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Abstract

These notes serve as a concise reference for the tutorials of Quantum field theory 1 and
2 at FJFI ČVUT. They contain short introductions, exercises, and problem assignments.
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1 Transformations in 3D

Exercise 1. Wave-function transforms under change of coordinates as scalar field: ψ′(x′) =
ψ(x). Probe invariance of the timeless Schrödinger equation[

− ~2

2m
∆ + V (x)− E

]
ψ(x) = 0 (1)

under a) rotations, b) translations. What conditions on the potential V (x) need to be met?

1.1 Rotation group SO(3)

Generators of rotations around axes xj , j = 1, 2, 3, are the skew-symmetric matrices

T1 =

0 0 0
0 0 1
0 −1 0

 , T2 =

0 0 −1
0 0 0
1 0 0

 , T3 =

 0 1 0
−1 0 0
0 0 0

 . (2)

Finite rotation by an angle ϕ around the axis in direction of a unit vector ~n, ~ϕ ≡ ϕ~n, is given
by the matrix

R(~ϕ) = eϕjTj . (3)

Exercise 2. Show that R(~ϕ) ∈ SO(3) (the group of real 3×3 orthogonal matrices with det = 1).
[Hint: Use the identity det eA = eTrA.]

Exercise 3. Verify the identities
[Ti,Tj ] = −εijkTk. (4)

[Hint: Note that the matrix elements (Ti)jk = εijk.]

1.2 Group SU(2) and algebra su(2)

Lie group SU(2) is the set of matrices

SU(2) = {U ∈ C2,2 | U† = U−1,detU = 1}. (5)

Lie algebra su(2) is the set of matrices

su(2) = {A ∈ C2,2 | A† = −A,TrA = 0}. (6)

(So that eA ∈ SU(2).) The Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (7)

give rise to a standard basis { iσ
1

2 , iσ
2

2 , iσ
3

2 } of su(2).

Exercise 4. Show that
a) (σ1)2 = (σ2)2 = (σ3)2 = I
b) [σi, σj ] = 2iεijkσ

k

c) {σi, σj} = σiσj + σjσi = 2δijI .

Exercise 5. Calculate the (Casimir) operators a) TjTj for algebra so(3), and b) iσj

2
iσj

2 for
algebra su(2). (Sum over j implied.)
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Exercise 6. Expand e
i
2ϕjσ

j

into a series to find

e
i
2ϕjσ

j

= (cos
ϕ

2
)I + i(sin

ϕ

2
)
ϕjσ

j

ϕ
, ϕ ≡ √ϕjϕj . (8)

Exercise 7. Show that for infinitesimal transformations, |~ϕ| � 1,

σj(eϕiTi)jkak = e
i
2σ

iϕiakσ
ke−

i
2σ

jϕj , (9)

where (a1, a2, a3) ∈ R3.

Problem 1. Show that U(~ϕ) ≡ e i2σjϕj can be cast in the form

U(~ϕ) = eiσ
3 β1+β2

2 eiσ
2γeiσ

3 β1−β2
2 , (10)

and find relations between the parameters (ϕ1, ϕ2, ϕ3) and (β1, β2, γ).
[Hint: Use the result of Exercise 6.]

2 Lorentz transformations

Lorentz transformations L are defined by the property

gµνL
µ
ρL

ν
σ = gρσ, (11)

where gµν = gµν = diag(1,−1,−1,−1) is the Minkowski metric.
Their exponential form reads

L = exp

(
− i

4
ωµνMµν

)
, (Mµν)ρσ = 2i(gµρδνσ − gνρδµσ), (12)

where ωµν = −ωνµ, Mµν = −Mνµ.

Exercise 8. Find explicit “tabular” form of the matrix (M01)ρσ (the generator of boosts in
x1-direction).

Exercise 9. Verify the commutation relations of the Lorentz algebra so(1, 3)

[Mµν ,Mρσ] = −2i(gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ). (13)

2.1 Klein-Gordon equation

Exercise 10. Show that the Klein-Gordon equation (~ = c = 1)

(∂µ∂
µ +m2)φ(x) = 0 , x ≡ (x0, x1, x2, x3) , ∂µ ≡

∂

∂xµ
, (14)

is invariant under Lorentz transformations xµ′ = Lµνx
ν .

Scalar product between two states is defined

(ψ, φ) = i

∫
d3x[ψ∗∂0φ− φ∂0ψ

∗]. (15)

Exercise 11. Show that (ψ, φ) is time-independent
[Hint: Make use of the fact that ψ(x) and φ(x) are solutions of the Klein-Gordon equation.]

Problem 2. Show that (ψ, φ) is relativistically invariant.
[Hint: Write (ψ, φ) = i

∫
d4x(ψ∗∂0φ− φ∂0ψ

∗)δ(x0), and use δ(x0) = ∂0θ(x
0).]
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3 Dirac algebra of γ-matrices

Dirac matrices γµ are 4× 4 matrices satisfying the anti-commutation relations

{γµ, γν} = 2gµνI. (16)

In their standard (or Dirac) representation they have the form

γ0 =

(
I O
O −I

)
= σ3 ⊗ I , γj =

(
O σj

−σj O

)
= iσ2 ⊗ σj . (17)

The tensor (or Kronecker) product A⊗ B, of an n× n′ matrix A, and an m×m′ matrix B,
is an (nm)× (n′m′) matrix defined by

A⊗ B =

A11B . . . A1n′B
...

...
An1B . . . Ann′B

 . (18)

The tensor product has following properties

1) (αA1 + A2)⊗ B = αA1 ⊗ B + A2 ⊗ B
2) (A⊗ B)⊗ C = A⊗ (B⊗ C)

3) (in general) A⊗ B 6= B⊗ A
4) (A⊗ B)(C⊗ D) = (AC)⊗ (BD)

5) (A⊗ B)−1 = A−1 ⊗ B−1

6) (A⊗ B)† = A† ⊗ B†. (19)

Exercise 12. Verify that the matrices γµ defined in Eq. (17) satisfy Eq. (16) .

Identities in the following exercises can be proven using the defining relations {γµ, γν} = 2gµνI,
i.e., they hold in any representation of Dirac matrices.

Exercise 13. Show that:

1) γµγµ = 4 I (20)

2) γµγνγµ = −2γν (21)

3) γµγνγργµ = 4gνρ I. (22)

One defines the matrix γ5 = iγ0γ1γ2γ3, which in the standard representation reads

γ5 =

(
O I
I O

)
= σ1 ⊗ I. (23)

Exercise 14. Show that γ5 satisfies a) (γ5)2 = I, and b) γµγ5 = −γ5γµ (anti-commutes with
all γ-matrices).

Exercise 15. Verify the following ‘trace’ identities:

1) Tr(γµγν) = 4gµν (24)

2) Tr(γµ) = 0 (25)

3) Tr(γµ1 . . . γµ2n+1) = 0 (∀n) (26)

4) Tr(γ5) = 0 (27)

5) Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ). (28)
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Note that using the ‘slash’ notation /p = γµpµ, Eq. (24) gives Tr(/p/q) = 4pµqµ.

Exercise 16. Show that
det(/p−mI) = det(/p+mI), (29)

and deduce that matrices /p±mI are singular for four-momenta satisfying pµp
µ = m2.

Note that if some matrices γµ (e.g., the standard representation matrices) satisfy Eq. (16),
then for a unitary matrix U,

{UγµU†,UγνU†} = U{γµ, γν}U† = U 2gµν U† = 2gµν . (30)

That is, matrices γ̃µ = UγµU† constitute another representation of the Dirac algebra.

Problem 3. The Weyl (or chiral) representation of γ-matrices, γµW , is obtained from the stan-
dard Dirac representation γµD (Eqs. (17) and (23)), via the transformation

γµW = UγµDU
† , U =

1√
2

(I + γ5
Dγ

0
D). (31)

Determine the matrices γ0
W , γ

1
W , γ

2
W , γ

3
W , and γ5

W .

4 Lorentz group and spin representation

The Lorentz group
O(1, 3) = {L ∈ R4,4 | gµνLµρLνσ = gρσ} (32)

has 4 connected components, which differ by detL = ±1, and sign(L0
0) = ±1.

The component with detL = +1 and sign(L0
0) = +1 (proper orthochronous transformations)

is denoted SO+(1, 3), and its elements can be cast in the exponential form, Eq. (12). One can
‘move’ between the various connected components with the help of parity (or spatial inversion)
P, and time reversal T:

P = diag(1,−1,−1,−1) , T = diag(−1, 1, 1, 1). (33)

Denote

Ji =
1

4
εijkMjk , Ki =

1

2
M0i (34)

the rotation generators, and the boost generators, respectively. (In fact, Ji = iTi, with Ti defined
in Eq. (2).) It holds that

[Ji, Jj ] = iεijkJk,
[Ki,Kj ] = −iεijkJk,
[Ji,Kj ] = iεijkKk. (35)

In the following exercise the Lorentz algebra so(1, 3) is split into two independent algebras
su(2).

Exercise 17. Introduce

N(+)
i =

1

2
(Ji + iKi) , N(−)

i =
1

2
(Ji − iKi), (36)
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and show that

[N(+)
i ,N(+)

j ] = iεijkN(+)
k ,

[N(−)
i ,N(−)

j ] = iεijkN(−)
k ,

[N(+)
i ,N(−)

j ] = 0. (37)

Problem 4. Let
[Aa,Ab] = cabcAc , a, b, c = 1, . . . , n (38)

be the commutation relations of a Lie algebra of matrices {A1, . . . ,An}. The adjoint representa-
tion (of this Lie algebra) is formed by the matrices

(Ca)bc = −cabc. (39)

Verify that the matrices Ca obey the same commutation relations as the matrices Aa. Determine
the adjoint representation of the algebra a) so(3), b) su(2).
[Hint: Use the Jacobi identity [[A,B],C] + [[C,A],B] + [[B,C],A] = 0.]

