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Properties of Lie groups (some preliminaries)

The transformation laws of continuous groups (Lie groups) such
as rotation or Lorentz group are typically conveniently expressed
in an infinitesimal form. By combining successive infinitesimal
transformations it is always possible to reconstruct from these
the finite transformation laws. This is a consequence of the fact
that exponential function ¢* can always be obtained by a product
of many small-x approximations. In particular, consider ¢°®X ~
1+ 6aX, where & = @/N, N > 1. By taking successive applications
of N such infinitesimal transformations we obtain

1+aX/N)1+aX/N)x...x(1+aX/N) = (1+aX/N)V,

which in the limit of large N tends to e®X. This can also be extended
to more parameters ;. In such a case one should substitute X with
Y. @; X;. Here X; are the so-called group generators. The finite group
transformation is then given by L(a) = i ®*i. One can recover

the group generators from a generic group element L(a) by taking

JL(a) _ v.
T =X

When we pass from infinitesimal to finite transformation, the generic
group element will read

L, = (e—i'w“ww)p . (2.17)

T

We can find M*" by comparing expression (2.17) for [wu, | < 1 (W =
—wy,) with the infinitesimal form of L”; given by (2.14). This yields
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= 6p‘r + Tlp”TITunv = 5p'r + Enpﬂérv(a)uv - wv,u)

1
&+ E(UPH(S}; - 7o YWy - (2.18)
From this we have

(M™Y. = 2i (8% — P k) . (2.19)

2.3 Relativistic Wave Equations

A spinless relativistic particle can be described in terms of a scalar wave
function ¢(x, 7). This wave function cannot posses any internal index,
which would otherwise bear information about other degrees of free-
dom, such as spin. Relativistic particles satisfy the energy-momentum

dispersion relation
E = \m? + p2. (2.20)

In classical relativity we do not consider
negative sign in the dispersion relation.



10 2 Klein-Gordon equation

Klein-Gordon equation just reflects en-
ergy dispersion relation (similarly as
Schrodinger equation) so, all relativistic
wave functions should satisfy this equa-
tion.

Both positive and negative energy solu-
tions are relevant in relativistic quantum
theory!

Recall that p"* = (E, p) and that there exists a relativistic invariant given
by
Ppu = pi - p* = m?. (2.21)

In the formalism of first quantization, quantum mechanics is brought
about by identifying operators with dynamical quantities

0
-V, E — . 222
p =iV, E o is (222)

Applying this prescription to the relativistic invariant (2.21) we arrive
at the following equation

o 2 2
(‘ﬁ . v )¢(x> = (). (2.23)

From the fact that 9, = (%, V) we can equivalently rewrite this equa-

tion as
Mo = O¢ = —m*¢. (2.24)

Finally, we arrive at the relativistic wave equation known as the Klein-
Gordon equation, given by

(O + m®)¢(x) = 0. (2.25)

If we accept this equation and seek solution of a definite energy and
momentum, we get

¢(x) o« e—ipx — e—iEt-H'p-x — e—ip0x0+ip-x . (226)
Adopting d,¢ = —ip,¢ we get that J¢ = —p?¢ and then
(=p*+m?)¢ = 0. (2.27)

So if ¢ # 0 we have condition that p> = m? and hence

E = +p2+m?. (2.28)

Why can’t we directly quantize relativistic energy relation?

A question may rise, why can’t we directly quantize dispersion
relation w, = E, = +/p%+ m? using fact that p — —iV? To make
sense to such a function of operator we have to interpret it in terms
of its Taylor expansion:

2\2 2 4
= Jp2 e m? = P\ P _ P .
Hy = \p*+m _m(1+m2) =m+ o P +

Unfortunately, in this way we can not form covariant wave equa-
tion, i.e. if we formed a coordinate space representation of a state
vector |y), the resulting wave equation would have one time deriva-
tive and infinite series of increasing spatial derivatives. There is no
way to put time and space on an "equal footing". Nonetheless, let
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us go ahead and try to build a wave equation

9
iE<x|¢ﬁ(t)) = (x|Hp |y (1)) .

The matrix element <x|Hp |y/(2)) is proportional to the infinite sum
of (x|p"|u (1)) = (—i)" & oo (x[¢(¢)) terms. This in turn renders wave
function to be non-local, since it must reach further and further away
from the region near x in order to evaluate the time derivative.
Indeed, while the left-hand side can be written as

L, X+ AD) — (xly (@)
1m ’
At—0 At

a typical term on the right-hand side, i.e., term (- iy 6x" (x|y (1)) has
the form (for simplicity we consider x to be one-dimensional)

I, oy Z( >"( )<x+(——k)Ax|w(t>>

So, on the right-hand side we need all possible integer multiples
of Ax. Eventually, the causality will be violated for any spatially
localized function (x|y(z)) since for understanding physics in the
interval Ar we need to know physics in the interval Ax = kAx (k is
an arbitrary integer), which for sufficiently large k certainly satisfies
AxFAx, = (Ax%)? - (Ax)? < 0, i.e., we require space-like separated
events. Because of that we must abandon this approach and work
with square of Hp, (i.e., wf,) instead. This will remove the problem of
the square root, but will introduce a different problem — negative
energies. This will still prove to be more useful way to proceed.

