite as

¢/ B eia/ 0 ¢
(¢*J - (0 340)(¢*)' (3289

The ensuing generator reads as

dG(a)

T=-i
! da

:( 10 ) (3.285)
a=0

With that in mind, we finally arrive at the ensuing conserved current:

0L 0
Jo = —i——Tu¢-i Tyne*
a ’M@m)“¢lmqm>”¢
= i[(0up)p* — (8.0")0] . (3.286)

Compare this formula with (2.42), which we had for the Klein-Gordon
particle. Interpretation is, however, very different. In the first-quantized
version J, was a probability current with Jy = p representing probabil-
ity density. In the present (field-theory) case J,, represents a conserved
current with Jy being density of the conserved charge. The charge
associated with the U(1) symmetry is an electric charge and hence there
is no surprise that conserved charge Q might be negative, positive or
zero (as opposed to total probability in the first-quantized theory that
must be positive and normalisable to unity).

Note also that ¢1 and ¢, (or ¢ and ¢*) are degenerate in mass, because
of the required U(1) ~ SO(2) symmetry.



Quantum Field Theory 2

4.1 Noether’s Theorem Continued

Apart from the method used in the previous chapter there exists yet
another quick way to conserved currents — the so-called Noether’s
method (1918).

Consider the global symmetry transformation

$(x) = ¢'(x) = $(x) + £6¢(x) = $(x) + (ieaT)P(x), (4.1)
which leaves the Lagrangian density £ invariant, i.e. 6L = 0. Here
¢(x) is an arbitrary field in our theory and ¢ is a constant infinitesimal
parameter.

We promote now & to be a small x-dependent parameter, so we con-
sider instead a general transformation

¢ = ¢'(x) = $(x) + £(x)5(x). (42)
Generally, we call the transformations whose parameter ¢ is constant

(not dependent on a position in spacetime) global, whereas the trans-
formation with x-dependent parameter £(x) are called local.

Lagrange density (and hence action S) is not invariant under such
transitions for general £(x), since the symmetry we are considering
is only global symmetry. Since then action would be invariant for
constant g, its variation is proportional to the derivative of £(x) and so
it can be written in a general form

58 = / dix[-Jo(x)]0%(x). (4.3)
for some current J,. The current defined in this way is always con-
served if the equations of motion are obeyed. The sign of the current is
just a convention.

Indeed, when the equations of motion are obeyed, the action is sta-
tionary under any variation and in particular under variation given by
(4.2). Thus, when the equations of motion are obeyed, i.e. when 6S =0
in (4.3) is zero for any parameters &(x) from which follows that

9 = 0. (4.4)

As a simple exercise, we will show that for usual charged scalar fields
this gives the same current as we have obtained in the last semester.
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Here the Lagrangian equals

L= up'dp-m'g"p = —¢"(0* +m*)9, (4.5)
(modulo irrelevant four-divergence term). This describes two non-
hermitian particles such as 7* which are not their own antiparticles.

We have already seen in the previous chapter that the Lagrangian can
be equivalently rewritten in terms of two real fields ¢ and ¢, that are
related to ¢ via the relation

¢ = %(451 +iga). (4.6)

Ensuing action equals to
: 1
S= —;/d‘% (§¢i(32 +m2)¢i) =- / d*x(¢* (8> + mH)p). (4.7)

In this case, the Lagrangian is invariant under ¢ — ¢"®¢(x). To get
Noether current, we promote @ — a(x). For infinitesimal parameter,
one then obtains ¢(x) — ¢(x) + ie(x)¢(x), which implies

5§ = - / d*x [(#(x) +ia(x)$(x))* (8% + m?)($(x) + ia(x)d(x))—

- ¢ (x)(9* + mH)g(x)]

- / d*x¢* ()% (+ia(x)(x)), (4.8)

where we neglect pieces linear in a(x) (invariance under global sym-
metries). Continuing and integrating per partes we get

58 = — / d*xg* (x) [i(0*(x))p(x) + 2ida(x)0* $(x) +ia(x)0*¢(x)]
= - [ dt i (040000 - 048" ()6 ]
=i [ 1609900 - 6008 ()] 00
=- / d*xJ* (x)d,a(x),

where we have identified the conserved current. We see the agreement
with Eq. (3.286).

Noether Charge for Dirac Field
Let us now consider free Dirac field, then the Lagrangian is equal to

L = vy du—mp . (4.9)
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This is invariant under transformation

U= Y= () +iay(x),

U= e = g —iag(x), (4.10)
where « is a global constant. If we again proceed as @ — a(x) we get

oL

(1 —ia(x) iy 8y — m)(A +ia(x)Wy — g iy d, — mpy
= Yiy"di(a(x) = -y y*ydua(x)
= —JH(x)0ua(x), (4.11)

where the parts linear in a(x) were neglected. From this we get the
equation for the Dirac current

A J* (x) = 0,(yy*y) = 0. (4.12)

In the first quantization, we arrived at the same expression for the
Dirac’s probability current. Now we see that it does not reflect a con-
servation of probability but a conservation of the charge O (which can
be either positive or negative) and has a form

0 = / dPxJ%(x). (4.13)

This charge is time-independent and relativistically invariant.

Up to now, we considered a "semi-classical level" in which the variables
were not considered as operators. On the quantized level the operator
that generates the corresponding transformation is

0= / Pxyy’y . (4.14)
It is easy to see that (at a given time ¢)

(0,00, = [ @+ [0y, 00)] =-d), @19
where we used

|70 1Yt 3)| = T 6095 {00, 0, 0},
~{War iy}, ¥opw(x)
= — Y0 Yyad(x = Y)p(x) =
= —0py5(x — Y Wp(x) = ~5(x — Yy (x).

Thus we obtain the following equations (the second one could be
computed similarly)

F(x)(Q-1), (4.16)
V(0 +1). (4.17)

Qb (x

) =
Ov(x) =

Strictly speaking one should consider
operators in the normal-ordered form,
but since they differ only by a complex
number (infinity), it is not important in
context of computing commutation rela-
tions.

Remind the identities
[AB,C]=A{B,C}-{A,C}B,

{Ya(x), ()} =050 - ).
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So symmetry is implemented via unitary
transformation as it should be in Quan-
tum Mechanics.

As an exercise, try to show that the following relations hold

A

ap) = a(p)Q-1), (4.18)
0b'(p) = B\(p)(Q - 1), (4.19)
0dl(p) = Ay (p)(Q +1), (4.20)
0ba(p) = ba(p)(Q +1). (4.21)

Note that since 0 |0) = 0, it follows from the second and the third
equation (considering |p, 1) = Bfl(p) |0) and d;(p) |0), respectively)
Olp, ) = 0B (p)[0) = By (P)O -1 [0) = ~Bi(p)|0) = ~|p, 1), (4:22)
Olp, ) = Qa(p) [0y = d) ()@ +1)[0) = @} (p) [0) = |p,A) ,  (4.23)
which clearly demonstrates the concept of particles and antiparticles
with opposite charges.

Moreover, it can be easily shown that the transformation of the Dirac
field (4.10) can be rewritten in terms of the conserved charge. In partic-
ular

Y — ey = e_i“Qwei”Q (4.24)
— o T o
U o e 'Y = (e_”'leemQ) yo = e_lepemQ . (4.25)
To prove this it suffices to prove the identity to the lowest order.
LHS ey =~y +iay + 0(012),
RHS ¢ Qyei@Q ~ (y — iQay)(1 +i0a)
=y —ia [Q,lﬁ] + 0(a2) =y +iay + O(az).

Group composition law will then take the infinitesimal transformation
to the full one.

In fact, the result (4.24)-(4.25) is very general. One can show that if
¢ — Ty (4.26)

is the symmetry of the Lagrangian £, then it can be equivalently
rewritten in terms of Noether charges O as

ei"‘ngS = ¢iaQ ¢ei“Q. (4.27)

4.2 Space-time symmetries

So far we have dealt with internal symmetries, i.e. symmetries that act
on internal indices of fields. Noether theorem is, however, versatile
enough to identify conserved quantities related to space-time symme-
tries, i.e., symmetries that act directly on space-time "indices" rather
than internal field indices.
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Translationally invariant systems

Consider a system whose Lagrangian density is invariant (up to a
4-divergence) under the rigid space-time translation

P(xH) = (' + ) = ¢(xH) + d0up(x"), (4.28)

where we used the Taylor expansion to the first order in a*.

Since we deal with x instead of discrete index, the Lagrangian density
can after transformation differ from the original one by 4-divergence
and still provide the same equations of motion. On the other hand,
when one deals with internal symmetries, x-derivative do not enter in
the transformation as everything is done at the same point.

We can derive the consequence of this by adopting the strategy as
before, and promote a* to be position dependent. Then, if we assume
that the field ¢ satisfies the equations of motion, then

0=6S= / d*x[L(¢ +adp,d(p + add) — L(p,09)]

_ 4x (')L v

‘/d [ mawa(a@

_ 4 a'L v

'1/dxH m¢¢ﬁ(a@ @ m¢@d¢y%“}
oL

/‘ (%Q“+bw¢>¢) ]'

Using the fact that the 4-divergence d,(La*) = 0 (invariance of the
Lagrangian for translations with a constant a) one gets

oL y
0=65=/d4x[(a(6 5% )a,,a —La,,a#]

Y
‘/dema@ ﬁ L | dua

If we define the canonical (or Noether) energy-momentum tensor by

u 0L

v = (9(8—,@)
then the invariance of the action under local translation induces the
conservation of the tensor as

ovp — Ly, (4.29)

8,T", = 0. (4.30)
We see that T°) = T% is just usual definition of the energy density (the

hamiltonian density #). Other components have interpretation

Tio =T = _T,, (wherei=1,2,3)is the energy flux, (4.31)
7% = —1°  (wherei = 1,2, 3) is the momentum density.  (4.32)

L1

For a real scalar field we find that the (doubly covariant) tensor 7, =
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As an example, check that for the Dirac
field we get the electromagnetic tensor
introduced on the lecture in the last
semester.

Nua Ty’ is symmetric since

Ty = 0,90" ¢ — i L. (4.33)

Summary of Noether procedures

In case of internal symmetries, we consider transformation of a

type .
$(x) = ¢'(x) = T p(x), (4.34)

where the generators satisfy the commutation relations [T;, 7;] =
i f;jxTx.. These induce conserved currents Ji* and charges of a form

0 = / dPxJ)(x), (4.35)

where [Q;, Q;] = ifijkQx, i.e., Qi’s satisfy the same algebra as 7;’s.

The transformation (4.34) can be equivalently rewritten as

T g(x) = e 412" g(x)e' 12" (4.36)

On the other hand, space-time symmetries, such as translational
invariance, represent transformations of the type

P(x") = ¢'(x) = p(x” +a”), (4.37)

induce conservation of the energy-momentum tensor 7#” and en-
suing conserved vector “charge”

P’ = / 2xT% (x), (4.38)

which is equal to the total momentum of the system. Again, the
transformation can be written as

d(x +a) = P p(x)e P (4.39)

4.3 Relativistically Invariant Commutation
Relations

Consider first:

iA(x) = [¢(x), $(0)],
iA(x, 1) = [¢(x, 1), ¢(0)], (4.40)

0 g
5,006, 1) = =ild(x,1), $(0)].
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When ¢ = 0 we recover the equal time commutation relations, i.e.

A(x/ 0) = —i[(b(x,O), ¢(0)] = 0/
P (4.41)
EA(X/ Dle=0 = —i[n(x,0), #(0)] = —i(=i)o(x) = —0(x).

Which means that A(x)|;—o and A(x)|;—o = —8(x). These can be consid-
ered as initial conditions for A(x). What equation satisfies A(x)? Since
O+mH)p(x)=0 = (%> +m>)A(x)=0, (4.42)

the solution is

. d3 —ipx ipx
A(x) = i / m [£(p)e P + h(p)e'™]

. . (4.43)
= =i ) [F@)eP* + h(p)e'™] .
P
We fix f and h by applying initial conditions on
9 —ipx ipx
57A0) = - ;wp [£()e™P* = h(p)e'P~] (4.44)
and
dp® ; ;
A, 0) =i [ SB[l + hpre 7]
(2n)32wp
&) (4.45)
-7 _ -y ipx
[ G L0 ] €7
This then implies that
fp) + h(pp) = 0. (4.46)
where pl, = (p°, —p). Thus
0 d3p , .
ZA B _ _ vy ipx _ —ipx
A, Dli=o Gz, /@) =P ] vy
= -d(x). (4.47)
Employing the property of Fourier transforms we get
1
S/ @) = hpp)l = 1. (4.48)

Together with (4.46) this gives that f(p) = 1 and h(p,) = h(p) = -1 and
hence the general form of A(x) reads

. d3p —ipx ipx
A(x) = —l/m[e p —e” ] . (449)

Note that A(x) is relativistically invariant, i.e. A(x) = A(L"'x) for
any Lorentz transformation L that maps each mass shell to itself,
see Fig. 4.1. This can be shown as follows. First we see that the 4-
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Figure 4.1: Positive and negative energy
mass shells.

wy >0

w, <0

2 2
p-=m-

dimensional momentum measure is Lorentz invariant, indeed
d*p’ = d*p|detL], (4.50)

here p’ = Lp. The 6-function §(p? — m?) is also Lorentz invariant on the
mass shell, because §(p? — m?) = 6(p? — m?). Finally, by defining

1, p0>0

. 4.51
-1, pO <0 ( )

&(po) = {

we can easily see that also £(py) is invariant under orthochronous Lorentz
transformations L. Indeed, we know that the defining property of the
Lorentz transformation implies that

(Loo)2 = (L({.)2 +1, (4.52)

which gives

(L00)2 =) (L()l.)2 . (4.53)

Similarly, by using the dispersion relation
P2 = Y pEen, (4.54)

one obtains

WP > D (4.55)

Putting all of these together we get

2

2 .
(L52°) > D@ = ILPIPE (4.56)
iL,J

Z(LO,-)p"

where the last inequality follows from the Schwarz inequality. Eq. (4.56)

yields
Z ( Lol_) P

i

IL%p° > . (4.57)




4.3 Relativistically Invariant Commutation Relations

Now, p; = pOLO0 + 2 piLOi, which means that the sign of p is fully
determined by the pOLOO term. If LOO > 1 (i.e. we consider only or-
thochronous Lorentz transformations), the signs of pj and py are the
same and hence our &(pg) is Lorentz invariant under such transforma-
tions.

Consequently
d*pe(po)s(p? - m?), (4.58)

is Lorentz invariant. Let us further realize that

/ dpe(po)d(p? - n) - -

1

= [ dtpetpnrg - [om-wp) + S0+ wp)] - @59)

P
d*p
:/E [6@0—wp)+6(po+wp)]
With this we see that A(x) acquires the form
. d*p 2 _ 2\ —ipx
Alx) = —l/ 3.9(p0)6(p —m)e P, (4.60)

(2n)

By Lorentz transforming this expression we obtain

4
AL x) = —i / (gﬂ’)’4 e(po)5(p? — m2)e PL X (4.61)

But (p, L™'x) = (Lp, x) since (x,Lp) = (LTx,p) = (L™ 'x, p). Here we
have used the fact that L € SO(3,1). More explicitly, we can use the
index notation to write

xlef/PV = x;t(L_l)v#PV

PPN %y = p (LY, x* = pLT'x.  (4.62)

xLp

This leads to (taking p’ = Lp)

4 7
A(L™'x) = —i / (c;ﬂp) (oY —mP)e™ P = A(x). (4.63)

Statement: There exists an alternative representation for A(x) given by

d4p e—ipx
) (27.,.)4 pz —m2’

/ d*p = / d3p /y dpo. (4.65)

and y represents the integration contour depicted on Fig. 4.2. With this

Ax) = — (4.64)

where

—ipot
/ dp° (po_: o = 2R R). (4.66)
Y i4 i4
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Figure 4.2: Contour of integration in
Eq. (4.64)

N() ~ 3y2+00%)
for |y| < 1.

Im py

Where the last step follows from the Cauchy theorem and

e—iwpt eia),,t

R = , Ry=- . (4.67)
2wp 2wp
This leads to the
3
A(X) — —(271'1)/ d 14 1 (efiwptﬂ'px _ eipripx)
(2m)* 2wp
d3p 1 :
=21 —lpx _ ipx 4.
( )/ (27r)4 Za)p ¢ ) (4.68)

(27r)32wp (e =)

The c-numbered commutator [#(x), ¢(0)] is known as the Pauli—Jordan
commutation function.

Another useful representation of A(x) is

Ax) = (2;)3fcp—pei”x sin(rwp) . (4.69)

This can be explicitly Fourier transformed with the result

1 me(t)
225000 = 00 (m2) ],

where x2 = 12 — x2 and J; is the Bessel function of the first kind. In the
neighborhood of the light cone (i.e. x> ~ 0) we get

Ax) = — (4.70)

Alx) = -

1 5 m? 5
2—8(x0)6(x ) — —&(x0)O(x )] . (4.71)
Vs 8

In particular, for time-like separation (i.e., x% < 0) we get A(x) = 0. This
is called microcausality, i.e.

[6(x), ()] =0, V¥x,y, (x—y)* < 0. (4.72)
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So, free fields and any local observables constructed from such fields
commute at space-like separated intervals. Consequently, they can be
observed /measured independently without influencing each other.
Note also that for causality purposes it was indeed enough to study
only [¢(x), #(0)], since

eI (), e = [9(x — ), $(O)]. (4.73)

It should perhaps be stressed that microcausality does not preclude
such non-local quantum effects as quantum correlations and ensuing
entanglement, which result from non-local state (vacuum state) that
enters in their definition.

It can be shown, that microcausality holds for all known relativistic
fields (with anticommutators in case of fermionic fields).

The Feynman Propagator

The basic building block of the perturbative treatment of scattering
problems in particle physics is the so-called Feynman propagator
Afr(x), which is defined as

iAp(x—y) = (OIT [¢p(x)p(»)]10) , (4.74)

where the time ordering (or time ordered product) T(- - - ) means

p(x)p(y), 10 >0
T = . 4.75
(6(x)6(») {¢<y)¢(x), ou (4.75)

For xY > 0 we can write

iAF(x) (0] ¢(x)¢(0) [0)

= D, Olfa@e™ +a" (e | [ape ™ +a'(p)e] 10)

p.p’

= ). (Ola(p)a’(p')|0) e~
p.r’

= > (0l [a(p),a'(p)] 10} e~

p.p’

D e (4.76)

14

And similarly for x° < 0 we get

iAp(x) = Z eiPx (4.77)

p

Thus, generally we can express Feynman propagator as

iAF(x) = Z [O(x0)e X + O(=x")eiP¥] . (4.78)
P
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Figure 4.3: Pole structure of the inte-
grand in (4.79).

First term in the sum propagates a particle with positive energy for-
ward in time, while the second one propagates a particle with negative
energy backward in time.

There exists a number of useful representations of Ar(x). One very
convenient and manifestly Lorentz invariant representation of Ar(x)
is

d4p e—ipx

iAr(x) Q2m)* p?2 —m? +ie

Y - Ay - -
= /]R s (27)3 e'? /IR 20 PP —(wy—ie) (4.79)
S—————

A

In the complex po-plane the pole situation looks like:

‘/wp —ie)(p’ + wp —ig)

P°) = (w}, —ie)

ie
= (pO_wp+ )(pO""wp )
pr 2w,
—— ~——
=ig’ =ig’

[po —(wp — is')] [po +(wp — is')] . (4.80)
So, the integrand has two poles located at pg = w, —ig’ and pg =

—wp +ig’, cf. Fig 4.3. When xy > 0, one can close the contour from

Im py
X .,
w2 — g > —w), + ic

(.

(. X Re po
2 _ _ /
\J Wy — 1€ 2w, — i€

below by a circle with infinite radius. Indeed, note that in this case the
timelike integral in (4.79) over the lover circle is zero. Indeed

0 . - iRei""
dppA = = Re'*} = lim iR/ dpe———
/ Po {r b= AmiR | de PP (@ —ie)
'\J
—leo(COS @+ising)
= lim iR/ d 4.81
R—00 ve R2 2ip (a) —ie) (4.81)
This implies that
- ) e—ino cos¢eRx0 sing) -
lim R / dee'? - 5 < lim R/ do|...|
R—00 0 RZeZHp — (0.) — lE) R—c0 0

Rxo sing

- limgr /[ d -0, 4.82
e / ¥ R + bounded (4.82)
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which shows that f dpo A = 0. Consequently, for the pY-integral with
Y

xp > 0 we can write

M e~ iPoxo
< @0 (02— (W} —ie)

_ i/ dpo e~ tPoXo
) @m)i (p° — (wp —ie"))(P° + (wp — ig”))

—i(wp—i&’)xy N —iwpXxp
S e L (4.83)
2(wp —ig’) 2w,
Here we used the Cauchy integral formula:
1
fxo) = 5= f dzM. (4.84)
27mi Z— X0
Thus
d3p e—iw,,xo—ipxg .
A = = i 4.85
IAF(X)]x>0 o @1 200, ;e (4.85)

Similarly for xp < 0 we can close the pp-integral with a large upper
circle v\. With this we get that

iAo = Y P (4.86)
p
Hence
iNp(x) = Z [©(x0)e ¥ + O(=x")eiP*] . (4.87)
p

Should we have started directly from the form (4.87) we could ar-
rive at the integral representation (4.79) by employing the following
representation of ® function

O) = —— / 4l (4.88)
R3

2mi T—1i¢

Let us now see that Ar(x) really corresponds to Green’s function. To
this end we consider

@ +m)Ap(x) = =i(O+m*) (0| T[¢(x)$(0)] [0) - (4.89)

To do this computation it suffices to concentrate only on the 7¥(...)
product. Namely

2
~i a(i°)2 — V2 + m? | [0(x0)p(x)$(0) + O(=x0)$(0)p(x)]
=i 6—2[‘ ] = i [@(x0)(=V3 +m?)p(x)$(0)
d(x0)? 0™ Vx

+ O(=x0)(0)(-V3 +m)p(x)] . (4.90)
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Rewriting the expressing for —id?[---1/0(x")? as
- l— [6(x0)(x)(0) — 6(x0)p(0)p(x)

+ O(x0) 0¢<x>¢(0)+®( %0)¢(0) = ¢(x)]
= —i [6(x0) [4(x), ¢(0)]

+ 0(x0)7 0)2¢(x)¢(0)+®( —x0)¢(0) 2~ 5%

T o ¢(x)] (4.91)

(
Thus

=i(O+m*)T[¢(x)$(0)] =6(x) + O(x0)(T +m*)(x)(0)
+ ©(=x0)$(0)(0 + m*)¢(x)

—0(x). (4.92)

Which means that
(O+m?)Ap(x) = —6(x). (4.93)

Alternatively, we can prove this directly from the integral representa-
tion of the Feynman propagator:

) d4p e—ipx
O+ m )/ Qn) (P -2+ ie)
d4p (pZ _ mZ)
Q2n)* (p?2 —m? +ie)
= —o(x). (4.94)

=i(O+m*) (0] T[¢(x)$(0)] 10)

—ipx

The fact that this is indeed equal to the Dirac delta function follows
from the properties of generalized functions. We know from Sokhotski

formula that ,

X +ie

= el i), (4.95)
X

which should be understood in the sense that for any Schwartz test
function g one has the scalar product identity

X +ie

( 1. ,g) = (P%,g) —in(6,8). (4.96)

= xSD% —inxé(x) = xSD)—lc we have

( x. ,g) = lim(/ dx£g+/ dxfg) =(1,g). (4.97)
xX+1e a—0\,J_ X a X

(o)

So, we have that x/(x +ig) = 1.

One can also calculate the integral (4.79) explicitly. The actual result
splits into 3 parts. Light-cone part (i.e., when x> = 0) that has a sim-
ple form 6(x?)/(4r), part inside of the light cone (i.e., when x? > 0),
which is a combination of Bessel functions Jl(m‘/x_z) and Nl(m\/x_Z),
and finally part that corresponds to x? < 0, which is proportional to
K1(mV=x2). In the neighborhood of the light cone the solution can be
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expanded as

i . im?
4n2x2  8n?

Ap(x) = l5(x2) - In|x| - m—z@(xz). (4.98)
4n 16x

So, Ar(x) penetrates also behind the light cone. We will see that Ag(x)

basically corresponds to an amplitude of probability that a particle

starting at x = (0, 0) will end up at the point x = (xg, x). In this respect

there is a non-zero probability that a quantum particle might evolve

into a space-like separated regions.

Let us consider the part of the solution with x> < 0 more in detail. This
has the explicit form

im Ki(m~-x?)

AF(_X) = 4”2 _xz (499)
For large V-x2 = |x| the latter has the expansion
Ar() = S [ e [ 4 0(1 1)) (4.100)
T AV 2y ‘ '

Thus for large |x| the behavior is dominated by the exponential part.

x|

Note that when we reintroduce % and ¢ then el — ¢~ %" Xl = ¢7 7,
So a typical distance over which a particle can appreciably "tunel"
behind light-cone is 1. = -, which is a Compton wave length. We
have seen that this was a reason for existence of anti particles.

Notes on microcausality

Despite the microcausality, there is a nontrivial correlation even at
space-like distances. This is due to vacuum that can mediate the
correlations.

Dirac Field

Recall that we require to use anti-commutation relations for Fermi
field instead of commuting ones. We therefore define the time ordering
(time ordered product) for ¥, (x) and Zﬁ(x) to be

Ya(p(y) %0 > Yo

- . (4.101)
~Ug(yWa(x) X0 <yo

Tlya()p(y)] = {

We will see in the following that this definition will also be consistent
with other requirements, e.g., it will allow us to get a correct Green'’s
function for Dirac equation.

We define the corresponding Feynman propagator to be

i{SF()}ap = (O T[Ya(x)ds(»)]0) . (4.102)

It will be this object that will be a basic building block in the per-
turbative treatment of scattering matrix. Again, it will correspond to
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the Green function (this time for Dirac equation) with correct pole
avoidance prescription.

If we follow through the same type of argument as for scalar field we
find that

d4p €_ipx(11’ + m)a/ﬁ
Q) p2-m?+ie

=i (0] T ()5 (3)]10) - (4.103)

{SF(X)}ap

Let us recall some relevant steps in the proof. For xy > 0 we get
{SF(X)}ap

= =i ) > (0l a(p, Vtta(p, Ve P + b (p, Dvalp, Ve'™]

p.p’ LA
X [b(p’, A'Wp(p', A)e P +a’ (p’, A )ag(p’, 1")eP°] |0) .

