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Abstract

These notes serve as a concise reference for the tutorials of Quantum field theory 1 and
2 at FJFI CVUT. They contain short introductions, exercises, and problem assignments.
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1 Transformations in 3D

Exercise 1. Wave-function transforms under change of coordinates as scalar field: ' (x') =
Y(x). Probe invariance of the timeless Schrodinger equation

—%A—FV(w) —E|¢(x)=0 (1)

under a) rotations, b) translations. What conditions on the potential V(x) need to be met?

1.1 Rotation group SO(3)

Generators of rotations around axes z;, j = 1,2, 3, are the skew-symmetric matrices

0 0 0 00 -1 0 1 0
,={0 0 1| , To={0 0 0 ., Ty=[-1 0 0 (2)
0 -1 0 10 0 0 00

Finite rotation by an angle ¢ around the axis in direction of a unit vector 71, G = 1, is given
by the matrix
R(@) = e ®3)

Exercise 2. Show that R(Z) € SO(3) (the group of real 3 x 3 orthogonal matrices with det = 1).
[Hint: Use the identity det e® = ™4 ]

Exercise 3. Verify the identities
[Ti, Tj] = —&‘ijka. (4)

[Hint: Note that the matriz elements (T;) 1 = €45/

1.2 Group SU(2) and algebra su(2)
Lie group SU(2) is the set of matrices

SU@2)={UeC*? |U'=U! detU=1}. (5)
Lie algebra su(2) is the set of matrices
su(2) = {A € C?*? | AT = —A TrA = 0}. (6)

(So that e* € SU(2).) The Pauli matrices

A(io) () el h) "

give rise to a standard basis {%7 %, %} of su(2).
Exercise 4. Show that

a) (01)? = (0) = (0°)? =1

b) [of, 0] = 2ig; k0"

c){c%, 07} = 00! + olo’ = 2091 .

Exercise 5. Calculate the (Casimir) operators a) T;T; for algebra so(3), and b) %% for
algebra su(2). (Sum over j implied.)



Exercise 6. Fxpand ez%i% into a series to find

N

= (cos f)]I +i(sin =) - N E NI (8)

i

eﬁgaj”j

2 2
Exercise 7. Show that for infinitesimal transformations, |g] < 1,
U-j(e“’ﬂi)jkak = e%”iw"'akake—%(’j‘”7 9)
where (a1, as, a3) € R3.

Problem 1. Show that U(P) = e29°%i can be cast in the form

io3 /31;—[52 67;0_2,‘/61-0_3 B1 ;/32

U(g) = ¢’

and find relations between the parameters (1, @2, p3) and (b1, B2,7)-
[Hint: Use the result of Ezercise [6}]

; (10)

2 Lorentz transformations

Lorentz transformations L. are defined by the property
g;wLﬂpLUg = Ypo> (11)
where g, = g"” = diag(1l, —1,—1, —1) is the Minkowski metric.
Their exponential form reads

L= exp (= Jwnl) (Y, = 20008 - g6) (12

where wy, = —w,,,, M# = —M"#.

Exercise 8. Find explicit “tabular” form of the matriz (M) (the generator of boosts in
xt-direction).

Exercise 9. Verify the commutation relations of the Lorentz algebra so(1,3)

(M, MP7) = —=2i(g" MY = g MYP 4 6" MPP — g"O M), (13)

2.1 Klein-Gordon equation

Exercise 10. Show that the Klein-Gordon equation (h=c=1)

. 0
(0,0 +mp(x) =0 , x= 22" 2%2% |, 0,= B (14)
is invariant under Lorentz transformations z*' = L* xV.
Scalar product between two states is defined
(6.0) = [ ol 06— 6 00v°). (15)

Exercise 11. Show that (1, ¢) is time-independent
[Hint: Make use of the fact that ¥(x) and ¢(x) are solutions of the Klein-Gordon equation.]

Problem 2. Show that (¢, ¢) is relativistically invariant.
[Hint: Write (1, ¢) =i [ d*z(*0op — ¢ Dovp*)(2), and use 5(x°) = 9p0(z°).]



3 Dirac algebra of y-matrices

Dirac matrices v* are 4 x 4 matrices satisfying the anti-commutation relations

{77} = 29" (16)
In their standard (or Dirac) representation they have the form
I O : 0 o’ . ;
7= (@ 1[) =0°®1 , o= (w‘ %)) =iot ®o’. (17)

The tensor (or Kronecker) product A ® B, of an n x n’ matrix A, and an m x m’ matrix B,
is an (nm) x (n’m’) matrix defined by

ApB ... AB
AeB=| : : (18)
AnB ... A..B
The tensor product has following properties

1) (@A1+A2)B=0cA ;1 @B+A; B

2) AB)C=A® (BxC)

3) (in general) AQB#B®A

4) (A®B)(C®D)=(AC)® (BD)

5 AeB) '=A"'l@B!

6) (AB) =AT@B. (19)

Exercise 12. Verify that the matrices v* defined in Eq. satisfy Fq. .

Identities in the following exercises can be proven using the defining relations {y*,v"} = 2¢**1,
i.e., they hold in any representation of Dirac matrices.

Exercise 13. Show that:

1) =41 (20)
2) Y= (21)
3) Y =491 (22)
One defines the matrix 7° = i7%y1~4243, which in the standard representation reads
)= (? é) —o'®L (23)
Exercise 14. Show that v satisfies a) (v°)? =1, and b) y*v5 = —v5y* (anti-commutes with

all y-matrices).

Exercise 15. Verify the following ‘trace’ identities:

1) Tr(y#9") = 4g" (24)
2) Tr(y") =0 (25)
3) Tr(y#r...4F2mt) =0 (Vn) (26)
4) Tr(y°) =0 (27)
5) Tr(y9"9"77) = 4(¢""9"” — 9" 9" + ¢"7g""). (28)



Note that using the ‘slash’ notation p = +*p,, Eq. gives Tr(pg) = 4ptq,.

Exercise 16. Show that
det(p — ml) = det(p + ml), (29)
and deduce that matrices p == ml are singular for four-momenta satisfying p,p" = m2.

Note that if some matrices v* (e.g., the standard representation matrices) satisfy Eq. ,
then for a unitary matrix U,

{Uy"UT, Uy UT} = U{y#, 7" }JUT = U2¢" U = 29" (30)
That is, matrices ¥# = Uy*U' constitute another representation of the Dirac algebra.
Problem 3. The Weyl (or chiral) representation of y-matrices, vy, is obtained from the stan-
dard Dirac representation v, (Egs. and ), via the transformation

1
Y =UrpUT , U= \ﬁ(ﬂﬂw%v%) (31)

Determine the matrices V3, iy, Yy, Yoy and vy -

4 Lorentz group and spin representation
The Lorentz group
0(1,3) ={L e R** | g, L L", = gpo} (32)

has 4 connected components, which differ by detL = £1, and sign(L%) = 1.

The component with det L = +1 and sign(L%) = +1 (proper orthochronous transformations)
is denoted SOT(1,3), and its elements can be cast in the exponential form, Eq. (I2). One can
‘move’ between the various connected components with the help of parity (or spatial inversion)
P, and time reversal T:

P = diag(1,-1,-1,-1) , T =diag(-1,1,1,1). (33)

Denote ) 1
Ji:fijkwk : Ki:§M0i (34)

the rotation generators, and the boost generators, respectively. (In fact, J; = ¢T;, with T; defined
in Eq. (2).) It holds that

[Ji, 5] = deijnd,
K, K;] = —iesjndr,
[Ji, Kj] = iEiijk. (35)

In the following exercise the Lorentz algebra so(1,3) is split into two independent algebras
su(2).