4.1 Spin representation of Lorentz algebra

By the requirement of invariance of the Dirac equation under Lorentz transformations L, when
the Dirac wave-function transforms as

Ψ′(x′) = S(L)Ψ(x), (40)

we obtain the condition
S(L)−1γµS(L) = Lµνγ

ν . (41)

Its infinitesimal form, for

L ≈ I− i

4
ωµνMµν , S(L) ≈ 1− i

4
ωµνσ

µν , (42)

reads
i

4
[σµν , γρ] =

1

2
(gµργν − gνργµ). (43)

Exercise 18. Show that

σµν =
i

2
[γµ, γν ] (44)

satisfies Eq. (43).

Exercise 19. Show that σµν = i
2 [γµ, γν ] satisfy the commutation relations of the Lorentz algebra

(cf. Eq. (13))
[σµν , σαβ ] = −2i(gµασνβ − gµβσνα + gνβσµα − gνασµβ). (45)

4.2 Dirac field bilinears

Dirac wave-functions have 4 complex components,

Ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 ∈ C4. (46)

Apart from the usual Hermitian conjugation Ψ†(x) = (ψ∗1(x), ψ∗2(x), ψ∗3(x), ψ∗4(x)), we also define
the Dirac conjugation Ψ̄(x) = Ψ†(x)γ0.
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Exercise 20. Show that in the standard representation of γ-matrices, Eq. (17), (as well as in
any unitarily equivalent representation) the Hermitian conjugation acts as follows:

1) (γµ)† = γ0γµγ0 (47)

2) (σµν)† = γ0σµνγ0 (48)

3) (γ5)† = γ5. (49)

Exercise 21. Show that since Ψ(x) transforms under Lorentz transformations according to
Eq. (40), its Dirac conjugate transforms as

Ψ̄′(x′) = Ψ̄(x)S(L)−1. (50)

Exercise 22. Show that the expression

Ψ̄(x)[γµ, γν ]Ψ(x) (51)

transforms as a (skew-symmetric) tensor field under Lorentz transformations.
[Hint: Recall Eq. (41).]

Exercise 23. Show that the expression

Ψ̄(x)γµγ5Ψ(x) (52)

transforms as a pseudovector field under Lorentz transformations.
[Hint: Use the identity εµνρσL

µ
αL

ν
βL

ρ
γL

σ
δ = (detL) εαβγδ for the determinant of a matrix L.]

Problem 5. Show that the set of matrices

{1, γµ, [γµ, γν ], γ5γµ, γ5}µ,ν=0,1,2,3 (53)

is a basis of the vector space C4,4 (4× 4 complex matrices).
[Hint: Make use of the trace identities, Eqs. (24), (25), (26) and (27).]

5 Dirac equation and its solutions

The Dirac equation, and its Dirac-conjugated equation read

(iγµ∂µ −m)Ψ = 0 , (∂µΨ̄)iγµ +mΨ̄ = 0. (54)

Exercise 24. Verify that the axial current

Jµ5 (x) = Ψ̄(x)γµγ5Ψ(x) (55)

satisfies the equation
∂µJ

µ
5 = 2imΨ̄γ5Ψ (56)

whenever Ψ(x) is a solution of the Dirac equation.
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5.1 Variational principle

In field theory, the equations of motion for an n-component field φa(x) follow from the stationary
action principle:

S[φa(x) + δφa(x)]− S[φa(x)] ≈ δS[φa(x)] = 0 , S[φa(x)] =

∫
d4xL (φa(x), ∂µφa(x)), (57)

where L is the Lagrangian density, and where variations of the field δφa(x) vanish on the
boundary. The equations of motion are then the corresponding Euler-Lagrange equations

∂µ

(
∂L

∂(∂µφa)

)
− ∂L

∂φa
= 0. (58)

Exercise 25. Consider the Lagrangian density

L (ψ,ψ∗, ∂µψ, ∂µψ
∗) = − ~2

2m
(∂jψ

∗)(∂jψ) +
i~
2

(ψ∗∂tψ − ψ∂tψ∗)− V (x, t)ψ∗ψ. (59)

Show that the stationary action principle for the action S[ψ,ψ∗] =
∫

L d4x yields the Schrödinger
equation (and its complex conjugate) as its Euler-Lagrange equations.
[Hint: Regard ψ and ψ∗ as two independent fields.]

Exercise 26. Consider the action

S[Ψ, Ψ̄] =

∫
d4x Ψ̄(x)(iγµ∂µ −m)Ψ(x)

=

∫
d4x ψ̄α(x)(iγµ∂µ −m1)αβψβ(x) , α, β = 1, 2, 3, 4, (60)

and show that the stationary action principle yields the Dirac equation and its Dirac conjugate.

5.2 Solutions of the Dirac equation

The Dirac equation (54) is solved by harmonic waves

Ψ(+)
p (x) = e−ipµx

µ

u(p) (positive energy), (61)

Ψ(−)
p (x) = eipµx

µ

v(p) (negative energy), (62)

where p0 =
√
pipi +m2 > 0, and the polarization spinors u(p) and v(p) are solutions of the

algebraic equations
(/p−m)u(p) = 0 , (/p+m)v(p) = 0. (63)

Exercise 27. Working in the standard representation of γ-matrices, show that the equation

(/p−m)u(p) = 0 , E ≡ p0 =
√
pipi +m2 (64)

has 2 linearly independent solutions, and they can be cast as

u(p) =

(
χ

σ·p
E+mχ

)
, χ =

(
1
0

)
,

(
0
1

)
(65)

Analogously, equation (/p+m)v(p) = 0 has 2 linearly independent solutions

v(p) =

( σ·p
E+mχ

χ

)
, χ =

(
1
0

)
,

(
0
1

)
. (66)

[Hint: Note that (/p−m)(/p+m)w = 0 for any w ∈ C4.]
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Problem 6. Write massless (m = 0) Dirac equation explicitly in the standard representation of
γ-matrices, and find similarity with the Maxwell equations of electrodynamics.
[Hint: Problem 3 in Ref. [1].]

5.3 Lorentz transformations of Dirac wave-functions

Recall the fundamental representation, and the spin representation of the Lorentz group:

L = exp

(
− i

4
ωµνMµν

)
, S(L) = exp

(
− i

4
ωµνσ

µν

)
. (67)

Similarly to the rotation and boost generators in the fundamental representation, Eq. (34), the
rotation and boost generators in the spin representation are, respectively,

Σi =
1

2
εijkσ

jk , σ0i = −σi0. (68)

A rotation S(R) in the spin representation can be specified by 3 parameters θ1, θ2, θ3 (ωjk =
εijkθi, ω0i = 0) as

S(R) = e−
i
4ωjkσ

jk

= e−
i
2 θiΣi . (69)

Problem 7. Show that the identity

S(L)−1γµS(L) = Lµνγ
ν , (70)

when specialized to rotations S(R), reduces to Eq. (9).
[Hint: Use the standard representation of γ-matrices, where Σi = I⊗ σi.]

Exercise 28. Consider a boost in the x1-direction by velocity β. This Lorentz transformation is
described by the matrix

L1(ζ) =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 =


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

 , (71)

where γ =
√

1− β2, and ζ is the rapidity of the boost. Cast L in an exponential form to find
the corresponding generator.

Exercise 29. By composing two boosts in the x1-direction, with rapidities ζ1 and ζ2, respectively,
derive the relativistic formula for the addition of velocities.
[Hint: Use the identities for hyperbolic functions: sinh(ζ1 + ζ2) = sinh ζ1 cosh ζ2 + sinh ζ2 cosh ζ1,
and cosh(ζ1 + ζ2) = cosh ζ1 cosh ζ2 + sinh ζ1 sinh ζ2.]

5.4 Matrix exponentials

The exponential of a matrix A is defined by the series

eA =

∞∑
n=0

An

n!
. (72)
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The rule eA+B = eAeB holds true when [A,B] = 0, but otherwise one has to use the Baker-
Campbell-Hausdorff formula in one of the variants

eA+B = eAeBe−
1
2 [A,B] . . . ,

eAeB = eA+B+ 1
2 [A,B]+..., (73)

where ‘. . .’ denotes terms with ever more nested commutators.

Exercise 30. Take

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
, (74)

and calculate a) eA+B, b) eAeB, c) [A,B].

Suppose A(α) is matrix-valued function of α. What is the derivative of eA(α)? The general
formula reads

d

dα
eA(α) =

∫ 1

0

eλA(α) dA(α)

dα
e(1−λ)A(α)dλ, (75)

which reduces to a simple form d
dαe

A(α) = dA(α)
dα eA(α) when [A(α),A(α′)] = 0 (e.g., when A(α) =

αA0).

Exercise 31. Take

A(α) =

(
1 α
0 0

)
, (76)

and calculate:
a) the explicit form of eA(α),
b) the derivative of the result of a),

c) the expression dA(α)
dα eA(α),

d) the derivative of eA(α) via Eq. (75).

5.5 Helicity

The helicity operator h, defined

h =
1

2

Σ · p
|p|

, (77)

measures the spin projection into the direction of particle’s motion.

Exercise 32. Show that (2h)2 = I.

Exercise 33. Show that the helicity operator h commutes with the Dirac Hamiltonian

HD = −γ0γjpj +mγ0. (78)

The helicity projectors are defined

P (+) =
1

2
(I + 2h) , P (−) =

1

2
(I− 2h). (79)

For any wave-function Ψ then

h (P (+)Ψ) =
1

2
P (+)Ψ , h (P (−)Ψ) = −1

2
P (−)Ψ. (80)
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5.6 Chirality

Define the operators

PR =
I + γ5

2
, PL =

I− γ5

2
, (81)

so that PR + PL = I.

Exercise 34. Show that PR and PL are orthogonal projectors, i.e.,

1) PRPL = PLPR = O (82)

2) P 2
R = PR , P 2

L = PL. (83)

[Hint: (γ5)2 = 1.]