Here we note that only first and fourth term in the sum are relevant.
Continuing we get

Sr@Yap = ~i y. > (Ol La(p, D), a (7', )] 10} ua(p, Dits(p, e~

p.p AL

= =i ) ttalp, Ditg(p, e~
p,A

= Z@; +m)ape V¥ (4.104)
p,A

Similarly we can repeat this procedure for xg < 0. Finally we get that

SP(x) = =i )" [@(x0)(p +m)e™P* = O(=x0)(p— m)eP*] . (4.105)

p

On the other hand,
d*p (p +m)
Qm)t p?2 —m? +ie
[ dp (p+m)

= “iPx (4.1
] e o =(ap —ieNpe + @ —ien© - 4100

e iPx

By closing our contour down (see Fig. (4.4)) we get for xp > 0 that the
integral above is equal to

. dS +m) IpxX—iwp X . —ipx
i (znl))ﬂ)szep P = i Y (p+m)e P (4.107)
p

This coincides with Eq. (4.105). Similar reasoning can be done for
X0 < 0.

To show that Sg(x) is Green’s function of Dirac equation, let us con-
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Im po

vy
—wp + 1€

close down

sider

d4p (p - m)(p + m) o~iPx
Q2m)* p?-m?+ie

(id = m)SF(x)

_ d4p PZ - m2 —ipx
- Q2nr)t p?2 —m? +ie
d* :
- #e—w = 6()1. (4.108)

It can be shown that this again corresponds to the transitional am-
plitude and again there is a non-zero contribution from x* < 0 with
effective penetration distance of the order of A..

Figure 4.4: Way of closing the contour in
integral (4.106) for the case xg > 0.
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4.4 Interacting Fields

So far we have dealt with non-interacting particles that were repre-
sented through free fields. To include interactions among particles
we must introduce interaction terms into the Lagrangian of the field
theory.

As a test bed for further applications we start with Hermitian (i.e.
uncharged) field Lagrangian. If the field is free we have

1 1
Lr = §(8¢)2—§m2¢2. (4.115)

The interaction is introduced by making the substitution Lr — £ =
LFr + £L;, and requiring this quantity to be the Lorentz density (so that
the ensuing equations of the motion are relativistically invariant). Here
the term L; is the so-called interaction Lagrangian. The simplest form
of L that keeps L to be Lorentz density is the form where £; is a local
function of fields. Among these, the polynomial functions are the sim-
plest ones. Let us thus consider particularly (and phenomenologically)
important case

8

4 = v, (4.116)

L = (153—4—!

The presence of the £; in the Lagrangian density means that ¢ no
longer obeys the Klein-Gordon equation. If we construct the field 7(x)
conjugate to ¢(x) it is m(x) = %, then

i Lowar - Lazgr -
L= 4= 5V = m¢ -V (9) (4117)

and hence 7 = ¢ as before.
Canonical commutation relation is
[¢(x), 1(x")] = [¢(x), p(x")] = i6(x — x), (4.118)

where x = (x,x) and x* = (x¥,x"). Recall that Hamilton density is
defined by
H(x) = m(x)p(x) — L(x). (4.119)

Thus, if we substitute our £L(x) we get

1 1 1
H = n2(2) - | 57700 = SV = 5767 (0)| + V(@)

= %n%x) + %(V¢(x))2 + %m2¢2(x) +E5 0+ %¢4(x) (4.120)
= Ho(x) + Hy(x) = Ho(x) = Li(x).
Here
Holx) = %”2()6) + %(Vqﬁ(X))z + %m2¢2(x), (4.121)
and

() = £60) + 5040 = - L), @122)



At a given time ¢ the H = Hy + H; and we can calculate them using

Hy = / dBxHy(x), (4.123)

H; = / dBxH; (x). (4.124)

The Heisenberg equations of motion for ¢(x) is given by the Euler-
Lagrange equation

oL 0L
—— |-==0. 4.12
"(aam) o9 0 (4129
Which gives us
0u(@9) +mPp+E97 + 297 =0 (4.126)
g AT '
————
v
¢
The extra term % in the equation of motion prevents the solution

being free-field solutions.

4.5 Perturbative theory
We will make split H = Hy + Hy at time ¢ = 0
3.1 5 1 150
Hy = /d x [Eﬂ' 0,x)+ E(Vqﬁ(O,x)) >m ¢ (O,x)] , (4.127)
- [ & 8 .3 0 g 0
HI— X §¢(/x)+z¢(/x)

(4.128)
= / dxv(¢(0,x)).

Interaction picture

Although the general theory of fields is best investigated using
Heisenberg picture, the fastest route to perturbation theory is via
"interaction" picture.

4.6 Interaction (Dirac’s) Picture
Schrédinger picture is given by

)5 = HS WO)s (4.129)

4.5 Perturbative theory
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If HS is time independent, then

W()s = ey (0)s - (4.130)

On the quantum level the full information about the interaction is most
naturally encoded in fields in the Heisenberg picture. On the other
hand, the passage to the perturbation calculus is most easily done via
interaction (or Dirac’s) picture. Let us thus first introduce the interaction
picture.

If H = Hy + V is the full Hamiltonian (and its free and interaction part)
in Schrodinger picture, we define interaction picture by the relation

@), = ™M w)s (4.131)
which can be equivalently rewritten as |y/(¢)) g = e~ iHO [ (1))

In the other words we peel off the free-theory Schrodinger time evolu-
tion so as to be able to concentrate on the effect of the interactions only.
The corresponding equation of the motion for |(7)); can be directly
obtained from the defining relation (4.131), indeed

W), = e ), + e TGS o))

= —HS |y (), + €M (HyS + VS)e % 1y (r),
= Viy@), = Hilw®),, (4.132)

where
Hy = &M’y Semit’n (4.133)

in the interaction part of the Hamiltonian in the interaction picture,
which (in contrast to its Schrodinger picture counterpart) is gener-
ally time dependent. Note, that for a time-independent H;5, the time
dependence of Hj is that of a free Heisenberg field. Equation (4.133)
provides the defining relation between interaction and Schrodinger

. . iHgS _iHS
picture. So, in general A; = "' ASe 0!,

Note I.

CE with the usual relation between Heisenberg and Schrodinger
picture where
AH = iHt 5S ~iH5t (4.134)

= in the interaction picture is the evolution of state dictated by
the interaction while the evolution of operators via free part of
Hamiltonian.

Note II.
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Let us look at the equations of motion for Hj.

d—= SaS o
l_H] — _ elHO IHOSHISe iHp>t
dt
R _iFgS ip.S i S
+ elHO tHISe iHy elHO H[]Se iHp>t
—
=1

= _EOEI +ﬁ1ﬁ0 = [ﬁ],ﬁo] . (4135)
= %H} = —i[ﬁj;ﬁo] o

(i.e., evolution via free-field Hamiltonian, as expected). We assumed
that H;S is time independent and HyS = Hy! = Hy.

We now come back to the equation for states. If at ¢ = #; we have that
oly(t1)); = |¢:), then one can observe that

1 —
WOy =+ [ B ), (4.136)

n

This an integral equation for |(?));. In mathematics this is known as
the Voltera integral equation of the second type. Indeed, Eq. (4.136)
clearly satisfies

i% () = Hi0) (), with  [y(), = lg:) - (4.137)

Let us attempt to solve this equation iteratively

0" approx. (@) = i)
1 /. —
1**approx. (), = i)+ ;/ dr’Hy (') i)
1/
2" approx. (@), = lyi) + 7/ dt’Hy(t") |¢;)

1 ! ’ IVTT (2INTT (!
+W/ dr jdz Hr (VA |0)

Generally
(1), = U@ 6) i), (4.138)
where
+00 t tl tnfl . .
U(t;t,-)=1+Z(—i)"/ dt1/ dtz.../ de" Hy(tY). . . Hi(t").
n=1 1 1 1
(4.139)

In the integration region (t! > 12 > 13...) to put (4.139) into a manage-
able form one can use Dyson trick that is based on the time-ordering
product.

To this end, we define T{H;(t')H;(?) . . .}, which is the usual product
of operators but organized so that the operators with higher time
argument are more in left, or in other words, the product is such that
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time arguments of involved operators are in descending order from
left to right. From mathematical analysis it is well-known integral
identity:

t(n=1)

‘ e e
/ ar® / dr® / dr® ... / di™ F( Dy, (™)
n n n n
1 t t t t
== / drM / dr® / dr® ... / di™ Dy, ™).
nJy n n n

Since behind the symbol "T" all operators H;(t') commute, we can
write

Ix (—i)" t t t .
U, ;) = 1+Z T/ dt(l)/ dt(z).../ A T{H;(1V)...}.
n=0 ' li li

ti

4.140
In the absence of the time ordering one could naively write ( !
Ut ) = ¢ 40 F00) (4.141)
but this is wrong! In fact correctly we have
Utt) =T [e"' Jry @) (4.142)

where this time-ordered exponential should be understood as "expand
and apply on each monomial separately” as in (4.140).

Note III.

Note the difference between

b
e/a dtA(t)  pAltn=tp)At+A(tn-1)At+...+ At =ta)At ,
and

T [efab dzA(t)] ~ eAltn=tp)A1 JA(ty )AL eA(tz)AzeA(zlzza)At’

where s, > t,_1 > ... > .

Only when all operators A(z) at different times commute then both
expressions are identical.

Note that U(z; 11) satisfies the composition law (assuming #; < 1, < 1)

et

T e%/‘? darH d )] dt’H,(t’)] _ 7 [e}jt; drH (1)

U(t; ) U(t2;11) . (4.143)

Interacting fields

Scattering processes are described in terms of transitions between an
initial state of free particles far in the distant past and final state of free
particles far in the remote future.



4.6 Interaction (Dirac’s) Picture 135

Cluster decomposition property

Assumption that a studied interacting system can be described
in terms of free fields in asymptotic times is called the cluster
decomposition property.

Formally, we are thus interested in the limits 1 — +coand t; — —o0
and therefore the operator

S =T [e—i/f;" dlﬁl(')] =T [eiff: dle(t)] , (4.144)
will turn out to be of practical importance. From our construction
H = — / dBxLi@). (4.145)

Consider that the interaction part of the Lagrangian has classically the
form

L= 550 - 26, (4.146)

Quantization is again performed via Schrodinger picture. We can then
easily pass to the interaction picture via the usual relation

#1(x) = ¢1(1,%) = 45 (0, x)e7 !
= e Hit 1 (0, x)e 0! | (4.147)

Here we have assume that Schrodinger and interaction pictures co-
incide at the reference time t = 0. So, in particular at # = 0 we have

H(0) = / Bx (%¢3(0,x) + %¢4(0,x) + ) (4.148)

This structure remains the same for all times. Indeed

ﬁ[([) eiHO’tﬁI (O)efiHOIt

/d3x (%qﬁ(t,x) + %&(x,x) + ) (4.149)

As already mentioned, the fields that appear in the interaction-picture
based perturbative theory are free fields controlled by Hy. Recall, that
for any operator Q

QI (tZ) — eiHOI(tz—tl)QI(tl)e—iHOI (h—11) , (4150)
or infinitesimally
dO' (¢
sz—t() = [Q'(1); HE, (4.151)

which is nothing but that free field equation of motion. Moreover, the
canonical commutation relations also hold in the interaction picture.
Indeed, by introducing the conjugated momenta

Y (x) = (0, x)e 0! = HTTS(0, x)e ot (4.152)

In the interaction picture we have
(62 + m2)¢! (x) = 0 where
¢ (x) = Epla(ple™P* +a’(p)e'P].
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we might directly write

[6'(t,x); 11 (1;x")] = is(x—x'),
[¢'(t,x); 0" (5;x)] = [O'(@,x);0'(5x)] =0,
n'@e,x) = ¢'@x).

These relations are, of course, simple consequence of the fact that the
interaction picture fields are connected via unitary transformation
with Schroédinger (and also Heisenberg) picture fields.

Note

Let the interaction and Heisenberg pictures coincide at some refer-
ence time 79. We can use their respective evolution equations

¢I(f, x) = eiHOI(I_tO)(ZSI([O,x)e_ngI(l—fO) ,
¢H (t’ x) = eiH(t_t0)¢H (tOI x)e_iH(t_t[)) 7
and the fact that ¢ (9, x) = ¢ (1o, x) to obtain that

¢I(t, x) = eiHOI(t—to) e 1H(t—10) ¢H(tl x)eiH(t—tg) e—iHOI(t—tO)

At 10) " (t, x) A7 (1, 10) . (4.153)
Here A(t, tg) is clearly unitary (i.e., AT, 10) = A1, 1p)).
In particular, we have in the interaction picture the usual creation and

annihilation operators satisfying the familiar algebra (super-index [ is
omitted)

[a(p),a"(p)]
la(p), a(p")]

51717' ’

[a"(p),a’(p")] = 0. (4.154)

The eigenstates of Hy are
|0); a(p)|0) = 0; Hpl|0) = 0 (bynormal ordering),
Ipy = a'(p)|0); Hola'(p)|0)] = E,lp) = wplp), (4155)

and all other multi-particle states obtained by application of creation
operators on |0).

Representation (4.153) for A(t, 1) is quite inconvenient for practical
purposes as it mixes two distinct representations. In addition, for
perturbation purposes it is convenient to work directly with the inter-
action picture. Fortunately, not difficult to find the form of A(z, 1) in
the interaction picture.

To this end we again assume that 7y is the time when both pictures
coincide, so that A(f, fp) = 1. We know that the correspond Heisenberg
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field equations in respective pictures read
9 .
EﬁbH(trx) = i[Hy(¢u, n), ¢u(t, x)|,

%sbz(t,x) = i[Ho(¢1,11y), ¢1(t,x)] . (4.156)

In the following we will also need the simple identity, namely

d d
AN =1 —A|AT = —A—ATL. 4.157
- (dt ) dt ( )
Let us now take the derivative of ¢; and use the former identities. This
gives
9 bt x) = E[A A = Ay At + A AT+ Agp AT
51 = 3 PH = Aopn PH PH

= A(A_1¢]A)A_1 + iA[HH (¢H/HH)/¢H]A_1
+ A(A g A) AT

= AATVg; +i[H(p1, 1), ¢1] + ¢r AN
_AA—I
= [AAT +iH(¢r,10p), 1] . (4.158)

N————
H-Hy+Hy

This should be compared with (4.156). In fact, since (4.158) holds for
any operator (not necessarily only for ¢,(z, x)), we inevitably get that

AN+ i(H-Hy), = cnumber = A= —iHIA +cA,

(¢ is some c-numbered time-dependent function). The previous line
can thus be equivalently rewritten as

iaA(t/ tO)

S = [ﬁ,(;) + ic] At 10). (4.159)

Note that this is the same type of equation we had for states in the
interaction picture. So, by using the boundary condition A(z, fp) = 1,
we can equivalently rewrite (4.159) as the Volterra integral equation

t
At 1) =1- i/ dh (ﬁ[ + iC)A([l,lo)

Ip

-7 [e—i /’0 dr (ﬁl (T)+ic(‘r)) ] A(t(], t())

———
1

= ohy @y [e_i[fo ‘”(H’(”)] . (4.160)

Because both A(t, 19) (by its very definition) and T ... | are unitary
operators, we have that |ef Cd’| = 1. Consequently, such a phase factor

will not contribute to normalized matrix elements of A (this point will
be justified later), and we will discard it in the following considerations.
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So, we might finally write that A(z, o) = U(z, o).

Since we require (as usual in quantum mechanics) that scalar product
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should in both pictures coincide, we have for any operators A(z, x) and
any pair of states |) and |y¢")

Wl Aut,x) Wy = Wl AN 0) A, x)A®E, 10) ¥y

Wil Ar(t, x) 1y (D)) - (4.168)

This implies that
ANt A 10) W) = Wi(0)
& ) = AN (1 0) i) - (4.169)

Where 2 is a phase factor with |1| = 1.

Let us briefly repeat the key results:

Note — Summary of key results

$1(t,x) = A 10)¢u(t,x) A (1, 10), (4.170)
——
Af(t,t9)
A, t9) = T [e_i ft; dTH_’(T)] =T [ei ff; deSxL_I(T’x)]
— ei(t—tO)HOI e—i(t—tg)H , (4171)
Alt, t/) - T [e—i ftt, d-rH_I(-r)] =T [ei ftt, d-rd3xL_I(-r,x)]

. I . rrl
ez(z—tO)HO e—z(t—zo)He—zH0 (t'—tp)

= At 1) ANt 10). (4.172)

Let us now assume that we can adiabatically switch off the interaction
at 1 — —oo so that in the remote past H; = 0 and hence ¢;(t,x) =
¢u(t, x) for t — —co. This allows us to identify o with —co.

The field ¢y (t, x) contains the information about the interaction, since
it evolves over time with the full Hamiltonian. In order to describe
the "in" and "out" field operator we can now make the following
identifications

t— —co: ¢in(x,t) = ¢r(x,t) = du(x,t),
t— 400 Pour(x,1) = dp(x,1). (4.173)

Furthermore, since the fields ¢; evolve over time with the free Hamil-
tonian Hp, they always act in the basis of “in” state vectors, such that

Gin(x,1) = ¢r(x,1), —00<t<+o0. (4.174)

Note, when ¢; and ¢y coincide at different times, say times té or té,

These representations of A are known as
Dyson representations. The time ordered
exponential is known as Dyson expan-
sion.
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Figure 4.5: Transformation between
Heisenberg and interaction pictures and
connection with ¢;, and ¢, fields.

bt @) et

e—iH{ (to—t)

> A td
A—— o (x,t)

/2
o (1)

2 1
t() I’(]

—00 too = ¢;7(t, x)

they are related via different unitary transformation, namely

60, x) = At )bt A1, 1D),
¢’,°2 (t,x) = At 1)ou(t, x)N'(t,13) . (4.175)

Here we use a temporal notation ¢;”(t, x) to denote different bound-
ary values for ¢;’s, see Fig. 4.5. So, in particular, from the relation
¢;°(x,1) = A(t, —o0)dp (x,1)AT (2, —o0) follows that

¢in(xrt) = A(tr _00)¢H(xrt)AT(t/ —OO). (4176)

As we lett — oo we can use the identification (4.173) to write

¢in(x/ OO) = A(OO, —00) ¢l)ut(xl OO) A-;“(OO, —OO) . (4177)
—e ————
S St

Note that ¢;, (as any free field) allows to define corresponding set
of creation and annihilation operators a;,(p), al.Tn(p) and the vacuum
state |0);,, (ain(p) 10);,, = 0). Similarly, from ¢,,,; we have creation and
annihilation operators aou: (p), alm(p) and the vacuum state |0),,;. In
addition, from the relation

in 0167, 10%n = our (01 83,1 100pur = in(01S¢3,,,ST10)in,  (4.178)

we see that |0)ou: = ST|0)iy. By taking into account also the fact that

(4.177) implies

ain(p) = Saout(p)ST/
a},(p)

Sal . (p)ST, (4.179)
we can immediately write

al 10V = 1PYin = Sab, (P)STS10V0u = S1P)our » (4.180)

and similarly for multi-particle states

P1, P2, Yin = SIPLP2 - Dour - (4.181)
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We can denote this in a schematic way as

Din = SN ou » (4.182)

(i stands for initial-state particle configuration and f for the final-state
particle configuration). Here the S-operator is better known under
the name S-matrix, and it allows for unitary transformation that con-
nects in-fields with out-fields. In particular, the rate for |p1, p2);, —
|p3, P4, - - )ous, 1S Obtained from the matrix element

out {f1Din = our{P3,P4,P5,- . .1P1, P2)in - (4.183)

By noting that
Dour = S Wour = 5 lidin (4.184)

we also have
S1 our = 1fins S1Dour = 10in (4.185)

which is equivalent to

out <Sf| = in <f| ’ out <Sl| = in <l| . (4186)

The matrix element

Sfi = out<f|i>in = out <f| STS |i>in = out <Sf| S |i>in
= i SIS 1in = our (FI1SST1Din = our (F1S1STi)ss
= ou (fIS |i>out ’ (4187)

is known as scattering transition amplitude. Generally, one can write the
S-matrix in the Dyson expansion form as (cf. Eq. (4.177))

T [exp{i/_OO dr /]R3 d’x L, (p(x), 5u¢(x))}]

T [exp{i/ﬂ;4 d*x L1 (¢(x), 6ﬂ¢(x))” . (4.188)

S

S-matrix contains all physical information for any scattering process
in the theory described by given Lagrangian, since any transition
amplitude can be computed from it.

Recall, that the key assumption in our description of scattering pro-
cesses was the adiabatic hypothesis, i.e. the assumption that one can
switch off the interaction slowly for large positive and large negative
times without changing the physics. For many purposes this is in-
deed a sensible assumption. However, we will see a bit later (when
discussing renormalization) that this description is too simplistic.

Final upshot of this discussion is that in order to describe any realistic
scattering, e.g., the scattering process |p1, p2)i, — |P3, P4, D5, - - ) our

141



142 4 Quantum Field Theory 2

Figure 4.6: Schematic representation of
the scaterring process |p1,p2)in —
|P3, P4, 5, - - Dour-

Try to fill the gaps and generalize the
present analysis also to non-Hermitian
(i.e, charged) scalar fields. Do you find
any substantial difference?

P1

P2

we must compute the transition amplitude

out{P3, P4, D5, .- \P1, P2)in = inP3, P4, D5, .. IS |P1, P2)in - (4.189)

Advantage of this form is that fields entering in § are the interaction-

picture (i.e. free) fields that coincide with ¢ at r — —oo. So, the entire
S matrix is phrased in terms of free fields, and hence in the terms of
creation and annihilation operators ajn(p) and a;,(p), respectively.

Time ordered product and Wick’s theorem

To compute the S-matrix, we need to know how to systematically
compute time ordered products of free fields.

Let us begin with 2 free fields. In this case

T[] = 6" = Y)p(0)d(y) + 60° - x)p((x),  (4.190)

where

$(x) = Z [a(p)e™™P* +a’(p)e'P*| = ¢PD(x) + ¢O(x).  (4.191)

p

For x° > y0 we can write

Tlpx)p] = ¢0)d(y) = D) (y) + 6067 (y)
+ ¢D@M ) + 6O ()
= ¢ () + ¢ () + ¢ () (y)
+ (690900) - 60080 ) + 70167 )
= o) + [0, 670 (4192)
Since

Z [a(p)e_i”x, a‘r(pf)eip’y]

p.p’'

= D Gppre PEHPY = N TP (4193)
pp p

$), 07|
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one can write

TP =: 9)P() : + ) e P, (4.194)
p

Similarly, for x” < y one can easily show that

T[¢(x)p(»)] = ¢(¥)p(x) =: ¢(xX)p(y) : + Zei” o) (4.195)
Iz

By combining (4.194) and (4.195) together we obtain

T [¢(x)p(y)] Cp(x)p(y) ¢+ 0(x" —yY) Z o iP(x=y)
P

+60(y° - x%) Z Py
2

1o(0)P(y) 1 +iAp(x—y), (4.196)

The later implies, as a byproduct, that the vacuum expectation value
of the corresponding time ordered product is

OIT [¢(x)¢(N]10) = (O] : p(x)B(y) : |0) + iAp(x=y),  (4197)

Since the vacuum expectation value of the normal ordered product is
zero, we have

OT [¢(x), p(»)]10) = iAp(x—y). (4.198)
Similarly, for 3 free fields it can be checked that
T [¢(x1)p(x2)(x3)] = : p(x1)p(x2)$(x3) : + P(x1)iAF (x2 — x3)
+ G(X)iAF(xs —x1) + G(x3)iAp(x) - x2), (4.199)
and for 4 free fields one obtains
T [¢(x1)p(x2)d(x3)(xa)] = : P(x1)(x2)p(x3)(x4) :

+ 1 d(x)p(x2) 1 iAF(x3 — xq4) + 1 P(x1)P(x3) 1 iAF(x2 — Xg)

+iAp(x1 — x2)iAF(x3 — x4) + iAF (X1 — X3)iAF (X2 — X4)
+ iAF(x1 - X4)iAF()C2 - )C3) . (4.200)

The Feynman propagator iAr(x — y) is often referred to as the contrac-
tion of the fields ¢(x) and ¢(y) and it is sometimes denoted as

—
e 0(x) oL 9(y) ... = LiAR(x - ). (4.201)

The so-called Wick’s theorem allows us to rephrase the time ordered
product of N free fields in terms of normal ordering and field contrac-
tions, namely
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Here we use an abbreviated
notation ¢(x1)...¢(xp)=1...n.

Real J(x) ensures that the generating
functional in (4.203) is unitary. On the
other hand, purely imaginary J(x) =
iK(x) allows to better organize terms in
the expansion.

T[123...N] =:123...N: + :123...(N=2) : iAp(xy —xn-1)
+ "all other terms with 1 contraction"
+ :123...(N—-4) : [iAp(xny — xn-1)iAp(xN-—2 — XN-3)
+IAp(xn — XN2)iAF(XN-1 = XN-3)
+ IAp(xN = XN-3)iAF (XN-1 = XN-2)]

+ "all other terms with 2 contractions "

+ "till all contractions are exhausted" .

Note that if N is odd then there is at least one normal ordered field
product in each term. Therefore, for N odd

OIT [¢(x1) ... ¢(xn)]|0) = 0. (4.202)

One can prove Wick’s theorem by induction, but this is tedious and
unenlightening. It is more instructive to prove the following theo-
rem

Theorem — Generating functional for Wick’s theorem

Let J(x) be a c-number function, then
T[exp (—i / d4xJ(x)$(x))] =:exp (—i / d4x1(x)¢§(x)):
X exp (—% / d*x d*yJ(x) O] T [¢(x)$()] |0) J(y))
=:exp (—i / d4xJ(x)q3(x)) :

X exp (—% / d*x d*y J(x)Ap(x —y)J(y)) . (4.203)

Before we prove this theorem, let us begin with a small comment. By
replacing J(x) with iK(x), expanding out and comparing coefficients
we recover the Wick theorem. For instance, let us restrict ourselves to
the second order in K, then

T

R 1 RN
1+ / PR + 3 / d'x d*yKKD)FOF) + ..

=:1+ / d*xK(x)d(x) + % / dx* d*yK()K()dx)d(y) + ... :

l ~ ~
% (“E / d*xd*y K(OK(y) OIT [$(0)d(7)] 10) + )
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implies that
% / d*xd*y KOK(3)T [¢(x)p(0)]

1
= §/d4xd4yK(x)K(Y)[1 #(x)p(y) : + (O T [¢(x)p(»)]10)] , (4.204)
which in turn implies that

T[p(x)¢()] =: ¢(x)p(y) = +iAp(x—y). (4.205)
This coincides with Eq. (4.196).

Let us now prove the above theorem. We first recall the Baker-Campbell-
Hausdorff (BCH) formula

eAeB — eA + B+ %[A,é] , (4206)

which holds for any pair of operators A and B provided that A, B
commute with their commutator |4, B].

In our case the role of A, B will be played by free fields ¢(x), ¢().
Since they commute to c-number (Pauli-Jordan function), the assump-
tion will be satisfied. Consider t, > t,.1 > --- > #; and set X() =
f d®xJ(x)é(x). With this we can break up the time-ordered product in
an approximate way as

T [ i/ de(t)] ~  piBR(tn1) miAK(ty)  —iAR(1)
om0 B X (1) — 380 S [X(00), X (1)) (4.207)

where on the second line we used (4.206). Taking the limit as Ar — dt,
the expression (4.207) turns to

T lei/d*x1@d) | _ =i [dxI@0)dx) = 7 [ d*xd*yT(x)]()[$(x),6(3)]0(x0-y0)

e—i/d4x J(x)d(x)

w1 d*xdy J()I () [$(x),6()] 6(xo-y0) , (4.208)

where in the last identity we used the fact that the term with commu-
tator is a c-numbered function and hence it can be factored out from
the exponential.