Exercise 17. Introduce

1 _ 1
N = 5T +iKi) N&) = 5 i —iKs), (36)



and show that

NG NS) = NG,
() N7 =
Problem 4. Let
[Ag, Ap] = capcAe , a,bc=1,...,n (38)
be the commutation relations of a Lie algebra of matrices {A1,...,A,}. The adjoint representa-
tion (of this Lie algebra) is formed by the matrices
(Ca)bc = —Cqbc- (39)

Verify that the matrices C, obey the same commutation relations as the matrices A,. Determine
the adjoint representation of the algebra a) so(3), b) su(2).
[Hint: Use the Jacobi identity [[A,B],C] + [[C, A],B] + [[B,C],A] =0.]

4.1 Spin representation of Lorentz algebra

By the requirement of invariance of the Dirac equation under Lorentz transformations L, when
the Dirac wave-function transforms as

V(2" = S(L)¥(x), (40)
we obtain the condition
S(L)"'A"S(L) = LF5". (41)
Its infinitesimal form, for

7

LT JwuM®  S(D)~1- ﬁwwja“”, (42)
reads ; 1
210771 = 5 (g7 = g7Ph). (43)
Exercise 18. Show that .
o = S,y (44)

2
satisfies Fq. .

Exercise 19. Show that o*" = %[v“, Y] satisfy the commutation relations of the Lorentz algebra

(c¢f. Eq. (13))

[, UO‘B] = —2i(g“acr”ﬁ — gMBave 4 gVPohe — g”o‘a“ﬂ). (45)

4.2 Dirac field bilinears

Dirac wave-functions have 4 complex components,
€ C*. (46)

Apart from the usual Hermitian conjugation Ul (z) = (5 (x),¥5 (), 035 (x), ¥} (), we also define
the Dirac conjugation W(z) = ¥'(x)4°.



Exercise 20. Show that in the standard representation of y-matrices, Eq. , (as well as in
any unitarily equivalent representation) the Hermitian conjugation acts as follows:

1) (v =400 (47)
2) (o")F =~00"4° (48)
3) () =7 (49)

Exercise 21. Show that since ¥(x) transforms under Lorentz transformations according to
Eq. , its Dirac conjugate transforms as

U (2') = U(z)S(L)~ L. (50)

Exercise 22. Show that the expression

()", 7" ]¥(x) (51)

transforms as a (skew-symmetric) tensor field under Lorentz transformations.

[Hint: Recall Eq. ({41)).]

Exercise 23. Show that the expression
U(2)y"y° ¥ () (52)

transforms as a pseudovector field under Lorentz transformations.
[Hint: Use the identity Epwpo LF LV g LP, L5 = (det L) eqpys for the determinant of a matriz L.]

Problem 5. Show that the set of matrices
{1, 2%, 1" 770 9" 7 uw=01,23 (53)
is a basis of the vector space C** (4 x 4 complex matrices).
[Hint: Make use of the trace identities, Eqgs. , , and ]
5 Dirac equation and its solutions
The Dirac equation, and its Dirac-conjugated equation read
(V"0 —m)T =0 , (9, )iv* +m¥ = 0. (54)
Exercise 24. Verify that the axial current
I8 (x) = U(x)y" 0 () (55)

satisfies the equation -
0, JE = 2imUy° ¥ (56)

whenever ¥(x) is a solution of the Dirac equation.



5.1 Variational principle

In field theory, the equations of motion for an n-component field ¢, (x) follow from the stationary
action principle:

S[da(x) + 000 (2)] = S[da(®)] = 0S[¢a(x)] =0, S[pa(2)] = /d4xi’(¢a($)ﬁu¢a($))7 (57)

where & is the Lagrangian density, and where variations of the field d¢,(x) vanish on the
boundary. The equations of motion are then the corresponding Fuler-Lagrange equations

0¥ 0¥
Ol =—=——)—=—=0. 58
(o00) 50 o
Exercise 25. Consider the Lagrangian density
h2

iR
L, ¢%, 00, 0") = — 5 —(9;97)(0;4) + %(zp*atw —0") = Vi, )™y, (59)

Show that the stationary action principle for the action S[p,*] = [ Ld*x yields the Schrédinger
equation (and its complex conjugate) as its Euler-Lagrange equations.
[Hint: Regard v and ¥* as two independent fields.]

2m

Exercise 26. Consider the action

S[w, 9] = / 2 B () (v, — m) U (x)

- / 42 0o (@) (1970, — ML) aptp(@) . a,B=1,2,3,4, (60)

and show that the stationary action principle yields the Dirac equation and its Dirac conjugate.

5.2 Solutions of the Dirac equation

The Dirac equation is solved by harmonic waves
\I/Z(f)(x) = e~ Puy(p)  (positive energy), (61)
\I/fg_)(x) = 2" y(p)  (negative energy), (62)

where pg = /pip; + m? > 0, and the polarization spinors u(p) and v(p) are solutions of the
algebraic equations

(p—m)u(p) =0, (p+m)uv(p) =0. (63)

Exercise 27. Working in the standard representation of y-matrices, show that the equation

(p—m)u(p) =0 , E=po=/pipi +m? (64)

has 2 linearly independent solutions, and they can be cast as

(k) =)0

Analogously, equation (p +m)v(p) = 0 has 2 linearly independent solutions

= (%) ()0

[Hint: Note that (p —m)(p +m)w =0 for any w € C*.]




Problem 6. Write massless (m = 0) Dirac equation explicitly in the standard representation of
v-matrices, and find similarity with the Mazwell equations of electrodynamics.
[Hint: Problem 3 in Ref. [1].]

5.3 Lorentz transformations of Dirac wave-functions

Recall the fundamental representation, and the spin representation of the Lorentz group:

L =exp <;wWM’“’> , S(L)=-exp (iwwa””> . (67)

Similarly to the rotation and boost generators in the fundamental representation, Eq. , the
rotation and boost generators in the spin representation are, respectively,

1 . , .
= §5ijk0]k . oV =g, (68)

A rotation S(R) in the spin representation can be specified by 3 parameters 61, 62,05 (w;r =
€ijkbi, woi = 0) as - v
S(R) = e~ 5w’ = ¢=20:%, (69)

Problem 7. Show that the identity
S(L)'"S(L) = L' 2", (70)

when specialized to rotations S(R), reduces to Eq. @D _
[Hint: Use the standard representation of y-matrices, where £t =1® o*.]

Exercise 28. Consider a boost in the x'-direction by velocity 3. This Lorentz transformation is
described by the matrix

v =8 0 0 cosh( —sinh¢ 0 0

|- v 0 0] |—-sinh{ cosh¢ 0 O
LiO=1 0o 0o 10|~ 0 0 1 o]’ (71)

0 0 01 0 0 0 1

where v = \/1 — 32, and ¢ is the rapidity of the boost. Cast IL in an exponential form to find
the corresponding generator.

Exercise 29. By composing two boosts in the x'-direction, with rapidities (1 and (, respectively,
derive the relativistic formula for the addition of velocities.

[Hint: Use the identities for hyperbolic functions: sinh({; + (2) = sinh (3 cosh {5 + sinh (5 cosh (3,
and cosh(¢y + ¢2) = cosh {; cosh (o 4 sinh ¢ sinh 5./

5.4 Matrix exponentials

The exponential of a matrix A is defined by the series
o] A”
eh=> = (72)

n!
n=0

10



The rule eA+® = eeB holds true when [A,B] = 0, but otherwise one has to use the Baker-
Campbell-Hausdorff formula in one of the variants

1
ME — ABo—FIABl
1
eheP — ABHIIABI. (73)
where ‘. . ., denotes terms Wlth ever more nested commutators.

Exercise 30. Take

0 1 0 0
a=(3 o) - B=(30). (74)
and calculate a) 2B, b) eteB) c) [A,B].

Suppose A(a) is matrix-valued function of a. What is the derivative of ¢*(®)? The general
formula reads

d Ao) _ ! ,\A(a)dA(a) (1=XN)A(a)
7ot _/0 e 1o ¢ dA, (75)

whic)h reduces to a simple form L eA(®) = %e‘&(a) when [A(a), A(a’)] =0 (e.g., when A(a) =
OZAO .

Exercise 31. Take
1 o
a)= (o 5)- (76)

and calculate:

a) the explicit form of e
b) the derivative of the result of a),
bt A,

A(a)’

¢) the expression
d) the derivative of e*(®) via Eq. (75).

