
Problem 34
Consider the decay process Φ→ ψψ in a theory with interaction Lagrangian

LI(ψ, ψ,Φ) = −gψψΦ (1)

(Here ψ is a Dirac fermion field with mass m, and Φ is a real scalar field with mass M.)
In order g1 calculate the decay rate Γ for unpolarized decay products, i.e., sum over the
spins of the outgoing particles.
Hints: Use summation formulas for Dirac spinors, and trace identities for γ-matrices.
Note that u(...)u = Tr [uu(...)].

Solution:
This is the decay of a scalar field (such as a boson)into a fermion and an anti-fermion.
Fermions could be leptons (e, µ, τ) or quarks (u, d, s, c, b, t). The Feynman diagram for
this decay is shown in the figure below.
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In the center of mass frame the relativistic four-momenta for the input and output fields
are prescribed in equations (2).

pµin = (M,~0), pµ1 = (E, ~p), pµ2 = (E,−~p). (2)

For variables in the previous equations holds, that
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According to the Feynman rules the transition amplitude of this diagram is given by,
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We use sum formulas for Dirac spinors whose form are
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Using equation (3) we easily get
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From kinematics in the scalar field rest frame,it is possible to deduce that
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and
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Let us now consider the decay rate of one scalar field, i.e. process 1 → n. The differential
transition or decay rate Γ for such decay we discussed in Example 109, especially for
decay 1 → 2.For this decay is Γ given by
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As shown in Example 109, after substituting (8), it is derived
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The integral at (10) was solved in the exercise (Example 109) and its form is
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The resulting form for decay rate is
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