Eq. (4.208) is a nice result in itself — but not yet what we need. We
now note that

Ceni[dNI() . i [ AT (0O () =i [P (1) ()
— i [dXI0)P()

% o1 dxdyII[$0x)6D )] (4.209)

The BCH formula was used in the second identity. By combining both

One can proceed similarly also for higher
orders in K.

Recall that operators after T symbol be-
have as commuting operators.
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In passing from 1st to 2nd line we em-
ployed the fact that ) ~a' and é(;) ~
a. Thus, the only surviving part of the
first commutator is ¢3(y+) Fiwl

(4.208) and (4.209) we obtain

T e—ifd4xJ(x)(/3(x)] = . e—i/d4xl(x)(/3(x) .

A dxdtsa |60 80 [oland 1) 4 290

The expression [(;35(_), A(y+)] —0(x0 = y0) |#x, By] is a c-number and hence

it can be conveniently evaluated by taking a vacuum expectation value
from it, i.e.

01|85, 85| = 660 = y0) [d2, 6,1 10)

= = (01 65857 [0y — B(x0 — y0) (O] by 10) + B(x0 — y0) O] By b |0)
= = (0 dyx 10) - 1= 6(x0 — y0) (O] Bxy 10} + 6(x0 — y0) (O] By s [0)
= 6(x0—y0) + 6(yo—x0)
= ~6(yo — x0) O] By b [0) = 6(x0 — y0) (O] By |0)
= —(0IT [$xby| 10) = —iAp(x—y). 4.211)

If we now compare (4.210) with (4.211) we obtain the desired generat-
ing functional for Wick’s theorem.

An important implication of the previous “operatorial” version of
Wick’s theorem is the weaker version of Wick’s theorem for vacuum
expectation values (also known as Wick’s theorem). Note that

<0| T e—i/d4xj(x)¢§(x) |0> — <O| . e—ifd“x](x)é(x) . |0>

1
-1 [d*xd*yJ(x)J(y)OIT 0
x e 2] dxdYIDIMOTIPXeMI0 (4 212)
Again expansions in K (J = iK) provide important relation between

(0|7 [12...N]]0) and (0| T [i,j]110) = iAp(x; — x;). Wick’s theorem in
the form (4.212) will be particularly important in what follows.

For instance, to fourth order in K we get the identity

ot ;
<0| T I:e—fd4xKx¢x:| |0>
6Ky46KY36K)’26K)’1 K=0
54 1 44
= 3 [ dixd'yKeKy OT[exy]0)| - (4.213)
6Ky4 6Ky3 6KY2 6K)’1 K=0

The simplest way to compute the derivatives is to expand each ex-
ponent and keep only the fourth order in K since no other term can
contribute. The left hand side of (4.213) thus reduces to

5 1

K K Sk I d*xy ... d*xsKy, .. Ky, O] T, by Py b, ] 10)
ya y3 y2 y1r =

= (0[T[¢y, ¢y, by, ¢4,110) (4.214)
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Here we have used the fact that (0| T'[¢x, ¢x, #x,Px, ] |0) is a symmetric
function of its arguments.

The right hand side of (4.213) can be then written as

&t 11
6Ky, 0Ky 0Ky, 0Ky, 42!

X (O T [$x, 2, ] 10) O T [pry b, ] 10) . (4.215)

/d4X1 N d4X4 le e Kx4

So, for instance, the first functional derivative gives

- d4x1...d4x4KX1 ...Kx4
X (0| T [¢x,¢x,] 10) (O T [$x; 05, ] 10)

d*xd* x3d* x4 Ky Ky Koy (01T [hy, b, | 10) O T [hs b, ] 10)

d*x1d*x0d" x4 Ky Ky Koy (01T [f, 6, | 10) OI T [hy, 6, ] 10)

+

W= ®I= ®IF )=

/ d*x1d* x3d* x4 Ky Ky Ky (01T [§, By, | 10) (O T [hs 6, ] 10)

d*x1d*x2d*x3 Ky Ky Koy (01 T [f, 6, | 10) 01 T [ fx, 6y, ] 10)

By proceeding with remaining 3 functional derivatives we arrive at
three following types of terms

(OIT [@y, 8y, ] 10) OI T [fy by, | 10) , (4.216)
(OIT [$y, 8y, ] 10) OI T [hy, by, ] 10) , (4.217)
(OIT [¢y, #y,] 10) OI T [y, by, ] 10) . (4.218)

Since T [¢y1 ‘/’yz] =T [¢y2 ¢y1], each term of the form (4.216), (4.217) and
(4.218) will be generated with the multiplicity of 8.

So, we finally obtain that
(0| T[1234]10) = (O[T [12]|0) O[T [34]]|0)
+ (01T [13]]0) (0| T [24]|0)
+ (0| T[14]]0) (0| T [23]]0) . (4.219)

Graphically one can represent (0|7 [1234] |0) from the Wick’s expan-
sion (4.219) as:

More generally, for any even N we get
OIT[1...N]|0)y = <(0IT[12]]0) (0| T [34]]0)...<O|T[(N —1)N]|0)

+ “all other distinct contractions” . (4.220)
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E.g. for M = 2 we see that the number of
terms is equal to 4!/(4 - 2!) = 3, in accor-
dance with our previous result (4.219).

7A14(T1 — .7,‘2>

T2

r

T3 K Ty

iAF(.Tg - .'L'q)
Z1 X9
T3 Ty
I [ I i)
T3 Ty

Let us recall that for N odd this would be zero. This formula will be a
basis of a perturbation evaluation of the S-matrix elements.

At this stage it is interesting to ask how many distinct terms (i.e., dis-
tinct products of iAr’s) can be generated in Wick’s expansion from
generic (O] T [1...N]|0). Let us set N = 2M with M being a general
positive integer. Using again an abbreviated notation (x ... x2p), the
result will be composed of 1st pairing that will comprise N — 1 contrac-
tions, 2nd pairing that will comprise N — 3 contractions, etc. Schemati-
cally

(1 xp )X ... X oo Xopg) (N —1) contractions,
(epxp )y (xox){x3 oo . Xy oo X o xor) (N = 3) contractions,
(4.221)

which together yields the total number of

QM = 1) x (2M = 3)x 2M =5)x - -- x (2M — (2M — 1))

2M X (2M - 1)x 2M —=2) X (2M =3)x ---x 2M — (2M - 1))
2M X2(M = 1) X2(M —2) X -+ - X 2

2Mm)!
= Swag (4.222)
of contractions.

As an exercise, try to find explicitly all 15 terms in the Wick’s expansion
of (0] T [123456] |0).
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4.7 Green functions — Gell-Mann and Low
formula

Experimentalists are typically interested in matrix elements of the §
matrix, e.g. in (p1p2| S |p3pa . . .);,. From these elements one can com-
pute directly differential cross-sections in scattering experiments as
we will see in chapter dedicated to scattering processes. Such com-
putations are typically done perturbatively in terms of the so-called
Feynman diagrams. There exists a very efficient way to the perturba-
tive treatment (and ensuing Feynman diagrams) that is based on the
vacuum expectation value of the time-ordered products of Heisenberg
fields ¢y (x), i.e.

(X1 ...xn)

OIT [¢r(x1)¢n(x2) ... pu(x)]10) . (4.223)

T(xll'xZI sty xn)

Let us now recall that the Heisenberg field ¢y (x, 1) is related to the in
field ¢, (x, 1) by [cf. Eq. (4.177)]

du(x,1) = NNt 10)pin(x,1)A(t, 10), (4.224)

where g — —co.

However, at the moment we only know how to compute

(X1...Xn)0

in€OIT [@in(x)Bin(x2) - . . Gin(xn)]10)in , (4.225)

T0(X1, X2, . . ., Xn)

where |0);, is the ground state of the free Hamiltonian Hp.

Now, from Eq. (4.163) we can recall that A(z, #1) satisfies the composi-
tion law

Alt, 1) = A1, 13)A(t3, 1) = A1, 13)A (12, 13) . (4.226)

. . . . . 0 O O
So, if we take points x;, where j = 1,...,n satisfying x| > x) > x7 >

-+ > x9 (i.e. they are time ordered), then

O (x)du(x2) . .. du(xn)
= A(t1,10) " pin(x1)A(t1, 10)A(12, 10) " Bin(x2) - - - Pin(Xn)A(t, 10)
= A, 10) " At 1) din(x1)A (1, 12)in(x2) . .-

X oo A (tn-1, t)Bin () A2, —t)A(=1, 10)
= A(t)_lT ¢in(xl)¢in(x2) s ¢in(xn) exp (l/ zl(x)d4x)]A(_t)/ (4227)

where A(£1) = A(xf,—e0) and 1 > x) > x) > -+ > xJ > —1. We have also

used that .
1__
A(ty, 1) = T[exp (z’ / L,(x)d‘*x)], (4.228)
12}

involves ¢i,(x, 1) for times ¢t € [, #1]. Times r and —r are taken to be

These expressions are also known as gen-
eralized Green functions or correlators.
Here, |0) is a true ground state of the in-
teracting system.
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Let us recall that |¢(¢));,, states includ-
ing the vacuum state |0);,, evolve w.r.t
free Hamiltonian and Hj |0);,, = 0.

times where interaction switches off. So, we adiabatically evolve the
non-interacting vacuum state into the true |0) by taking H = Hy + n(1)V
withn(t) =0at7=+c0cand n =1at 7 € [—¢,1].

Now we want to take vacuum expectation value of the time ordered
product (4.227). By denoting the is the ground state of the full Hamil-
tonian H as |Q) (this is more conventional notation that |0)) we have

QIT [¢r(x1)Pr(x2) - . . 1 (x)] 1)

= tol_iELO <Q| A(tr [0)_1T [(pin(xl)/ ¢in(x2) o ¢in(xn)

x exp (i / t Z](x)d4x)} Al=t,1) Q) . (4.229)

In order to bring (4.229) to a manageable form we need to convert
the ground state |Q) to the ground state |0);,. How these two ground
states are connected? We have already seen in Eq. (4.169) that

Wr) = A-(t,10)A7 (1, 10) W1 (1))
= Wu) = A=A (- W)y, (4230)
with |A_| = 1. This implies, in particular, that
Q) = A_(t, o)A (t,=00) [0);, - (4.231)
Note that since both |[Q) and |0);, are time independent, the term
A_(t,—00)A~1(t, —00) must also be ¢ independent.

Let us be more specific here and find this relation more explicitly. Take

eH0), = &N IQ) QIO + 3 e n)n [0}y, . (4232)

n#0

States |n) are energy eigenstates of the full Hamiltonian H. We will
further assume that the overlap (Q|0);, # 0. This is justified in the
sense that we would like to use perturbation theory and hence |0);,
should not be “too far” from |Q). Also, we know that Ey = (Q| H |Q).
Since E,, > Ep for Vn # 0, we can get rid of all n # 0 terms by sending
t — oo(1 —ig), where 0 < & < 1. Then, the exponential factor e£n?
dies slowest for n = 0. From (4.232) follows that

y S ] (nl0);
e FNQ0);, ) e HI0), = 1Q) + WEn-Bor 2SI (4,233
(5 (210);0) 0y = 192 ; Qo @2

From this we can directly read

t—oo(l-ig)

Q) = lim (e*iEOI (QlO)in)_le’th |o>l.,,]. (4.234)
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Now, since ¢ is very large we can shift it by a constant ¢

1€2)

. -1 .
,_,E,I(?_s) (e—lEo(Hto) <Q|0>in) e~ tH(@—(=1)) ,iHo(to—(~1)) 0Y;,,
110);,

. -1
lim (e-’EWO-(—'» <Q|o>m) AN =1,10)[0);,| . (4.235)

t—oo(l-ig)

A-(=t,19)

Apart from the c-number factor in front, this expression tells us that
we can get |Q) by simply evolving |0);, from time —f to time 7 with
the operator A. In similar way we can express (| as

. -1
@= lim a0l G (0 010)) | (4236)
t e

—oo(1—

/l+(t/t0)

So the n-point full Green function has the form

QT[pu(x1)Pu(x2) . .. P (x,)] Q)

Jim (@A (0 0 [4in(x1) - Bin(5)

X exp (i/tzl(x)d‘lx)] A(=t,19) |Q)

lim lim )/l+(tr t())/l_(—l‘, tO) zn<0| T [¢in(x1) oo ¢in(xn)

ty——00 t—oo(l-ie

X exp (i / t ZI(x)d4x)] 0Y;,, - (4.237)
In addition [cf. Eq. (4.172)]

1=(Q|Q) = lim )/1+(t,fo)/1—(—f,f0)in(0|A(t,fo)/\_l(—f,fo)|0>in

t—oo(l-ie

lim )/1+(t,to)/l—(—t,to)m<0|A(t,—t)l())m- (4.238)

t—oo(l-is
For large (but finite)  we can thus write

1

(1, 10)A-(=1,10) = - (0| A(t, -1) |0,

(4.239)

With this we finally obtain
QT[pn(x1) ... o (xa)] Q)
I (g duts)exp (i [, Zidx) | 100
= lim
t—oo(l-ie) (0| T [exp (i f_tt zl(x)d4x)] 10);,

= (0X2...Xp). (4.240)
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This is the so-called Gell-Mann—Low formula for the full n-point Green
function. So far this expression is exact, but it is ideally suited for
perturbative calculations, since we work with free fields and hence we
can use a full power of Wick’s theorem which (as we already know)
boils down to products of iAf.

4.8 Functional Integral Approach

Gell-Mann-Low formula provides a useful starting point for introduc-
ing functional integral. There are basically two distinct ways how to
arrive at functional integrals:

1. Formulate the so-called path integrals in QM - these represent
Green’s function for Schrdodinger equation and at the same time
correspond to transition amplitude (x’,#’|x, #). One then formally
passes to field theory in much the same way as we did when
passing from QM to QFT. In this formulation it can be shown
that for Klein—-Gordon particle (x,7’|x*, 1) o« Ap(x’ — x) and
similarly also for Dirac’s particle (r represents a proper time that
parametrizes particle’s wordline).

2. One can use the relation for generating function (4.212), i.e.

0|T [exp (—i f d4xJ(x)¢(x))} 0)

1
-5 [ dxatyI@I0) QI Tl [0) |, @241

= exp

which encapsulates Wick’s theorem.

In this lecture, we will use the second approach because it brings us to
functional integrals faster.

Generating Functional for Full Green’s Functions

Consider the full n-point Green’s function
QIT(pu(x1) ... ¢u(xa)] Q) = (x1x2... xn). (4.242)

Due to the permutation symmetry of (x1x; ... x,) one can conveniently
combine the entire hierarchy {(x;x; ... x,),n € N} into one generating
functional

Z[J]

Z[0] ;) ;—’: /}RM ]:1[ drxi J(xr) - TG (X1 X0« X

Z[0](Q| T

exp (i / d4xJ(x)¢H(x))] Q) . (4.243)

Here Z[0] is the normalization constant to be fixed shortly. The c-
numbered function J(x) is the so-called Schwinger source term. With
the help of Gell-Mann—Low formula this can be rewritten in terms of
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free field as (for simplicity we omit limits and we set |0) = |0);,, and

$(x) = ¢in(x))

| T [ei/d4xfl(¢)+l(x)¢(x)] |0)

= — . 4.244
Z|[0] o|T [eifd4x£1(¢)] |0) ( )

At this point we set Z[0] = (0| T [eifd4xfl(¢)] |0) so that
Z17) = (|T [t/ Tr@mse] o) (4.245)

It follows from the very definition of Z[J] that (x;x...x,) can be
obtained when we n times functionally differentiate Z[J] with respect
to J(x), in particular

1 (=is"Z[J]
Z[0] 6J(x1)...0J(xn)

(4.246)

(X1X2... %) =

J=0

Generating Functional Note

Generating functional Z[J] is an analogue of the moment gener-
ating function (or characteristic function) used in mathematical
statistics.

Now, Z[J] in the form given above can be formally rewritten as

Z[J] = exp [i /IR AL (—i(s](ix))} o|T [ef/ d4x1<x)¢<X>] 10). (4.247)

Now, the “overbar” from £; was removed since we do not need to em-
phasize anymore that it is an operator in the interaction representation.
This is an analog of the formula

f (—i%) P = f(p)e™P, (4.248)

used, e.g. in Fourier transform. By employing the generating functional
for Wick theorem and taking J — —J in (4.212), we obtain

ZIJ] = exp{i/wn d*x L; (_l%(x))}

xewpl-5 [ EndiOmI0setn -y 4269
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The Functional Integral and Its Measure

In order to establish contact with functional integrals, let us consider
the Fresnel integrals (a € IR)
LT a>0
lal

exp (z“xz) = Ve (4.250)

4 <0.
\/me a

Proof of this identity is as follows. We first extend x into C and evaluate
the integral fy ¢9<" dz for a > 0, where the contour y is depicted on
Fig. 4.7.

\/ﬂ

Aoc

Figure 4.7: Contour vy used in the eval-
uation of the Fresnel integral (4.250) for
a>0.)

Since €% is an analytic function, it follows from the Cauchy integral

theorem that
/eiazzdz + / ei“zzdz
N 4

0 — /eiaZ2dZ
Y
/ e dz + / e9dz. (4.251)
/ 4

+

First notice that

/4
/ eiazzdZ _ hm R/ d¢l~ei¢eaR2(z’c052¢—sin2¢)
- 0

R—+0
)
= /e”‘Z dz
4

= / ¢4 dz; = 0, (4.252)
4

R—+0c0

/4
< lim R / dgeaRsin2) _
0

and similarly for f o €<’ dz. The integral f/ €% dz can be evaluated
as follows (consider a > 0 first):

/ eiazzdz — {Z — ein/4zl, dz = dzlein/4}
7
ei7r/4 /_00 dzle—azrz _ {Cl > 0} _ 17r/4( )1/2
) a

1/2
- - / dze—e? — em/4( ) , (4.253)
/ a
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So, by plugging these results to (4.251) we obtain

+00 X . 1/2
/ e gy = {a >0} = &7/ (z)
_ a

(o8]

+eo dx ra 2 . 1
- X G (a5 0) = d7A . (4254)
—00 V2ﬂ' \/5

For the case a < 0 we would need to chose a different contour, namely
the one where the diagonal line would nor run under the angle 7 /4

but - /4.
So, from the Fresnel integral (4.250) we have the following N-dimensional
generalization
T deexo | T [27 imsignas
'[DO !:1[ dciexp (E ;annmcm) = 1:1[ me

-1/2
eIt (4.255)

A

Here A is real, symmetric (hence diagonalizable) N x N matrix with
eigenvalues {1;,i =1, .., N}.

Note

Formula (4.255) has sense only if A has no zero modes. Case with
zero modes must be treated independently and it is related to the
concept of the so-called collective coordinates.

The index np = Zf\’ sign(4;) is referred to as the Morse or Maslov index.
The later is mostly important in the context of transition amplitude
in QM. For typical applications in QFT (as, e.g. computation of Green
functions or S-matrix elements) it is not important as we will see.

In order to establish the connection to fields, let us first observe that any
real function ¢(x) can be expanded in term of some real orthonormal
basis {v,(x),n € N}, ¢(x) = 3, cnva(x), with ¢,’s being real expansion
coefficients.

So, in particular, we can write

44 A(x,y) is some symmetric function or
/ d*xd”y p(x)A(x, y)p(y) = Z cnPonmCm , (4.256) operator in x and y.

nm

with

This is a form of similarity transforma-

A, = / d4xd4y Va(X)A(x, Y)vi(y) (4.257) tion where v can be viewed as a matrix

with discrete and symmetric index.

Since both A(x, y) and A, ,, are symmetries, they are diagonalizable,
i.e. there exist polar bases {u,(x);n € N,x € R} and {ui,'f);n,m € N}
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such that
[ty ) = o, (@.258)
Z Ap” = 2uly), (4.259)
k
where u,(x) and ui") are related as
ui") = / d*xun(x)vi(x), (4.260)
up(x) = Z ui")vk(x). (4.261)
k

Relations (4.258)-(4.261) are simple consequences of the orthonormality
condition

/d4xvn(x)vm(x) = Onum, (4.262)

and the completeness relation

D vax)va(y) = 6(x - ). (4.263)
n
Discretize now points in the spacetime, so that the spacetime is spanned
by N points x; — so-called Minkowski lattice. Then any {¢(x;);i € N}
can be expanded into N base functions v, (x;) only. In fact

+00 N
Bx) = ) calx) = $) = ) (). (4.264)
n=1 n=1

The last equation provides a system of N independent equations for N
unknown ¢,. Consequently {¢(x;);i € N} is uniquely determined by
its expansion modes ¢, and vice versa. With this we can formulate the
integral measure as

N N
= i . = i (N)
D¢ = lim L—l[dml) lim. Edcnu , (4.265)

with the Jacobian

vi(x1) vi(x2)
va(x1)  va(x2)
JN) = det| - ) (4.266)

v (x,)

The identity in Eq. (4.265) should be understood in the weak sense,
namely that the limit N — oo stands in front of the corresponding
multiple integral.

Note that, due to the orthonormality of the base system, we have that
JN) — 1 in the large N limit (also known as continuity limit or long
wave limit).
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Truncation of the base system elements changes the infinite dimen-
sional matrix to N x N matrix AN).

Recalling identity (4.255), we might define the functional integral over
¢ as

/D¢exp (% / d*xd*y ¢(X)A(xry)¢(y))
X i
= Nli_)lﬁloo [/ !:1[ dciexp (E ;’; CnAgzl,Vn)lcm
AN
det (7)

where on the last line we have neglected the Maslov index. N’ is an
infinite constant.

l 7]

-1/2
= lim JN = N'|det(A(x, )TV, (4.267)
—+00

At this point we might note the following identity

N'|det(Ar(x, )P exp (-; / d4xd4y1<x>AF<x,y)J(y>)

-/ wexp(é [ dtxatyoro tar e ¢<y>)
i

X exp (—5 / d4xd4yf<x>AF<x,y)J(y>) : (4.268)

Here Ap(x,y) = —i{0|T[¢(x)¢(y)]|0). At this point we use translational
invariance of D¢, i.e.

Dp=D(¢+g) ~ H d(B(x) +g(x) (4.269)

note that g(x) is an arbitrary but fixed function (hence g(x;) is a constant
while ¢(x;) changes). This implies that (4.8) can be further written as

Jooep(5 [ atsatyio. - oo o+ @)

i

X exp (—z/d4xd4yj(x)Ap(x,y)J(y))
= / D¢ exp(é / d*xd’y [¢(x)A;1(x,y>¢(y)])

X exp (i / d*x J(x)¢(x)) ) (4.270)
What is A;l (x,y)? We know that it is defined so that

/d4zA;1(x,z)AF(Z,y) = o(x-y).

Both A and A have identical spectrum.
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Since (O + m?)Ap(x,y) = —6(x —y) implies that
[ i 0@ + 080 3) = -0,

we see that A;l(x, z) = =6(z — x)(@ + m?),. With this we can further
rewrite (4.270) as

/ D exp(é / d*x é(x) [— (D+m2)] B(x) +i / d4x1(x)¢(x))

_ / Do exp (iSo[¢]+i / a’4xJ(x)¢(x)).

Here S is the action for a free scalar field. Let us put now everything
together and rewrite the generator of Green functions in the following
way:

Z[J] = expli / d*xL; (—i 0 ) <0|T[effR4d4xl<x>¢<X> 0)
| JR4 |

= expli / d*x L; (—i 0 ) o1 [ d*xd*y Iy OIT6(x)6()]10)
| JR* ]

_ [ 4 » Y
= exp »z‘/R4d xLI( l(SJ(x))_

[ D exp (iSolg] +i [ d*xI(x0)¢(x))
8 N’|detAp|'?

= exp [i/R4 d4xL1 (—1%)]

[ D¢ exp (iso[¢] vif d4xJ(x)¢(x))
X
J D¢ exp (iSol¢))

[ Do exp (iS[¢] +ifd4xj(x)¢(x)) (4.271)
- J D6 exp (iSol4) ' |

where S[¢] = So[¢] + f d*xL1(¢) is the full action of an interacting
scalar field theory. The corresponding full n-point Green function is
[cf. Gell-Mann-Low formula]

o|r [¢(x1) . ¢(x,,)ei/d4xf:<¢>>] 10)
or [eifd4le(‘1’)] 0)

(X1...x,) =

1 (=i)"s"
~ Z[0]6J(x1). .. 6J(x,,)Z[J]

J=0

1 [ D6 dx1)... o0 exp (iS[¢]+i / d4xJ(x)¢(x)) .
A [ Dgexp (iSol¢]) (427

J=0
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In particular, for n = 0 we get

QQ)y =(1) =1 = L /Z)¢eis[d’] 4273
@) = W) = 1= g (4.273)
which implies that
D6 $(x1) ... ) 10!
(X1, Xn) = [ D4 #x).. 4Can)e (4.274)

/ D¢ eiS[e]

This is the so-called functional-integral representation of the n-point
Green function.

So far we have considered only real scalar fields. Extension to complex
scalar fields (charged scalar particles) is obtained by means of an
analog of Fresnel integral, namely

*
dZ C?Z ei%lzlz _ dxdyel-%szri%yz
2mi n

— 2 2 ei%sign(a) ei%sign(u)

lal \ lal

2 ST Qi
T elzsign(@) (4.275)

where we have employed the complex measure
dz" Adz = (dx —idy) A(dx +idy) = 2idx Ady, (4.276)

(we use the notation of differential forms). This can also be alternatively
obtained from the usual (real analysis) change of variables

dz'dz =

d(x,y)

but in the complex calculus the absolute value refers only to the sign
+, not the complex i factor.

'6(1 N vy = 2idxdy, (4.277)

By neglecting Morse index we have (set a/2 — a)

1 : 1
—dr*dz & = — (4.278)
2mi la|
More generally
‘/dZ*dZ eia\z|2+ib*z+ibz* _ /dZ*dZ eia(z+b/a)(z*+b*/a)—iIblz/a
2ri 2ri

2
- e (-i). (4279)

159
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From these Fresnel integrals we obtain

dzjdz
/ [ l] exp [lZ Aijzj +ibizi + ibiz} ]

dz*dzl

e A o dz; dz,
e ibi(ATisb; / 1_[ [
o 1

Since A;; is Hermitian, there exists an unitary similarity transforma-
tion that diagonalizes A, so that we can write [cf. Eq. (4.279)]

[ 115
[ﬂ[—dc dct] _J eXP(l/lIc,I). (4.281)

(det A)1

exp |iz; Ajz] . (4.280)

—dz dz,] exp [lZ AIJZJ]

Here we have used the fact that the Jacobian of any unitary matrix is 1.
Thus we obtain that Eq. (4.280) is equal to

(det A) le it"ATb (4.282)

As an exercise, following the same route as for Hermitian scalar fields,
show that

N / DPD¢* exp [iSo [, ¢"] +i / d*xp(x) T (x) +i / d4x¢*(x)J(x)]
Here N contains all constant factors,
Fresnel measure and determinant.