5.5 Helicity

The helicity operator h, defined
_1¥-p

=27l (77)
measures the spin projection into the direction of particle’s motion.
Exercise 32. Show that (2h)? = L.
Exercise 33. Show that the helicity operator h commutes with the Dirac Hamiltonian
Hp = —7"yp;j +m~°. (78)
The helicity projectors are defined
P = %(]I +2n) , P9 = %(]1 —2h). (79)
For any wave-function ¥ then
h(PHW) = %P(H\If . h(POw) = %PH\IJ. (80)

11



5.6 Chirality

Define the operators

PR=H+275 ; PLZH_2757 (81)
so that Pp + P =1L
Exercise 34. Show that Pr and Py, are orthogonal projectors, i.e.,
1) PrPp,=P,Pr=0 (82)
2) PA=Pp, PP=Pp. (83)
[Hint: (v°)? = 1.]
A Dirac wave-function ¥ can be decomposed using the (chiral) projectors as
U=Up+0, | LIJR:H“L;E)\IJ , \IlL:H_275\I/, (84)
where U and Uy, are eigenstates of the chirality operator +°:
VYUR=Vp , 70, =-VL (85)

Exercise 35. Show that (for all 4 cases) [P*), Pr ] = 0.

Exercise 36. Consider the Dirac spinor u(p) in the massless case (m = 0). Calculate the
helicity of chiral-projected states ur = Pru(p), and uy, = Pru(p).

[Hint: Show that ¥t = %%+ and use the massless Dirac equation Ypuu(p) =0.]

[Result: hur = %uR, hur, = —%uL./

5.7 Discrete transformations of Dirac fields

Parity (or space reflection) is the Lorentz transformation

ot ot = (t,—x) , Lp=diag(l,-1,-1,-1) , det(Lp)=—1. (86)

Exercise 37. Find a spin representation S(Lp) of the parity transformation.
[Hint: Solve the equation S(Lp)~t4*S(Lp) = (Lp)*~".]

The Dirac wave-function transforms under parity as
Up(t,x) =~v"U(t, —x). (87)
Time reversal (or time inversion) is the Lorentz transformation
o' — o = (—t,x) , Lp=dag(-1,1,1,1) , det(Ly)=—1. (88)
The Dirac wave-function transforms under time reversal as

Ur(t,x) = iy 3 0% (—t, x). (89)

N[ =

Problem 8. Dirac wave-function is propagating in x°>-direction with helicity

p= (07 O>p)'
(90)

U(t,x)=e P uy(p) , uylp) = m( "‘>1<’+X ) vX+ T <1>

E+m At 0

What is the corresponding wave-function after time inversion?

12



Charge conjugation is the transformation, which reverses sign of the electric charge (in the
Dirac equation minimally coupled to an electromagnetic field). The Dirac wave-function trans-
forms under charge conjugation as

Vo(z) = in"y* 07 (2) = —iy* V" (). (91)

Exercise 38. What is the result of the CPT transformation ¥ — Veopr = (Yo)p)r?

6 Dirac particle in electromagnetic field

Dirac particle with charge ¢ (minimally) coupled to an electromagnetic field with four-potential
A, is described the equation

(v, —m)¥(x) =0 , II, =10, — qA,. (92)

Problem 9. Assuming stationary states of the form

Wﬁmﬁuﬂm(ﬁ3>, (93)

show that Eq. reduces for A* = (0,0, Bx,0) (i.e., for zero electric field and constant magnetic
field in the z-direction) to

(B? = m*)p(x) = (p° + ¢°B*2® — 2qBx py — ¢Bo®)p(xX) . Poys= —0sys  (94)

[Hint: Work in the standard representation of v-matrices, and eliminate x(x) from the pair of

equations following from FEq. /

Exercise 39. Consider the ansatz p(x) = ¢ Pvv+P=2) f(x), and show that Eq. reduces to
d2

- de?

E? —m? — p?
+f a=——" P , €

_ qBx — py
qB '

VaB

Argue that this equation has bounded solutions for a + a = 2n + 1, a = £1, and hence that the
energy levels of a relativistic particle in constant magnetic field are (in full units)

(a+0®)f=( (95)

E = (£)y/m2ch + p2c2 + he2qB(2n + 1 — a). (96)

Exercise 40. What is the non-relativistic expansion of the result ?

7 Dirac particle in central potential

Dirac particle with charge ¢ in central electric field with potential V(r) = ¢¢(r) (and zero
magnetic field) is described by the equation

i0:¥(t,x) = HpVU(t,x) , Hp=a-p+mps+V(r). (97)

where, in the standard representation,

g

, . i : I
oﬂzvov’=(©i ?O)zol@az ; 5570=<@ (O)H):O’S@]I- (98)

13



Exercise 41. Show that the operator of total (i.e., orbital plus spin) angular momentum

Jr=L+5E, LU= eipt’ P = eijpal (<idy) , B = (00 0(.)1> =Ied (99)

commutes with the Dirac Hamiltonian Hp.

Problem 10. Show that 1
[Hp, % - J] = §[HD,3]~ (100)

Hence, the operator
1
KEBZ-J—§B=B(E~L+1) (101)
commutes with the Hamiltonian Hp.
Exercise 42. Show that the operator K commutes with J.

Exercise 43. Show that K2 = J? + %.

In summary, the operators
HD7 K7 J27 J3 (102)

all mutually commute, and so one can construct their simultaneous eigenfunctions.

8 Variational calculus
Recall that for a function of n variables
R =R | (ur,...,up) = flur,...,up), (103)

the partial derivative, with respect to the k-th variable, is defined

0 .1
an; :gl_r)%g(f(ula-u»uk—l,uk+5auk+1a~-~7un) *f(ulwu,un))
1
:ilg%g(f(umLséik)ff(ui)). (104)

A functional
F-M—>R |, ¢—F[p , ¢:z— ¢(x), (105)

attributes a number to each function ¢ € M (for us, typically, ¢(z) will be fields defined on
the Minkowski spacetime). In analogy with the partial derivative, the functional (or wvaria-
tional) derivative of a functional F, with respect to variations at a spacetime point zg, is defined
(somewhat formally)

" =ty L (Flota) + 6(e — )] — Flo(@)])- (106

So(wg) =0

Then, for a variation of the functional F' we may write

5F = Flp+6¢] — Flg] ~ 5;{;)@(@ da. (107)

14



Exercise 44. Using the definition (106]), calculate the functional derivative Mf(il;o) for the func-

tional:
/ o (108)
2) Flo]= (109)

3) = exp (/f ) . (110)

In point 3), calculate the functional derivative also using a generalization of the composite func-
tion differentiation theorem, and the result of 1).

We note the following properties of functional derivatives:

D ey (a@Fl6) + Glol) = ale) s + 50 (1)
) 55 (FIIG1)) = 55 Glol+ Plolz (112)
3 5o /) = G ges L SRR (113
Exercise 45. Derive the field-theoretic FEuler-Lagrange equations for the action
_ / 2L(6(x),,0(x), x) d'a. (114)
[Hint: Calculate %, and set equal to zero.]
Exercise 46. Calculate the functional derivative 6w(z for the entropy functional
Slw] = —k/w(:c) In w(zx) dz. (115)
Exercise 47. Derive (one half of ) the vacuum Mazwell equations from the action
S[A,] = —i /FWFW d*z , F,,=0,A, —0,A,, (116)

where Fy,, is the Faraday tensor, and A, is the four-potential of the electromagnetic field. Show

that the second half of the Mazwell equations is a (trivial) consequence of the definition of Fy,,.

[Hint: Use the Euler-Lagrange equations O (8(3%2 )) gj’p =0./

9 Lagrangian and Hamiltonian formalism of classical field
theory

Consider a one-dimensional infinite chain of masses m, connected via springs with spring constant
k. The Lagrangian of this system is

. m . K
L(Qan) = Z 5‘1721 - Z §(Qn+1 - qn)2 ) ne Za (117)

n n

where ¢,, denotes the displacement of the n-th mass point from its equilibrium position.