A Dirac wave-function Ψ can be decomposed using the (chiral) projectors (81) as

Ψ = ΨR + ΨL , ΨR =
I + γ5

2
Ψ , ΨL =

I− γ5

2
Ψ, (84)

where ΨR and ΨL are eigenstates of the chirality operator γ5:

γ5ΨR = ΨR , γ5ΨL = −ΨL. (85)

Exercise 35. Show that (for all 4 cases) [P (±), PR,L] = 0.

Exercise 36. Consider the Dirac spinor u(p) in the massless case (m = 0). Calculate the
helicity of chiral-projected states uR = PRu(p), and uL = PLu(p).
[Hint: Show that Σi = γ0γiγ5, and use the massless Dirac equation γµpµu(p) = 0.]
[Result: huR = 1

2uR, huL = − 1
2uL.]

5.7 Discrete transformations of Dirac fields

Parity (or space reflection) is the Lorentz transformation

xµ 7→ xµP = (t,−x) , LP = diag(1,−1,−1,−1) , det(LP ) = −1. (86)

Exercise 37. Find a spin representation S(LP ) of the parity transformation.
[Hint: Solve the equation S(LP )−1γµS(LP ) = (LP )µνγ

ν .]

The Dirac wave-function transforms under parity as

ΨP (t,x) = γ0Ψ(t,−x). (87)

Time reversal (or time inversion) is the Lorentz transformation

xµ 7→ xµT = (−t,x) , LT = diag(−1, 1, 1, 1) , det(LT ) = −1. (88)

The Dirac wave-function transforms under time reversal as

ΨT (t,x) = iγ1γ3Ψ∗(−t,x). (89)

Problem 8. Dirac wave-function is propagating in x3-direction with helicity 1
2 .

Ψ(t,x) = e−ipµx
µ

u+(p) , u+(p) =
√
E +m

(
χ+

σ·p
E+mχ+

)
, χ+ =

(
1
0

)
, p = (0, 0, p).

(90)
What is the corresponding wave-function after time inversion?
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Charge conjugation is the transformation, which reverses sign of the electric charge (in the
Dirac equation minimally coupled to an electromagnetic field). The Dirac wave-function trans-
forms under charge conjugation as

ΨC(x) = iγ0γ2Ψ̄T (x) = −iγ2Ψ∗(x). (91)

Exercise 38. What is the result of the CPT transformation Ψ 7→ ΨCPT = ((ΨC)P )T ?

6 Dirac particle in electromagnetic field

Dirac particle with charge q (minimally) coupled to an electromagnetic field with four-potential
Aµ is described the equation

(γµΠµ −m)Ψ(x) = 0 , Πµ = i∂µ − qAµ. (92)

Problem 9. Assuming stationary states of the form

Ψ(t,x) = e−iEt
(
ϕ(x)
χ(x)

)
, (93)

show that Eq. (92) reduces for Aµ = (0, 0, Bx, 0) (i.e., for zero electric field and constant magnetic
field in the z-direction) to

(E2 −m2)ϕ(x) = (p̂2 + q2B2x2 − 2qBx p̂y − qBσ3)ϕ(x) , p̂x,y,z = −i∂x,y,z. (94)

[Hint: Work in the standard representation of γ-matrices, and eliminate χ(x) from the pair of
equations following from Eq. (92).]

Exercise 39. Consider the ansatz ϕ(x) = ei(pyy+pzz)f(x), and show that Eq. (94) reduces to

(a+ σ3)f = (− d2

dξ2
+ ξ2)f , a =

E2 −m2 − p2
z

qB
, ξ =

qBx− py√
qB

. (95)

Argue that this equation has bounded solutions for a + α = 2n + 1, α = ±1, and hence that the
energy levels of a relativistic particle in constant magnetic field are (in full units)

E = (±)
√
m2c4 + p2

zc
2 + ~c2qB(2n+ 1− α). (96)

Exercise 40. What is the non-relativistic expansion of the result (96)?

7 Dirac particle in central potential

Dirac particle with charge q in central electric field with potential V (r) = qφ(r) (and zero
magnetic field) is described by the equation

i∂tΨ(t,x) = HDΨ(t,x) , HD = α · p̂ +mβ + V (r). (97)

where, in the standard representation,

αi ≡ γ0γi =

(
O σi

σi O

)
= σ1 ⊗ σi , β ≡ γ0 =

(
I O
O −I

)
= σ3 ⊗ I. (98)

13



Exercise 41. Show that the operator of total (i.e., orbital plus spin) angular momentum

J i = Li +
1

2
Σi , Li = εijkx

j p̂k = εijkx
j(−i∂k) , Σi =

(
σi 0
0 σi

)
= I⊗ σi (99)

commutes with the Dirac Hamiltonian HD.

Problem 10. Show that

[HD, βΣ · J] =
1

2
[HD, β]. (100)

Hence, the operator

K ≡ βΣ · J− 1

2
β = β(Σ · L + 1) (101)

commutes with the Hamiltonian HD.

Exercise 42. Show that the operator K commutes with J.

Exercise 43. Show that K2 = J2 + 1
4 .

In summary, the operators
HD , K , J2 , J3 (102)

all mutually commute, and so one can construct their simultaneous eigenfunctions.

8 Variational calculus

Recall that for a function of n variables

f : Rn → R , (u1, . . . , un) 7→ f(u1, . . . , un), (103)

the partial derivative, with respect to the k-th variable, is defined

∂f

∂uk
= lim
ε→0

1

ε

(
f(u1, . . . , uk−1, uk + ε, uk+1, . . . , un)− f(u1, . . . , un)

)
= lim
ε→0

1

ε

(
f(ui + εδik)− f(ui)

)
. (104)

A functional
F :M→ R , φ 7→ F [φ] , φ : x 7→ φ(x), (105)

attributes a number to each function φ ∈ M (for us, typically, φ(x) will be fields defined on
the Minkowski spacetime). In analogy with the partial derivative, the functional (or varia-
tional) derivative of a functional F , with respect to variations at a spacetime point x0, is defined
(somewhat formally)

δF

δφ(x0)
= lim
ε→0

1

ε

(
F [φ(x) + εδ(x− x0)]− F [φ(x)]

)
. (106)

Then, for a variation of the functional F we may write

δF ≡ F [φ+ δφ]− F [φ] ≈
∫

δF

δφ(x)
δφ(x) dx. (107)
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Exercise 44. Using the definition (106), calculate the functional derivative δF
δφ(x0) for the func-

tional:

1) F [φ] =

∫
f(x)φ(x) d4x (108)

2) F [φ] = φ(x1) (109)

3) F [φ] = exp

(∫
f(x)φ(x) d4x

)
. (110)

In point 3), calculate the functional derivative also using a generalization of the composite func-
tion differentiation theorem, and the result of 1).

We note the following properties of functional derivatives:

1)
δ

δφ(x0)

(
α(x)F [φ] +G[φ]

)
= α(x)

δF

δφ(x0)
+

δG

δφ(x0)
(111)

2)
δ

δφ(x0)

(
F [φ]G[φ]

)
=

δF

δφ(x0)
G[φ] + F [φ]

δG

δφ(x0)
(112)

3)
δ

δφ(x0)
f(G[φ]) = f ′(G[φ])

δG

δφ(x0)
, f : R→ R. (113)

Exercise 45. Derive the field-theoretic Euler-Lagrange equations for the action

S[φ] =

∫
L (φ(x), ∂µφ(x), x) d4x. (114)

[Hint: Calculate δS
δφ(x0) , and set equal to zero.]

Exercise 46. Calculate the functional derivative δS
δw(x) for the entropy functional

S[w] = −k
∫
w(x) lnw(x) dx. (115)

Exercise 47. Derive (one half of) the vacuum Maxwell equations from the action

S[Aµ] = −1

4

∫
FµνF

µν d4x , Fµν = ∂µAν − ∂νAµ, (116)

where Fµν is the Faraday tensor, and Aµ is the four-potential of the electromagnetic field. Show
that the second half of the Maxwell equations is a (trivial) consequence of the definition of Fµν .
[Hint: Use the Euler-Lagrange equations ∂µ

(
∂L

∂(∂µAν)

)
− ∂L

∂Aν
= 0.]

9 Lagrangian and Hamiltonian formalism of classical field
theory

Consider a one-dimensional infinite chain of masses m, connected via springs with spring constant
κ. The Lagrangian of this system is

L(qn, q̇n) =
∑
n

m

2
q̇2
n −

∑
n

κ

2
(qn+1 − qn)2 , n ∈ Z, (117)

where qn denotes the displacement of the n-th mass point from its equilibrium position.
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Exercise 48. For the system described by Eq. (117), write the Euler-Lagrange equations of
motion. Moreover, derive the Hamiltonian, and write the Hamilton’s canonical equations. (Make
use of the Poisson brackets.)

We introduce the displacement field φ(na, t) = qn(t), where a is the distance between two
neighbouring equilibrium positions. In the (continuum) limit a → 0, with the density ρ = m/a
and the tension T = κa kept fixed, the Lagrangian (117) takes the form

L[φ(x), φ̇(x)] =

∫
L (φ(x), φ̇(x), ∂xφ(x)) dx , L (φ, ∂tφ, ∂xφ) =

ρ

2
(∂tφ)2 − T

2
(∂xφ)2, (118)

where L is the Lagrangian density corresponding to the continuum Lagrangian L.

Exercise 49. Show that the (variational) Euler-Lagrange equations for a continuum Lagrangian
L[φ, φ̇] reduce to field-theoretic Euler-Lagrange equations for the corresponding Lagrangian den-
sity L (φ, ∂tφ, ∂xφ). Find these equations for the system (a string) described in Eq. (118).

From now on, let us consider (up to) three spatial dimensions. In the continuum limit, the
canonical momentum field is defined

π(x) =
δL

δφ̇(x)
=
∂L

∂φ̇
, (119)

and the Hamiltonian reads

H[φ(x), π(x)] =

∫
π(x)φ̇(x) d3x− L[φ(x), φ̇(x)] =

∫
H (φ(x), π(x), ∂jφ(x)) d3x, (120)

with
H (φ, π, ∂jφ) = π ∂tφ−L (φ, ∂tφ, ∂jφ) (121)

the corresponding Hamiltonian density.