= [det(m )| e

- / d*xd*yJ* (x)G(x, y)J(y)] ,  (4.283)

where G(x,y) = (0| T [§(x), ()] [0y = iAp(x, y), and thus finally

Z10,07] [ DgDgreiS e[ dxas i [diests
zor [ DD g*eiS10.0"]

) (4.284)

which implies

[ D¢DF p(x1). .. p(xy) 51997

T DeDgos1es (4.285)

(X1, ..., X)) =

Similar identity holds for the correlator of ¢* fields or mixed correlator
of ¢ and ¢* fields.

Note — The Feynman-Matthews-Salam formula

Previous relations can be generalized to any functional or function



of fields, e.g.

(QIT[F [¢u]] Q) = N / DF[ple’S19], (4.286)

and similarly for

QTG |83, ¢u]]1Q) =N / DD Gl4", $le’ 7). (4.287)

4.9 Perturbative calculus

As a toy model we will discuss the case with
A 4
L = —I¢ . (4.288)

We have seen that in order to compute (xy, ..., x,) we need to know
the normalized generating functional Z [J] /Z [0]. Indeed
x ) = 1 (=)"6"Z[J]
L 2nl = 7101 67 (x1) - . . 07 (xn)

(4.289)

J=0

Let us call the normalized generating functional as Z [J], then

. exp [i [d*z L (—iﬁ(z))] exp [~ [ dtxd*y I (x\)I()AR(x, y)]
JI = .

(ditto )],

The only way how to treat exp (z’ [d*xL 1) is via power series expan-

sion in the coupling constant 4, i.e. via perturbation theory. In particular,
for the numerator we can write

A R 2
1_15/(_1(5](1)) d*z+0(29)

To order A°, we have just the free-particle generating functional Z [J].
To order A, we proceed as follows. We compute first the single func-
tional derivative

exp [—%/d‘lxd‘lyj(x)AF(x, W) .

0

(=) 6J(2)

exp [-5 / d*xd*y J()AF(x - y)f(y)]

1

= - / d*xA(z - x)J(x) exp [_E / d*xd*yJ(x)Ap(x - y)J(y)] .

Similarly we continue further with higher functional derivatives. For
the second functional derivative we have

(_iL)ZQX [_i / d*xd*y J(x)AF (x = y)J( )]
576) P > y F Y)Y

. i
/d4xAF(z—x)J(x)} }exp [—E/JXAF(x—y)]y].

= {IAF(O) +

4.9 Perturbative calculus 161

So, we consider a single real scalar field
at this stage.
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For third derivative

i

5 3
(_im) exp[ 2/d4Xd4nyAF(x_y)Jy]

3
/d4xAF(z—x)J(x)] }

X exp [—% / d*xd*y J(xX)Ap(x — y)](y)], (4.290)

= {3 [—iAF(O)]/d4XAF(Z - x)J(x) -

and finally for the fourth derivative
s \* i
- — —= dxdt -
( l(SJ(z)) exp [ 5 /d xd*yJ(x)Ap(x y)](y)]

2
= {—3 [AF(0)* + 3iAF(0)

/ d*xAp(z — x)J(x)

4
/ d4xAF(z—x)J(x)] }
i

-5 / d*xd*y J(x)Ap(x - y)J(y)] ) (4.291)

2
+

+ 3iAr(0) [/ d*xAp(z — x)J(x)

X exp

We may write this last expression diagrammatically. Let

Ap(x—-y) ~ x‘—‘y (4.292)

represents the free propagator (often is instead of Ap(x — y) taken

iAp(x —y)). In particular, Arp(0) = Ar(z,2) = Ar(z - 2) is then repre-
sented by a closed loop (bubble diagram)

Ar(z,2) = Ap(0) ~ O. (4.293)
We also introduce the notation

/ d*xJ(X)Ap(x—2) ~ 3 (4.294)
With these we can write (4.291) as

i

-3 / d*xd*y J(x)Ap(x - y)J(y)]

={-3oo +6i O x4 ><}exp(—%/]ApJ). (4.295)

The meeting of four lines at a point in diagrams

x% and><

is clearly a consequence of the fact that £; contains the ¢* term. More-
over, the coefficients 3, 6 and 1 in Eq. (4.295) follow from rather simple




symmetry considerations:

» Factor 3 results from joining up the 2 pairs of lines in the <
diagram. In particular, pick up any line, there are 3 ways how to
connect it with remaining 3 lines. This will give us one closed
loop diagram. The second loop in the “double” bubble diagram
is obtained by connecting the remaining two lines (there is only
one way how this can be done). Altogether there are 3 ways how
to generate the OO diagram.

» Factor 6 results from joining any two lines in the < diagram
(3 ways). This gives one bubble. The remaining two legs have
two ways how to orient themselves (which one goes left and
which one right). Altogether there are 6 ways how to generate
the *2 diagram.

These numerical factors (or better their inverses) are known as symime-
try factors. Diagram OO is known as vacuum graph or bubble diagram or
vacuum bubble diagram because it has no external lines. The meaning of
this terminology will become clearer shortly.

It is easy to write down the denominator of Z [J]. In particular

[exp (i / d4x.£1) exp (—% / d4xd4y J(xX)Ap(x - y)J(y))]

J=0
A 4
=1- b (-300)d*z, (4.296)
and the complete generating functional Z [J] to order 4 is equal to

[1—iﬁ/(—3oo+6i>é%<+><)d4z

1-if [(-300)dz

o5 [IART

. (4.297)

By employing the binomial expansion we finally obtain (again to order

A)
7] = ll—i%/(&x&x + ><)d4z

Clearly, the order of the perturbation is given by the considered order

et JIART (4.298)

of exp [i [dixL, (—i %(x))] in the Taylor expansion, while the order
n of the correlation function {xi, ..., x,) follows from the number of
J(x)'s we keep in the expansion of Z [J] (or Z [J]).

Let us now consider a toy model with the self-interaction given by

8

—37!¢3 ) (4.299)

L =

We will be interested in the second perturbation order in g. To this end

4.9 Perturbative calculus
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we expand Z [J] to order g% ie

3 i
exp |-i [ d*xf; (_iéf(ix)) } e IDrd

1= (dito)],
{ -i% [at x( )3_g_2[/d4x(—iL)3r}
3! 6J(x> 2(31)2 I (x)
) (ditto)] o
X exp [—E/d4xd4yJ(X)AF(x y)J(y)] (4.300)

We will first consider the numerator, i.e., Z [J]

ZlJ] = {1—1—/d4z(—310—>< &)
- z(iz!)z [/ o (_’Mix))g’l }

X exp [—% / d4xd4yJ(x)AF(x—y)J(y)] . (4.301)

On the first line of (4.301) we have used our result from 1¢* theory,
namely the fact that we know what is

3 .
(_iam) P ["%/ d4x‘l4y~’(X>AF(x—y)J(y)], (4.302)

see (4.290). Let us now proceed with the remaining 3 functional deriva-

tives (—i %(Z)). In particular, we get

) o5\
(" 61@) ("’ 6J<x>) ]

= |- o =37 4 X —
_( am){ 3iAF(0) / d*yAF (= )I()

3 )
- [ / d‘*yAF(x—y)J(y)] }e-%f IR

2
= {—3AF(0)AF(x —7)+3i /d4yAF(X - y)J(y)] Ap(x —2)

+ 3 Ar(0) / d ARG — )J() / d*yAr(z - 1)J()

3 .
+ / d4yAF(x—y)J(y)] / d4yAF(z—y)J(y)} e 2/ I0FT (4.303)




We now proceed with the second variation. This gives

s N Y
(_léJ(z)) (_’T(x)) ]

- {6 [ / dyAr(x - y)J(y>} [Ar(x - 2)P

+ 3r ARG -2) [ dhyse(z - )I0)

+ 3[AF(0)) / d*yAp(x = y)J()

_ s [ / d‘*yAF(x—y)J(y)r [ [ atyar-»i0)| et
_ [ / dHyAp(x - y)J(y)r AF(0)

# 30rOAr(-2) [ dbyae(z =)0

_ i [ / dhyAp(x - y)J(y)r [ / dhyAp(z - y)J(y)] Ar(x—=2)

2
_ 3iAR(0) / YA (x - ) () [ / dyAr(z - y)J(y)]

3 2
- [ / d‘*yAF(x—y)J(y)] [ / d4yAF<z—y>J<y)] }

i

_E/d‘lxd“yJ(x)AF(x —y)J(y)}

X exp

- {6 [ / YA (x - y)f(y)} [Ar(x - 2)P
+ 6ARO)AF(x - 2) / ARz = 1)J()

+ 3[ARO)P / dyAr(x - )J()

2
~6i [ / d*yAp(x - y)f(y)] [ / d*yAr(z - y)f(y)] Ar(r—2)

3
- i( [ asare —y)J(y)) AF(0)

2
- —3iAF(O)/dyAF(x -nJ() (/ dyAF(z—y)J()’))

3 2 i
- (/dyAF(x—y)J(y)) (/dyAF(z—y)J(y)) }ezf’AF’.

4.9 Perturbative calculus
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Finally, the third functional derivatives gives

5 Vs Y
(_laf(z)) (‘lm) ]

= {~6i [Ar(x - 2)I = 6iAp (0)AF (x — 2)AF(0)

— 3iAF(0)AF(0)AF(x —2)

12 / dyAr(x - 1)J() / ARz~ )0 [Ar(x - P

2

iy [ / A yAr(x = )I0)| Ar(x— AR ©0)

2

3 [ / d*yAr(e—IO)| ArGr—2Ar(0)

2
- 3Ar(0)Ap(x —z2) [ / d*yAr(z - y)J (y)]
— 6AF(0) / d*yAr(x - )J() / d*yAr (2~ )I()AF()

2 2
+ 3idp(x-2) [ / dyAr(x y)J(y)] [ / dyAr(z = )I()
3

+ 2iAF(0) [ / dyAr(x y)J(y)] / dyAr(z = I ()
iy / dyAr(x - 1)I() / dyAr(z — Y)I0) [Ar(x - )P

2
- 6AF(0)Ap(x—2) [/ d*yAr(z - )’)J()’)]
— 3Ar(0)AF(0) / d*yAr(x— ) () / dyAr(z — y)I)

+ 1

3
/ d*yAp(x - y)f(y)} [ / d*yAr(z - y)J(y)] AF(0)

3
+ 3iAr(0) / d AR (= )J() [ f d*yAp(z - y)J(y)]

+

3 O
/d4yAF(x —y)J(y)] [/ d*yAp(z —y)](y)] } o3 [IART

This rather lengthy expression has quite simple diagrammatic repre-



sentation, namely

{—6ixQz - 9 O—0 - 18 x-Ox PN

X

—9& —9>%xooz—x+3i>c—z<t

+3iYOZ—x +3i>%x()¥< + Y Y}eﬂﬂﬂ,

Here the integrations over the vertex positions x and z are implicitly
understood.

Thus, at the order g2 we find the following contribution to Z [0]

—6i x @ @ =900 (4.304)

Consequently we can write for Z [J] [cf. Eq. (4.301)]
Z[J]

Z[J] =
o2 . .
1- 555 [dixd' (—61 x(: m;w)

[1 — i (only current diagr.) — % (vacuum + current diagr.)]
= > Zo[J].
[1 - 2("3—1)2 (only vacuum diagr.)]

Again, by expanding the denominator the vacuum diagrams will
cancel:

21 =1- i%/d‘*x(—moﬁ - K)

2
g—/d4xd4z(—18>e()z—>< —9& —9&
X X

© 232

—9>%XOOZH<+31'>C—Z<: + 3i Oﬁ(
+ 3i h@% + y y) (4.305)

Types of diagrams

Diagrams of the following types

0 O Y O 0 Y Y

4.9 Perturbative calculus
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are called disconnected. On the other hand, diagrams of the type

Oz, 0O
X 2z
are called vacuum diagrams, since they have no external lines

present.

Check that for all connected (and planar) diagrams holds the for-
mula
L=1-V+1, (4.306)

where L is the number of closed loops, I is the number of internal
lines and V is the number of vertices. This is the famous Euler
formula for planar graphs. So, for instance

Psz I=1,V=1L=1,

x& = [1=2,V=2L=1,

X

x@z = [=3,V=2 L=2.

4.10 More complicated interactions

This section is slightly more technical and can be omitted on a first read-
ing. In some cases (e.g., lower dimensional QFT systems, condense-
matter systems or exactly solvable statistical systems) the interacting
Lagrangian is complicated (not a simple polynomial), then in order to
compute Z [J] (or Z [J]) one can use the following identity

—i / d*x Ly |—-i O \| gk J dixd*ys (AR (x-)T ()
6J(x)

Z[J] = exp
3 i ) B 1)
- oP 2/dXd y5¢(X)AF(x y)5¢(y)]
X exp {i/d4x [—£1(¢(x))+J(x)¢(x)]}' . (4.307)
#=0

The passage from the first line to second comes from the simple obser-
vation that

P I i [ d*xp(x)(x)
G( léJ)F[lJ] = F[5¢]G[¢]e ) (4.308)
which is an infinite-dimensional form of the equation
0 _ 0 b
G (6b) F(b) = F (6x) G(x)e " (4.309)

Here 9/0b is a shorthand notation for a vector {9/db;} f\i , and similarly
for 9/ox.

The proof is as follows. First we prove (4.309) for a special case G(x) =
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@ and F(b) = eB? . The left-hand side then reads

G(;_b)F(b) = THF(b) = Fb+a) = P, (4310)

and for the right-hand side we get

= P xlath) — oxtB)a+h)
x=0 x=0 x=0

9 x-b
F (a) G(x)e

= Plath), (4.311)

which clearly coincide with the left-hand-side result. The result is then
true for any F and G as one may express F and G as a Fourier series,
which the preserves the result by term.

To provide a simple illustration of (4.307), we consider

Z = exp(liA-li) exp [-V(x) + bx] (4.312)

20x ox

x=0

We get a perturbative expansion by expanding both exponentials. Let
us begin with the case where b = 0 and use the notation

0 a 0 0

Vivisjzenix. = 77—
112,18tk (9x,-1 (9x,'2 (9x,~3 axik

V(x) (4.313)

x=0

Assume further that V(0) = 0, V;(0) = 0, so that V(x) is at least quadratic.

Then we get to the second order in V

0 10,100 ,,0

zZ 1+li ‘1—+—i — +
2 0x ox 8 ox ox Ox ox

[1 - V(x) + %Vz(x) T

X
x=0
1 -1 1 -1 -1 1 -1 2
= 1 - EAU Vij - gAij Akl Vijkl + ZAU (6xiaxjv ) -
1
+ Eax,.A;jlax_,axkA,;}ax,vz oo (4.314)
x=0

The fourth terms in (4.314) can further be written as

A (050,V2) A28, (VV)

x=0 x=0

= A (2VV; + 2VVy)

, = 0. (315

x=

In the fifth term

Oy 710y, 0 ATLO,, V(x)V(x)|x:O, (4.316)

the contributions V;Vji; or VVji, are zero due to conditions Vi|x—o =
Vlx=0 = 0. The only non-tivial contributions are from two derivatives
acting on each V separately. There are 3 possible pairings V;;Vii, Vit Vji
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Note that both [Ai‘jl and V;; are symmet-
ric in the two indices.

and V;;Vjx which result in
QA Vi A Vir + 2B Vi A Vin + 2A Vi A V. (4.317)
Factor 2 results from symmetry of VV coming from the first derivative.

In addition, the second and the third term are identical after re-indexing.

The corresponding contribution to Z is thus

1 _ 1, _ _
g VA Vi + 1A Vi A Vi (4.318)
As an exercise, show that should we have expanded (4.314) to the 3rd
order in propagator then the corresponding contribution (still to 2nd
order in V) would be

110 1,00 1,00 40

___A—l__A—l__A—l_ 2

37l axaxl axaxl ax’ Y,
1

1 A1 A
_Vl‘jkAillAjr}tAkrllVlm” ..

1p-1p-1
= g ijkA[J' AkllAmnVlmn + 1

.. (4319)

This can be diagrammatically represented as follows: Ai‘jl joins points
i and j and V;;;,. ;, represents a vertex with n lines, for instance for
n = 6 we would have

(4.320)

Then
1 1
t3 QQ t Q
(4.321)

These are vacuum diagrams (the third one is disconnected). If specially
Vix) =23 xl.3, only diagrams with V;;x # 0 survive, i.e.

DOm0
Both are of the second order and up to a different symmetry factor
they coincide with vacuum diagrams in £ ¢® theory.

Similarly, for V(x) = 3, x?, only diagrams with V;;; # 0 survive, which

are represented by

This is a first order vacuum diagram for £ ¢* theory (again modulo
different symmetry factor).

For the case b # 0 (i.e., by including also external legs) we still assume
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that V(0) = 0 and V;(0) = 0 for Vi. Then

O p190 p0 )
ox

10 0
— AT —
ox 0x ox

1
z1bl = (1+§6x ax 8

X {1 - [V(x) + bx] + %[V(x) + bx]* + } (4.322)

x=0

Now the following new terms appear

1
Term1: =—A1ZL =
erm 2 dx Ox lx=0 0,
119 P 1
Te 2. Z.Z A1 ZopxV | = 2-A: (Vb i ,
erm2 2ot a2tV L, = 238y Vhiwi |
1
= 2ZA1.‘1.1(Vijbx+Vibj+iji)| o= 0
N e’
=0
114 P
rems L1000
erm 3 P axkakaXI )
1 4 1 -1
= A0 (bybu + bixcby) )x:o = Sl by,

where the last term is the first non-trivial contribution (apart from
already computed vacuum diagrams).

One can show that there are other higher-order terms like

1 ! “IA-TA-
6 & ~ =il Ay B Vinn

1>eO—>< ~1

1 4bibjA;,}A;}vkmnv,,,qA;pA;;, (4.323)

which we have already seen in the §¢° theory.

Full two-point Green Function

Let us now come back and proceed with the £ ¢* system. Important
quantity of interest is the full two-point Green function, i.e

627 [J]

575207 () (4.324)

(x1,%) = 1(x1, %) = (=i)

J=0

Let us remind that to the leading order in 1 we have [cf. Eq. (4.298)]

1—%/(61'% ¥ ><)d4x

So, the first term in (x1, xp) is iArp(x1 — x2), which is the free particle
propagator. Term < contains 4 J’s and so gives no contribution to
the two-point Green function. The term x©-x equals to [recall (4.291)

ZlJ] = et [7AFT - (4.305)
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and (4.295)]

—iA6i

4!
———
A/4

Ar(0) / dxdtyd*z Ap(z - x)J(x)Ap(z - y)J(y). (4.326)

On differentiation we get

N —igApT _ (s g O N
(_l)éj(xl)( e 2t J) = 6](x1)( )]e et
+ (=) O x (— o )e—éfAFf

1

- %/IAF © / d*yd*zAp(z = x)AR(z = y)I(y)e 24T+ (4327)

where the remaining terms are not important in the J — 0 limit. The
second derivative then reads

52 :
2 O ~LJApd
(=0) 6J(x2)6J(x1)( ¢ )

- _%AF(O)/d4zAF(z—x1)A(z—xz)e_%JA” +..., (43298

where “...” denotes the terms that do not contribute in the limit J/ — 0.
Finally, we can write the two-point Green function as

() = B 0) — SARO) / A 2Ar(z - x)AR(z = x2) + O(2)

=i e—e — 4 O o 4 0(2%). (4.329)
X1 X2 2 X1 X2

To order 2, this represents the effect of interaction on the free-particle
propagation.

Let us remind that the free propagator is given as

1 e~ ik(x-y) 1
Ap(x—y) = 20t / k2—m2+isd k, (4.330)

and its Fourier transform contains a pole at k> = m?. This identifies
mass of the particle as m. We will see that this is not a coincidence but
a consequence of the structure of S-matrix. Let us now see that the
effect of the interaction is to change the value of the physical mass
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away from m. Indeed, the second term in (4.374) is

OJL.

A#(0) / d*2Ar G - D)Ap(x2 - 2)

X1 X2
Ar(0) e~ iP(x1=2)  ,=iq(x—z) o
T @np pz—m2+isq2—m2+isdpd 9’z
Ar(0) eriplimx) 44
- (27r)4,/(pz—mZ+18)2(S (p+a)dpdq
Ap(0) e tP(x1—x2)
- = / B dp. (4.331)
So, to the leading order in A we have for z-point Green function
& P
i e~ ip(x1-x2) LAA£(0) .
, = - d*p. (4.332
(x1, 72 (2m)* / p?>—m? +ie p*—-m? +ie e )
Technical note
1 1
—— = {4 1} = — 1-1A7'B
a+ap - AU = aaas T ( )-
With this we can rewrite (4.332)
(a,m) = / e a* (4.333)
X1, X2) = . . .
OGS (R S Wy B

The Fourier transform of (xj, xo) will now possess a pole at p? equal
to

m? + %/IAF(O) = m?+om? = m%, (4.334)
where 6m* = £1Ar(0). The mass mg is now identified with the physical
mass and for reasons to be explained in the chapter on renormalization

is known also as renormalized mass.

Note I.

Ar(0) is divergent. One says that Ar(0) is quadratically divergent
This is because for large p the 1ntegrand behaves as pi dep

dQdpp. Integral over p behaves as 5 p |0 , which diverges quadrat-
ically. We will discuss this point more in the part dedicated to
renormalization.

Note II.

Important observation is that the renormalized mass is not the same
as the parameter m in the Lagrangian. The same will be true also
for renormalized couplings.
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So, we have 24 terms — each diagram
represents 4 equivalent terms.

4-point Green function

Let us now compute 4-point Green function to the first order in 1. We
start we the defining relation

5*Z[J]

6J(x1)86J(x2)6J (x3)6J (x4)|,_o (4.335)

J=0

(x1,%2, %3, xa)0 = (=i)*

where to the leading order in 1 we know [cf. Eq. (4.325)] that

1—%/(6:’% ¥ ><)d4x

The first (i.e., order /10) termin {xq,...,xs) is

7] = e 2 JIAFT | (4.336)

(X1,...,x400 = —[Ar(x1—x2)Ap(x3 —x4) + Ap(x1 — x3)Ap(x2 — xa)

+ Ap(x1 = x4)Ap (x2 — x3)]

X1 X2 X1 X2

_(: . I I N :><) (4.337)

X3 X4 X3 X4 X3 X4

The next term in Z [J] of order A is given by

2(_04 ot [ O e—%fJAFJ”

6J(x1)6J(x2)6J (x3)6J (x4) J=0

64
0J(x1)6J(x2)6J (x3)6J (x4)

: [AF(O) / dxdbyd zAr (x = DAR(y 2)

x I et

— /l
%AF(O) / d*xd’ d*zd*z1d* 2 Ap(x - 2D)Ar(y - 2)

Iy o oy

X Ap(z) - zp) — YA
=) S S To U,

X1 X2 X1 X2

x X

0 O

— [ d*z + + IO I
8 *——o &0

X3 X

X3 X4 4 X3 X4
X1 X2 X1 X2 X1 X2
+ I Io+ }é + N : (4.338)
X3 X4 X4 X3 X4 X3
Here, for instance
X1 : X2
4 4
/d z = /d ZAF(0)AF (x1 = 2)AF(x2 — 2)A(x3 — x4),
*——o
X3 X4

(4.339)
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etc.

Note

X N = AF X—Yy AF X 4.340
r (27’() pZ 71’[2 +ie %

The final term in Z [J] of order 4 is given by

. 4 .
—id o e b [I0rd
41 57, 00,0050)y,

J=0

—id ot . . 4
= —— | d d*xA - x)J

41 §Jxl6JxZ6Jx36]x4/ Z[/ *Ap(z = x)J(x)

—id
= I d*zd*y1d*yrd*y3dtyy Ap(z — y1)Ar(z = y2)

ST (y1)JI(y2)J (y3)J (y4)
X A - y3)A -
F(z2 = y3)Ar(z = y1) 572,070 0v,00,

il X1 X2
= ﬁ d*z z + all permutations of xy,..., x4.|. (4.341)

’ X3 X4

Note

(x1,...,x4) is by its very formulation given via time ordered prod-
uct symmetric under permutation of positions xi, . . ., x4 (this can
also be directly seen from the functional integral representation
of (x1,...,x4), there ¢(x7), ..., #(x4) enter as c-numbered functions,
which clearly commute.

X1 X2 X3 X2
From this point of view diagrams :>< and :><z: are the same
X3 X4 X1 X4
and we can count them as 2. This is true for all 24 copies. So, the
previous result can be written as

i X1 X2 X1 X2
= [t ><z: x24 = —il / &t ><z: . (4342)

X3 X4 X3 X4

The same is true also for previous 3 types of diagrams - each with
multiplicity 4. So, finally we can schematically wite

(x1,...,x1) = —3[ l—w/d% z l

- il / d*z ><l (4.343)
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Figure 4.8: Construction of the multiplic-
ity for the first diagram in (4.347).

The first term of order 1° does not contribute to the scattering since
propagating particles are not disturbed in these evolution (no interac-
tion is present). The numerical coefficients are easily derived by simple
combinatorics.

For instance, if we want to find the contribution to order A", we need
to consider n-vertices. In short

n vertices of the type ><: contribute to order A" . (4.344)

For 4-point function we draw four external legs

X1 X3
*————— —e

= (X]...X4). (4.345)
———— —e
X2 X4

In particular, the 4-point function in 1¢* theory to order A is con-
structed from following diagrammatic building blocks (so-called Feyn-
man prediagrams)

X1 X3

[ — o
>-< : (4.346)

[ — o

X2 X4

Now we should join all lines (keeping external legs) and create all
topologically distinct types of diagrams. Corresponding diagram:s,
the so-called Feynman diagrams are:

_Q

) G (4.347)

Let us see how to deal with combinatorial factors (also known as
multiplicity of diagram). The general idea is the following. If we want
to build first diagram from (4.347), we start with prediagram (4.346),
where we can connect one of the legs with vertex in 4 different ways.
After that we have 3 legs remaining and 3 free legs in vertex, etc. [cf.
Fig. 4.8]

4 possible joinings 2 possible joinings
T T3 7 /\* s
¢ f\f ° ——
>< - X\
@ J Py .
2 4 T .
3 possible joinings

Hence, we can see that multiplicity of this diagram is
4-3-2-1 = 4! = 24. (4.348)

This precisely cancel the factor 4! in the definition of 1¢*/4!. This, in
turn provides precisely the corresponding coefficient in (x ... x4) in
Eq. (4.343).
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For the middle diagram in (4.347), we first can connect one external
line with another external line in 3 possible ways. After that there are
2 ways to connect one leg in middle vertex with remaining external
legs and there are 4 legs in the vertex. Then again, there are 3 ways to
connect remaining legs to vertex. Finally, we have 1 way to connect
remaining two lines in the middle prediagram, which builds loop, see

Fig 4.10.
Ty T9
P N
o-—_ e [ 4
N N N _ _ = = 2 possible joinings
r X Vel n
—— —e *— >< —e
T3 vy \
3 possible joinings \|

take 1 leg out of 4 from vertex

= a3 possible joinings a1 joining
~ . Y \/ _
> e

Figure 4.9: Construction of the multiplic-
= O ity for the second diagram in (4.347).