15



Exercise 48. For the system described by Eq. (117)), write the Euler-Lagrange equations of
motion. Moreover, derive the Hamiltonian, and write the Hamilton’s canonical equations. (Make
use of the Poisson brackets.)

We introduce the displacement field ¢(na,t) = ¢,(t), where a is the distance between two
neighbouring equilibrium positions. In the (continuum) limit ¢ — 0, with the density p = m/a
and the tension T' = ka kept fixed, the Lagrangian (117) takes the form

Llo(a),d(a)) = [ L(6(0).60), 0@ do . 2(6.010,0.0) = §@10)* = (@0 (119

where .Z is the Lagrangian density corresponding to the continuum Lagrangian L.

Exercise 49. Show that the (variational) Euler-Lagrange equations for a continuum Lagrangian
L[, ¢] reduce to field-theoretic Euler-Lagrange equations for the corresponding Lagrangian den-
sity L(¢, 019, 0x¢). Find these equations for the system (a string) described in Eq. (118]).

From now on, let us consider (up to) three spatial dimensions. In the continuum limit, the
canonical momentum field is defined

m(z) = —— = 2= (119)

and the Hamiltonian reads

Hlp(x), m(z)] =/7T(€C)¢5(w) d’x — Lp(x /J"f ,050(x)) d*x,  (120)

with
H(p,m,0;¢) =70 — L (9,0:0,0;0) (121)

the corresponding Hamiltonian density.

Exercise 50. Calculate the canonical momentum field w, the Hamiltonian density €, and the
continuum Hamiltonian H for the string described by Eq. (118)).

The field-theoretic Poisson bracket of two functionals F[¢(x), 7(x)] and G[p(x), 7w (x)] is de-

fined
[ (OF G 6G_ oF
(r6)= [d (wuwmw 6wwhw0' (122)

Exercise 51. Calculate the Poisson brackets between functionals

Fylg.n] = ¢(y) and Gy (¢, 7] =n(y’). (123)
Problem 11. Consider the Lagrangian density of a one-component real Klein-Gordon field ¢(x),

2(6,0,0) = 5(0u0)(0"0) — g’ . = (") (124)

and derive the corresponding Euler-Lagrange equation. Show that the same equation is obtained
by passing to the Hamiltonian formalism, and combining the ensuing (field-theoretic) Hamilton’s
canonical equations.

[Hint: Use the Poisson-bracket formulation

o(t,y) ={o(t,y), H , #(t,y)={n(t,y),H} (125)

of the canonical equations.]
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9.1 Energy-momentum tensor

Suppose the Lagrangian density .Z does not explicitly depend on the spacetime point x. For
®(x) = (¢r(x))_, a solution of the (Euler-Lagrange) equations of motion we find by differenti-
ation:

0 0% 0% 0L
W$(¢r(x)7 8u¢r(x)) = au(ﬁr% + 8M(al/¢r)m = a}t (8V¢T<W> . (126)
Subtracting the left-hand side from the right, we find the continuity equations
0L
0,Th =0 , ThH =0, —F——— — 32, 127
[ 2 2 ¢ a(aﬂgbr) ( )

where T}, is the (canonical) energy-momentum tensor.
Note that T = # is the Hamiltonian (or, energy) density of the field.
Writing 9, T", = 0,T°% + 8;T",, and integrating (for a fixed time ¢) over the space R?, we find

6t/d3xT°V = —/d% oT, = —/d2EiTil, =0, (128)
that is, the total four-momentum of the field
P, = /d%TOV (129)

is constant in time, P¥ = (H, P).

Exercise 52. Show that the energy-momentum tensor of a one-component Klein-Gordon field
reads

1
T/w = a/l.(rb 0v — g/wi(apd) 0’9 — m2¢2)~ (130)

In particular, find the energy density T%, and the momentum density TC,.
[Hint: Use the Lagrangian density in Eq. (124).]

Exercise 53. Find the canonical energy-momentum tensor Tﬁian) of the electromagnetic field
with Lagrangian density (116). Note that it is not symmetric in p <> v, and show that it can be
augmented by the term (0, A,)F,” without affecting the continuity equations (127)), thus arriving
at

1
T[Ef/ym) = FIJ«PFPV + Zg,LLVFpo'FpU7 (131)

the symmetric energy-momentum tensor of the electromagnetic field.

[Hint: Use the electromagnetic Lagrangian of Eq. (116])./

Generally covariant form of an action S[¢,] = [ £ (¢,0,¢)d*x is

S[brsgu] = / Ly e, GV gz, g = det(gu). (132)

The Hilbert energy-momentum tensor is defined

g9

(133)
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Problem 12. Show that

0.
(H) _
T =25

[Hint: Analyse partial derivatives 69% of the determinant det(g,,) = W.]

- g,uuf~ (134)

Exercise 54. Calculate the Hilbert energy-momentum tensor for:
a) the Klein-Gordon field
b) the electromagnetic field.

9.2 Normal modes

Exercise 55. Consider the Lagrangian (117) of an infinite chain, and solve the equations of
motion by the method of modes. Show that the general solution reads

@ ) . /2
qn(t) _ / dk (ake—z(wkt—kan) + azez(wkt—kan)) . W= gwl — Cos(]ga)7 (135)

jus
a

where ay, € C are constant amplitudes. Perform the continuum limit a — 0.

10 Quantum field theory preliminaries

Exercise 56. Show that (for a > 0)

+o0 —a
/ §(z% — a*)¢(x) dx = $la) + i ) (136)

—oo
[Hint: Rewrite as two integrals f0+oo, and substitute x? = y./

For a generic function g(x), if x; denote all the points of g at which g(x;) = 0 (and provided
¢'(2:) #0), then
oz — x;)
o(g(@)) = D = (137)
Ei: g’ ()]
Exercise 57. Show that formula (137)) correctly reproduces the results:

a) 0(ax) = ﬁé(aj)

b) 6(z® — a?) = 5=6(x —a) + % 0(z + a).
We also note that for a multidimensional §-function, and a constant matrix A,

1

| det A

S(A(Z — o)) (T — 7). (138)

Exercise 58. Show that the expression

2wpd@(p—q) , wp =P +m? (139)

s Lorentz invariant.
[Hint: Consider boosts along the x3-axis.]

Exercise 59. Show that for ladder operators a and a', [a,a'] = 1, and a ‘vacuum’ state |0), for
which 0|0y =1, and @ |0) = 0, the following identity holds:

0la™(@H™|0) = n!6pm  (Vn,m € Np). (140)

[Hint: Show (and use) the identity e gexd! = G4 q, Vo € R./
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11 Quantum-field-theoretical formulation of many-body non-
relativistic quantum mechanics

Let us consider a system of n indistinguishable bosonic particles described by the non-relativistic
Schrodinger equation

. . h?
ihoup (e, ..., xpn,t) = HY(x1, ..., xn,t) , H= T; [_QmA“’p + V(:cp)] , (141)

with external (one-body) potential V' (z).
The wave-function is assumed to be symmetrized,

1
W@y, .. T, t) =5 @y, |(t)) oy, ) = — D Ba(rys o Ty - (142)
TES,

The field-theoretic description of this system starts with the introduction of (abstract) cre-
ation and annihilation operators af, and a,, (V& € R®), and the (abstract) vacuum state |0), with
the properties

[dmady] = [&L’d:{/] =0, [dm&L] = 6(:1: - y) ,  ag |0> =0, <O|O> =1 (143)

Exercise 60. Argue that one may identify
|y, .. 2, = —=ak ...al |0) (144)
by showing that

1. . N
] (0| g, - - .amlaL1 oy |0) = Xy, Ty, Yn)® (145)
(Consider only casesn =1 and 2.)