Exercise 50. Calculate the canonical momentum field π, the Hamiltonian density H , and the
continuum Hamiltonian H for the string described by Eq. (118).

The field-theoretic Poisson bracket of two functionals F [φ(x), π(x)] and G[φ(x), π(x)] is de-
fined

{F,G} =

∫
d3x

(
δF

δφ(x)

δG

δπ(x)
− δG

δφ(x)

δF

δπ(x)

)
. (122)

Exercise 51. Calculate the Poisson brackets between functionals

Fy[φ, π] = φ(y) and Gy′ [φ, π] = π(y′). (123)

Problem 11. Consider the Lagrangian density of a one-component real Klein-Gordon field φ(x),

L (φ, ∂µφ) =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 , x = (x0,x), (124)

and derive the corresponding Euler-Lagrange equation. Show that the same equation is obtained
by passing to the Hamiltonian formalism, and combining the ensuing (field-theoretic) Hamilton’s
canonical equations.
[Hint: Use the Poisson-bracket formulation

φ̇(t,y) = {φ(t,y), H} , π̇(t,y) = {π(t,y), H} (125)

of the canonical equations.]
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9.1 Energy-momentum tensor

Suppose the Lagrangian density L does not explicitly depend on the spacetime point x. For
Φ(x) = (φr(x))nr=1 a solution of the (Euler-Lagrange) equations of motion we find by differenti-
ation:

∂

∂xν
L (φr(x), ∂µφr(x)) = ∂νφr

∂L

∂φr
+ ∂µ(∂νφr)

∂L

∂(∂µφr)
= ∂µ

(
∂νφr

∂L

∂(∂µφr)

)
. (126)

Subtracting the left-hand side from the right, we find the continuity equations

∂µT
µ
ν = 0 , Tµν = ∂νφr

∂L

∂(∂µφr)
− δµνL , (127)

where Tµν is the (canonical) energy-momentum tensor.
Note that T 0

0 = H is the Hamiltonian (or, energy) density of the field.
Writing ∂µT

µ
ν = ∂tT

0
ν +∂iT

i
ν , and integrating (for a fixed time t) over the space R3, we find

∂t

∫
d3xT 0

ν = −
∫
d3x ∂iT

i
ν = −

∫
d2ΣiT

i
ν = 0, (128)

that is, the total four-momentum of the field

Pν =

∫
d3xT 0

ν (129)

is constant in time, P ν = (H,P ).

Exercise 52. Show that the energy-momentum tensor of a one-component Klein-Gordon field
reads

Tµν = ∂µφ∂νφ− gµν
1

2
(∂ρφ∂

ρφ−m2φ2). (130)

In particular, find the energy density T 0
0, and the momentum density T 0

k.
[Hint: Use the Lagrangian density in Eq. (124).]

Exercise 53. Find the canonical energy-momentum tensor T
(can)
µν of the electromagnetic field

with Lagrangian density (116). Note that it is not symmetric in µ↔ ν, and show that it can be
augmented by the term (∂νAρ)F

ρ
µ without affecting the continuity equations (127), thus arriving

at

T (sym)
µν = FµρF

ρ
ν +

1

4
gµνFρσF

ρσ, (131)

the symmetric energy-momentum tensor of the electromagnetic field.
[Hint: Use the electromagnetic Lagrangian of Eq. (116).]

Generally covariant form of an action S[φr] =
∫

L (φ, ∂µφ)d4x is

S[φr, gµν ] =

∫
L (φr, ∂µφr, gµν)

√
−g d4x , g = det(gµν). (132)

The Hilbert energy-momentum tensor is defined

T (H)
µν =

2√
−g

δS

δgµν
(133)
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Problem 12. Show that

T (H)
µν = 2

∂L

∂gµν
− gµνL . (134)

[Hint: Analyse partial derivatives ∂
∂gµν of the determinant det(gµν) = 1

det(gµν) .]

Exercise 54. Calculate the Hilbert energy-momentum tensor for:
a) the Klein-Gordon field
b) the electromagnetic field.

9.2 Normal modes

Exercise 55. Consider the Lagrangian (117) of an infinite chain, and solve the equations of
motion by the method of modes. Show that the general solution reads

qn(t) =

∫ π
a

−πa
dk
(
ake
−i(ωkt−kan) + a∗ke

i(ωkt−kan)
)

, ωk =

√
2κ

m

√
1− cos(ka), (135)

where ak ∈ C are constant amplitudes. Perform the continuum limit a→ 0.

10 Quantum field theory preliminaries

Exercise 56. Show that (for a > 0)∫ +∞

−∞
δ(x2 − a2)φ(x) dx =

φ(a)

2a
+
φ(−a)

2a
. (136)

[Hint: Rewrite as two integrals
∫ +∞

0
, and substitute x2 = y.]

For a generic function g(x), if xi denote all the points of g at which g(xi) = 0 (and provided
g′(xi) 6= 0), then

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

. (137)

Exercise 57. Show that formula (137) correctly reproduces the results:
a) δ(ax) = 1

|a|δ(x)

b) δ(x2 − a2) = 1
2aδ(x− a) + 1

2aδ(x+ a).

We also note that for a multidimensional δ-function, and a constant matrix A,

δ(A(~x− ~x0)) =
1

|detA|
δ(~x− ~x0). (138)

Exercise 58. Show that the expression

2ωpδ
(3)(p− q) , ωp ≡

√
p2 +m2 (139)

is Lorentz invariant.
[Hint: Consider boosts along the x3-axis.]

Exercise 59. Show that for ladder operators â and â†, [â, â†] = 1, and a ‘vacuum’ state |0〉, for
which 〈0|0〉 = 1, and â |0〉 = 0, the following identity holds:

〈0| ân(â†)m |0〉 = n! δnm (∀n,m ∈ N0). (140)

[Hint: Show (and use) the identity e−αâ
†
â eαâ

†
= â+ α, ∀α ∈ R.]
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11 Quantum-field-theoretical formulation of many-body non-
relativistic quantum mechanics

Let us consider a system of n indistinguishable bosonic particles described by the non-relativistic
Schrödinger equation

i~∂tψ(x1, . . . ,xn, t) = Hψ(x1, . . . ,xn, t) , H =

n∑
p=1

[
− ~2

2m
∆xp + V (xp)

]
, (141)

with external (one-body) potential V (x).
The wave-function is assumed to be symmetrized,

ψ(x1, . . . ,xn, t) = S〈x1, . . .xn|ψ(t)〉 , |x1, . . .xn〉S =
1

n!

∑
π∈Sn

∣∣xπ(1), . . . ,xπ(n)

〉
. (142)

The field-theoretic description of this system starts with the introduction of (abstract) cre-
ation and annihilation operators â†x and âx (∀x ∈ R3), and the (abstract) vacuum state |0〉, with
the properties

[âx, ây] = [â†x, â
†
y] = 0 , [âx, â

†
y] = δ(x− y) , âx |0〉 = 0 , 〈0|0〉 = 1. (143)

Exercise 60. Argue that one may identify

|x1, . . .xn〉S ≡
1√
n!
â†x1

. . . â†xn |0〉 (144)

by showing that

1

n!
〈0| âxn . . . âx1

â†y1
. . . â†yn |0〉 = S〈x1, . . .xn|y1, . . .yn〉S (145)

(Consider only cases n = 1 and 2.)

If we define the second-quantized Hamiltonian

Ĥ =

∫
d3x â†x

[
− ~2

2m
∆x + V (x)

]
âx. (146)

then the second-quantized Schrödinger equation

i~∂t |ψ(t)〉 = Ĥ |ψ(t)〉 (147)

encapsulates n-particle Schrödinger equations (141) for all n.

Exercise 61. Show that Eq. (147) reduces to Eq. (141) when multiplied from the left by

1√
n!
〈0| âxn . . . âx1

. (148)

Time-dependent quantum field φ̂(x, t) is defined as the Heisenberg picture of the operators
âx:

φ̂(x, t) = e
i
~ tĤ âxe

− i
~ tĤ , φ̂†(x, t) = e

i
~ tĤ â†xe

− i
~ tĤ . (149)

Exercise 62. What are the equal-time commutation relations of the quantum fields φ̂ and φ̂†,
and what dynamical equation do these fields satisfy?
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11.1 Two-body interaction

We now include a two-body interaction between the particles in the form of an interaction
Hamiltonian

Hint =
1

2

∑
p 6=q

V2(xp − xq). (150)

The second-quantized form of the interaction Hamiltonian is

Ĥint =
1

2

∫
d3x d3y â†xâ

†
yV2(x− y)âyâx. (151)

Problem 13. Show that

1√
n!
〈0| âxn . . . âx1

Ĥint |ψ(t)〉 = Hintψ(x1, . . . ,xn, t), (152)

and hence that the second-quantized Schrödinger equation

i~∂t |ψ(t)〉 = (Ĥ + Ĥint) |ψ(t)〉 (153)

describes a non-relativistic quantum-mechanical system of an arbitrary number of interacting
indistinguishable bosons.

11.2 Fermionic systems

Wave-functions of fermions are anti-symmetric:

ψ(x1, . . . ,xn, t) = A〈x1, . . .xn|ψ(t)〉 , |x1, . . .xn〉A =
1

n!

∑
π∈Sn

sgn(π)
∣∣xπ(1), . . . ,xπ(n)

〉
.