Thus, the multiplicity is
3-2-4-3 =24-3, (4.349)

which when taken together with J; gives precisely the factor of 3 in
Eq. (4.343).

As for last diagram in (4.347), we can again start with prediagram
(4.346) and connect external legs in 3 different ways. Then, the vertex
can be connected into double bubble diagram in 3 different ways, see

Fig ?7.
T T2 T A T
*— -_—e — N
x : [ x
*— -_—e or— —_—
T3 Tq T3 Ty
3 possible joinings
o— 0 e X e
’
= ‘X}v =
o— 0 o— 0
fix one leg
there are 3 possible pairings (contractions) CX)
Figure 4.10: Construction of the multi-

plicity for the third diagram in (4.347).

Thus this diagram has the multiplicity

3-3 =09. (4.350)
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One can check that we have all diagrams by realizing that

[ Dop(x1). .. plxa)exp {i [ d*x (Lo -V(p)}
[ Doexp {i [ d*x(Lo-V(e)}

[ Deglxi)...plxp)e™ [ VO exp i [ d*x (Lo))
[ Dyexp {i [ d*x(Lo)}
[ Dyexp {-i [ d*xLo}
[ Doexp{i [ d*xV(p)}exp {i [ d*xLo}

_ <S0(x1) ... ¢(x4)e“'fd4x">0 | w3
<e—i/d4xv>

<X1 ‘e .)C4>

0
4
In particular, in 1%; theory we have
<X1 PN X4>

OIT el (1= i) [abxt ) + 02 | 10)

(4.352)
OIT |(1-i4 [ dixg*(x) + 0(2) | 10)
So, to order A contribute all contractions from
I ¢t - ptx0) [ d4x<,o4(x)] 0)
= [a QT et el 0. @35
We know that there are in total % contractions [cf. Eq. (4.222)].
Since in our case M = 4, we have Zf_ﬁ!ﬂ = 105 contractions. On the other

hand, our 3 contributing Feynman diagrams have the multiplicity
24 +24-3+9 = 105. So, we have correct number of diagrams and
respective multiplicities.

The reason why the vacuum diagram does not appear in (x; ... x4) in
Eq. (4.343) is because it is precisely cancelled by the very same diagram
in denominator. This result is completely general and it is known as
linked cluster property. We will derive this result shortly.

4
In summary, the Feynman rules for /l'f;—! scalar field theory in co-
ordinate space are

v

Draw all topologically distinct diagrams. For given n-point Green
function with n external legs. For order 2™ use m vertices.

A line between points x and y represents propagator iAg(x — y).
A vertex with 4 lines represents a factor —i.

Integrate over z for all vertices.

Introduce combinatorial factor, where necessary.

Symmetry factor
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Inverse of the overall pre-factor in front of each diagram is known
as a symmetry factor. For a simple monomial interaction (such
those considered so far)
(1)
s = Mot (4.354)

r

where n is a number of vertices, 1 is a coupling constant factor
(e.h. 4! or 3!) and r is the multiplicity factor (i.e., the combinatorial

factor). E.g. s for left diagram in (4.347) is 1!(44!!)1 =1 and for middle
diagram is 1!%!)1 %

Linked Cluster Theorem

We have seen that vacuum diagrams will cancel when (x; ... x,) is

4
perturbatively computed to the order A for 1%; theory. This result is, in
fact, general and true to all orders in A and also true for quite general
potentials. This result is known as linked cluster theorem.

Proof: Let us illustrate the situation on the monomial interaction of
the type g %7 If we concentrate on n-th perturbative order of general
m-point Green function we get

(x1 .. ) = (F[x™ = %<F[x] ( / d4chk(z)) >O. (4.355)

n vertices

will contract
among themselves
(vacuum diagrams)
(p vertices)

will contract ~—_

with external legs

(n — p vertices)
m external legs

Fig. 4.11 implies that the contribution to (4.355) from vacuum diagrams
of p-th order (in coupling g) is

(-ig)" " "\’
ity o) ([ oseo] ) ([ sl ),

Here the combinatorial factor counts how many times one can select
p vertices out of n vertices. Acronym “nv” denotes non-vacuum di-
agrams while v vacuum diagrams (i.e., diagrams without external

legs).

(4.356)

By summing over p we get perturbation expansion of the n-th order
with all possible vacuum diagrams included. The entire perturbation

Figure 4.11: Illustration of the Linked
Cluster Theorem.
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Figure 4.12: Equivalence between
Lo Zp—oand X700 X p-

expansion thus reads

T N I
Z()’Zo(k')”(n ] < [x](/d 2¢"(2) . /dw (2) .

(S Il

:

1 )n n—p\ nv PV
=ZZ(k')" (n li)' <F[x] (/ d4wk(Z)) >0 <(/ d4wk(1)) >o'

p=0n=p
p p
n n

By denoting n’ = n — p we can further write

ZZ

(—ig)" (=ig)? "\
D e <F[x] ( / d4z¢k(z)) >

0

([ o] ),

(4.357)
Note that the summation over p precisely gives the denominator in
(x1...xm), see, e.g., Eq. (4.351).

Let us now illustrate the Linked Cluster Theorem on a simple example
of the g¢?/3! theory to second order in g.

(s0p(x) et/ @)
<e—ifd4zV>

(x1x2) = {(V = %903}

o + o (M+@+O(g2))

X1 X2 X1 X2

(1+0—0++0o)

" X1 X2 " X1 X2

X1 X2

(1+0—0+ )+ 0(?)

X1

( &xz + =0 O—p + o< sz)(M+O+O(g2))

(1 +O—O+@+O(g2))

0—0+0—<‘>—0+0—OO—0+0—O—0
X2 X1 X2 X1 X2

X1 X2 X1

7

As an exercise, try to fill in the correct symmetry factors.

(4.358)
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4.11 Generating Functional for Connected
Diagrams

Before attempting to evaluate sums of Feynman diagrams we shall
perform some further formal manipulations to simplify the task of
organizing them.

As they stand, the Green functions (xy, ..., x,,) (say, for example, for
scalar theory) are cumbersome quantities to use. In fact, even when vac-
uum diagrams are removed, there are many diagrams in (xy, ..., xp)
that are disconnected.

We note here that by a disconnected diagram we mean a diagram com-
posed of two or more subdiagrams that are not linked by propagators,

e.g.
e—0O O—ex2 o (),

e O ox, o (X10x3X4) 4,

X1 Q—G—Q)Q,

Xoe—e Xy « (x1x2x3x4)¢3 , etc.

(Here the sub-index of Green function denotes the type of considered
potential.)

On one hand side, the connected diagrams are more elementary build-
ing blogs from which one can systematically generate more compli-
cated perturbative diagrams. On other side, we will see that for scat-
tering purposes in particle physics the connected diagrams are very
important tools. To this end we will in this section isolate connected
parts of Greens functions — the so-called connected Green functions. The
first step is to break down the Feynman diagrams (and hence Green
functions) into their connected parts.

Previously in Eq. (4.243) we have seen that the generating functional
for Green functions Z[J] can be expanded as

Z[J] = ZUT_ Z ’n—' /W ]_[ dx J(x) . TG (X1 xs .. XY, (4.359)
n=0 i=1
where

[ Ded(x1). .. (x,)eiS10]

T Doeto (4.360)

(X1x2 ... Xp) =

Disconnected Green functions arise when (x1x ... x,,) factorises into
(typically sum) of products of Green functions.

Let (x1x2...x,)¢ = 75 denote connected Green function with » fields.

A general Green function can be written as the sum of products of
connected Green functions. Let (x1x...x,) = 1, have n; factors of
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(x1)F =7, ny factors of (x1x,)¢ = 75, etc.

. c
0—@Tlc ::E)Tz

X1 O—’/C) = Z : X : X 1y
X2 {ne} c
", J with constraint O T ::C) Tzc
X Yy kng=n
n

This number of ways of factorizing (x1x; ... x,,) in this fashion is the
same as the number of ways of partitioning n particles with n; boxes
with one particle each, n; boxes with two particles each etc.

n!
S mmalng!. L (Aym(Q2Dm2(3)m

n!
n!(1)yMnp ! (2N)m2ng! (3N ...

To understand this result, it is illuminating to go through the following
two examples.

Example 1: In how many ways can we arrange r; balls of color 1, r;
balls of color 2, ..., ry balls of color & in a sequence of length n := r; +
r +...r? If we number the balls 1 to n, then there are n! arrangements.
Since we ignore the numbering, any permutation of the set of r; balls
of color i, 1 < i < k, produces the same arrangement. So the answer to
the question is the multinominal coefficient (71, - Vk)'

Example 2: We wish to split {1,2,...,n} into b; subsets of size 1, b,
subsets of size 2, ..., by subsets of size k. Here Zle ib; = n. The same
argument as used in the previous example applies. Furthermore, the
subsets of the same cardinality can be permuted among themselves
without changing the configuration. So the solution is

n!
. 4.361
bibo! .. b (AN)P1(21)b2 L (k!)Px ( )
We now multiply by J(x1). .. J(x,) and integrate to get
/d4x1 cdixa J(x1) . J(x) M ’~j<) = Xj)
X2 l J(
. s .
—_———
n legs

= ()" (2 " 4362
B Z n1!n2!...( ) E;:ED e (& )

{n}
with constraint
2k kng=n
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Here we use the obvious symbolic notation

H - / d4xJ(x);—< (4.363)
H - / d*xJ(x) r( (4.364)

and similarly for more legs.

Eq. (4.362) can be further rewritten as
Z 0 Z k n! ( F@)"l l ;t® ny y (4 365)
{ni} " k e ni'nplng! ... 21 ...(4.

where the symbol §-function stands for corresponding Kronecker’s §
function. With this we can write

. ZlJ "

| —
n legs

S % e Zow) (o) (320
e el

I’l1! nz!

{ng}

= exp (i x—O) -exp (ﬂ% ::Q) -exp (i3% 2}9)

exp (W[J]) , (4.366)

where

———
n legs

= Z ;—n' / dxy . odh g (, xa) T ()L T (). (4.367)

n=1

We should note here that it is often convenient to rescale W[J] as
W[J] = iW[J] so that

Z[J] = exp (W[J]) . (4.368)

Since Z[J] = Z[J]/Z[0], we work with normalized generating func-
tional and hence no vacuum diagrams are present in Z[J] (nor in
(x1,...,X,) ¥n)). This implies that W generates connected diagrams of
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non-vacuum type —- they have at least one external leg.

Relation to Characteristic Functions

In probability theory one introduces characteristic function for any
given (multinomial) probability density function p(x).

Characteristic function is defined as the Fourier transform of p(x),
i.e.

iS[e]

. . ‘ e
t) = dm itx VAR :/D thtp ,

o= [ axep o A= [ ol
where the last fraction is analogous to probability density function
p(x).
Characteristic function carries all information on moments and
correlations (if they exist), e.g.,

82

(xi, xj) = Wfﬁ(t)

< (0 T[p(xi)e(x;)]0)
t=0

52

s e

J=0

Generating function of cumulants is defined as
H() = log o(t) = IOg]E (eitx) > W[]] = log Z[]] 5

Analogy with probability theory will become even stronger when
we perform the so-called Euclidezation of the functional integral.

Some examples (W[/] in action)

Let us now show how the prescription
217 = "V e wli] = -ilog Z[J], (4.369)

allows to generate connected diagrams in perturbative analysis. To
this end we will consider the 2-point and 4-point Green functions in
A¢* theory.

We have, firstly
52w B ) (_ i 52[.1]) 6 (_ i 52[1])
§J(x1)dJ(x2)  6J(xa) \ Z[J]16J(x2)]  §J(x1) \ Z[J]6J(x2)
_ i 6Z[J] 6Z[J] i 62Z[J] (4.370)

Z2[J] 6J(x1) 6J(x2)  Z[J]6J(x1)6J(x2)
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When J =0,
—i 6Z[J] _—iszlal| [ D p(x)eS]
Z[J] 6J(x) J=0 6J(x) 7=0 f@‘peiS[(p]
. ) ,
((p(x)e_‘v[‘/’]>0 : B 1 904 B This would not be true e.g. for g¢~ the-
W = {V[p] =4 d XI =0, ory.

since (p(x)e™ V¢l is (when e?VI#! is expanded) the vacuum expecta-
tion of the time ordered product of odd number of free fields. Alter-
natively, this can be seen by changing ¢(x) to —¢(x) in the Feynman
functional integral.

Furthermore, because Z[J = 0] = 1, one gets

W i6°Z
—_ = - —— = i(x1x2), 4.371
§J(x1)8J(x2) ey e I (@.371)
which shows that W generates the propagator (2-point Green function)
to any order in A. This could be expected, since the propagator has no

disconnected parts.

As already suggested, this would not be the case, e.g., for g¢® theory
where we have diagrams of the type

xre—0O O—ex2 or X1e—O-O O—ex2 (4.372)

The expansion, however, becomes less trivial when we consider the 4-
point connected Green function. To this end, we differentiate Eq. (4.370)
twice more and set J = 0 at the end. This gives

5tw
0J(x1)0J(x2)6J (x3)0J (x4)

J=0

~ 52 [ i 6zZ[J] 6zZ[J] i &*ZlJ]
- 6J(x4)0J(x3) | Z2[J] 6J(x1) 6J(x2)  Z 6J(x1)6J(x2) J=0

__ 6 [ 2 6z 6z 6z i 6’7 §Z
C6J(xy) | Z36J(x3) 8J(x1) 6J(x2)  Z26J(x3)6J(x1) 86J(x2)

.\ i 6Z 82z . i 6Z 52z
72 6J(x1) 6J(x2)0J(x3)  Z2 6J(x3) 6J(x1)6J(x2)

I ]
Z 6J()C3)5J(xl)5J()C2) J=0

i ez b4 L 4 4
| 22 67(x4)8J(x1) 6J(x2)8J (x3)  Z2 6J(x4)6J(x3) 8J(x1)8J (x2)

i 52z 52z i 5tz
Z2 5.]()63)5.]()61) 5.]()64)5.]()62) Z 6.]()64)5.]()63)5.]()62)5]()61) 7=0

= i{x4x1)(x2x3) + i{xgx3) (X1 X2) + i{x3x71)(xgx2) — i{x4x3x2%1) . (4.373)

To see that this expression contains no disconnected diagrams, let us
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In terms of W we would have the multi-
plicative coefficient —i 2 instead of —A.

check it to order A. From Eq. (4.374) we know that

A
(GLx) =ie—e -2 o0, (4.374)
X1 X2 2 x X2
while
X1 X2 X1 X2 X1 X
*———0
(x1x2x3%4) = — + I I + :><:
*——0
X3 X4 X3 X4 X3 X4
i1 1 O 2 1 O 3 1 O 4
- 3 *———0 *———0 + *——=0
3 4 2 4 2 3
3 ® 4 2 ® 4 2 O 3
+ *——0 *——0 *——0
1 2 4 3 1 4
A . : Y tati f
i permutations o
4! :><: M x1,...,x4 (24 terms) (4:375)
3 4
Thus,
Whr . oxg) = 1900 xa)
1 2 1 2 4 4
= 1[(10—0 —%Q—O—Q)(lg—o —%g—o—o)
2 4

— (x1x2x3x4)]
A . : A4 i f
permutations of | _
= —— -1 . (4.37
4! :><: Jr)cl,...,3c41(24’cerms) ><: (4.376)
3 4

So, the disconnected pieces cancelled, and the only terms which sur-
vived are connected pieces, which form a topology of a cross.

We will discuss diagrammatics of the perturbation expansion more in
the chapter dedicated to renormalization. Let us now make one more
observation that will be relevant at the later stage.

Let us write the 2-point connected Green function up to order A% in
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the A¢* theory. This reads (symmetry factors omitted)

<X1XZ>C = (e = o—9o Q—O—o

X1 X2 X1 X2 X1 X2
+ 00O, o @4 + 0—8—0 . (4.377)
X1 X2 X1 X2 X1 X2

The organization of the perturbation series is quite straightforward.
While W[J] generates connected diagrames, it still contains diagrams
that are reducible to two connected diagrams upon cutting an internal
line, e.g.

OO, (4.378)

X1 ,’ X2

is irreducible upon cutting the internal propagator. Such diagrams
are called 1P (one particle) reducible. It is clear that 1P irreducible
diagrams are more fundamental building blocks of generic diagrams
since we can construct all the connected diagrams from them. We will
study the 1PI (one particle irreducible) diagrams in connection with
effective action and renormalization. We will see their role also when
discussing the Killén-Lehmann spectral representation of 2-point
Green functions.

Loop Expansion

The loop (or loopwise) perturbation expansion, i.e., the expansion
according to the increasing number of independent loops of connected
Green functions, may be identified with an expansion in powers of 7.
To show this, let us reinsert 7. The best starting point is the functional-
integral representation of the generating functional Z[J]. In particular,
when 7 = 1 we know that

h=

Z[J] = N/Dgoexp {i/d4x[£(¢,8¢)+J¢]}

Ly / Z)goexp{%S[‘p]+i / d4x14p}, (4.379)

where N is normalization constant. On the dimensional ground we
had to divide the action S[¢] by . Note also that there is no 7 factor in
front of the [d*xJy term. This is because we require that

[ Dep(x1). .. (xn) exp {£S[e]}
[ D¢ exp {£Slel}

B (=i)ns" [ Dy exp {LS[g]+i[d*xJg}

©0J(x1) ... 0 (xn) fZ)go exp {£S[¢]}

QIT[@n (x1) - .. ou(xa)]IQ) =

(4.380)

J=0

Eq. (4.379) implies [see also Eq. (4.271)] that

— i 4 _,'L
Z[J] = exp [ﬁ/d xLI( 6](x))]Z()[J]. (4.381)
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Here we have divided the Lagrangian into free (quadratic) and inter-
action parts, £ = Lo+ Lj,

i

ZolJ] = exp (—5 / d4xd4yf<x>A<x,y>J<y>), (4.382)

where the operator A(x, y) deduces from £y = f d* yd4x%¢xA‘1(x, Y)Py.
Since A7(x,y) = —%5(x - y)([O+m?),, we immediately get that A(x, y)
hAFr(x,y), and consequently

i

ZolJ] = exp ("E / d*xd*yJ(x)hAp(x, y)J(y)) ) (4.383)

Let us now count 7 in a typical Feynman graph. For any Feynman
diagram, each propagator comes from Zy[J] and is multiplied by 7.
However, each vertex, because it appears in the combination £; /7,
is multiplied by a factor 77!. So, for an arbitraty Feynman graph,
the total 7 has power REH-V (E - external line, I — internal line, V —

vertex), which is (by Eulers theorem that states L = I — (V — 1)) equal
to hE_1+L.

In particular, for a fixed number of external legs (lines), i.e. for a given
Green function each loop contributes with one 7.

Note

The minimal values of 7 occures (with fixed E) for / =0and V =1,

e.g.
% ) (4.384)

resulting in #2£71. Simple propagator e———e does not count as it
does not have clear concept external-internal lines.

For vacuum bubble diagrams the minimum is reached with 1 vertex
and I = 2 (with one it does not provide vacuum diagram). Then
#!'=V = n”"! = h meaning minimal contributions disappear in the
limit 7 — 0. This implies that vacuum diagrams are entirely of
quantum origin.

It is interesting to observe that in theories with a single coupling

3 4
constant (e.g., g%, /lﬁ—! etc.) the loopwise expansion coincides with
expansion according to powers of coupling constants. This is because
there exist in these cases auxiliary relations between V, i.e. number of

vertices (i.e., power of 4, g, ...) and L. Indeed, e.g. for /1%1 we have
4v = E+2]
= {Euler form} = E +2(L +(V -1))
= 2V=E+2L-2

E
= V= 3 +L-1 (E is event for g04) . (4.385)

This holds because each vertex has 4 legs, thus the total number of legs
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from vertices in graph is 4V, e.g.

- >< >< —, (4.386)

where each I connects 2 legs from 4V and V = 2, E = 2. For fixed E,
power of 4 is dictated by number of loops.

Similarly for g%f where one has
3V. = E+2I=E+2(L+(V-1))
= V=E+2L-2. (4.387)

Again for fixed E, the total power of g is equal to g¥ ~ g2 = (g?).

Hence, expansion in number of L.

Note

Because our conclusions are valid due to Euler formula (which in
turn holds only for planar graphs), they are valid only for connected
Feynman diagrams. In particular, they are not valid e.g. for

—0O O— (4.388)

diagram, where E = 2,1 =2,V =2and L = 2, thus2 = L #
I-(V-1)=1).

Note

All loops disappear in the limit 7 — 0. Diagrams that do not
disappear in this limit are known as tree or Born diagrams, e.g.

>_< (4.389)

Beyond simple scalar fields

For a scalar field multiplet we have the generating functional

f[H"_1 D¢, | oiSIP1pnlti [ d*x T, T () (x)

Z[J],JZ,. . .,Jn] /[H:L:1 D¢r] eiS[gb],...,(/)n]

. (4.390)

In particular, for n = 2 it is conventional to introduce a complex field
1

1
¢ = —=
V2

(¢1+i¢2) and ¢*=\/§(¢1—i¢2), (4.391)
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Figure 4.13: n external legs should be
joined with vertices prescribed by the
interaction Lagrangian .£;. For illustra-
tive purposes we sub-divided the vertex
point (should be a single point!) into sub-
vertices of the same field type.

which allows us to write

Sl¢n, ¢21 — Sle, ¢71,

~ /‘D(pz)‘p*eiS[w,w*]Hfd4x(J*<p+J<p*)

710,07 = —
/Z)¢D¢*els[¢/¢]

(4.392)

Objects of interest are again Green functions. In order to do pertur-
bative calculus we need to identify first the corresponding propaga-
tors. As before, propagators follow from the term in the action that is
quadratic in the fields.

Slr, s bal= ) % [dx{ono]-([@n2)] o+ £itor,.... 00}

r=1

St = [ dxle - ([Tend)[ e+ Lo} @so)

Thus,

. 4 . 0 . 0
l‘/R4d x.£1( 1—6]1()6)’“.’ l—éJn(x))

X exp (_% i d4xd4yzJ,<x>m;(x,y>fr<x>), (4:394)
r=1

Z[J] = exp

where

(A7, 2] ™ = =8 —y) (D+m) (4.395)

Note

We recall that / [AF(x, 2)] - Ar(z,y)d*z = 6(x—y),

o O+md)Ar(x,y) = —6(x,).

So, perturbation expansion of, e.g.,

QIT[¢a1(x1)¢H2(x2) - . . Prn(xn)] |€2) , (4.396)

consist of diagrams constructed from various typologically distinct
vertices.

9 /\
Wl NS

= — 2 6i(z)8 ()
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Note

There are no propagators of the type (0| T[¢1(x)¢2(y)] |0) in the
Feynman diagrams. In fact these would-be propagators are zero,
because

0

O T[¢1(x)p2(»]10) o (O ar(p)aj(q) |0)

or (0| az(p)a;(q)|0)

0. (4.397)

Situation with complex fields is a bit more complicated. Let us recall
that complex fields are convenient if the theory is invariant under
phase transformations. For instance, the Lagrangian

A
L =10"¢|* —m?|p|* - leol‘* (4.398)

is invariant under ¢ — ¢’ = ¢'®¢ with @ being an arbitrary parameter.
In these cases

o ' . .6 6
Z[J, 7] = exp[l‘/md x.EI( léJ*(x)' 15](3())

X exp (— / d*xd*yJ*(x)iAp(x, y)J(y)), (4.399)

where Ar(x, y) now corresponds to

Ol Tle(x)e*(M110) = %<0|T[¢1(X)¢1(y)] |0>+%(0IT[¢2(X)¢2(y)] 10)

4 —ip(x-y)
N : (4.400)
Qr)tp2-m?+ie

From this follows that

OIT[e(x)¢"(y)110) I T[e(y)" @(x)110) = (Ol T{e(y)e" (x)] 0)

OIT[¢"(x)e()110) , (4.401)

is the same propagator as for real scalar field. Corresponding full
Green functions are obtained from Z[J, J*] as before, e.g.

2

: g8 :
(I Tlpn ()i (] 1Q) = (i) G 210, T

. (4.402
JJ*=0 ( )

First, to order 1 we have

 _ A [ 4 4 6 & | rrined
Z[J,J] = [1—; i / dix (i) e (x)z]e / . (4.403)

We note here that
OIT[e(x)e(y)] 10)

= 0| T[¢"(x)¢*(»)] [0) = 0.
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To order of 2° we have just the free particle generating functional. To
order 1 we can write

= / d*xJ*(x)AF(x, z) exp

—i / d*xd*yAp(x, y)J*(x)J ()| . (4.404)

Then the corresponding second variation §2/6J(z)*> needed in (4.403)
is

6

2
= [—i / d4xJ*(x)AF(x,z)] e i [ XA @WARIG) - (4.405)

Analogously, by taking variation wrt. J*(z) we get

0

=2 [—i / d4xJ*(X)AF(x, 2)| [-iAF(0)] i [ ART

2
’ [_i / d*yAr(z, y)J(y)] e/ T80T (4.406)

—i/d4xJ*(x)AF(x,z)

And finally, the last variation wrt. J*(z) provides

2

= 2[Ap(O)F e/ ArY
- 2/d4xJ*(x)AF(x,Z)AF(O) /(—i)d4yJ(y)Ap(z,y)e”*AFJ

_2[/ d4xJ*(x)AF(x,z)] AF(O)(_i)/d4yAF(z,y)](y)e*iJ*AFJ

+

2 2
—i/d4xJ*(x)Ap(x,z)] [—i/d4yAF(z,y)J(y)] e VAR (4.407)

This result can be graphically represented as

s Vo ¢ \ .
(M*(z)) (M(z)) P (‘/ / AFJ)

- p o s S e

Arrow in the propagator indicates that the propagator is oriented in the
sense that the endpoints of the propagator lines refer to independent
(different) fields ¢ and ¢*. Combinatorial factors 2 and 4 are simple
result of symmetry considerations.
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Standard convention

The standard convention is that incoming arrows refer to ¢ and
outgoing ones to ¢*. Le.

H—Z = / d*xJ(x)Ap(x, 2)

_ / d4xJ(x) (0| T (¥)e(2)] [0) . (4.409)

As we said, a formulation in terms of complex fields (rather than real
ones) is useful if the theory is invariant under phase transformation,
ie. ¢ = ¢’ = ¢@p. In that case, every Green function must contain
an equal number of ¢ and ¢* fields (otherwise it is zero) since in
L1(p, ¢*) must be for each field ¢ also field ¢*. So, each vertex has an
equal number of incoming and outgoing lines. In forming diagrams,
the lines can be only joined if their orientation arrows match. The
orientation often corresponds to the flow of electric charge, obviously,
charge will be conserved if the number of incoming and outgoing
arrows is the same at each vertex.