If we define the second-quantized Hamiltonian

h2
= 3 at B — Q
28 /d zal [ QmAm +V(x)| ag. (146)

then the second-quantized Schrédinger equation

ihdy [ (1)) = H [(t)) (147)
encapsulates n-particle Schrédinger equations (141)) for all n.
Exercise 61. Show that Eq. (147)) reduces to Fq. (141) when multiplied from the left by
1

7 0] g, - .- iy, (148)

Time-dependent quantum field gfg(w, t) is defined as the Heisenberg picture of the operators
dm: . ~ . ~ . A~ . ~
b, t) = e Haze wtH  Gf (1) = ent gl et (149)
Exercise 62. What are the equal-time commutation relations of the quantum fields gZA> and éT,
and what dynamical equation do these fields satisfy?
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11.1 Two-body interaction

We now include a two-body interaction between the particles in the form of an interaction
Hamiltonian

1
Hine = 5 > Va(m, — ). (150)
p#q
The second-quantized form of the interaction Hamiltonian is
N 1 e A
Hi = 3 /d3x d3y LaLVg(ac — Y)ylq. (151)
Problem 13. Show that
1 . .
— (0] ag,, ... G, Hint |V(t)) = Hippth(21, . . ., @y, t), (152)

Vn!

and hence that the second-quantized Schrédinger equation
ihd, [ () = (H + Hint) [9(2)) (153)

describes a non-relativistic quantum-mechanical system of an arbitrary number of interacting
indistinguishable bosons.

11.2 Fermionic systems

Wave-functions of fermions are anti-symmetric:

1
Voo t) = A w 0] L e w)t = S Y sl [ )
’ TES,
(154)

They can be represented with a help of fermionic creation and annihilation operators BL and by,
which obey the anti-commutation rules

{bo by}t = {bL, 0} =0 | {bg,b}} =d(x—y) , ba[0)=0 , (0]0)=1. (155)

x Yy
One then defines

1 . R
Ty, )t = ﬁble ...b% 10) (156)

Note that (bf,)% = 0 agrees with |...,,...,x,...)* =0 (the Pauli exclusion principle).
The second-quantized Hamiltonian (for non-interacting fermionic systems) is constructed
analogously to Eq. (146):

. . h2 . R h?
H /d xbl, [ QmAm +V(a:)} e /d xd’ybl b,y [ QmAm +V(m)} dx—y). (157)
Problem 14. Show that the second-quantized Schrodinger equation

ihd; (1)) = H [¥(t)) (158)

leads to an n-particle (fermionic) Schrédinger equation

ih&tw(ml,...,wn,t):Hw(xl,...,mn,t) N H =

n
p=

1 [_;A% + V(wp)] . (159)

[Hint: Evaluate (and use) the commutator [l;mp, blby].]
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12 Quantization of the Klein-Gordon field

Let ¢(z), © = (a*), be a one-component real scalar field described by the Klein-Gordon La-
grangian density

£ = 5(0,6)(0"6) - 3. (160

Quantization consists in promoting phase-space functions (or rather functionals, in the case
field theory) to operators, and Poisson brackets to commutators:

[F,G] = in{F, G}. (161)

(In the following, we shall put i = 1, and omit the ‘hats’ on operators.) The canonical Poisson
brackets are then converted to the canonical (equal-time) commutation relations

[¢(x, 1), 7(y,t)] = id(x —y), (162)
and the Hamilton’s canonical equations to the Heisenberg equations of motion
b =—il¢,H) , 7= —ilr, H], (163)

where the canonical momentum of the Klein-Gordon field and the (total) Hamiltonian are
f s (Lo 1 2, M
r=¢ , H= dx(iﬂ +§(V¢)+7¢). (164)
Exercise 63. Show that the total-momentum operator (of the Klein-Gordon field)

Py(t) = / B m(a,t) 00, b), (165)

satisfies the equation
(¢, P;] = 10;¢. (166)

Exercise 64. Show that the total-momentum operator P, commutes with the Hamiltonian H
(and hence is time-independent).

Mode expansion of the quantized Klein-Gordon field, obtained by solving the Klein-Gordon
equation (9,0" + m?)¢(z) = 0, reads

d3 —ip-x ip-x L
(b(x):/(%)%(“(l’)e Pral(p)e™) L pra=pat L po=wp= VPR T me.
p
(167)

Now, we wish to express the Hamiltonian H in terms of the ‘mode-amplitude’ creation and
annihilation operators a(p) and af(p). Using the fact that H is time-independent, let us set
t = 0. We will proceed in several steps.

Exercise 65. Show that

2

_ m? d3p m
HO = [ @~ | Ww2(a(p)a(—p)+aT<p>a*<—p>+a<p>a*<p>+af<p>aga2).

21



Problem 15. Show that

19 = [#2 5902 = [ it (ap)al-p)+al (o)l (~p)+o(p)e! (p)+a (Pap)).

Problem 16. Show that

3 w2
1 = [dtr gt = [ ot 2 (alp)al=p)—o! ()’ () +a(p)a'(p) +a (Pa(p)).

In total, we find
H=H™ +7aV 1 g = lz (a(p)aT(p) + aT(p)a(p)) Z = /d3p . (171)
2 ’ = (2m)32wp
Problem 17. Expressing the creation and annihilation operators a(p) and a’(p) in terms of the
fields ¢ and w, show that

[a(p), a(P)] = [a' (p),a’ (@) =0 , [a(P),a'(®)] = 0pp  Opp =(2m)*2pd(p —p').
(172)

12.1 Multicomponent field

Let ®(z) = (¢(x))r_; be a multicomponent real scalar field (or, a multiplet of real scalar fields)
described by Lagrangian density

1
&= Z ( (80 ) (8" ) — 2m2¢3> . (173)
The canonical momenta and the canonical commutation relations are
7T7 = ¢I b [djT‘(m) t)v 7Ts (ya t)] = Z(S’rb(s(:B - y) b [dj’l'(m? t)? (Z)S (y7 t)] = [T(T‘(m7 t)’ 7Ts (y7 t)] = O
(174)
The mode expansion reads
) = (arp)e ™ + al(p)e*), (175)
P
where
[ar(p), as(p")] = [a}(p),al(®)] =0 , lar(p),al(p')] = 6rs0p - (176)

A real two-component scalar field ® = (1, ¢2) is often presented as a one-component complex
scalar field

o= f(¢1+1¢2) , Pt 7(@_@2) (177)

g
g

Exercise 66. Show that
L = (0up")(0"p) —mPp*p (178)

is the Klein-Gordon Lagrangian density of a (classical) complex field .

22



The mode expansion (175), and Eq. (177), yield for a complex field

o(x) = Zp: (a(p)e—ip~33 + bT(p)eip.x) . a= %(al +iaz) , b= %(al —iay). (179)
Exercise 67. Show that
[a(p), a (p')] = [b(p), b (P)] = bp.p (180)

while all other commutators between a, at, b, b are identically zero.

Exercise 68. By combining the Klein-Gordon equations for ¢ and ¢ show that the current

J4(@) = i1 (@)0"p(x) - (@)1 () (181)

satisfies the continuity equation
O J" =0. (182)

The continuity equation implies that the total-charge operator

Q=i [ &z (0o — pOip") (183)

is time-independent.
Problem 18. Show that the total-charge operator Q@ can be expressed with a help of the mode

expansion (179)) as
Q = Ng — Ny, (184)

where

N A et _ d’p
No=Yalel) . M= 0@e) . Y= [ G 08)

are the (total-)number operators for particle species a and b, respectively.

