Problem 23. For generic N € N, an invertible N x N hermitian matrix
A = (Aj) and a complex vector b € CN show that
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Solution. The basic idea is to use a unitary transformation to convert the
problem essentially into N independent one-dimensional problems, which we
already know how to solve. (Excercise 89.)

Since A is hermitian, there exists a unitary matrix U € CM such that
A = UTD U, where D is a diagonal matrix made up of eigenvalues of A. These
eigenvalues are furthermore all real and non-zero, because A is hermitian and
invertible, respectively.

Here and elsewhere in this text ()7 denotes hermitian conjugation, ()*
denotes complex conjugation and ()T denotes transposition. The integrand
of the LHS of (1) can be rewritten in the form

exp(iz] Aijzj + b} 2 +ib; 2}) = exp(iz' Az +iblz + ibT2*) (2)
= exp(iz'UTDUz + b UTU 2 +ibTUTU* 2%) (3)
—-. @, (4)

where we used the fact that UTU* = (UTU)* = 1* = 1 € CMV. Supposing
one now denoted ¢ := Uz and ¢ := Ub, one would get

@ = exp(iq' Dq + iclq + icTq") (5)
N

= [ exp (iDy;lq;” + icjq; + icjq}) | (6)
j=1

which looks promising. The plan now is to use precisely this substitution for
our integral. Following Excercise 89 we can say that our integration over
CN is actually integration over R*" via correspondence dz}dz; <> 2i dx;dy;,
or more precisely,

/ (ﬂdz; dzz-) £(2)

on \i=l

/ <H 2idx; dyi) f(x +1y), (7)

i=1

for a function f : C¥ — C. A substitution of the form ¢ = Uz therefore
actually represents a substitution

T+ig=U(x +1y), ()

1



where we denoted z = x + iy and ¢ = & + iy for z,y,%,7 € RY. Let us
now write the real part of U as Ry € RM" and the imaginary part of U as
Iy € RVYN. We get
T+iyg=U(x +1iy) = (Ry +ily)(z + iy)
= Ryx — Iyy + i(Iyx + Ryy)

(9)

The requirement of "realness” of = and y leads to
t=Ryr—Iyy, y=Ivx+ Ruy, (10)

which can be written slightly more elegantly as

()-C =) G) o

)

Which is the actual form of the ”complex” subtitution ¢ = Uz. All we need
now is the absolute value of the Jacobian of this substitution. As it is linear,
the Jacobian is the matrix M itself. But how do we find its determinant?
Let us show that the matrix M is orthogonal, i.e. MTM = 1.

Writing out the unitarity condition of matrix U using its real and imagi-
nary parts results in

1=U'U = (Ry +ily)" (Ry +ily) = (Rf — iI}) (Ry + ily)
— RLRy + I Iy + i(RY Iy — I} Ry) (12)
— RIRy+IJIy=1 & RLIy—I}Ry=0. (13)

Now we see that

R, I} Ry —I
MT M = U U U U
(—I(T] R{;) ([U RU> (14)

[ RLRy+I1Iy —RLIy+IJRy\ (1 0
“\-LRy+R Iy, IIy+RiR, ) \o 1)

which of course implies that |det M| = 1.

We have found all we need to perform the substitution ¢ = Uz correctly.



Let us see where it leads. Beggining with the LHS of (1) we get
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Where near the end we used that (D™1);; = (Dj;)~" because D is diago-
nal, and also that det A = det(U'DU) = det D and A~! = (UTDU)"! =
UtD~1U.

Result (22) is clearly the RHS of (1), which is what we wished to show.