(154)

They can be represented with a help of fermionic creation and annihilation operators b̂†x and b̂x,
which obey the anti-commutation rules

{b̂x, b̂y} = {b̂†x, b̂†y} = 0 , {b̂x, b̂†y} = δ(x− y) , b̂x |0〉 = 0 , 〈0|0〉 = 1. (155)

One then defines

|x1, . . .xn〉A ≡
1√
n!
b̂†x1

. . . b̂†xn |0〉 (156)

Note that (b̂†x)2 = 0 agrees with |. . . ,x, . . . ,x, . . .〉A = 0 (the Pauli exclusion principle).
The second-quantized Hamiltonian (for non-interacting fermionic systems) is constructed

analogously to Eq. (146):

Ĥ =

∫
d3x b̂†x

[
− ~2

2m
∆x + V (x)

]
b̂x =

∫
d3x d3y b̂†xb̂y

[
− ~2

2m
∆x + V (x)

]
δ(x− y). (157)

Problem 14. Show that the second-quantized Schrödinger equation

i~∂t |ψ(t)〉 = Ĥ |ψ(t)〉 (158)

leads to an n-particle (fermionic) Schrödinger equation

i~∂tψ(x1, . . . ,xn, t) = Hψ(x1, . . . ,xn, t) , H =

n∑
p=1

[
− ~2

2m
∆xp + V (xp)

]
. (159)

[Hint: Evaluate (and use) the commutator [b̂xp , b̂
†
xb̂y].]
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12 Quantization of the Klein-Gordon field

Let φ(x), x ≡ (xµ), be a one-component real scalar field described by the Klein-Gordon La-
grangian density

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2. (160)

Quantization consists in promoting phase-space functions (or rather functionals, in the case
field theory) to operators, and Poisson brackets to commutators:

[F̂ , Ĝ] = i~{̂F,G}. (161)

(In the following, we shall put ~ = 1, and omit the ‘hats’ on operators.) The canonical Poisson
brackets are then converted to the canonical (equal-time) commutation relations

[φ(x, t), π(y, t)] = i δ(x− y), (162)

and the Hamilton’s canonical equations to the Heisenberg equations of motion

φ̇ = −i[φ,H] , π̇ = −i[π,H], (163)

where the canonical momentum of the Klein-Gordon field and the (total) Hamiltonian are

π = φ̇ , H =

∫
d3x

(1

2
π2 +

1

2
(∇φ)2 +

m2

2
φ2
)
. (164)

Exercise 63. Show that the total-momentum operator (of the Klein-Gordon field) ,

Pj(t) =

∫
d3xπ(x, t) ∂jφ(x, t), (165)

satisfies the equation
[φ, Pj ] = i ∂jφ. (166)

Exercise 64. Show that the total-momentum operator Pk commutes with the Hamiltonian H
(and hence is time-independent).

Mode expansion of the quantized Klein-Gordon field, obtained by solving the Klein-Gordon
equation (∂µ∂

µ +m2)φ(x) = 0, reads

φ(x) =

∫
d3p

(2π)32ωp

(
a(p)e−ip·x + a†(p)eip·x

)
, p · x ≡ pµxµ , p0 = ωp =

√
p2 +m2.

(167)
Now, we wish to express the Hamiltonian H in terms of the ‘mode-amplitude’ creation and

annihilation operators a(p) and a†(p). Using the fact that H is time-independent, let us set
t = 0. We will proceed in several steps.

Exercise 65. Show that

H(φ) ≡
∫
d3x

m2

2
φ2 =

∫
d3p

(2π)3(2ωp)2

m2

2

(
a(p)a(−p) + a†(p)a†(−p) + a(p)a†(p) + a†(p)a(p)

)
.

(168)
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Problem 15. Show that

H(∇φ) ≡
∫
d3x

1

2
(∇φ)2 =

∫
d3p

(2π)3(2ωp)2

p2

2

(
a(p)a(−p)+a†(p)a†(−p)+a(p)a†(p)+a†(p)a(p)

)
.

(169)

Problem 16. Show that

H(π) ≡
∫
d3x

1

2
π2 =

∫
d3p

(2π)3(2ωp)2

ω2
p

2

(
− a(p)a(−p)− a†(p)a†(−p) + a(p)a†(p) + a†(p)a(p)

)
.

(170)

In total, we find

H = H(π) +H(∇φ) +H(φ) =
1

2

∑
p

(
a(p)a†(p) + a†(p)a(p)

)
,
∑
p

≡
∫

d3p

(2π)32ωp
. (171)

Problem 17. Expressing the creation and annihilation operators a(p) and a†(p) in terms of the
fields φ and π, show that

[a(p), a(p′)] = [a†(p), a†(p′)] = 0 , [a(p), a†(p′)] = δp,p′ , δp,p′ ≡ (2π)32ωpδ(p− p′).
(172)

12.1 Multicomponent field

Let Φ(x) = (φr(x))nr=1 be a multicomponent real scalar field (or, a multiplet of real scalar fields)
described by Lagrangian density

L =
∑
r

(
1

2
(∂µφr)(∂

µφr)−
1

2
m2φ2

r

)
. (173)

The canonical momenta and the canonical commutation relations are

πr = φ̇r , [φr(x, t), πs(y, t)] = i δrsδ(x− y) , [φr(x, t), φs(y, t)] = [πr(x, t), πs(y, t)] = 0.
(174)

The mode expansion reads

φr(x) =
∑
p

(
ar(p)e−ip·x + a†r(p)eip·x

)
, (175)

where
[ar(p), as(p

′)] = [a†r(p), a†s(p
′)] = 0 , [ar(p), a†s(p

′)] = δrsδp,p′ . (176)

A real two-component scalar field Φ = (φ1, φ2) is often presented as a one-component complex
scalar field

ϕ =
1√
2

(φ1 + iφ2) , ϕ∗ =
1√
2

(φ1 − iφ2). (177)

Exercise 66. Show that
L = (∂µϕ

∗)(∂µϕ)−m2ϕ∗ϕ (178)

is the Klein-Gordon Lagrangian density of a (classical) complex field ϕ.
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The mode expansion (175), and Eq. (177), yield for a complex field

ϕ(x) =
∑
p

(
a(p)e−ip·x + b†(p)eip·x

)
, a =

1√
2

(a1 + ia2) , b =
1√
2

(a1 − ia2). (179)

Exercise 67. Show that
[a(p), a†(p′)] = [b(p), b†(p′)] = δp,p′ (180)

while all other commutators between a, a†, b, b† are identically zero.

Exercise 68. By combining the Klein-Gordon equations for ϕ and ϕ† show that the current

Jµ(x) = i
(
ϕ†(x)∂µϕ(x)− ϕ(x)∂µϕ†(x)

)
(181)

satisfies the continuity equation
∂µJ

µ = 0. (182)

The continuity equation implies that the total-charge operator

Q = i

∫
d3x (ϕ†∂tϕ− ϕ∂tϕ†) (183)

is time-independent.

Problem 18. Show that the total-charge operator Q can be expressed with a help of the mode
expansion (179) as

Q = Na −Nb, (184)

where

Na =
∑
p

a†(p)a(p) , Nb =
∑
p

b†(p)b(p) ,
∑
p

≡
∫

d3p

(2π)32ωp
(185)

are the (total-)number operators for particle species a and b, respectively.

13 Quantization of the Dirac field

The Dirac field Ψ(x) is described by the Lagrangian density (recall Eq. (60))

L = Ψ̄(x)(iγµ∂µ −m)Ψ(x) = ψ̄α(x)(iγµ∂µ −m1)αβψβ(x) , α, β = 1, 2, 3, 4. (186)

Mode expansion of the quantized Dirac field (a general solution of the Dirac equation) reads

Ψ(x) =
∑
p

∑
λ

(
a(p, λ)u(p, λ)e−ip·x + b†(p, λ)v(p, λ)eip·x

)
, p0 = ωp =

√
p2 +m2, (187)

where λ ∈ {− 1
2 ,+

1
2} are two possible helicities, and the polarization spinors

u(p,± 1
2 ) =

√
p0 +m

(
χ±

σ·p
p0+mχ±

)
,

v(p,± 1
2 ) =

√
p0 +m

( σ·p
p0+mχ±
χ±

)
, χ+ =

(
1
0

)
, χ− =

(
0
1

)
, (188)
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satisfy

(γµpµ −m)u(p, λ) = 0,

(γµpµ +m)v(p, λ) = 0. (189)

The polarization spinors obey the following orthogonality relations:

ū(p, λ)u(p, λ′) = 2mδλλ′ , v̄(p, λ)v(p, λ′) = −2mδλλ′ ,

ū(p, λ)v(p, λ′) = 0 , v̄(p, λ)u(p, λ′) = 0,

ū(p, λ)γ0u(p, λ′) = 2ωpδλλ′ , v̄(p, λ)γ0v(p, λ′) = 2ωpδλλ′ . (190)

Exercise 69. Express the Dirac Hamiltonian

H =

∫
d3x(iΨ̄γj∂jΨ +mΨ̄Ψ) (191)

in terms of the mode amplitudes a, a†, b, b† as

H =
∑
p

∑
λ

ωp

(
a†(p, λ)a(p, λ)− b(p, λ)b†(p, λ)

)
. (192)

[Hint: Since H is independent of time, leave out time-dependent terms, and set t = 0. Make use
of relations (190).]

For fermionic creation and annihilation operators a†(p, λ), b†(p, λ) and a(p, λ), b(p, λ), the
following anticommutation relations are postulated:

{a(p, λ), a†(p, λ)} = δλλ′δp,p′ , {b(p, λ), b†(p, λ)} = δλλ′δp,p′ , δp,p′ ≡ (2π)32ωpδ(p− p′),
(193)

with all other anticommutators vanishing. Then, the Hamiltonian can be cast as

H =
∑
p

∑
λ

ωp

(
a†(p, λ)a(p, λ) + b†(p, λ)b(p, λ)

)
−
∑
p

2ωpδp,p, (194)

where the last term is the (negative) infinite vacuum energy.