13 Quantization of the Dirac field
The Dirac field ¥(z) is described by the Lagrangian density (recall Eq. (60))
L = V@) 4Dy — m)U(z) = Pal0) (7O — V) apibp(e) . 0 f=1,2.3,4  (186)

Mode expansion of the quantized Dirac field (a general solution of the Dirac equation) reads
U(e) = 32 3 (alp Nulp, e P + 6 (0, o, e ™), po =wp = VP2 Em?, (187)
P A
where \ € {—%, —l—%} are two possible helicities, and the polarization spinors

+
U(Pvié)vpoer(a)r(» >a

;Do+mXi

1y e Xt (1 (0
U(pviﬁ) =+vpo+m OXi y X+ = 0 y X— = 1)° (188)
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satisfy

(Y'pu — m)u(p,A) = 0,
(Y*pu +m)v(p,A) = 0. (189)

The polarization spinors obey the following orthogonality relations:

’L_L(p, )\)U(p, )‘/) = Qmé)\)\’ ) ’l_)(pa ) ( ) 72m5)\)\’
u(p, No(p,N) =0, o(p, Nu(p,\') =
a(p, )Y u(p, N) = 2wpdan 5 0(p, N u(p, \) = 2w,,6,\>\/. (190)
Exercise 69. Fxpress the Dirac Hamiltonian
H= /d%(i%jaﬂ‘\p +mUW) (191)

in terms of the mode amplitudes a, af, b, bt as
H = ZZ%( a(p X) = b(p, D (5, 1)) (192)

[Hint: Since H is independent of time, leave out time-dependent terms, and set t = 0. Make use
of relations (190]).]

For fermionic creation and annihilation operators af(p, \),bT(p,\) and a(p, \),b(p, ), the
following anticommutation relations are postulated:

{a(p, A, al (pa )‘)} =0wlpp {b(p, )‘)7 b (p7 )‘)} =0wopp , Opp = (27r)32wp5(p - p/)a
(193)
with all other anticommutators vanishing. Then, the Hamiltonian can be cast as

H = Z pr< a(p, A) +b' (p, \)b(p, /\)> - Z 2wpp,p; (194)

where the last term is the (negative) infinite vacuum energy.

Problem 19. Using the anticommutation relations (193)), and the mode expansion of the Dirac
field, derive the canonical anticommutation relations

{wa(w,t)vﬂﬁ(yvt)} = idaﬁé(m _y) ) {ﬁfa(%t)ﬂ/)ﬁ(y»t)} = {wa(a:7t),7r5(y,t)} =0. (195)
[Hint: Recall the spin sums ), u(p, \)u(p, \) = v*p, +m, and Y, v(p, \)v(p, \) = v*p, —m.]
The energy-momentum tensor, and the total four-momentum of the Dirac field read
T (z) = iV (z)y"0"¥(x) , P, = /dsx T° (z,1). (196)
Exercise 70. Show that for any constant four-vector a holds the infinitesimal relation
=P g (g)e P & W (x) + 20”0,V (), (197)
and then deduce the finite relation

e Pud" g (z)e " = U(z 4 a). (198)
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The Dirac current, and total charge read
JH(x) = U(x)y"¥(z) , Q= /dgx JO(z,t). (199)
Exercise T71. Show that after normal ordering the total charge reads

1Q:= 303 (ol Valp ) — b (0, )b(p, V) ). (200)
P A

14 Symmetries and conserved currents

Consider the Lagrangian density .Z(¢,,d,¢,) of a multicomponent real scalar field (¢, (x))/'_;.
If
$(¢7 + 5¢7'7 8M¢7' + au5¢7) ~ g(qsra 8M¢7')a (201)

i.e., £ is invariant under certain infinitesimal variation of the field d¢,., then for solutions of the
equations of motion we have the continuity equation

g =0 , J'= —a(gir)é@ (202)
(r summed over). In particular, for internal symmetries generated by matrices T¢,
= (€5 )rads & Gr + i (T")raps, (203)
the conserved currents, and total charges are
Jo = —z’a(g‘/’i)(ﬂra)m% . Q= —i/d3x (@, 8)(T)rsbs (2, 1), (204)
where 7, are components of the canonical momentum.
Exercise 72. Show that
[¢r(2), Q"] = (T*)rs¢s (), (205)
and hence that for infinitesimal parameters %,
(€T s e @ (2) 579" (206)

(This result in fact holds also for finite transformations.)

Problem 20. Using canonical commutation relations show that if the symmetry generators form

a Lie algebra
[T, T%] = ic*°Te, (207)

then the total charges obey the same algebra:
[Qa7 Qb] _ icachc. (208)

Consider a field variation of the form ¢.(z) = ¢.(z) + e(x)d¢(x), where ¢ is infinitesimal,
and 0¢ finite. If this is a global symmetry (i.e., . is invariant for constant £(z) = €), then the
first-order change of the Lagrangian density for local (non-constant) e(z) is

07 -

0.¢ = *(8'u5)JM s J# = *Wa(}sr (209)
nPr
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Exercise 73. Consider a complex scalar field,
2L = (0u9")(0"p) —mPe"p. (210)

Show that this Lagrangian density is invariant under global transformations ¢'(x) = e*“p(x).
Then, localize this symmetry (i.e., consider a function o(x)), calculate 5., and infer the con-
served current.

Exercise T4. Repeat Ezercise[73 for the Dirac Lagrangian
&L = V(iv"9, —m)W. (211)
Exercise 75. Calculate the energy-momentum tensor of the Dirac field.

Exercise 76. Consider a real one-component scalar field with (canonical) energy-momentum
tensor 1), and a Lorentz transformation L. = exp (—inM“”). Verify the continuity equation

0,(Tha") =0 , a'(z)= —i(wwwa)u 2, (212)

1%
and determine 6 conserved currents corresponding to the 6 generators of the Lorentz group. (They

constitute the so-called angular momentum tensor.)

15 Pauli-Jordan function, contour integrals, and propaga-
tors

For a real one-component scalar field ¢(x), the Pauli-Jordan commutation function is defined

Az —y) = —i[¢(x), ¢(y)]- (213)

In momentum representation it assumes the form

3
Az) = z/ (dip (eP® — g7y, (214)

27)3 2wy

Exercise 77. Show that in position representation the Pauli-Jordan function reads

Alz) = Siﬁ“ [5(952) + 27;0@2):]1(771\/13) , (215)

where Ji is the Bessel function.
[Hint: Formulas 3.714 and 8.473 from Ref. [2].]

Exercise 78. Verify, for n € Z, the (complex) integral formula

j{ (z — 20)"dz = 2mi 6,y 1, (216)
c

where the contour C' C C is a counter-clockwise circle around zg € C with radius R.
For a complex analytic function f, i.e, a function that can be expanded in a series

Ly

T dan (z0) (217)

F) =D falz—20)" , fa=
n=0
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around each point z; of its domain, holds the Cauchy integral formula

L Ie

o7 A dz = S, (218)

where C' is a counter-clockwise closed contour in the domain of f encircling once the point zg.

Exercise 79. Using the Cauchy integral formula, verify the following integral representation of
the Heaviside step function:

+oo izt
o(z) 1/ e de{l for x>0 7 (219)

T — 1€ 0 forxz<0

— o0
fore —04.

Problem 21. Employ the Cauchy integral formula to calculate the integral

+oo 1
——dx. (220)
/OO x2+1

Check your result by direct (real) integration.

The Feynman propagator of the Klein-Gordon field reads

iAR(@) = (O] TB(2)o(0)] 0) = 3 (0(a")e P + 0(~a")e?). (221)

Exercise 80. Use the integral representation of 0-function, Eq. (219), to show that

) d4p e*ipu/r
Ap(z) =i / o T (222)

The Feynman propagator of the Dirac field reads

d4p (¢+m1)045 o—iPT

(S5 (@), = O T @)5(0)] 0) =1 [ B Ter (223)
Exercise 81. Show that under Lorentz transformations x*' = L* x", the Dirac propagator
transforms as
Sip(a!) = S(L)Sp(x)S(L) . (224)
16 Interacting fields and Wick theorem
Exercise 82. Prove the (Baker-Campbell-Hausdorff) formula
eAeB — JA+B+3[A,B] (225)

for operators A and B commuting with [121, E}
[Hint: First show that e**Be=*4 = B + a[A, B].]