Let us look at non-relativistic limit of Klein-Gordon equation. A mode
with E = m + & would oscillate in time as ¢ « ¢!, In the non-
relativistic regime & is much smaller than the rest mass m. We can
factor-out the fast-oscillating part of the ¢ away and rewrite it as

d(x) = p(x,1) = e p(x,1). (2.29)

Field ¢ is oscillating much more slowly that e~ in time. By inserting
this into the Klein-Gordon equation and using the fact that

0 —imt _ —imt | _ 2
e (-) = e ( lm+6t)( ), (2.30)

Here we use the so-called central differ-
ence relation for n-th derivative.

Here € = 2m +0(p*/md).
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2 Klein-Gordon equation

By the way, the Klein-Gordon equa-

tion was

actually discovered before

Schrodinger  equation by  Erwin
Schrodinger himself.

Here we use the well known property of
Dirac §-function, namely that 6(f(x)) =

O(x=x;

Zi TG

), where x; are roots of f.

we obtain

9 2 2
(E_V +m)¢(x)

5 [e_’m’ (—im + E) <p] — e M2 0(x, 1) + mPe” M p

_ e—imt (—im+ g) (—im+ %)(p—e‘_imtvzgp+m2€_imttp

2
e—imt [(_mZ _ zlm% + %) 0- Vz(p + m2¢p] =0. (231)

2
Dropping ?9—t‘§ as small compared to —imt‘g—‘f we find that

) 2

¢ ==

Er g (2.32)

which is nothing but the Schrodinger equation for a free particle.

Let us focus on general solution to the Klein-Gordon equation, ¢(x).
With the help of Fourier decomposition we can write

d4 L
6(x) = / s ). (2.33)

To find the solution we will solve the Klein-Gordon equation in mo-
mentum space, which yields

(P> -m*)d(p) = 0. (2.34)

Equations of this form are solved by the Dirac §-functions. In particular,
the solution in momentum space reads

F(p)o(p* —m?)
FP)5(po+ VP2 +m?) - f(p)(po - VP2 +m?)
W+ m? 2+ m?

Using this knowledge and denoting w, = +/p? + m?, we can write the
full solution as

(p)

. (2.35)

d4p 1 —ipx
00 = [ s PO o) + [P0 =)

14

Bp 1 o

(ZJTI)’:)’ g[e—lwpt-ﬂp-xf(wp’p) + elwptﬂp-xjc(_wp,p)]
14

dp 1 .

o 3 ) + Py, )l (236)
14 S~—— —

fp) 8(p)
Here p* = (wp, p).

So, we see that a general solution of the Klein—-Gordon equation is a
superposition of positive and negative energy eigenstate solutions.
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If we want to interpret ¢(x) as a wave function, we have to find a non-
negative norm, which is conserved by time evolution and is Lorentz
invariant. Let us define the norm of ¢(x) to be

¢ 0¢ (%) ¢} . (2.37)

9x0 |90

612 = (9l6) = i / L

This is, in a sense, a natural candidate for the norm. The naturalness
of this choice comes from the analogy with quantum mechanics —
continuity equation, which defines the probability density.

We know that each 4-current should have the form J, = (p,J) and
should be conserved (after equations of the motion are taken into
account), i.e., 0" J, = 0. To this end we consider the 4-current

T0) = 5 (80,0 @u0)°0] (2.38)

(factor 1/2m is only a convention that ensures a correct non-relativistic
limit, see Eq. (2.41)). Eq. (2.38) can be equivalently rewritten as

5 [6°V8 — (Vo) 9],
m

J(x)

PO = 50706 ~ (God)d] (2.39)

Let us now compute J,J* = 6" J,;:

The existence and explicit form of the

o ]u (x) =i [ay (‘p*au ¢)— ot (¢ay ¢*)] conserved currents will be discussed in
connection with Noether’s theorem in
= i[(3,0") O D) + ¢" P ~(3,9) (O P7) — pI* ¢ ] Section 27.
—— ——
-m¢’ o -m e
= 0. (2.40)

So, the current J, is conserved and can be used to prove time-inde-
pendence of the norm (as in ordinary quantum mechanics).

Current in non-relativistic limit

In non-relativistic limit, we assume that ¢(x) = e~ ¢(x, t) where
¢(x,1) is supposed to be a non relativistic wave function. By insert-
ing the aforementioned form of ¢(x) to the explicit form of J, we

obtain:
Ine(®) = 5=[¢'Ve=(Ve)'el,
PNR(X) = i [(=im)pe® + @*dop — (im)pe™ — (Boe)" ¢]

= S [-i2mpe’] = ppn (2.41)

Here we have neglected d;¢ in comparison to —im¢. Eq. (2.41) is
the well know form of Schrédinger’s conserved probability current
and charge (i.e., probability density).