4.12 Functional Integral for Fermions

In canonical quantization [, ] — {, } for fermions. This will bring vari-
ous signs modifications into Wick’s theorem. As in Bose case, we can
derive a generating relation for Wick’s theorem that will serve as a
basis for corresponding functional integral treatment. The simplest
passage to a generator for fermionic Wick’s theorem and ensuing Feyn-
man functional integral is via Grassman variables and Berezin calculus.

4,13 Grassmann variables

Grassmann variables are a set of anticommuting symbols. Name “vari-
able” is really misnomer, as Grassman variables are not really variables.
Nevertheless, terminology “Grassmann variables” is standardly used,
and so we stick to it also in this lecture. Suppose there are n Grassmann
variables. We denote them as 6;. The only properties we require is that
they are linearly independent and that

0:0, + 0,6, =0 = 6> =0. (4.410)

So, 6; are nilpotent. We combine 6; with a coefficient field (either R or
C) and form the algebra A, consisting of all sums of products of 6;. A
typical element of A,, would have form

1 1
p(61,62,...,0,) = po+pibi + Epijgiej + apiiji@ij +o00, (4411)

193
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The combinatorial factor 1/2!, 1/3!, etc.
are only conventional and often are omit-
ted.

where p_are elements of the coefficient field. We assume that they are
antisymmetrical under exchange of pairs of indices. The expansion in
(4.411) clearly terminates at the (n + 1)-th term due to 9? =0.

Elements containing only terms with an even number of 6; factors
commute with all elements of the algebra and are called even or bosonic
elements. Those with odd numbers of 8; anticommute with one an-
other, and are known as odd or fermionic. In physics context, we will
find ourselves only adding even elements to even elements and odd el-
ements to odd elements, but this is not a mathematical requirement.

One can also mix Grassmann variables with usual variables (say x)
within one function. In such as cases, a generic element of the algebra
(say algebra A;) will be of the form

p(x,0) = po(x) + p1(x)6. (4.412)

Integrals over Grassmann variables were introduced by Berezin in
1966.

Motivation: One of the features we would like to incorporate is ana-
logue of the fact, that the integral over space is transitionally invariant,
ie.

/dx¢(x) = /dx¢(x+c). (4.413)
R R

We define the “integral” as a linear functional taking the elements of
the algebra to elements of the coefficient field and satisfying (n = 1)

/ dOp(x,0)

/wmmnmmﬂ

/ do [po(x) + p1(x)(0 + )] . (4.414)

Let us define Iy = f do, I = f d0, then

/ dOp(x, 6)

Thus we see that Iy = 0 and I; = 1. This, in turn, provides the following
unorthodox definition:

/d@ =0, /d@@ =1. (4.416)

The choice I = 1 is only conventional (could by, in principle, any
number). Number 1 is chose so that the integral over Grassmann
variables behaves as a derivative

.ﬁwmnfwmw=mmmnmw

(po+ap)lo+ hip:. (4.415)

d
do = —. 4417
/ 2 (4.417)

For more variables we can use the prescription (4.411). By again requir-
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ing
/dG,-p(x,Gl,...,Hn) = /d@ip(x,91,...,9i+a,...,0n), (4.418)
we get
/dH,- =0, /d@ie,- =1, /dﬂiej =0, for i # j. (4.419)

Again, we might notice that our convention implies

0
do; = —. 4.420
[ o = 52 (4.420)
For example
0 0
d61d0,(010 = —_—
/ 1d62(6162) 601(60212)
0 0
= ——(-6,0 4.421
96, 092( 2601) ( )
0
= ——6; = -1. 4.422
il (4422)

The same result can be achieved if we prescribe that

0 0 J 0

— = - 4.423

40, 90, 80, 06; " ( )
and

d61d6, = —d6rdb, . (4.424)

Another example would be

1
/d@ldng(x; 9],02) = /d91d92 (a + b;0; + 58,']'091'9]‘)

1 1
C/d91d92 (59192 - 50291)

—C/d92d919201 = —c(x). (4.425)

One can also define analogue of Dirac’s §-function. In fact, by analogy
with classical calculus we want

/d@é(@)f(x,@) = f(x,0),

/d95(0) [Ho(x)+ A(x)0] = fo(x). (4.426)

This implies that we can choose §(8) = 6. Note that for this repre-
sentation of ¢-function holds also other consistency conditions, e.g.
65(6) = 6> = 0 (analogue of x§(x) = 0) or more generally f(6)5(8) =
(fo+ £10)6(0) = foo = f(0)5(6).

Also, note that the only terms that will survive in the integral / doy...do,
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will be the one with n 6’s (all other terms will not have enough 6’s or
too much #’s to survive integration). So, that

/d@n...delp(x,é’l,...,en)

/d@n . dgl [po +pi9i +pij9i9j + .- +pi1,...,i,,6i1 .o G,n]

= Biyiy,inPiriy, i

n!pLz,...n . (4.427)

If we now change variable of integration according to

~

91' = a,‘jej, (4428)
then

/ db; ...db,p(x,0) = / doy ...do,p(x,0)(?). (4.429)

We can see that

p(x/ é(@)) PO(X) +---+ n!pl...nali1 < Qpi, 911'1 ce gni,l

po(x)+---+nlp1_,det(@)dr---6,. (4.430)
Consequently, we can write
/d@n...delp(x,é(e)) = nlp1..,det(a). (4.431)
This leads to
/ db, ...dop(x,0) = / doy ...do,p(x,0(0)) [det(a)]™! . (4.432)

So, we have the following equation for differentials

A PN

db,...do, = [det(@)]'d6,...do
a@b,... 001"
= det| —%| 46,...d6:, 4.4
e[awl,...,ea] 1, (4433)

which is different than expected form of Jacobian — it is inverse of the
Jacobian.

4.14 Gaussian Integrals over Grassmann
Variables

We wish to compute

1
/ d, . ..d6 exp (EOTAO) . (4.434)
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Here we consider that 7 is even and that the matrix A is antisymmetric.
Specifically for the case n = 2 we have

1gT 1 1
/d92d91€29 49 = /d92d91€201A1202+292A1291

/ do,d6q eA120102

/d92d91 [1 + A129192]

= Ap = VdetA = PfA. (4.435)

Vdet A is well defined for both A, > 0 and Ay < 0. PfA is called
Pfaffian. For any antisymmetric (skew symmetric) matrix we have

(PfA)? = detA. (4.436)

For general n we first recall that for each real antisymmetric matrix A
there exists unitary transformation U such that

UAU" = Ay. (4.437)

Here A, is matrix in a block diagonal Jacobi form

0 1
a (_ 1 0) 0 ... 0
: 0 1
Ay = : b 1 0 (4.438)
0 0
If nis even (our case) a, b, . . . are real and positive definite. Define now
matrix
a2 e 0
0 =xa2 .. 0
T=| : +bh71/2 . (4.439)
0

Note that det(T _1) = Vdet A and, in addition

T (UAU*) T =TA,T

. : 0 1
- A, = - (_1 0) . (4.440)
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Involution 6} is often also denoted as 0;.

Let us now introduce new Grassmann variable

g = (T-lU)e. (4.441)
Then
exp(%GTAB) = exp(%GTUTT_lflT_lUG)
= exp(%@TAS?)). (4.442)
This implies that
/d&nmdé)l exp(%OTAH)
= /dén---dél det (T_lU) exp (%QTAS(?) . (4.443)
Note that
det (T—1U) = det (T‘l)detU - VdetA = PfA. (4.444)
Because
/déldézexp %(91 92) (_01 (1)) (z:;)]
- / by (1+6:02) = 1. (4.445)
Generally

~ ~ 1.7~ -
/den ---db exp (EGTASO)

s d9~1 exp (9~19~2 + 9~39~4 +---+ gn—lgn)

/ i,
/ dB, -~ diy exp (6:165) exp (G301) ---exp (Bur0))
1.

= (4.446)
So, when we finally collect all our results we get
/ d6, ...d6y exp (aTAe) = VdetA = PfA. (4.447)

To be able to treat Dirac (charged) fermions we double the number
of generators in the algebra and define an involution that takes an
element 6; to an associated element 67, inverts the orders of products,
and takes the complex conjugation of coefficients. The term "involu-
tion" means that if we perform the mapping twice, we get back the
original element, i.e. (67)* = 6;. Despite the similarity of this procedure
to the operation of Hermitian conjugation, the variable 6: should be
regarded as being an object quite independent of 6;. This means that
{6;} and {6} are distinct sets of Grassmann variables.
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Following the rules above, we have
/ dodore? 0 = / dode* (1+6*ab) = a. (4.448)

The exponential series terminated after the second term because 0% =
(@) = 0.

Gaussian Integrals with Complex Grassmann Variables

Let us use the notation
N
[d0][d6*] = ﬂ d6,do; . (4.449)
i=1

We wish to compute

/ [d6] [d6*] % Aii%
% 1 * N
= [ 1d011d6"] | < (6; Aiit))
= [ 1d01[d6°] | SN0} Aviy 606342001, - O ANy By
= [ 140118 Avy A+ A 61618501630,
= [ 10010 - A 0365 0300 (1
= / [d6][d6*] Aviy Asiy -+ Anin 0705+ On01 -+ - Onery oty (=1)TFFF
=/[d9] [dO") A1, Aziy - - - ANiy €y, i 0160160562 - - O3 ON

N
= / (ﬂde,-deje;‘ei
i=1

=1

= detA. (4.450)

A1, Adiy -+ ANin Eiy,-in

detA

An essential point is that the determinant appears in the numerator (!!),
rather than in the denominator (as one could naively expect).

To complete the analogy with Gaussian/Fresnelian integration, we
should define and evaluate integrals of the form

/ [d6] e20 A0 ni0i (4.451)

To do this, we must embed the original Grassmann algebra in a larger
one, where the vectors n form a set of elements that anticommute
with each other and with 6;. They serve as “constants” that will not
be integrated over (i.e., no integral of type f dn;, but f dé; = 0vi, j). To

77; here is an analogue of Schwinger’s
source.
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evaluate the integral we must complete the square in the exponent and
shift the variable of integration. Despite of no “domain of integration”
in Berezin integration we know that

/ dos = 1 = / 460 +1). (4.452)

So, the integral is by construction invariant under shifts. The same
holds true for the general shift §; — 60; + n;. By using the fact that the
inverse of an antisymmetric matrix is also antisymmetric matrix one
can write

/ [d6] 0 20i4ij6;+1:6;

1 -1 -1 1 -1
/[de] o2 O AT Ay (0= |+ e A

1 1 -1
/ [d@] ejgiAijE’jejﬂkAkﬂh

(PfA) e 2 AWM = \det A et A . (4.453)
This is exactly the same result we obtained for real Gaussian integral

— except that the determinant is now in the numerator rather than
denominator.

As an exercise, prove that

/ [d6] [d6"] &% A0 0m+m0r — (det A)e A (4.454)

Measure definitions

Sometimes the measure (4.449) is defined differently, e.g.

/[de] [de*]:/]_[dei]_[deg‘ =/d91...d9Nd9;...de;‘v.

This brings about an extra sign (—1)"*~V/2 in comparison with our
definition of the measure given by Eq. (4.449).

We agian stress that * denotes here invo-
lution and not complex conjugation.

Now, we make transition from discrete-index Grasmann variables
6; and 6; (= 6;) to two sets of continuous-index Grassmann variables
Yo(x)and gp(x) = zp;(x). We further introduce two Grassmann sources
no(x) and 7jg(x) and define the generating functional

Zln, 7l = N/Z)://@zﬁeifd4x[LO(‘”"Z)"’W“/_’"], (4.455)
where
Lo = Y(iyloy —myy, (4.456)

and

N 3
DYDY = lim (1‘[ [ [dvatdia)). (4.457)

i=1 a=0
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Let us now compute Z[7, 7] by using the same analysis as for discrete
Grassmann variables ¢; and 8;, i.e.

Z[n, 7] N / z)l/,z),peifd”‘xd“y[t/?(X)&(x—y)(iy”ﬁy -my(y)] + i [ dix(y+dn)

N / DYDY ot [ A xd*y(§(x)+7() AT (2,0)) A ) (Y () +AT (3,2)0(2))
w ot [ dixd*y[()A @ ynm)] (4.458)
Recalling that (id — m)Sr(x, y) = 6(x — y) we get (cf. Eq. (4.454))

Zn, 7] = N det(id — m) ¢7' [ 4 xdyn(Se oG (4.459)
S ———
Z[0,0]

To obtain a free particle Green function we should compute

0 9 Znml
91(x) on(y) Z[0,0]

9 9
91i(x) n(y)

n=17=0

(—i/d4X1d4X277(x1)SF(X1,X2)77(x2))
n=i=0
= 577?)6)% (—i/d4X1d4X2n(x2)SF(x2,X1)77(x1))

= —iSp(y,x) = iSp(x,y). (4.460)

n=n=0

Antisymmetry of Fermion Propagator

From definitions of time-ordered products:

T [wa(x)'pﬁ()’)] = 0(t, - ty)'pa(x)&ﬁ(y) - e(ty - tx)‘zﬁ(y)'//a(x) ’

T [Jp(0)a(x)] = 00ty = p(a(x) = (tx = ty e ()Pp(Y) -
This implies that
T [ya()p)] = -T [Fp0¥a()] , (4.461)

and hence for propagator we get that

{SF(x, M}Yap = —{SF(y, )} ga - (4.462)

4.15 Wick Theorem for Dirac Fermions

In order to formulate Wick’s theorem for Fermion fields we introduce
anticommuting sources 77 and 5 for ¥ and . These sources anticom-
mute among themselves as well as with ¢ and ¢ (so that 7y + Jn are
bosonic quantities that can enter in action). With the help of n and 7
we can write

In expressions 7(z)A Y(z,x) and
A7Y(y,2)1(z) the integration over z is
tacitly assumed.

Note that the sources are Grassmann
variables while ¢ and ¢ are operators
here.
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[7() (x), g (y)n(y)]
= ¢ () [P (), n()] + [AC)Y(x), ¥ ()] n(y)
= () {Y(x),n()} = &) {a(x),n(y)} ¥ (x)

=0 =0
+ 7)) {g (), g (M n(y) — {7, g} g (m(y). (4.463)
N————

=0

So, [7(x)y(x), ¢ (y)n(y)] = 71(x) {¢(x), ¥ ()} n(y). We now introduce the
source Lagrangian

Ls(x) = ()Y (x) + g(x)n(x). (4.464)

Note that [Lg(x), Ls(y)] is a c-number and hence it commutes with
Ls(z), indeed

[Ls(x), Ls(Y)]

(70O (x), G ()] + (7)Y (x), g (y)n(y)]
+ [ (x)n(x), 7y ()] + [¥(x)nx), ¥ (y)n(y)]
= =) {y(x), ¥ ()} 7(y) +7(x) {¥(x), ¥ ()} n(y)

———
=0

+ 1) {(x), g (0} 1) = () {&(x), ¥ (3)} (y)
————
=0

= c¢—number. (4.465)

Thus indeed [Ls(z), [Ls(x), Ls(¥)]] = 0.

To prove Wick’s theorem for fermion field we will follow the same
strategy we employed when dealing with scalar field. In particular, we
will show that

T [exp (z’ / d*x [ (x) + zﬁ(x)n(x)])]
=:exp (i / d*x [0w(x) + &(x)n(x)]) :

X exp (— / d*xd*y 7(x) (O T[y(x)i(y)]10) n(y))- (4.466)

Since [Ls(z), [Ls(x), Ls(y)]] = 0, we can use our strategy from Chap-
ter 4.6 and substitute instead of —J(x)¢(x) the source term 7(x)¥(x) +
J(x)n(x). By employing the Baker—Campbell-Hausdorff formula we
can write

T

exp (i / d*x [ (x) + tﬁ(x)n(x)])] = o dxLs)

xexp =3 [ sty B AW, FOMO) + 10O
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In the second step we split ¢ and ¥ to positive and negative frequency
parts and write

o BxLs) _ i [ d [0 ) + FO@n) + (4) = ()] (4.467)

With the help of the BCH formula eA*8+1[AB] = ¢ApB o oAB

eAeBe114B] we can rewrite (4.467) as

eifd“xls(x)
— eifd4x[77(x)w(’)(x) + PO (x)m ()]
X ei/d4x[77(x)z//(+)(x) + PO (x)m(x)]

x et [ dxd*y[aGw 00 + §OGmE), x =y and () = ] (4 468)

Plugging this results back we obtain

T[exp (i / d4x.£5(x))] =:exp (i / d4xL5(x)) ced, (4.469)

where
A= 5 [ sty {25700, £570)] - o0 - 30 L2500, L1}

Since the integrand is a c-number, it can be evaluated via its vacuum
expectation value, i.e.

O [ £9), £§0)| = 830 = y0) [ L), Ls(2)110)

= —(01 L5 (0) L () 10) = 6(x0 — y0) (O] Ls(x)Ls(y) 10)
+6(x0 — y0) (0] Ls(y)Ls(x) |0)
= —1-(0| Ls(y)Ls(x)|0) - 6(x0 - y0) (O] Ls(x)Ls(y) |0)

—_——
0(xo—yo) + 6(yo—x0)

+60(x0 = y0) (0] Ls(y)Ls(x) [0)
—6(yo — x0) (0] Ls(y)Ls(x) [0) = 6(x0 — yo) (0] Ls(x) Ls(y) 10)
—(OIT[Ls(x)Ls(»]]0) - (4.470)

Note that terms of the type (0| 7[¢(x)n(x)¥(y)n(y)]|10) = 0O, since ¥
contain only a' and b and there is no way how the product y¢ could
survive vacuum expectation value. So, the only surviving parts are

OIT[Ls(x)Ls(y)]10)

OI T (I ()a(y)w(y)]10)

+ (01 7[R (x)d (y)n(y)] 10)

= () O T[Ty (x)y (»)]10) 7(y)

+7(x) O T (g (NT0) n(y).  (4.471)
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By noting that T [y (x)¥s(y)| = —T [#5(y)¥a(x)] we have that
OIT[Ls(®)LsNTI0) = 7(x) O T[¢(x)d(»)]110) n(y)
+ () O Ty (e ()]10) n(x) . (4.472)
This consequently implies that

A= - / d*xd*y 7i(x) O T[y () ()]10) () - (4.473)

=iSF(x,y)

If we now take the vacuum expectation value of the Wick theorem
generating identity (4.466), we obtain

o|r

exp (i / d*x [0 (x) + w(x)n(x)])] 10)

= exp (— // d*xd*yii(x) (O T[y (x)d ()] |0) n(y)). (4.474)

This again allows to obtain relation between (0| T[yy ...y ... ] |0)
and two point Green functions (0| T[¢]|0). In particular, we see that
the n-point (free field) Green function must have equal number of ¢’s
and i’s, so that n must be even.

Working with the fermionic Wick’s theorem is analogous to the situa-
tion with scalar fields. Let us, for instance, twice variationally differen-
tiate the LHS of (4.474). This yields

5 5 o ]
—i i i [ d*z[7()(2)+(2)n(2)]
( ’6ﬁ(x>) (’6n(y>) I [t/ 17 1}10)

1,7=0

_ 6 ©O|T [_id—’(y)ei[d4z[17(z)¢(z)+¢(z)n(1)]] |0)

o7(x) 1,77=0
= (O T [(=ig(Y)(=igg(x))] 10y = = OI T [ (y)r(x)]10)
= (OIT [y (x)g(»]10) , (4.475)

When the same differentiation is performed on the RHS of (4.474) we
get

(_i J )(, J )e— [ d*z1d*z ) OIT ()0 2)]0(2)
oip(x)) \ on(y)
5 6

&77(x) on(y)

1,i7=0

[—/d4Z1d4zz 7(z1) {0 Ty (z1)¥(22)]10) U(Zz)]

% / d*2i(z) O T (1) B ()] 0)

= O[Ty () (y)]10) - (4.476)

Let us also notice that successive differentiation over the source fields
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on the LHS gives
n 5 n \
—i i [ d*zly+gm)
L ( s [ ( 6n(y,)) or| [0,
= OIT [¥(x1)... ¥ (x ) (y1) ... ¥ (ya)]10) . (4.477)

As an exercise, we now show that

(OIT [ (e ) (2)uf (x3) (x4)] 10)
= = {OIT [y (x1)y(x3)]10) €O T [ (x2)(x4)] 10)
+ (01T [¢ (1) (xa)]10) OI T [y (x2)r (x3)] [0) . (4:478)

To see this, we 4 times functionally differentiate the RHS of (4.474),
namely

(=)o (=i)d ][
07(x1) 677(x2) | | 6m(x3) 577(x4)

] — [ dhxdty A0 T T F)0)7()
17,7=0

d*x77(x) (01 T [y (x) (x4)] 0)

5TI(X1) 57]()62) 577()63) /

x &= Aty A OO0
1,i7=0

_ 6 6 N [ s 7
= 5,7()@[ / d4x7(x) O T [ (x)F (x2)] 0)

x / d*x77(x) O T [¥ (x5 (x3)] [0)

% e/ d4xd4y17(X)<0|T[w(X)l/7(y)]\0>77(y)]

n,/7=0

_L [— O T [¢(x2)eh (x4)] |0>/d4xﬁ(x) O T [y (x)(x3)]10)
017(x1)

w ¢~ ] d*xd*y() OIT [0 R()
+ / d*x77(x) 01 T [ (x) (x4)]10) 01 T [y (x2) (x3)] 10)

s o= [ dxdyT OTWEONII) | . ”
1,177=0

= OIT [¢ (x1)d(x3)] 10) €O T [ (o2 (x4)] [0)
+ (01T [¢ (x1)d (xa)]10) (O T [ (x2) (x3)] [0) - (4.479)

This coincides with the assertion (4.478). The minus sign is clearly
associated with the odd permutation 1234 — 1324 while the plus sign
with the even permutation 1234 — 1423. Analogous statement holds
also for higher-order Green functions.
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More generally, one can write

OIT[[Fly, ¥110)

= |l O] Sty omuerolone|  (4.480)
677 577 n,7=0

where F is a function (or functional) of Dirac field operators.

In order to compute the vacuum expectation value of the time ordered
product of Dirac fields in Heisenberg picture, we can follow the same
strategy as for scalar fields. It is not difficult to see we obtain

QITlYu(x1) . a1 - ()] Q)

_ O ) Y)F ) . G m)e' S T 41110)
(O 7[e/ 417 o)

(4.481)

This is the Gell-Mann—Low formula for Dirac fields. The actual reason
why the aforestated form emulates the form (4.240) for scalar fields is
because the basic logical steps that went into the derivation of (4.240)
are not dependent on spin.

Now, we note that for free fields we can write
OIT[W(x1) . .. 5 (ym)e' [ S5 417|0)

e I )
o\ omCx) ) S\ en(yy)

L

x e i [ d*xd*yi(x)SF (xy)n(y)

(4.482)

1,7=0

This can be equivalently rewritten as

OIT[Y(x1) ... F(y)e [ 45 Li]10)

(.6 (. 6 _ ifd‘*xzz(—i—f i)
—i l Z710,0]e ()" o0y ;)
n( 5’7(3@')) n( 5n(yj)) [0,0]

i=1 j=1

% /Dw@tpeiso[¢rlﬁ]+/ﬁ¢+/lﬁil

1,i7=0

z7'(0,0] / DYDIY(x1) ... F(yn)e WS

2710,0] [ DUDIu(x).... 6. (4.483)
Here S|y, ] is a full action. With this we can write

QITWr(x1) ...y (yn)] 1)

[ DYDY(x). . G (ya)e S
B Z[0,0]10|T [eiSl [W] |0)

(4.484)
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In particular, for n = 0 we get

f DL&D(/?e"S[“’"&]

L= Q) = o AT

(4.485)

With this we finally arrive at functional-integral representation of the
2n-point Green function for Dirac fields

QITlYr(x) . ()] Q)

[ DYD(x). . Gly) e SV
) [ DyDgeisvil :

(4.486)

Yukawa Interaction

In cases when only scalars and spin-1/2 fermions are present in the
theory, or when we are interested only in scalar-fermion sector of a
theory (e.g., when describing pion-nucleon scattering) the Lagrangian
has the generic form

L = -EO + Lint
_ _ 1 1 _
= UV O + My + 50" 40, ~ §m2¢2 + Line(, 0, ¢). (4.487)

Here both ¢ and ¢ might be generally field multiplets. A particular
form of L;;; is the so-called Yukawa interaction, which appears in two
versions:

a) when ¢ is a parity even scalar then

LY,int = _gl/;¢wr (4488)

b) when ¢ is a parity odd scalar (i.e., pseudoscalar) then
Ly,im = —ighy ¢y (4.489)

(Here i ensures that Ly ;,; is Hermitian).

Note

For real pion-nucleon interaction the Yukawa interaction term is a
bit more complicated, because both nucleons and pions are field

multiplets:
+

n
w=(wp), and ¢ > ¢ =|n"
Yn 7T0

Besides, Higgs scalar field (in Standar Model of particle physics it
is a complex scalar doublet) is also coupled to quarks and leptons via
Yukawa interaction.

In order to quantize such systems via functional integrals, we first
write generating functional (we consider for simplicity only one, parity
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even scalar field and one Dirac fermion)

Z[n,1q,J]
. .0 .0 )
P (l /]R Lin [” o0 () 6J(x)])

x O|T [ei/]M d‘*x[J(X)n(X)+ﬁ(x)w(X)+¢(x)J(X)J] 10)

. .0 .0 )
P (l /]R Lin [” O 6J<x)])

% N / DlﬁDlZl eng[l,lr,Jf] + ifd4x17w + ifd4x¢777

% /D¢ei50[¢]+ifd4x1¢

N/D{ﬁ@lﬁf)d)eisw"p"’” +ifd*xqy +if d*xgn +if d*xJ¢ . (4.490)
Here

- - 1 1 -
St ¥, 4] = / dx | g (id = M) g+ 50,994 ¢ — Sm* ¢ — gddup |

Here M and m are masses of fermion and scalar particle, respectively.
We can get rid of the factor N by working directly with the generating
functional for Green functions

Z[n,7q,J]

210,001 (4.491)

Zn, i, J] =
For this we get

5 . / Z)wz)lpz)gbeiS[«//,«Z,q)]H/ d4x77¢+i/ d4xzﬁn+i/ d*xJ ¢
[T]/U/ ]_ fDlﬂDlﬁDqﬁelS[w"ﬁ'(p]

(4.492)

By having Z[n, 7, J], we can generate the mixed full Green function in
a standard way, for instance

QIT [ (x1) - .. ¢ ()Wu(1) - . ¥ (@m)] Q)

ST Y o (R Y & R
=11 (" 6J<xl->) L] (" 6ﬁ(yl>) L (l 6n(zj>) 200N

=1 J=1
[ DUDIDG(x1) . (1) - () €S (4.493)
= / Z)wz)lpz)qjeié’[l&,lzfﬂﬁ] ‘ .