Exercise 83. For a C-number-valued function f(t) show that

/t:dtl /tt dt2.../t:n_ldtnf(tl)...f(tn):;I/t:dtl.../t:dtnf(tl)...f(tn). (226)
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The evolution operator in interaction picture obeys the differential equation

0U(t,tg) = —i H(t)U(t, to) , Ulto,to) = 1. (227)
Hence,
t B +oo (_,L)n t t _ _
Ult,tog) = T exp <—z/ dt’HI(t/)> = / dt; .. / dt,T[Hr(t1) ... Hr(t,)]. (228)
to n=0 n: to to
Exercise 84. Show that the evolution operator U can be represented as
Ult, to) = lim o iAtH (tno1)  ,—iAtH(t1) ,—iAtH (to) N t—tp N
n—o00 n
(229)
and note the identity
U(tvtO) = U(tvtl)U(tlvtO)’ (230)

Exercise 85. Prove the identity

T exp (—i / e J(:c><£(x)> . exp (—i / dia J(x)qB(x)> :
cexp (= [ atady @) 0T I6) ) @30
where J(x) is an arbitrary C-number-valued function.

Exercise 86. Using Formula (231), find an expansion of

(O T[p(x1)p(w2)d(x3)P(24)] |0) (232)
in terms of propagators (0| T[¢(x)d(y)] |0). Represent the result graphically.
Problem 22. Using Formula (231)), find an expansion of

(O T[p (1) p(x2) ¢ (w3)p(24)d(w5)d(6)] [0) (233)

in terms of propagators (0| T[¢(x)p(y)]|0). Represent the result graphically.

17 Functional integral

Exercise 87. (Fresnel integral) Show that

+oo dr a s a>0
) lal
exp (izx”) = im . 234
—o V2T p(2 ) e\/|4 , a<0 (234)
Exercise 88. For complex variable z = x + iy (2* = x —iy), show that
* 15 sign(a)
/ dz C?Zeialz\z _ e . (235)
c 2mi lal

(Here, dz*dz = (dx — idy) A (dx + idy) = 2idxdy.)
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We shall omit the Morse indez €'%59™(%) from now on.

Exercise 89. More generally, for b € C show that

/ @eia‘z‘2+ib*z+ibz* — iefiﬁ. (236)
C 211 |a|

Problem 23. For generic N € N, a non-singular N x N hermitian matriz A = (A4;;), and a
complex vector (by,...,by) show that

N

dZtdei - . . « 1 —ib* (A=), b,
/‘C<zl:[1 QZm- )exp (iz] Aijzj +ibj 2 +ibiz]) = |detA|e P )isby (237)

In the continuum limit we introduce a complex field ¢(x), complex source current J(z), an
integral kernel A(x,y), and make the replacements

Z; = ()0(17,')\/&‘74 s bi = J(;’Ez)\/éz , Aij = A(xi,xj) 64 (238)

in Eq. (237), where z; are spacetime points, and £* the spacetime volume element. In the limit
N — oo we obtain the functional integral for a complex one-component scalar field,

N
. dg* (i) dp(w:) et
1
Ly (H i )"

i=1

xexp (30 0" (@) Alwsa)p(@) () +i 3 I (@e(e) & +i ) J(a)e* () &

= [DeDpenn (i [ atatyr ateaet) +i [ d'a(5@etw) + T @)
_ @ exp (z / dzdty J*(x)G(z,y)J(y)) : (239)

where G is the operator inverse of A.

Exercise 90. Consider the action of a free complex Klein-Gordon field
Solp.'] = [ d' (@u0)@"0) — "), (210)

Identify the operator A, and show that its operator inverse G is the Feynman propagator

Ap(x —y) = —i (0] T[¢()¢" ()] |0). (241)
Exercise 91. Derive the functional-integral representation of the normalized generating func-
tional % of an interacting complex scalar field theory.

[Hint: The Wick theorem generalizes for n-component fields (¢.)"_; as
(0] Tet /429 @3] |0) = =4 J 42 J @OITI3, (2o )]10) Jo(w) (242)

where summations over r and s are implicit.]
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18 Perturbative calculus

We consider a real one-component scalar field with cubic interaction described by the action
1 1
S[¢] = Sol@] + Sile] = /d4x (23“¢ "¢ — 2m2¢>2> + /d% (-59%). @)

The normalized generating functional of the corresponding quantum field theory is given by

2] = Z[J] _ [ Doexp (iS[¢] +i [ d*zJ(z)d(x))
Z[0] J Dpexp (iS[¢])
exp (iSl[fi%]) [ Dpexp (iSol¢] + i [ d*zJ(x)p(z))
exp (iSI[—i%]) | Dpexp (iSo[(;S] +l’fd4xJ(x)¢(x)) lr=
exp (—i i d4m%(—iél]‘zx) )3) exp (=% [ d*zd*yJ(z)Ar(z — y)J(y))

exp (fifd‘lz%(fiw‘zx))?’) exp (=% [ dad*yJ(z)Ap(z —y)J(y)) |J:0'

0

(244)

Exercise 92. Calculate the generating functional Z[J] of the ¢ theory up to order g>. Represent
the result diagrammatically.

Problem 24. Based on the result of Exercise[93 calculate the normalized generating functional
Z[J]) = % of the ¢3 theory up to order g>.
[Hint: Use diagrammatic representation./

18.1 n-point functions

The n-point functions 7(z1,...,z,) = (1 ...x,) of the full interacting theory can be calculated
from the generating functional:
Do p(a1) ... p(wn) 517 . b 5
e Tp) = - = (—1)" e ZJ . 245
W) [ Do ersta R ¥ 7S R ATy Lol P

Exercise 93. Determine the 1-point and 2-point functions of the ¢3-theory (Eq. ([243))) up to
order g'.

Problem 25. Determine the 1-point and 2-point functions of the ¢-theory (Eq. (243))) up to
order g°.

Each Feynman diagram (for interactions of the form %gbk) is accompanied by a factor

== (246)

where m is the number of vertices in the diagram. S is the symmetry factor, and r is the multiplic-
ity factor. Each vertex carries (implicitly) a factor —ig. Each edge (incl. loops) contributes iAp.
Unlabelled vertices are automatically integrated over some arbitrarily chosen dummy variables.

Exercise 94. Obtain the results of Pmblem using the Feynman rules. (Neglect the diagrams
containing vacuum bubbles.)

Exercise 95. Consider the scalar theory with interaction Lagrangian —%qﬁk. Show that the
diagrams containing vacuum bubbles do not contribute to n-point functions.
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18.2 Generating functional for connected diagrams
Define the functional W[J] by the equation

Z[J) =l o W[J] = —iln Z[J]. (247)
Note that W[0] = 0. The coefficients

(&

W1[J) (248)

TT, ooy Ty) = (X7 ... X))

of the expansion
W =Y L' /d4x1 codrrg (L xy))C T (1) . T () (249)
— !

are referred to as the connected Green (or n-point) functions, as they contain only connected
Feynman diagrams.

Exercise 96. Calculate (by explicit differentiation) the connected 4-point function 7¢(x1, xa, x3,x4)
in the theory with interaction %(b‘l up to order \'. (Make use of the known results for (x1x2)
and (T122x324).)

Problem 26. Use Feynman rules to determine the 2-point function (x1x2) in the theory with
interaction %¢4 up to order 2. (Ezplicitly calculate the symmetry factors.)
[Hint: Consider only connected diagrams. (Why?)]

18.3 Complex scalar field

Consider a one-component complex scalar field described by the action
* * * )‘ *
Sl = [ e (0u")(09) - w0 - 3@ 0)?). (250)

Exercise 97. Determine symmetry factors of the following Feynman diagrams:

QH E X—p»—X
(a) (b) (c)

[Result: a) S=1,b)S=2,¢)S=8]

19 Functional integral for fermions

19.1 Grassmann variables
Consider the symbols 6;, : = 1,..., N, all mutually anticommuting:

Vi,j:0;0; = —0;0; (hence 67 =0). (251)
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The (complex) Grassmann algebra is formed by all products and sums (i.e., polynomials) of the
0;’s with complex coefficients. It has 2V linearly independent elements

1,01,910J (’L<]), ,919201\[ (252)

The (formal) operations of differentiation and integration are defined

0
(2
In addition, consider a set of independent Grassmann variables 07,...607%, so that 6;’s and
07’s all mutually anticommute. The involution ‘*’ maps 0; to 0}, and vice versa, reverses the

order of Grassmann variables in products, and takes complex conjugation of scalar factors. For
example,

(16103)" = —i(0105)" = —i(65)* 07 = —i6207. (254)

Exercise 98. Show that, for an N x N matriz A = (A;;),
/ dOndBy . .. d6de; €% 4130 = det A. (255)
Let us introduce two more independent sets of Grassmann variables n; and ), i =1,..., N,

to represent Schwinger sources. In total then we have 4N symbols 8;, 6, n;, n;, all mutually
anticommuting.