Problem 19. Using the anticommutation relations (193), and the mode expansion of the Dirac
field, derive the canonical anticommutation relations

{ψα(x, t), πβ(y, t)} = iδαβδ(x− y) , {ψα(x, t), ψβ(y, t)} = {πα(x, t), πβ(y, t)} = 0. (195)

[Hint: Recall the spin sums
∑
λ u(p, λ)ū(p, λ) = γµpµ +m, and

∑
λ v(p, λ)v̄(p, λ) = γµpµ −m.]

The energy-momentum tensor, and the total four-momentum of the Dirac field read

Tµν(x) = iΨ̄(x)γµ∂νΨ(x) , Pν =

∫
d3xT 0

ν(x, t). (196)

Exercise 70. Show that for any constant four-vector a holds the infinitesimal relation

eiεPµa
µ

Ψ(x)e−iεPµa
µ

≈ Ψ(x) + εaµ∂µΨ(x), (197)

and then deduce the finite relation

eiPµa
µ

Ψ(x)e−iPµa
µ

= Ψ(x+ a). (198)
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The Dirac current, and total charge read

Jµ(x) = Ψ̄(x)γµΨ(x) , Q =

∫
d3xJ0(x, t). (199)

Exercise 71. Show that after normal ordering the total charge reads

: Q : =
∑
p

∑
λ

(
a†(p, λ)a(p, λ)− b†(p, λ)b(p, λ)

)
. (200)

14 Symmetries and conserved currents

Consider the Lagrangian density L (φr, ∂µφr) of a multicomponent real scalar field (φr(x))nr=1.
If

L (φr + δφr, ∂µφr + ∂µδφr) ≈ L (φr, ∂µφr), (201)

i.e., L is invariant under certain infinitesimal variation of the field δφr, then for solutions of the
equations of motion we have the continuity equation

∂µJ
µ = 0 , Jµ = − ∂L

∂(∂µφr)
δφr (202)

(r summed over). In particular, for internal symmetries generated by matrices Ta,

φ′r = (eiε
aTa)rsφs ≈ φr + iεa(Ta)rsφs, (203)

the conserved currents, and total charges are

Jaµ = −i ∂L

∂(∂µφr)
(Ta)rsφs , Qa = −i

∫
d3xπr(x, t)(Ta)rsφs(x, t), (204)

where πr are components of the canonical momentum.

Exercise 72. Show that
[φr(x), Qa] = (Ta)rsφs(x), (205)

and hence that for infinitesimal parameters εa,

(eiε
aTa)rsφs ≈ e−iε

aQaφr(x) eiε
aQa . (206)

(This result in fact holds also for finite transformations.)

Problem 20. Using canonical commutation relations show that if the symmetry generators form
a Lie algebra

[Ta,Tb] = icabcTc, (207)

then the total charges obey the same algebra:

[Qa, Qb] = icabcQc. (208)

Consider a field variation of the form φ′r(x) = φr(x) + ε(x)δ̄φ(x), where ε is infinitesimal,
and δ̄φ finite. If this is a global symmetry (i.e., L is invariant for constant ε(x) = ε), then the
first-order change of the Lagrangian density for local (non-constant) ε(x) is

δL = −(∂µε)J
µ , Jµ = − ∂L

∂(∂µφr)
δ̄φr. (209)
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Exercise 73. Consider a complex scalar field,

L = (∂µϕ
∗)(∂µϕ)−m2ϕ∗ϕ. (210)

Show that this Lagrangian density is invariant under global transformations ϕ′(x) = eiαϕ(x).
Then, localize this symmetry (i.e., consider a function α(x)), calculate δL , and infer the con-
served current.

Exercise 74. Repeat Exercise 73 for the Dirac Lagrangian

L = Ψ̄(iγµ∂µ −m)Ψ. (211)

Exercise 75. Calculate the energy-momentum tensor of the Dirac field.

Exercise 76. Consider a real one-component scalar field with (canonical) energy-momentum
tensor Tµν , and a Lorentz transformation L = exp

(
− i

4ωµνM
µν
)
. Verify the continuity equation

∂µ(Tµνa
ν) = 0 , aµ(x) = − i

4
(ωρσMρσ)µνx

ν , (212)

and determine 6 conserved currents corresponding to the 6 generators of the Lorentz group. (They
constitute the so-called angular momentum tensor.)

15 Pauli-Jordan function, contour integrals, and propaga-
tors

For a real one-component scalar field φ(x), the Pauli-Jordan commutation function is defined

∆(x− y) = −i[φ(x), φ(y)]. (213)

In momentum representation it assumes the form

∆(x) = i

∫
d3p

(2π)32ωp
(eip·x − e−ip·x). (214)

Exercise 77. Show that in position representation the Pauli-Jordan function reads

∆(x) =
sign(t)

2π

[
−δ(x2) +

m

2
√
x2
θ(x2)J1(m

√
x2)

]
, (215)

where J1 is the Bessel function.
[Hint: Formulas 3.714 and 8.473 from Ref. [2].]

Exercise 78. Verify, for n ∈ Z, the (complex) integral formula∮
C

(z − z0)ndz = 2πi δn,−1, (216)

where the contour C ⊂ C is a counter-clockwise circle around z0 ∈ C with radius R.

For a complex analytic function f , i.e, a function that can be expanded in a series

f(z) =

∞∑
n=0

fn(z − z0)n , fn =
1

n!

dnf

dzn
(z0) (217)
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around each point z0 of its domain, holds the Cauchy integral formula

1

2πi

∮
C

f(z)

z − z0
dz = f(z0), (218)

where C is a counter-clockwise closed contour in the domain of f encircling once the point z0.

Exercise 79. Using the Cauchy integral formula, verify the following integral representation of
the Heaviside step function:

θ(x) =
1

2πi

∫ +∞

−∞

eixτ

τ − iε
dτ =

{
1 for x > 0

0 for x < 0
, (219)

for ε→ 0+.

Problem 21. Employ the Cauchy integral formula to calculate the integral∫ +∞

−∞

1

x2 + 1
dx. (220)

Check your result by direct (real) integration.

The Feynman propagator of the Klein-Gordon field reads

i∆F (x) = 〈0|T [φ(x)φ(0)] |0〉 =
∑
p

(
θ(x0)e−ip·x + θ(−x0)eip·x

)
. (221)

Exercise 80. Use the integral representation of θ-function, Eq. (219), to show that

∆F (x) = i

∫
d4p

(2π)4

e−ip·x

p2 −m2 + iε
. (222)

The Feynman propagator of the Dirac field reads

i
(
SF (x)

)
αβ

= 〈0|T [ψα(x)ψ̄β(0)] |0〉 = i

∫
d4p

(2π)4

(/p+m1)αβ

p2 −m2 + iε
e−ip·x. (223)

Exercise 81. Show that under Lorentz transformations xµ′ = Lµνx
ν , the Dirac propagator

transforms as
S′F (x′) = S(L)SF (x)S(L)−1. (224)

16 Interacting fields and Wick theorem

Exercise 82. Prove the (Baker-Campbell-Hausdorff) formula

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂] (225)

for operators Â and B̂ commuting with [Â, B̂].

[Hint: First show that eαÂB̂e−αÂ = B̂ + α[Â, B̂].]

Exercise 83. For a C-number-valued function f(t) show that∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtn f(t1) . . . f(tn) =
1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn f(t1) . . . f(tn). (226)
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The evolution operator in interaction picture obeys the differential equation

∂tU(t, t0) = −i H̄I(t)U(t, t0) , U(t0, t0) = 1. (227)

Hence,

U(t, t0) = T exp

(
−i
∫ t

t0

dt′H̄I(t
′)

)
=

+∞∑
n=0

(−i)n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtnT [H̄I(t1) . . . H̄I(tn)]. (228)

Exercise 84. Show that the evolution operator U can be represented as

U(t, t0) = lim
n→∞

e−i∆tH̄I(tn−1) . . . e−i∆tH̄I(t1)e−i∆tH̄I(t0) , ∆t =
t− t0
n

= ti − ti−1 , tn = t,

(229)
and note the identity

U(t, t0) = U(t, t′)U(t′, t0). (230)

Exercise 85. Prove the identity

T exp

(
−i
∫
d4xJ(x)φ̂(x)

)
= : exp

(
−i
∫
d4xJ(x)φ̂(x)

)
:

× exp

(
−1

2

∫
d4xd4y J(x) 〈0|T [φ̂(x)φ̂(y)] |0〉 J(y)

)
, (231)

where J(x) is an arbitrary C-number-valued function.

Exercise 86. Using Formula (231), find an expansion of

〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)] |0〉 (232)

in terms of propagators 〈0|T [φ(x)φ(y)] |0〉. Represent the result graphically.

Problem 22. Using Formula (231), find an expansion of

〈0|T [φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)φ(x6)] |0〉 (233)

in terms of propagators 〈0|T [φ(x)φ(y)] |0〉. Represent the result graphically.

17 Functional integral

Exercise 87. (Fresnel integral) Show that

∫ +∞

−∞

dx√
2π

exp
(
i
a

2
x2
)

=


eiπ/4√
|a|

, a > 0

e−iπ/4√
|a|

, a < 0
. (234)

Exercise 88. For complex variable z = x+ iy (z∗ = x− iy), show that∫
C

dz∗dz

2πi
eia|z|

2

=
ei
π
2 sign(a)

|a|
. (235)

(Here, dz∗dz = (dx− idy) ∧ (dx+ idy) = 2i dxdy.)
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We shall omit the Morse index ei
π
2 sign(a) from now on.