Feynman Rules for Yukawa Interaction

In the position space we can formulate Feynman rules as we did for
scalar fields. Lines (i.e. propagators) are deduced from quadratic parts
of the action (propagators correspond to the inverse of the integral ker-
nel), while the vertices are implied by the interaction term. So, Feynman
rules read:
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» Draw all topologically distinct diagrams for given n-point Green
function with n external legs for order g use m vertices.
» A line between points x and y can be either bosonic
d* je~iP(x=Y)
o _ p_te _, (4.494)
X y 2nr)t p2—m? +ie

or fermionic

4, jomip(x-y)
— o _ dp ie T (4.495)

X y Qr)ytp-m+ic’

Arrow Orientation

The orientation of the arrow is just a convention. Since

_ —ipx T ipx
U o= Z [ap,,luplﬂe P +bp’lvp,,1ep ] ,
p.A
T = —ipx To= ipx
U = Z [bp,,lvp,le +a, jiip, e ] .

pA

For xg > yp we have that

OITTwF0Y = D (0l apa a,, [0y,
pA T — —
Nx Ny

which describes a particle created at y and annihilated at x and
particle, hence charge of a particle flows from x to y.

For xp < yp we have

OITwFWN0Y = D (0] bpa B, [0y,
pA S~ ——
Ny ~x

terms which describe antiparticle created at x and annihilated at y,
hence charge of an antiparticle flows from y to x, which is equivalent
to saying that charge of a particle flows from x to y.

» A vertex with 3 lines is represented by

= —ig / d*x- -, (4.496)

or

= +gy° / d*x--- . (4.497)
X

» Introduce symmetry factors where necessary.
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Show explicitly that the rule for pseudoscalar

= +gy° / d*x---, (4.498)

is correct correctly (factor i absent and the overall sign is +).

This can be directly seen from the fact that in the functional integral we
have the action multiplied by i and the interaction term in the action
comes with the factor —ig , so the overall factor in the vertex in Feyn-
man diagram should be i X (—i)g = +g. This can also be independently
checked by computing an appropriate 3-point Green function in a tree
approximation. In particular, let us consider the generating functional

o, i s & s
Zing, 1) = &Sl me i swl g mzo. 499)

The connected 3-point function at tree level is given by the term

i(_ig)/ &' (i 5;,(2;6)) v (‘i 5,7(zx)) (—i %(x)) Zoln, M Zo[J].  (4.500)
Given that
ZolJ] = e i/dmdniGonrm-x)It)
Zoln, 7l = el [ d*x1d*xom7(x1)S F (x1-x2)17(x2) ) (4.501)

we find from Eq. (4.499) that

L 4 (. O 5. 0O N
e [ <l ) (s i 15

= {relevant part only, i.e., we want to end up with connected diagram

with two Grassmann sources and one J source }

g x (i d 5 0 / 4 4. =a :cab b
=2/ —i——| [ d*xid _
2 / g (l 6na(x)) Yap ( lgﬁﬁ(x)) x1d” xo 75, iSE” (x1 = x2)n,,

x / dtydtys 76,1859 (1 - yond, / 2 [ Ap(z - 0N ()

- / dxd d vad 2 TS (61— 275 Se (x = x2)(x2)
X Ap(z—x)J(2). (4.502)

The corresponding 3-point Green function is obtained by taking 3
functional derivatives of Z[,1, J] (which on the tree level is the same
as Z[n, 1, J]), in particular
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(O [y (x1) (x2)p(x3)] 10)

. 0 . 0 . 6 I
(—l 577(X1)) (l 577()62)) (l (5J(x3)) Zln.m, J]|77,71,J

(ci)g / d*x (“1)Sk (1 — X)ySp(x = x)AR(x = x3) + O(g2)

(-i)g / A4S (x1 = 1)y Se (x = x2)Ar (x - x3) + O(5?)

= /d4x [iSF(x1 = x)] 87 [iSF(x = x2)] [iAF (x = x3)] + O(g?) . (4.503)

This is precisely the result that we would have obtained should we
have used Feynman rules with the vertex prescription

~ gy’ / d*x- - . (4.504)

As an exercise, compare relative signs of loops in:

A) Yukawa theory with Ly i, = —gy¢

X1 o—@—oxz (X102 gy -

B) scalar theory with L, = —%¢3 theory
X1 '—Q—o X2 > <x1x2>¢3 .

To make this comparison, we can employ the generating functionals
Z[7,n,J] and Z[J] for respective Green functions. We should use only
that parts of Z[7, n, /] and Z[J] that contributes to the second order in
the coupling constant and use only as many external source terms J
that are relevant to the above Feynman diagrams. In particular, for the
diagram A) we can thus write
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6 SNl Lo SN[ .5\
(_’ 6J(x1>) (_’ 5J(xz)) 308 [ s ( 6n<x>) (_’ 577(X)) (_’ 6J(x>)

NN AT RYRE:
x( ’)g/d y(’én(y))( ’6ﬁ(y>)( laJ(y))

1 ’ ) =( ’ ’ 4
—E/d4x d*y' 7(x")Sp(x" =y n(y")

X

x / d*xd*y7j(x)Sr(x —y)n(y)]

x|~ / A dhy TR — )Y
X / d*xd*y J(x)A(x - y)J(y)]. (4.505)

Similar formula would hold for diagram B) but with only J sources
and different combinatorial factors.

Now, due to anticommuting property of Grassmann derivatives we ob-
tain from the functional differentiation of Grassmann sources overall
—1 sign. On the other hand, in the diagram B) the structure of compu-
tations would be analogous, but the commuting nature of functional
derivatives 2 brings an overall sign of +1.

Notes on Fermionic loops

i) Above result is quite generic. Fermionic loops appear with op-
posite sign than analogous bosonic loops. In fact, one should add
to Feynman rules for Yukawa theory that each Fermionic loop carries
extra —1 factor.

ii) In exactly supersymmetric theories bosonic loop diagrams are
cancelled by fermionic loop diagrams.

4.16 Feynman Rules in Momentum Space

It is often technically simpler and conceptually more convenient to
give Feynman rules in momentum space, i.e., to consider the Fourier
transform of 7(x1, ..., x,)

T(p1,...,pn) = /d4x1e_ip1"1~ .- / d*x, etiPnxn T(x1,..., %), (4.506)
where

T(x1,. ., x0) = (QIT [¢n(x1) ... du(xa)] [€2) . (4.507)
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"Sign convention"

The minus sign in the exponent in (4.506) is associated to incoming
particles (momenta flow to interaction zone) and the plus sign in the
exponent is associated to outgoing particles (momenta flow from
interaction zone). We will say more about this convention when
discussing LSZ formula.

Recall that in the position space we had following rules (e.g., for 1¢*
theory)

o = Ap(x-y) = d'p i e~ iPy)
x y Q2m)t p?2—m? +ie ’
:><: - i / dix--- | (4.508)

+ other diagrams

Clearly, in ¥ the momentum of every external line is affiliated to the
external momentum (appropriate argument of 7). This is due to the
fact that @*x; integration that is followed by d*p; integration. So, that

where p1,. .., p, appear as arguments of 7.

In order to better understand the situation let us discuss some exam-
ples.
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Example 1
— o - —
X1 X2 pP1 P2
— /d4x1d4xz e iP1x1 ei.nzszF(XZ —x1)
4 —7 —
= /d4x1d4xze_i”1xlei”2"2i d'p e XZ?
(2m)* p?2 —m? +ie
/ d4x1d4x e~ x1(p1+p) txz(pz+p)—
(2n)* p>—m?+ie
= 0o -p) 5—F5——- (4.509)
py—m* +ie
Example 2

Q.
X1 X X2

q
O,
P1 p2

/d4x1d4xz e7IP1I¥1 iP2%2 (_j 1) /d4x Ap(x1 — X)Ap(x — x)Ap(x — xp)

d4q1 je~ia1(x1—x)

—id d*xyd*xyd*x e P1¥1 o TP22
( )/ ! 2n)* q%—m2+is

d*q i
Qm)t g2 —m? +ie

drqy iemivtx)

@)t g3 —m? +ie

d* dq1 d*q d*q
) | d*xd*xod*x
’)/ R ot 2t 2n)

3
% e~ X¥1(P1+4q1) pix2(P2+q2) ,ix(q1-42) l_[ L
q2 —-m2 +ie

i

. 1
(—lﬂ)m / d*qrd*qd* @6(; + 1)5(p2 + @2)6(q1 — ¢)

x (27)!2
@) 1—1[q2—m2+18

d*q i

Q2m)t g2 -m? +ie

. 2
(—u)(zn>46<p1—pz>( — )
p;—m”+ie

. (4.510)
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Example 3
X2 X3 p2 pP3
—
X
X1 X. P1 P4

4
= (-id) /d4x1e_i”1x1 /d4xze_i”2x2 /d4x/d4x3eip3x3 /d4x4eip4x4

X Ap(x1 = x)Ap(x2 = X)Ap(x = x4)Ap(x — x3)

= (-id) /d4x1d4x2d4x3d4x4d4xe_ipme_ip2x2eip3x3eip4x4

d4q1 i e—iq1 (x1—x) d4 P i e—iqz(X2 -X)
2n)* q% -m? +ie (2n)4 t]% -m? +ig

d4‘]3 i e—iq3(x—x+3) d46]4 I e—i¢14(X—X4)
@n)* g% —m? +is Q@n)* g —m? +is

d*qrd*qpd*gzd*
= (=id) / d*xd nd xad dt I BEDBED
(27)16

x e 1P1+q1) ,=ix2(P2+q2) ,ixa(P3+43) Hixa(Patqs) Hix(q1+92-q3—qa)

4 .
l
X !:1[ q? —-m? +ie
= (—i/l)/d4611d46]2d4CI3d4Q4 Qr)*5(p1 + q1)8(p2 + q2)8(p3 + g3) (4.511)
= i
X 0(p4 +qa)0(q1 + g2 — q3 — q4) !:1] P S
4 l
= (D@D P +p=ps=pa) [ | (4512)

i=1 Vi —

What we have learned from the foregoing 3 examples:

» Momentum of every external line is affiliated with the exter-
nal momentum (the argument of 7). This is because each d*x;
integration is followed by d*p; integration.

» Each d*x integration of a vertex enforces momentum conserva-
tion at that vertex. For instance, for 1¢* theory we have

P2 p3
>< o (_M)/d4xeix(P4+P3—P1—Pz)
b1 D4

= (=id)2n)*5(p1+ p2 = p3 — pa).

» Since each propagator has argument either at a vertex or on
external point, all e*'P~ factors of propagators Ar’s are used up.
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we integrate over xy and ¥ we integrate over y» and xa

Ap(zy — 1) Ap(ys — x9)

®
2 @

it U1 Y2

NS
N Ap(

we integrate over y; and y

2

Y1 — Y2)

In particular, all e*'P* disappear and are turned into §-functions.

» Momentum conservation at all vertices is enforced via §-function
and “kills” many of the d*p integrations.

» All those propagator moments that are not fixed by the §-functions
(originating from integrating d*x over external or vertex points)
are still integrated over with f éjr” 7. These are the so-called “loop

momentum” integrals. In fact, the following statement holds:

Note

There are as many remaining momentum integrations (in a given
Feynman diagram) as there are loops.

Proof: External lines do not have any integration (as we said, d*x;
and d*p; integration follow each other and ¢*7* in the propagator
produces é-functions that cancel integration and set the momenta in
propagator to corresponding external momenta.

» What remains are integrations for each internal propagatot/line
(=1).

» Each vertex produces one §-function representing momentum
conservation. Hence the number of §-functions is equal to the
number of vertices (= V).

» All ¢-functions are not independent, they provide overal mo-
mentum conservation §-function.

» Hence we end-up with V — 1 independent 6-functions.

Total number of integrations is then / — (V —1) =1 -V +1 = L by Euler
formula.

Note

The fact that the 6-function corresponding to total momentum con-
servation must always be factored out from 7 is a consequence of
translational invariance of .
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Indeed, we first note that

QIT [¢n(x1) ... pr(xn)] Q)
— <Q| eiP"avT [efiP"av(ﬁH(xl +a)eiP"aV o
cox e L (x +a)eipv""] e P10y . (4.513)

By employing assumption of the translational invariance of the vac-
uum state [Q) (i.e. 7% |Q) = |Q)) we get

T(x1,...,%) = T(x1+a,..., x5 +a). (4.514)
Now,
F(p1,...,pn) = /d4x1 .dx, e‘iprfxiT(xl, .., Xp).  (4515)
Here p;’s appear with appropriate signs. Then

f([)lz o /pn)

/d4(x1 +a)...d*(p+a)e P EiPiitA (e 4 q L x, +a)

e_iZipf“/d4x1 codrxp e TEIPiT(xy L xp)

e TZiPIAE (1 D). (4.516)
This gives an equation
(e—iZin“ - 1) #p1,...,pn) = 0. (4.517)

That must be satisfied for all a. Particularly for small a we have up to
the first order in a that

(Zpi) (p1,---,pn) = 0. (4.518)

This has a general solution

#p1,-- - pn) = 5(2 Pi) @ *t(pr, - pn), (4.519)

where the residual Green function 7(py, . . ., pn) is (for simplicity) de-
notes with the same symbol “7” as the position-space Green function.
Factor (27)* is mere convention.

Consequently, the total momentum conservation is always factorized
out from momentum-space Green functions. Since this is true for any
full Green’s function, it must be true also order by order and diagram
by diagram.
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Summary of Feynman rules for momentum-space
Green functions 7(p1,...,pn)

1. Draw all topologically distinct diagrams with n external lines
with ensuing momenta py, . . ., pn. Incoming momenta are consid-
ered to be positive, while outgoing momenta are negative. For each
diagram denote by ¢, . . ., g1 the momenta of internal lines. (In
scalar theory without derivative coupling the choice of an orien-
tation of internal lines is irrelevant.)

2. To the j-th external line assign the factor

i

p?—m2+i8
veant. o 2y e
- R 2 e L EQTR X
= 6B

AN GV A

3. To the i-th internal line assign the factor

: N
. et e ey
g —m?+is =

I

N W OTNCTY

4. To each vertex assign vertex factor, i.e. (-id) for A¢t /4! theory
and (~ig) for g¢*/3! theory, i.e.

>< ~ —id, ~ —ig.

5. Additionally the following rules apply:

» Assign momenta at each vertex so that the momentum
conservation is e4nsured.

» Multiply by [ (‘21”‘)’4 for each closed loop, here ¢ is the free
(unconstrained by momentum conservation) momenta prop-
agation along the loop.

» Factor out total factor (2ﬂ)46(pf — pi) representing total mo-

mentum conservation.

6. Divide by the symmetry factor.
7. Sum the contributions of all topologically distinct diagrams to a
given order in A or g, etc.



Example 4
q
P1 P3
P2 4
q—pP1—P2
= (i1 i i i i

p%—m2+iap§—m2+isp§—m2+ispﬁ—m2+i8
d*q i i

@r)t = +ie (q-p1—p? —m? +is’

This is a second order contribution to the 4-point Green’s function
T(p1/p2/p3/p4)'

4,17 LSZ Formalism

Particle physicists and phenomenologists are mostly interested in S-
matrix elements

out \P1r -, PulP1s e D)y

that are directly relevant, e.g., for cross-section computations. On the
other hand, quantum field theorists are mostly interested in Green
functions

QT [¢r(x1) ... dHXnem)] 1) = T(X1, ..., Xptm)

because they are easily calculable in perturbation theory and they also
provide basic building blocks in applications that go beyond simple
scattering theory.

We will now demonstrate that it is possible to compute the S-matrix el-
ements (i.e., scattering amplitudes) directly in terms of 7(x1, ..., Xptm),
so that all our labor with a perturbation computations of 7(xy,...) can
be employed, e.g., in cross-section computations. Let us, however, first
start with two important concepts.

Spectral density and Z-factors

For simplicity’s sake we will carry out our following argumentation in
terms of scalar fields, even though the results obtained will be more
general and with small modifications valid also for Dirac fermions and
gauge fields.

In the following, we will use the Heisenberg picture (hats over opera-
tors are omitted)

ou(x) = eflps(x)e™™', H = Hy + Hy,

) = lyu) = st =0)) . (4.520)
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By convention momenta entering ver-
tex have positive sign and outgoing mo-
menta have negative sign. So, the mo-
mentum z propagating on the lower half
of the loop satisfies p1 + pp —g +z =0or
equivalently z = g — p1 — p>.
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Here H is the full Hamiltonian in Schrodinger picture.

Consider now the correlation function
iA(x—y) = (QIPu(X)Pu(y) Q) . (4.521)
For a free field (let us denote it here as ¢() with mass my we have

(0] go(x)po(y) |0) Z Z (0] a(p)a’ (q) |0) e~iPx+iay
P q

3> (0l La(p), a'(g)]0) e~P+ia>
P 4q

/ d?’—pe*ip(xfy)
R3 (27)32w),

P iy 22
= W@e o(p” — my)6(po)

iDi(x -y, mg). (4.522)

Let us now turn to the general case (i.e., situation when interaction is
included). Then we can write

Qlu(x)pn(y) Q) = Z Q| pu(x) |) (] ¢ () 1€) , (4.523)

where the sum runs over some complete set of states in the Heisenberg
picture. We chose these base states to be eigenstates of the full Hamil-
tonian (Hy = H). Since the momentum P operator commutes with H,
we can chose |agp) to be eigenstates of H with momentum zero (i.e.,
P|ap) = 0), then all the boosts of |a) are also eigenstates of H. The
eigenvalues of the 4-momentum operator p* = (H, p) are organized in
sets of hyperboloids.

Figure 4.14: Schematic picture of the en-
ergy spectrum for scalar field theory.

Multiparticle continuum is bounded by a hyperboloid with H =
V(2m)? + (p)?. Consider two-particle state with

H= m+p? + \Jm2+p?. (4.524)

Taking into account that vm? + p? is a convex function in p, one can



then use the Jensen inequality

\/mz+(spl+(1—s)p2)2 < syym?+p3+(1-s)ym?>+p3, (4525

which is valid for any s € [0,1]. For s = 1/2 we get

1 1 1
2 2
E\/(Zm)z + (pl +p2)2 < E\/m2 + pl + E\/mz + pZ , (4526)

which implies that (we set the total 3-momenta P = p; + p,)

V@2 + P < \fm2+ 2+ \m? + p3. (4.527)

Thus, the lower bound for two-particle state is hyperboloid H =
V(2m)2 + P%. For more than two particle states the Jensen inequality

implies
N
\/(Nm)2+ (zﬁvpi)z < N \m2+p?, (4.528)
i-1

which is still bounded from below by the hyperboloid H = v/(2m)? + P2.

Bound states have lower energy than is a sum of free particles (due to

negative binding energy). So, for instance, energy for bound state of

two particles must appear in the graph H vs. P below the hyperboloid
(2m)? + P?, see, Fig. 4.14.

Let |a;) be the boost of |ag) with momentum p. The resolution of unity
can be formally written as

1= Yol = @@+ 3 [ s law) el
- &p
= Q) Qf + 20 20 | ) (pl
+ - multiparticle contributions. (4.529)

Here wp(a) = Vm2 + P?, m, is the mass of the state |ap), i.e. the energy
of the state |ag). Y, in the first sum in a is meant both over discrete
and continuous indices and in the second sum we sum over all zero-
momentum states |ayp).

Let us now use two already known relations, namely
d(x+a) = v p(x)e Py = g(x) = P P(0)e P, (4.530)

and .
g—iP"xV |Q'P> — e—iPXxV |CYP> , (4531)

4.17 LSZ Formalism
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(in short 77" |a) = ¢ Pa™ |a)). With these we get

Qpu(x)pu(y)1Q) = Ze‘i’g‘v’("‘””HQIaﬁH(O)la) ?

a

[ a3 e 1@ on @ lod o -0

d*q _.

— LT p(g). 4.532
/ S 1 0(g) (4.532)
Here we have used the fact that e=i7"* |Q) = |Q) and defined

p(g) = @1 Y 6(pa — q) QI (0) ) . (4.533)

Note that p(g) is obviously positive and vanishes for ¢° < 0 (due to
positivity of the energy of physical states |«)). Furthermore, it is invari-
ant under a Lorentz transformation as required by the corresponding
property of the field ¢n. To see this we use the fact that under the
Lorentz transformation

UN$u(x)U (A) = ¢(Ax). (4.534)

and U(A) |Q) = |Q). With this we see that the LHS of (4.532) equals
to

(Ql ¢ (x)pn(y) 1)
QLU MU (U (AUN (U (AU(A) Q)

(Q pu(AX)¢r(AY) Q) . (4.535)

This implies that the LHS of (4.532) is a Lorentz scalar and hence also
p is a Lorentz scalar.

At this point we can then introduce the spectral density o(q?)

p(q) = 0(q0)o(q?). (4.536)

o thus quantifies the contribution of the intermediate states |a) with

Pa = 4>

Further rewriting yields
(Ql¢n(x)pn(y)1€2)

a d4q —iq(x—

- /O (M) / G 1 = M ()

= / wd(Mz)iDJr(x— y, M®)o(M?). (4.537)
0

It can be easily seen that by choosing o(¢?) = 6(¢* — m) we obtain the
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result for free field. At this point we note that

plg) = 6(qo)r(¢?) = @2n) Z 8(pa = )1 (@ 1 (0) @) [?
= (21)°5(9)] (@l 61 (0)1Q) [

d3
+(2x) / ma(p—q)&qo—wp)uammm ) P

3
w00 3, [ a0~ D900 @] @ 4Ol -
(4.538)

The vacuum term (Q| ¢(0) |Q) is typically zero by symmetry (cf. 1¢*
theory, but not g¢°) and for higher-spin fields, it is zero by Lorentz in-
variance. If the vacuum term is non-zero, we can appropriately shift the
field ¢y — ¢ + const. So, in the following we neglect (Q| ¢ (0) |2).
We can further manipulate matrix elements (Q| ¢(0) |ep) as follows

(Ql 61 (0) lap) = (Ql pu (U, Up lap) = (Q ¢ (0) |ag) . (4.539)

Here we used that U, ¢ (0)U," = ¢17(0) which implies that ¢ (0)U, ! =
U, ¢ (0) and |Q) U, = Q) s0, (Q| ¢ (0) |ap) is momentum indepen-
dent due to Lorentz invariance. For fermions it is more difficult to
show, but it works as well. Consequently we can write

8(qo — Vm? + ¢?)

8(qo — \Jm3 + q%)

1(Q ¢1(0) [0) I

plg) = (1 61 (0) I1p=0) I*

Ao m3 + q2
= 5(q* )0z + 3 802 = 2" 2 ¢ (0) 110}
Ao

(4.540)
This means that

() = 8(g* —mP)z+ Y 8(q* = mD)I QI ¢u(0) |0y P (4.541)
Ao

Here z = | (Q| ¢ (0) [1p-0) |> and it is known as field-strength renor-
malization or wave-function renormalization. For free fields z = 1
(try to show).

The quantity m is the exact mass of a single particle - exact energy
eigenvalue at rest. m will in general differ from the value of mass
parameter that appears in the Lagrangian.
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224 4 Quantum Field Theory 2

Note on Mass

It is customary to refer to parameter in the Lagrangian as my and
call it bare mass. m is called the physical mass (or renormalized
mass).

Using all of that we can write
Qlou()eu( Q) = i/o d(M*)Dy(x — y, M*)or(M?)

=izD,(x —y,m?) +i / i d(M?)o(M*)D,(x — y, M?).
M

t

(4.542)

M? is known as multiparticle threshold and M? ~ 4m?.

From this we can get the full Pauli-Jordan function as

(1), 6510 =iz =y, +i [ d)r (MDA -y, M),

’ (4.543)
With iA(x — y, M?) = (0| [¢(x), #(¥)] |0). Here ¢(x) is a free field with
mass M.

To understand some further properties of z we apply Hiyo to the
X0=Y0
full Pauli-Jordan function. For scalar field we use the fact that ¢ = =

and obtain
[6(x°, x), 7(x%, y)] = i6®(x — y). (4.544)

Both for the interacting and free fields. Thus we get
i6¥(x —y) = z2i6®(x —y) +is®(x — y) / i d(M*)o(M?).  (4.545)
Mt

z — 1 accounts for the overlap of ¢(0) |Q) This implies that

with multiparticle states. 1=z+ / d( M2) o ( M2 ) (4.546)
h
which means that z < 1 (and particularly z = 1 for free theory).

Finally, in complete analogy, we can derive spectral expansion for

(QIT [$(x)p)] Q) = izAp(x -y, m*) +i /MZ d(M*)o(MP)AF(x -y, M?).
’ (4.547)

Spectral representations for (Q[ ¢(x)$(y) [€2),(Q [¢(x), $(y)] 1€2) and (Q| T [$(x)p(y)] [€2)
are known as Kéllen-Lehmann representations.

In momentum space we can thus write

1

_— 4.548
pr—-M?+ie ( )

7(p) = e

—— i / d(M?)o-(M?)
—-m-+1ie M?

The analytic structure of this function can be seen on Fig. ??
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The Killen-Lehmann dispersion relation has also representation in
terms of contour integral. For arbitrary analytic function f(p?) Cauchy’s
theorem states that

oy 1 f(s)
fp°) = 77 jédfs—pz' (4.549)
Provided that

» p? e C is inside the contour 7.
» Contour y does not cross any singularity.

Let us apply this to the z-point function 7(p) and use the knowledge
of the analytic structure. We choose the contour y as in Fig. ??.

fL_‘___ — L Pt
| I -~ At A

Wl

Consider first that f(p?) has only branch cut but no poles. We further
assume that f(p?) falls of rapidly enough so that the contribution from
the large radius circle can be neglected moreover the contribution "A"
from the figure be llow goes to zero as ¢ — 0. Indeed
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2 M? + & + ge'¥
/ ds& = lim is/ dy f(z d - ) (4.550)
ya S$72 20 Jo Mf—e+ege¥ -z
. . 2
Note that limg_,9|---| < limg_ sfo " dgo% = 0. Here |M,2 -

e+&¥ —z| = M? -7+ 0(s).

Thus after the double limit & — 0 and R — co we are left with y¢ and

YB-
f@) = lim e / T s L8 / i)
n—0 27 M2+in §—2Z M?-in §=2Z

=1imi,{/ dsM—/ dsM}.(4.551)
n—02mi | Jy2  s+in-—z M2 S—in-—z

Since z is not on the cut, we can neglect +in in the denominators and

write
/°° dsf(Hin)—f(sin)'

M? §—2I

f@) = =

4.552
2mi ( )

The numerator of the integrand is the discontinuity of f(z) across the
cut (denotes as disc f(s)). When f(z) is real on the real axis except for
a cut, then f*(z) = f(z*) for z € R\ branch cut. This relation is known
as the Schwartz reflection principle.

f(z) = % / " g5 ISS), (4.553)

Mtz S—Z

If f(z) has simple poles zx, k = 1, ... (for us are relevant poles zx € R*)
then f(z) is analytic inside of the curve.