Exercise 89. More generally, for b ∈ C show that∫
C

dz∗dz

2πi
eia|z|

2+ib∗z+ibz∗ =
1

|a|
e−i

|b|2
a . (236)

Problem 23. For generic N ∈ N, a non-singular N × N hermitian matrix A = (Aij), and a
complex vector (b1, . . . , bN ) show that∫

C

(
N∏
i=1

dz∗i dzi
2πi

)
exp (iz∗iAijzj + ib∗i zi + ibiz

∗
i ) =

1

|detA|
e−ib

∗
i (A−1)ijbj . (237)

In the continuum limit we introduce a complex field ϕ(x), complex source current J(x), an
integral kernel A(x, y), and make the replacements

zi = ϕ(xi)
√
ε4 , bi = J(xi)

√
ε4 , Aij = A(xi, xj) ε

4 (238)

in Eq. (237), where xi are spacetime points, and ε4 the spacetime volume element. In the limit
N →∞ we obtain the functional integral for a complex one-component scalar field,

lim
N→∞

∫
C

(
N∏
i=1

dϕ∗(xi)dϕ(xi) ε
4

2πi

)
×

× exp

i∑
i,j

ϕ∗(xi)A(xi, xj)ϕ(xj)(ε
4)2 + i

∑
i

J∗(xi)ϕ(xi) ε
4 + i

∑
i

J(xi)ϕ
∗(xi) ε

4


=

∫
Dϕ∗Dϕ exp

(
i

∫
d4xd4y ϕ∗(x)A(x, y)ϕ(y) + i

∫
d4x
(
J∗(x)ϕ(x) + J(x)ϕ∗(x)

))
=

1

|detA|
exp

(
−i
∫
d4xd4y J∗(x)G(x, y)J(y)

)
, (239)

where G is the operator inverse of A.

Exercise 90. Consider the action of a free complex Klein-Gordon field

S0[ϕ,ϕ∗] =

∫
d4x

(
(∂µϕ

∗)(∂µϕ)−m2ϕ∗ϕ
)
. (240)

Identify the operator A, and show that its operator inverse G is the Feynman propagator

∆F (x− y) = −i 〈0|T [ϕ̂(x)ϕ̂†(y)] |0〉 . (241)

Exercise 91. Derive the functional-integral representation of the normalized generating func-

tional Z[J,J∗]
Z[0,0] of an interacting complex scalar field theory.

[Hint: The Wick theorem generalizes for n-component fields (φr)
n
r=1 as

〈0|T [ei
∫
d4xJr(x)φ̂r(x)] |0〉 = e−

1
2

∫
d4xd4yJr(x)〈0|T [φ̂r(x)φ̂s(y)]|0〉Js(y), (242)

where summations over r and s are implicit.]
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18 Perturbative calculus

We consider a real one-component scalar field with cubic interaction described by the action

S[φ] = S0[φ] + SI [φ] =

∫
d4x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2

)
+

∫
d4x

(
− g

3!
φ3
)
. (243)

The normalized generating functional of the corresponding quantum field theory is given by

Z̃[J ] =
Z[J ]

Z[0]
=

∫
Dφ exp

(
iS[φ] + i

∫
d4xJ(x)φ(x)

)∫
Dφ exp (iS[φ])

=
exp

(
iSI [−i δδJ ]

) ∫
Dφ exp

(
iS0[φ] + i

∫
d4xJ(x)φ(x)

)
exp

(
iSI [−i δδJ ]

) ∫
Dφ exp

(
iS0[φ] + i

∫
d4xJ(x)φ(x)

)
|J=0

=
exp

(
−i
∫
d4x g3! (−i

δ
δJ(x) )3

)
exp

(
− i

2

∫
d4xd4yJ(x)∆F (x− y)J(y)

)
exp

(
−i
∫
d4x g3! (−i

δ
δJ(x) )3

)
exp

(
− i

2

∫
d4xd4yJ(x)∆F (x− y)J(y)

)
|J=0

. (244)

Exercise 92. Calculate the generating functional Z[J ] of the φ3 theory up to order g2. Represent
the result diagrammatically.

Problem 24. Based on the result of Exercise 92 calculate the normalized generating functional

Z̃[J ] = Z[J]
Z[0] of the φ3 theory up to order g2.

[Hint: Use diagrammatic representation.]

18.1 n-point functions

The n-point functions τ(x1, . . . , xn) ≡ 〈x1 . . . xn〉 of the full interacting theory can be calculated
from the generating functional:

〈x1 . . . xn〉 ≡
∫
Dφφ(x1) . . . φ(xn) eiS[φ]∫

Dφ eiS[φ]
= (−i)n δ

δJ(xn)
. . .

δ

δJ(x1)
Z̃[J ]

∣∣∣∣
J=0

. (245)

Exercise 93. Determine the 1-point and 2-point functions of the φ3-theory (Eq. (243)) up to
order g1.

Problem 25. Determine the 1-point and 2-point functions of the φ3-theory (Eq. (243)) up to
order g2.

Each Feynman diagram (for interactions of the form g
ηφ

k) is accompanied by a factor

1

S
=

r

m! ηm
(246)

where m is the number of vertices in the diagram. S is the symmetry factor, and r is the multiplic-
ity factor. Each vertex carries (implicitly) a factor −ig. Each edge (incl. loops) contributes i∆F .
Unlabelled vertices are automatically integrated over some arbitrarily chosen dummy variables.

Exercise 94. Obtain the results of Problem 25 using the Feynman rules. (Neglect the diagrams
containing vacuum bubbles.)

Exercise 95. Consider the scalar theory with interaction Lagrangian − g
k!φ

k. Show that the
diagrams containing vacuum bubbles do not contribute to n-point functions.
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18.2 Generating functional for connected diagrams

Define the functional W [J ] by the equation

Z̃[J ] = eiW [j] ↔ W [J ] = −i ln Z̃[J ]. (247)

Note that W [0] = 0. The coefficients

τ c(x1, . . . , xn) ≡ 〈x1 . . . xn〉c = (−i)n δ

δJ(xn)
. . .

δ

δJ(x1)
W [J ]

∣∣∣∣
J=0

(248)

of the expansion

W [J ] =

∞∑
n=1

in

n!

∫
d4x1 . . . d

4xn 〈x1 . . . xn〉cJ(x1) . . . J(xn) (249)

are referred to as the connected Green (or n-point) functions, as they contain only connected
Feynman diagrams.

Exercise 96. Calculate (by explicit differentiation) the connected 4-point function τ c(x1, x2, x3, x4)
in the theory with interaction λ

4!φ
4 up to order λ1. (Make use of the known results for 〈x1x2〉

and 〈x1x2x3x4〉.)

Problem 26. Use Feynman rules to determine the 2-point function 〈x1x2〉 in the theory with
interaction λ

4!φ
4 up to order λ2. (Explicitly calculate the symmetry factors.)

[Hint: Consider only connected diagrams. (Why?)]

18.3 Complex scalar field

Consider a one-component complex scalar field described by the action

S[ϕ,ϕ∗] =

∫
d4x

(
(∂µϕ

∗)(∂µϕ)−m2ϕ∗ϕ− λ

4
(ϕ∗ϕ)2

)
. (250)

Exercise 97. Determine symmetry factors of the following Feynman diagrams:

(a) (b) (c)

[Result: a) S = 1, b) S = 2, c) S = 8.]

19 Functional integral for fermions

19.1 Grassmann variables

Consider the symbols θi, i = 1, . . . , N , all mutually anticommuting:

∀i, j : θiθj = −θjθi (hence θ2
i = 0). (251)
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The (complex) Grassmann algebra is formed by all products and sums (i.e., polynomials) of the
θi’s with complex coefficients. It has 2N linearly independent elements

1 , θi , θiθj (i < j) , . . . , θ1θ2 . . . θN . (252)

The (formal) operations of differentiation and integration are defined

∂

∂θi
θj =

∫
dθi θj = δij . (253)

In addition, consider a set of independent Grassmann variables θ∗1 , . . . θ
∗
N , so that θi’s and

θ∗i ’s all mutually anticommute. The involution ‘ ∗ ’ maps θi to θ∗i , and vice versa, reverses the
order of Grassmann variables in products, and takes complex conjugation of scalar factors. For
example,

(iθ1θ
∗
2)∗ = −i(θ1θ

∗
2)∗ = −i(θ∗2)∗θ∗1 = −iθ2θ

∗
1 . (254)

Exercise 98. Show that, for an N ×N matrix A = (Aij),∫
dθNdθ

∗
N . . . dθ1dθ

∗
1 e

θ∗iAijθj = detA. (255)

Let us introduce two more independent sets of Grassmann variables ηi and η∗i , i = 1, . . . , N ,
to represent Schwinger sources. In total then we have 4N symbols θi, θ

∗
i , ηi, η

∗
i , all mutually

anticommuting.

Problem 27. Show that 1)∫
dθN . . . dθ1 e

1
2 θiAijθj+ηiθi =

√
detA e

1
2ηi(A

−1)ijηj , (256)

where A = (Aij) is a non-singular antisymmetric matrix N ×N . And 2)∫
dθNdθ

∗
N . . . dθ1dθ

∗
1 e

θ∗iAijθj+θ
∗
i ηi+η

∗
i θi = (detA) e−η

∗
i (A−1)ijηj , (257)

where A = (Aij) is a non-singular matrix N ×N .

[Hint: Make use of the formula
∫
dθN . . . dθ1 e

1
2 θiAijθj =

√
detA, and Eq. (255), respectively.]

19.2 Wick theorem for Dirac fermions

Exercise 99. Show that

T exp

(
i

∫
d4x η̄α(x)ψ̂α(x) + ˆ̄ψβ(x)ηβ(x)

)
= : exp

(
i

∫
d4x η̄α(x)ψ̂α(x) + ˆ̄ψβ(x)ηβ(x)

)
:

× exp

(
−
∫
d4xd4y η̄α(x) 〈0|T [ψ̂α(x) ˆ̄ψβ(y)] |0〉 ηβ(y)

)
,

(258)

Exercise 100. Express the 4-point function

〈0|T [ψ(x1)ψ(x2)ψ̄(x3)ψ̄(x4)] |0〉 (259)

(omitting hats, and hiding indices α1, . . . , α4) in terms of the free Dirac propagators

〈0|T [ψα(x)ψ̄β(y)] |0〉 = i
(
SF (x, y)

)
αβ
. (260)
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20 Yukawa theory

Exercise 101. Determine the vertex Feynman rule in the pseudoscalar Yukawa theory with
interaction Lagrangian LI = −igΨ̄γ5Ψφ.

21 Feynman rules in momentum space

Exercise 102. Write an analytic representation of the following Feynman diagram (including
the symmetry factor):

p1

p2

p3

p4

Exercise 103. Provide Feynman rules in momentum space for multicomponent scalar theory.

Problem 28. Provide Feynman rules in momentum space for the Yukawa theory.

22 Lehmann-Symanzik-Zimmermann formalism

We consider a one-component real scalar (self-interacting) field φ(x). The field-strength (or
wave-function) renormalization factor Z is defined

Z = | 〈Ω|φH(0) |1p=0〉 |2, (261)

where |1p=0〉 is the one-particle state with zero three-momentum.

Exercise 104. Show that Z = 1 for a free field.

The interacting correlation function can be cast as

〈Ω|φH(x)φH(y) |Ω〉 = Z iD+(x− y;m2) +

∫ +∞

M2
t

d(M2)σ(M2) iD+(x− y;M2), (262)

where iD+(x − y,m2) = 〈0|φ0(x)φ0(y) |0〉 is the free-field correlator, M2
t is the multiparticle

threshold, and σ(M2) is the spectral function.

Exercise 105. Show that the full 2-point function can be cast as

〈Ω|T [φH(x)φH(y)] |Ω〉 = Z i∆F (x− y;m2) +

∫ +∞

M2
t

d(M2)σ(M2) i∆F (x− y;M2), (263)

where i∆(x− y;M2) = 〈0|T [φ0(x)φ0(y)] |0〉 is the free 2-point function (and ∆F is the Feynman
propagator).

Exercise 106. Prove the following integral representation

f(z0) =
1

π

∫ +∞

c

Imf(s+ iε)

s− z0
ds+

n∑
k=1

Res(f ; zk)

z0 − zk
(264)
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for a complex function f holomorphic except for a branch cut (c,+∞), and simple poles at points
on the real line z1 < . . . < zn < c. (Assume that f(z) falls off sufficiently fast for z →∞.)
[Hint: Use the Cauchy integral theorem.]

Problem 29. Based on the result (264), find the wave-function renormalization factor Z and
the spectral function σ(M2) in terms of the momentum-space propagator τ(p).

23 Cross section

For a process “p1 + p2 → p3 + p4”, the Mandelstam variables (or invariants) are defined

s = (p1+p2)2 = (p3+p4)2 , t = (p1−p3)2 = (p2−p4)2 , u = (p1−p4)2 = (p2−p3)2. (265)

Exercise 107. Show that
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4, (266)

as a consequence of the total four-momentum conservation.

Exercise 108. For elastic scattering 1 + 2 → 3 + 4 (equal masses) derive the center-of-mass
differential cross section

dσtot
dΩ(pf )

=
1

64π2s
|Tfi|2. (267)

Problem 30. Generalize the formula (267) for the differential cross section dσtot
dΩ(pf ) of a scattering

process 1+2→ 3+4 to the case of generic (unequal) masses m1,m2,m3,m4 (inelastic scattering).
Hints: Work in c.m. frame, where p1 = −p2, and p3 = −p4.

Results: 1
64π2s

|p3|
|p1| |Tfi|

2

Exercise 109. Derive the formula for the differential decay rate of an unstable particle of mass
M (at rest) into two distinguishable particles of masses m1 and m2:

dΓ

dΩ(p)
=

|p|
32π2M2

|Tfi|2, (268)

where p is the momentum of one of the product particles.
Then, in the theory with LI = − g2 Φφ2, where Φ is a real scalar field with mass M , and φ is

a real scalar field with mass m, calculate the decay rate Γ of the process Φ → φφ in the lowest
order in perturbation theory.

Problem 31. Consider scattering of two nucleons n + n → n + n in a theory with interaction
Lagrangian

LI(ψ, ψ̄,Φ) = −gψ̄ψΦ. (269)

(Here ψ is a Dirac fermion field with mass m describing the nucleon, and Φ is a real scalar field
with mass M .) In order g2 calculate the (spin summed) transition probability∑

all spins

|Tfi|2 (270)

in the c.m. frame.
Hints: There are two Feynman diagrams contributing, and they come with relative minus sign
due to fermionic statistics. Use summation formulas for Dirac spinors, and trace identities for
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γ-matrices. Note that ū(. . .)u = Tr[u ū(. . .)].
Results: (s, t, u are Mandelstam variables)

4g4

[
(t− 4m2)2

(t−M2)2
+

(u− 4m2)2

(u−M2)2
− 1

2

(t− 4m2)2 + (u− 4m2)2 − (s− 4m2)2

(t−M2)(u−M2)

]
(271)

Problem 32. Consider the nucleon-antinucleon scattering process ϕϕ∗ → ϕϕ∗ in a theory with
interaction Lagrangian

LI(ϕ,ϕ
∗,Φ) = −gϕϕ∗Φ. (272)

(Here ϕ is a complex scalar field with mass m, and Φ is a real scalar field with mass M .) In
order g2 calculate the differential cross section

dσtot
dΩ

=
1

64π2s
|Tfi|2 , dΩ = sin θ dφdθ, (273)

and the total (integrated) cross section σtot in the c.m. frame. Determine σtot in the limit of
vanishing incident momentum p1.
Hints: There are two Feynman diagrams in order g2 describing the process. Assume no singu-
larities are hit by taking ε→ 0 in the propagators.
Results:

dσtot
dΩ

=
g4

64π2s

1

(s−M2)2

[
1− s−M2

2|p1|2(1− cos θ) +M2

]2

σtot =
g4

16πs(s−M2)2

[
1− s−M2

2|p1|2
ln

(
1 +

4|p1|2

M2

)
+

(s−M2)2

M2(M2 + 4|p1|2)

]
lim
|p1|→0

σtot =
g4

16πm2M4

(
M2 − 2m2

4m2 −M2

)2

(274)

Problem 33. Consider the scattering process ϕϕ∗ → Φ Φ in a theory with interaction La-
grangian

LI(ϕ,ϕ
∗,Φ) = −gϕϕ∗Φ. (275)

(Here ϕ is a complex scalar field with mass m, and Φ is a real scalar field with mass M .) In
order g2 calculate the differential cross section dσtot

dΩ and the total (integrated) cross section σtot
in the c.m. frame. Determine σtot in the limit of vanishing incident momentum p1.
Hints: There are two Feynman diagrams in order g2 describing the process. Assume no singu-
larities are hit by taking ε→ 0 in the propagators. Use the result of Problem 30.
Results: (p3 denotes the momentum after scattering.)

dσtot
dΩ

=
g4

32π2s

|p3|
|p1|

[
|p1|2 + |p3|2 +m2

(2|p1||p3| cos θ)2 − (|p1|2 + |p3|2 +m2)2

]2

σtot =
g4

16πs

|p3|
|p1|

 artanh
(

2|p1||p3|
|p1|2+|p3|2+m2

)
2|p1||p3|(|p1|2 + |p3|2 +m2)

− 1

(2|p1||p3|)2 − (|p1|2 + |p3|2 +m2)2


lim
|p1|→0

σtot = +∞ (276)

Problem 34. Consider the decay process Φ → ψ ψ̄ in a theory with interaction Lagrangian

LI(ψ, ψ̄,Φ) = −gψ̄ψΦ. (277)
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(Here ψ is a Dirac fermion field with mass m, and Φ is a real scalar field with mass M .) In
order g1 calculate the decay rate Γ for unpolarized decay products, i.e., sum over the spins of the
outgoing particles.
Hints: Use summation formulas for Dirac spinors, and trace identities for γ-matrices. Note that
ū(. . .)u = Tr[u ū(. . .)].

Results: g2M
8π

(
1− 4m2

M2

)3/2

Problem 35. Consider the decay process Φ → ψ ψ̄ in a theory with interaction Lagrangian

Lint(ψ, ψ̄,Φ) = −igψ̄γ5ψΦ. (278)

(Here ψ is a Dirac fermion field with mass m, and Φ is a real scalar field with mass M .) In
order g1 calculate the decay rate Γ for unpolarized decay products, i.e., sum over the spins of the
outgoing particles.
Hints: Use summation formulas for Dirac spinors, and trace identities for γ-matrices. Note that
ū(. . .)u = Tr[u ū(. . .)].

Results: g2M
8π

(
1− 4m2

M2

)1/2

Problem 36. Consider the scattering process ν + e→ ν + e (neutrino-electron scattering) in a
theory with interaction Lagrangian

LI(ψe, ψ̄e, ψν , ψ̄ν) = −g ψ̄νγµ(1− γ5)ψe ψ̄eγ
µ(1− γ5)ψν . (279)

(Here ψν is a Dirac fermion field describing neutrino with zero mass, and ψe is a Dirac fermion
field describing electron with mass m.) In order g1 calculate the (spin summed) transition prob-
ability ∑

all spins

|Tfi|2 (280)

in the c.m. frame.
Hints: Use summation formulas for Dirac spinors, and trace identities for γ-matrices. Note that
ū(. . .)u = Tr[u ū(. . .)].
Results: 64g2(s−m2)2 , where s denotes the Mandelstam variable

Problem 37. Consider the scattering process ν̄ + e → ν̄ + e (antineutrino-electron scattering)
in a theory with interaction Lagrangian

LI(ψe, ψ̄e, ψν , ψ̄ν) = −g ψ̄νγµ(1− γ5)ψe ψ̄eγ
µ(1− γ5)ψν .

(Here ψν is a Dirac fermion field describing neutrino with zero mass, and ψe is a Dirac fermion
field describing electron with mass m.) In order g1 calculate the (spin summed) transition prob-
ability ∑

all spins

|Tfi|2

in the c.m. frame.
Hints: Use summation formulas for Dirac spinors, and trace identities for γ-matrices. Note that
ū(. . .)u = Tr[u ū(. . .)].
Results: 64g2(u−m2)2 , where u denotes the Mandelstam variable
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