1 ° Imfi(s) 1 ds
;/M;"S_s-z *z_mzk]Resf(Z")Lk (s=2)s =)

1 /oo LA 3 Res f(zx) (4.554)

T Mrz S—2 2 Ik — 2




Now by setting z = p? + in (n — 0) we get

f+(P2) — %/00 ds Imf+(s) +Z ReSf(Zk) (4555)
"

s—p*—in A u-pr-in

Comparing this with formula

iz . 2 2 1
_ dm M)——— 4.556
pz—m2+is+l‘/Mtz (M)r( )pz—M2+i8 ( )

™(p) =
we see that it(p) = f.(p?), s = M? and zx = my, where my, is a mass of
single particle state and bound states.
Thus we arrive at the following relations

Im(it(p? = M?))
]T 7

o(M?) = (4.557)

Z = Res(it(p* = m?)). (4.558)

LSZ Reduction Formulas

Now we will relate time ordered correlation functions (x; ...x,) =
QIT [er(x1) ... 0H(x,)] |Q) to scattering amplitudes.

Let us denote @ = {py, . .., pn} to be set of initial state momenta and g =
{q1,--.,qm} to be set of momenta of outgoing particles. In scattering
processes we are interested in scattering amplitudes

(B,in|S|a, in) = (B, out|e, in) . (4.559)

This can be rewritten as

(b, outlal,(py)la’,in) = (b outla],(p1)la’,in)

(b,outla; ,,(p1)le’, in)

+

(b,out|a ,(p1)|a’,in) .  (4.560)
Here o’ = {py, ..., pn} denotes set of momenta. But

aout(pl) |ﬁr out) = aout(pl) |611, <o s qmy out)

Gour (P (1) - - - @5 0y (@m) 10) s

|0ttt (p1), @l (@) - @G| 10V

3

= (27T)32ij 6(qj - pj) |lel Out> ’ (4561)
J

1l
—_

where B = {q1,92,...,9-1,9j+1, - - - , gm }- From the mode expansion
' j j P

4.17 LSZ Formalism
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for free scalar field, i.e.

o(x,t) (271T)3 / d’p [a(p)e—tpx +a (p)elpx]
= Z [a ePX 4 g e’”]
= Z [ape_i‘“f’t + aipeiwpt] e'Px. (4.562)
p
n(x,t) = do(x, 1) = Z [—iwpape_i”x + iwpa;ei”x]

Z[ iwpaye " r! +lu)pa elert ] e"B.563)

p

This might be inverted in favour of a, and a;,. In fact, the inverse
Fourier transform directly gives

a(p) = / dxe’P* [wpd(x, 1) +in(x,1)]
+i / d3xeipx8Ho¢(x,t). (4.564)
Here ugv = u(0v) — (Ou)v. By Hermitan conjugation we also get

a'(p)=—i / Pre P ad(x,1). (4.565)

With this, we can write
<ﬂ/ Ouﬂa’/ 1n> - <ﬂ/ Outla(‘)ut(plﬂall 1n>
= (B, outla],(p1)la’,in) — (B, outla},,(py)le’, in)

=—i lim [ d®x1e7 P18y (B, out|gin(x,1)|a’,in)

t——00

+ilim | dPx1e P (B, out|din(x, la’,in).  (4.566)

t—o0

Now we use the identity

(tim - tim ) [ dxfometn = [ dxaniromet = [ dx(rode - sdg ).
(4.567)



4.17 LSZ Formalism

By setting f(x) = ¢”"P* we have
[ dxtroBe 53 = (31 = -13f = (-p* = w)f = (V2 =)}
= /d4x(f(9§g - szf + gmzf) = /d4xf(8§ -V%+ mz)g

= / d*x (O +m?)g. (4.568)

So, this allows us to write
(B, outl|e, in) - (B, out|a/,, (p1)le’,in)

= lim L/d3x1e_i"1)‘160 (B, out|py(x,t)|a’,in)

t—o00 \/z

— lim L‘/d3xle_i”1x160 (B, out|py(x,t)|a’,in)
Vz

t——00

= L / d4x18_i171x1 (|:| + m2) <B/ 0ut|¢H(x, t)|(Y/, 1n> ) (4569)
Vz

Mass m is on-shell asymptotic (measured - hence physical) mass. It en-
ters through in/out-states in S-matrix. Originally we have introduced
the limits

Gin(X) =150 PH(X) S1500 Pour(X). (4.570)

However, this naive assumption is actually incorrect. If we take this
"strong" operatorial assumption, then it can be shown that the S-matrix
becomes trivial and no scattering takes place. For this reason, Lehmann-
Symanzik-Zimmerman (LSZ) proposed as the form the asymptotic
condition

}I_)H; <'J/1|¢H(x)|w2> =in <w1|¢0ut(x/ oo)|¢’2>out
Bm nln(lz)  =in Waldin(x, —oo)lUa)y,  (4571)

for all states ¢ and y».

Convergence Issues

Convergence only in this weak operatorial sense is not strong
enough to ensure that the limit of a product is the product of the
limits consequentially. It is generally not true that the limit of a
commutator of the commutator of the limits, i.e.

}Ln; (l/’l | [¢H(x)r ¢H(y)] |§02> Fout (lﬁl |[¢out(x1 00)/ ¢0ut(yr °°)|l/’2>out .
(4.572)

On the other hand we know that the Heisenberg field ¢ (x) that we
used in deriving Lehman-Kélen representation and ¢;,,/0. fields obey
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canonical commutation relations. At the same time

Q@leulp) = e P (Qlou(0)lp)
> (Olalg)e™@ + a' (q)e'™)a’ (p)|0)
q

=" e (0la(g)a’ (p)I0)

q

= > e (0l[alg), a' (p)]|0)
q
— eiqx. (4573)

So, Lehmann-Kallen representation implies that
Um (QIen()lp)  =in (Oldou (x,20)P)our '
Bm (QIgn@p)  =in Olgin(x,—e0p)iy 22 (4574)

By denoting the interpolation Heisenberg field as ¢y and the Lehman-
Kallen Heisenberg field as ¢ (x), we see that the weak relation must
hold

¢H(x) = \/E(ZSH(X) o+ \/z(l’out(x/ Oo)
—to—c0 \/z¢in(x/ _00)' (4575)
So, we might write that

(B, out|a,in) = % / d*x1e7 P (O +m?) (B, out| ¢y (x1,11)|e, in) + disconnected term.
Z

(4.576)
We have neglected the term (8, out|a, ,,(p1)la’,in). In fact, this term
can be written as

(q1,...,qn,0utlal  (p)|p1, . .., pm,in)
= {0ldour(q1) - - - Qour(gn)a, (POIPL, - - -, P, D)

= (Ol[@our(q1) - - - dour(qn), @by (POPL, - - -, P, i0))
n

= Z 2wy, (277)36(q,- —p)q1, .-, Gi-1,qi+1 - - -, qn,0Ut|p2, ..., pm,in) .
i=1

(4.577)

This is disconnected term because one particular energy unaffected by
the scattering process. We have now completed the first step in the LSZ
program. We can now proceed further, by defining 8’ = {2, g2, . - ., gm}-



We get
<ﬂ/ OUtléH(xl)la"/ II'1> - <ﬂ// Out|¢H(xl)ain(ql)|a// 1n>
= <ﬁ,/ OUtlaout ¢H(X1)|O’/, 11'1) - <ﬁ// 0ut|¢H(x1)ain(q1)|a’, ln>

- / P y1 8y (B, 0utl bone (y1) b ()|, i)

=i / dyje'hy 10 (B, outlgn ()il in) (4.578)

Since the relation between a;y,/ou; and ¢;n /oy is true for any time argu-
ment, we can again rewrite the later identity as

i lim [ dBy,e' 1219y (B, out|pou (y1)dm(x1)la’, in)

ty—00

—i lim [ d®y,e 18y (B, out|pp(x1)¢in(y1)le’,in)

ty—>—

i . i g ’ I
= = lim [ &y, (8 outlgn ()on (el in)

i . i PN ’ ’ s
—— lim [ d®ye 118y (B, outlp (x1)pm(y1)la’,in) .

Z Yo——0o0

(4.579)

Clearly, some tricks is needed in order to rewrite the integral as the
four-dimensional integral. Time ordering is what does the job. Note,
that previous identity can be written as

i s i Py ’ ’ s
— Lim [ &’y "1 (B, out|T[$p (y1)pn (x1)]la’, in)

7 Yo—o0

i : i g ’ ’ s
—-— lim [ &’y (B, out|T[$r (y1)$n(x1)]la’, in)

Z yo——0o0

i) fon
= 52 [ e (O ) 8 ut Tl )l i)
(4.580)

So, once two particles have been reduced the element of the S-matrix
looks like

(B, out|a,in) = (B,in|§|a, in)

= Disconnected terms

+ (éf / d*xid*y et TP (Dyl + mz) (Dxl +m2)

x(B’, out|T[¢pp (y1)¢n (x1)]le’,in) . (4.581)

Disconnected part here involve one or two §® functionals. The same

4.17 LSZ Formalism
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reasoning can be now carried further until all incoming and outgoing
particles have been reduced

(B,out|e,in) = {(q1,...,gm,0utlp, ..., ps,in)

= Disconnected terms

+ (é)wm / d4y1 . d4ymd4x1 o d4xn exp (ikzil;qkyk —igpkxk)
X (Dyl + mz) (Dym +m2) (Dxl +m2) e (Dxn +m2)

X(QIT[pr (Y1) - - dr(xn)I€) - (4.582)

In the last line we passed from |0);, to [Q) by using the weak limit,
namely by denoting

W= out] T[¢u(y1) . . . ¢r(xn-1] (4.583)

we have

Hm (@16 (xn)l0)s, = _

lm Wlon(o)l®) = (4589
e Vz

Expression (4.582) provides the relation between the on-shell transition
amplitudes and the general Green functions. This relation is known
as LSZ Reduction Formula and it implies, in particular, that in the
momentum space the Green functions have poles in the variables p?
(p:i are conjugates to x;) so, up to a normalization constant the S-matrix
elements are nothing but the residue of the multi-pole structure of
full Green function. For general n + m scattering process we still use
the same n + m point full Green function. Green functions are more
elementary than scattering amplitudes.

LSZ for Dirac Spinors

For Dirac spinors one can derive LSZ Reduction Formula along the
same lines as for bosons. Due to extra indices and anticommutativ-
ity, the derivation is more involved.

4.18 Cross Section

Define

f(pl/ <o Pns—q1, - -y _Qm) = (l_[ / d4yi) (n / d4‘xj) eiZiPin—Ej quJT(xll s Xns Y1, -
i J

(4.585)



LSZ formula in the momentum space reads

Sri = {f}inSHi}, in) = ({f}, out/[{i},in)
1 (pz—mz) 1 (qf—m? ))
li
- () (1

X L, ..., P, =91, - —qm) + disconnected term.

@rIS(Siy Pi=Z @1 )T D1 P sim)

(4.586)

More explicitly by ({f}, out|{i}, in) we mean (g, . ..

(4.587)

Presence of the terms (pl2 - mlz,), ey (ql2 - mlz,) causes that the external

lines in the diagrams contribution to the 7 are amputated. We speak
about amputated Green function in the LSZ formula. So, for instance,

for a scattering of 2 particles to 2 particles

4
{q1,q2,0ut|p1, p2,in) = lim
(\/_)4 p q _)mp !_1[ ( i=1
(4.588)

For a general diagram with external legs, we define amputation in the
following way: start from the tip of each external leg, find the last point
at which the diagram can be cut by removing a single propagator, such
that this operation separates the leg from the rest of the diagram. Cut
there. Consequently we can graphically write that

(q1,--.,qm,outlpy, ..., py,in)
P1 q1

= (Vo)™ (4.589)
Pn dm

Here the circle AMP is the sum of amputated n + m-point diagrams

and z is the field strength renormalization factor. The fact that we
m+n

have factor (1/z)"*™ and not ( \f) (as one could expect) requires

some explanation. Before truncation the external propagator has the

structure:

,qm,out|py, ..., puyin)

4.18 Cross Section

2
) 1_[ (q;’z - m;z)) f(101/]72/ —q1, _CI2)~
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+oo+08+88+...+<

L0000, .

= @ + 1PI +--- (4.590)

Where 1PI stands for all 1-particle irreducible diagrams, i.e. diagrams
that cannot be split to two by removing/cutting one line. By denoting
the value of 1PI as —iZ(p?) (also known as 1PI self-energy), we see

that
(1P
= + 1PI +...
N
= b (PP g ...
p?P-mg+is  p*—mi+is p?—mg +is

i
pz—mé—Z(pz)+ie'

= Geometric Series = (4.591)

Here my is a mass parameter in Lagrangian, not a physical mass m,,. If
we now power expand the self-energy correction around p? = m?

b, We
get
() =X(m) + (PP -mT (m)) +  E(p) . (4.592)
~——
~O((p?-m%)?)
This implies

i i

p2-ms—3(p?) +ie  p*—m}—-X(ph)— (P2 -mPE/(m3) - L +is

i
P2 = [mE+ 2md)] - (p? - m2)T(m3) - £(p?) +ie
~ 1

(P2 —m3)(1 -2/ (m3)) - £(p?) + is

= m + regular terms. (4.593)
P

So by cutting external leg it will survive factor iz (from denomina-
tor of Green’s function). On the other hand, LSZ reduction formula
multiplies each external leg with the factor :/—% So, consequently

P q1

(@1, .-, qmoutlpy, ..., pp,iny = (¥2)"™" . (4.594)

Pn dm



In fact, all amputated Green functions should be only connected Green
functions, because in LSZ we discard disconnected scattering.

By knowing Feynman rules for Green functions, we can now directly
write Feynman rules (in momentum space) for the elements of the
S-matrix (g1, ..., qm,out|pi, ..., p,,in).

» Draw all topologically distinct connected diagrams with n + m
external lines with incoming momenta considered as positive
and outgoing momenta considered as negative.

» For internal propagator assign

l i
. e 4.595
kf -m? +ie ( )

» To each vertex assign vertex factor (i.e. (=id) for ¢* theory and
(—ig) for ¢° theory).
» To each external propagator

pi pi
o or ——o (4.596)
——— ————
outgoing incoming

affiliate the factor /z.
» Impose momenta conservation at each vertex.
. d*
Integrate over undetermined loop momenta | #
» Divide by the symmetry factors.

v

Fermionic propagators and LSZ formula

For Fermions the LSZ reduction formula prescribes that to each
external line we affiliate, for particles

p
——* ~ \zu(p) (4.597)
N —

incoming

p
S ~ Vzilp) (4.598)
N— ——

outgoing

and for antiparticles

)4
—— . _Zi(p) (4.599)
——

incoming

p
—— - —Vu(p) (4.600)
| —

outgoing

The factor z is irrelevant for calculations of the leading order of per-
turbation theory, but are important in the calculation of higher-order
corrections.

4.18 Cross Section
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4.19 Cross-Section - Practical Part

The S-matrix has generically the structure
S=1+iT. (4.601)

T here is the so called T-matrix and it contains the information on the
interaction

(fISIiy = 6pi +i (fIT]i) . (4.602)

Here 67; symbolically represents the particles not interacting at all and
(fIT|i) is represented by LSZ. Thus

iITEY =i (N2 D1 P =G s~ Gm)amp
= i(27T)4 (\/E)ner 9 (Z pPi — Z qi) T(pl/ <o Pms—q1, - - /_QH)amp
= i2m)*6(pi — qp)Ty:. (4.603)

In the following we will consider only f # i which implies that §¢; = 0.
Then the probability of making the transition i — f is

| (fITi) |* = ((27r)4 [6(pi — Pf)])2 |Tp: | (4.604)

What sense we should make of the square of a §-function? We can
proceed heuristically and use the fact that 6(x)f(x) = delta(x)f(0)
for any function f(x) and take 6%(x) = 6(0)(x). By using the Fourier
representation of 6-function we have

d4x ix-0 vT

4) — 5@, = ) = _
59(0) = 6¥(p = 0) = i =

(4.605)

Here V is the volume of the universe and T is the time of the universe
duration. Thus we can proceed as

(A1) P =V - T - 2n)* 69 (ps - p)lTig . (4.606)

This is nothing but Fermi’s "Golden

. . In other words, the transition rate i — f per unit volume is
Rule" known from quantum mechanics.

iy = 2n)* 69 (ps — po)lTip 2. (4.607)

If we restrict the rate of transition to some range of final states (i.e.
final momenta of particles are not sharp but belong to some allowed
range of values)

Ly = > @m)*6®(py - po)|Tis . (4.608)
f

Now the connection between I';s and scattering cross-sections can be
obtained in the following way.

There are many ways in which to define the cross section. The simplest
and most intuitive is to define it as the effective size of each particle in
the target.



4.19 Cross-Section - Practical Part

Consider a thin target with Ny particles in it. Each particle has the
effective area o (cross-section). As seen from an incoming beam, the
total amount of area taken by these particles is Nro. If we aim a beam
of particles at the target with area A.

Probability of hitting particle = %. (4.609)

Let the beam has Np particles. Number of events is

Nj x Probability of hitting = %. (4.610)

Thus
E
o= Numbero fEvents A (4.611)
NpNr

This can be rewritten in more expedient form. If beam is moving at

velocity v towards a stationary target. The number of particles is pgV.

If the beam is a pulse that is turned fro ¢ seconds V = v¢A and hence
Ng = ppvtA, which implies that

_ (Number of Events)/t
- (ppvtA)Nr [t

_ (Number of events)/t
- pBVPT VT

_ Transition Rate

(4.612)
pBVoTVr

If Np and Ny = 1, then transition rate /V7 is I';; = Probability transition
rate per unit volume. Thus

1 1

PBPTV PBPTV

o D @m)6(oy - polTis . (4.613)
f

If we consider a final state of n distinct spinless particels

P1 pP3

(4.614)
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Since (p1 + p2)? = (E1 + E2)* - (py +p2)*
and since we are in CM system, the sec-
ond term is zero.

The cross-section is given by

02—pn =

1 / dPps  Ppun
prTV A (277)320-)1)3 (2ﬂ)32wpn+2

(4.615)
Here A is restricted range of observed momenta. In case we will have
scattering of particle that are indistinguishable, we need to add 1/x!
factor before integral.

We now use the fact that the velocity of particle v = L%l and that with
our relativistic normalization for the plane-wave states |p) the number
of particles per unit volume (i.e. particle density in state with momenta
p) is 2E, = 2w,. Indeed, average number of particles in state |p) is

(PINIp) = ppV = (plp) = (Olapa}|0)

= (0l[ap, a}, 110y = (27)*2w,,5(0). (4.616)

Thus p), = 2w, = 2E,. If we take particle 1 to be at rest (target particle)

we have p1 = (E1,0), p2 = (Ez, pp), v =V2 = "g—z' hence
_ P> _
PTPBY = 4m1E2E—2 = 4mq|p,|. (4.617)
Now we can finally rewrite cross section as
1 1 d3p3 dspn+2 4
Oy sy = —————— — 2 6(4) + — —
221 = g | py| ! /A P20y, @nprm, L O P12 ps
(4.618)
Important is the situation with elastic scattering
P1 P3
@ (4.619)
p2 P4
In this context one introduces kinematic Lorentz invariant
s=(p1+p2)* = (p3+ps), (4.620)

which is nothing but the squared center-of-mass energy (i.e. s > 0).

Mandelstam Variables

s invariant is called Mandelstam variables. One introduces also
another two Mandelstam variables

t= (1~ pa) = (p2— pa)?, (4.621)

u=(p1—pa)* = (p2—p3) (4.622)

One can show that s2 + 12 + u? = m% + m% + m§ + mi.

Qr)* ™ (p1 +p2 —p3 =+ pus2) Tip 2.

< pas2) | Tip .



4.19 Cross-Section - Practical Part

Since o represents effective area of the scatterer, perpendicular to
incident beam, it remains invariant under a Lorentz transformation to
any other collinear frame (Lorentz contractions do not affect the size
of any area provided boosts are in directions perpendicular to that
area).

Cross section is not a true Lorentz invariant, since it transforms line
area under arbitraty Lorentz transformation. Common collinear frames
are the laboratory frame (one particle is in rest) and CM frame. Both
frames are used in ¢ analysis.

Let us now analyze the elastic scattering (m; + mp = m3 + my) p1 + p2 —
p3 + p4 in laboratory frame. In this case

pP1= (ELI Or OrpL)/ P2 = (m/ 0/ 0/ 0) (4623)
and then

s = (EL +m)? —pZL = E% +2mE; +m* —pZL =2m® +2mE; = 2m(m + EL).

(4.624)
And thus
s —2m?
E; = . (4.625)
2m
. . —2 2 2 2 ‘2_4 2<+4 4_4 4 .2_4, 2
Similarly p? = E? —m? = (—“ oI ) —m® = SRS = S

Vs(s—4m?

Sopr = ) and so s > 4m? for the process to occur. 4m? is the
threshold value of s. This gives us

1 1 dPps  dpy
V(s — 4m2) 2! Ja (2n)2wp, 27)32wp,

02—n =
(4.626)

We can evaluate the cross-section in any collinear frame. We now shift
to CM frame. The initial particles have 3-momenta p and —p and

energy ‘/7? and % Thus

S
P11 = (?/ 0/ 0117)/ P2 = (%/ 0/ 0/ _[7) (4627)

p%:m2:> i—p2:m2:}p:"i—m2. (4628)

So we get that p; + p2 = (1/5,0,0,0).

Since

In computing o»_,» we need to evaluate

d3p3 d3p4 4
21)46 (Ep, + Ep. — \s) 6% (3 + po)|Tif .
/A(Zﬂ)32Ep3 (2n)32Ep4( 700 (Ep, + Epy = Vs) 07 (ps + )T
(4.629)

We now extend fA to f]R3. This provides the so-called total cross-section

@m)*6™ (p1 + p2 = p3 — pa) I Tif I*.
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Otot2—2. The integral then simplifies to

d3p3 4 d3p3
——————— (27)" 6 (Ep, + Ep, — = — % s5(E, +E, — ]
/JR3 (27T)64Ep3Ep4( w70 (Bt Epy = V5) /JR3 QrP4Ey, (Ep, + Ep, = V)
(4.630)

At this stage we use that p, = —p3, which means that E,, = \/m2 +|p5)?

and Ep, = \/m? + |p3|?>. Next, we denote W = Ep, + E,, = 24/m? + |p5/|2.

Then
_dps _ sl B ﬁ}
Jo iz W= = [ aotospsl 2w - - (.= B =
dQ(ps) |ps/? _Jdaw _ 2lpsl  _ 2psl
(2n)2s %| dipsl  \Jm2+|ps2  Ep,

dQAps) Ips| V5 _ [ dQps) Vi~

Qnry2s 2 2 (2r)?4 s
aQ i-m
- / 16(:3) V5 (4.631)

Thus total cross-section has form

_ 1 Vs — 4m?
2+/s(s — 4m?2) 16722!4/s

Ttot,2—2 dQ(p3)|th|2

1 2
= dQ Tir|~ 4.632
= [ dps)ITy| (4632)

And corresponding differential cross-section is

do to1,2—52

o) 4.633
290p) 64ﬂ |Tir]" ( )

This is so-called differential cross-section of particles with identical (so
also equal mass) particles. Formula works also for more general 2 — 2
elastic scatterings such as, e.h. e7e™ — u ™.

Note on Frames

p102|Vi2| = 4dm|p,| = 2vs(s —4m?). (4.634)
N— e
Lorentz invariant under collinear boosts

Generically it can be written in the form

43(p1p2)? — 22 = 4f(prp2)? — mim2. (4.635)

Indeed in the Laboratory frame p = (E1,0), p» = (E2, py).



4.19 Cross-Section - Practical Part

This then implies that
4\|E2E2 — EX(E} - p3) = 4/ E2p} = 4Ip,|E _alPlp gy
189 = 1(2—172)— 1P = |P2|1— E_221— P1P2-
(4.636)
Recap
>

(Number of Events)/t  # of events per unit time per unit target
o= = .

PRV Ny incident flux

(Here incident flux = prV = (prVtA)/(tA) = # of incoming parti-
cles per unit time and per unit area).

| 2
Qm)*Ty:1*6W (pr - pi)
O2—n =
7 A\(p1p2)? — mim;
Which in differential form reads as
1 27)* - -
doyy = ( S) |Tlf|26(pl - Pf)dp3 t danrZ
4\ /(p1p2)? = mim;
(4.637)
Here dp = —%Pi
p= (2n)32wp,;
| 2
do tot,2—2 1

dQ(p3) - 647m2s |Tis |?. For identical particles.

Here Ty; = t(p1,-+* , Pn, =41,/ ~Gm)amp-

As an exercise, let us use S-matrix elements in computation that de-
scribes decay of unstable particle. Assume

L= —%d)(x)goz(x). (4.638)

The corresponding vertex is

m

M P1
—>—< (4.639)

Di =g\ P2

m

The initial state is a single unstable particle state P; = (M, 0) in the rest
frame of the unstable particle.

Sti = (p1,p2ISIP:) = i2m)* 6 (p1 + p2 — P)Tji. (4.640)
In the lowest order in g we get Ty; = (-i)3(-ig) = g.
Probability of transition is

Pri =18 = " @m)*e D 0)2n)*6W (p1 + pr - POITyIP. (4.641)
P02 T
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Rate of transition per unit volume and unit time is

P
©=yr - )4plz,;26(4)(p1+”2‘Pf)|Tfi|2- (4.642)

Then rate per particle per unit of time is

Py 2
r=9_ 7 _ (”) § D (p1+ p2 = P)ITril?. (4.643)
p pvT PLP2

Here p = 2F which is 2M in the rest frame. Consequently, to the lowest
order we have

(2n)* 2 1 d°p, dp,

r = 6(4) + —Pi
oM ¢ (2n)2E,, (21)2E,, (p1+p2=Pi)
2 3
8 1 d’pq
- & _ - S(Ey +E, —M). 4.644
(271)24M/ 15y, By, Err B = M) (1.644)

By using the fact that p; + p, = 0 (), which implies E, = E, =

Vm? + |pq|> we get
/d3p16(W_M) = {VVEE'I,1 +Ep2 =2ﬂm2+|p1|2}

- / dlpy|1py PAApy)OW — M)

-/ dﬂ(m))

{ dw__2ipi| _ 2lpa| _ 4lpl

dip1l — Ep ¥ M

|p1|26(w M)

dlp|

M? M? — 4m?
Ip1l = \Ep, —m? =] 2= —m* = \/T}
(4.645)

Thus we get

2

& 1 [dQp ¢ AQ s

T 4r2aM ) el 4p?2 T an? 4M 8M2
M P1

2

& Im2—am2. (4.646)

~ 327M2

Since density of unstable particle decays as ¢!, the & is the mean
lifetime of a particle.
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