Problem 27. Show that 1)
/deN .. .df €30 A0 N0 — /et A e3mi (AT Dim; (256)
where A = (A;;) is a non-singular antisymmetric matric N x N. And 2)
/ dOndBY ... dO1dOT O AislitOTmiAni0n — (det A) e (A7 Digns (257)

where A = (A;;) is a non-singular matriz N X N.
[Hint: Make use of the formula [ dfy ...d64 e2%4ii% = \/det A, and Eq. (255)), respectively.]

19.2 Wick theorem for Dirac fermions

Exercise 99. Show that
Toxp (i [ atea@)da(o) + daansta) ) =sexp (i [ dem@)ino) + bs@ns(o)) s
x exp (— [ttty mata) O\ TG00 0150 )

(258)
Exercise 100. Ezpress the 4-point function
(0] Tlp(a1)v (w2) ¥ (23)(24)] |0) (259)
(omitting hats, and hiding indices a1, ..., aq) in terms of the free Dirac propagators
(01 T[Wa(2)s(y)][0) = i(Sp(z,y)), 4 (260)
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20 Yukawa theory

Exercise 101. Determine the vertex Feynman rule in the pseudoscalar Yukawa theory with
interaction Lagrangian &5 = —ig¥W~° V.

21 Feynman rules in momentum space

Exercise 102. Write an analytic representation of the following Feynman diagram (including
the symmetry factor):

D 7

Exercise 103. Provide Feynman rules in momentum space for multicomponent scalar theory.

Problem 28. Provide Feynman rules in momentum space for the Yukawa theory.

22 Lehmann-Symanzik-Zimmermann formalism

We consider a one-component real scalar (self-interacting) field ¢(x). The field-strength (or
wave-function) renormalization factor Z is defined

Z = (] ¢r(0) [1p-0) |, (261)
where |1,—0) is the one-particle state with zero three-momentum.

Exercise 104. Show that Z =1 for a free field.

The interacting correlation function can be cast as
+oo
(Q] b1 (2)om(y) 1) = ZiDy(x — y;m?) + /M2 d(M?) o (M?)iD (z —y; M?), (262)
t

where iD, (x — y,m?) = (0| ¢o(x)po(y) |0) is the free-field correlator, M7 is the multiparticle
threshold, and o (M?) is the spectral function.

Exercise 105. Show that the full 2-point function can be cast as
+oo
(QTon ()on )] Q) = ZiAp(z - y;m?) +/ Ao (M?)idp(w —y; M?),  (263)
Mt
where iA(x —y; M?) = (0| T[po(x)do(y)] |0) is the free 2-point function (and Af is the Feynman
propagator).
Exercise 106. Prove the following integral representation

+oo ; n <y
f(ZO):%/ Mds+zm (264)

S — 20 el 20 — 2k
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for a complex function f holomorphic except for a branch cut (¢, +00), and simple poles at points
on the real line z1 < ... < zp < c. (Assume that f(z) falls off sufficiently fast for z — c0.)
[Hint: Use the Cauchy integral theorem.]

Problem 29. Based on the result (264), find the wave-function renormalization factor Z and
the spectral function o(M?) in terms of the momentum-space propagator (p).

23 Cross section
For a process “p1 + p2 — p3 + p4”, the Mandelstam variables (or invariants) are defined

s=(p1+p2)® = (p3+pa)® , t=(p1—p3)’> = (p2—ps)> , u=(pP1—ps)* = (p2—ps)>. (265)
Exercise 107. Show that
s+t+u=mi+m3+mj+mj, (266)

as a consequence of the total four-momentum conservation.

Exercise 108. For elastic scattering 1 + 2 — 3 + 4 (equal masses) derive the center-of-mass
differential cross section

— T
dQ(py) 647r23| !

1
4ot 2. (267)

Problem 30. Generalize the formula ([267)) for the differential cross section -2t of a scattering

dQ(pf)
process 142 — 3+4 to the case of generic (unequal) masses my, ma, ms, my (inelastic scattering).
Hints: Work in c.m. frame, where p1 = —po, and ps = —p4.
Results: 64711-25%:;}|Tfi|2

Exercise 109. Derive the formula for the differential decay rate of an unstable particle of mass
M (at rest) into two distinguishable particles of masses my and my:

dI p| 2
lQ( ) 32 2 A [2 | fz| ’ ( )

where p is the momentum of one of the product particles.

Then, in the theory with £1 = —5® %, where ® is a real scalar field with mass M, and ¢ is
a real scalar field with mass m, calculate the decay rate I' of the process ® — ¢ ¢ in the lowest
order in perturbation theory.

Problem 31. Consider scattering of two nucleons n +n — n+n in a theory with interaction
Lagrangian

(Here ¢ is a Dirac fermion field with mass m describing the nucleon, and ® is a real scalar field
with mass M.) In order g calculate the (spin summed) transition probability

STyl (270)
all spins

in the c.m. frame.
Hints: There are two Feynman diagrams contributing, and they come with relative minus sign
due to fermionic statistics. Use summation formulas for Dirac spinors, and trace identities for
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~v-matrices. Note that (... )u = Trlua(...)].
Results: (s,t,u are Mandelstam variables)

J[E=4m2)? (u—4m?)? 1 (t—4m?)? + (u — 4m?)? — (s — 4m?)?
YlemaE P 2 (6~ M%) (u— D7) @)

Problem 32. Consider the nucleon-antinucleon scattering process @ ©* — @ ©* in a theory with
interaction Lagrangian

Zi(p, 9", @) = —gpp™ ®. (272)

(Here ¢ is a complex scalar field with mass m, and ® is a real scalar field with mass M.) In
order g% calculate the differential cross section

doot

1
=——|Ty?
dQ 647r25| sil

. dQ = sin0d¢do, (273)

and the total (integrated) cross section oot in the c.m. frame. Determine i in the limit of
vanishing incident momentum p1.

Hints: There are two Feynman diagrams in order g> describing the process. Assume no singu-
larities are hit by taking € — 0 in the propagators.

Results:
dgtot - 94 1 1— S — M2 2
dQ  64m2s (s — M?2)2 2|p1]2(1 — cos ) + M?
4 o M2 4 2 o M2 2
Oror = 9 1-3% m(1+ |p1] + (s )
167s(s — M?2)2 2|p1|? M? M?2(M? + 4|p1]?)
4 2 2\ 2
. g M* —2m
| o = 274
\pll\n—lm Ttot 16mm2 M4 (4m2 — M2> (274)

Problem 33. Consider the scattering process ¢ * — ® ® in a theory with interaction La-
grangian
Zi(p, 0", ®) = —gpp*®. (275)

(Here ¢ is a complex scalar field with mass m, and ® is a real scalar field with mass M.) In
order g% calculate the differential cross section % and the total (integrated) cross section oo
in the c.m. frame. Determine oo in the limit of vanishing incident momentum p;.

Hints: There are two Feynman diagrams in order g2 describing the process. Assume no singu-
larities are hit by taking € — 0 in the propagators. Use the result of Problem [30,

Results: (p3 denotes the momentum after scattering.)

2
dotot _ g* |ps| [ p1|* + [ps|* +m® ]
dQy 32n2s |p1| [(2|p1llps|cos0) — (p1|* + |ps|* +m?)?
2|p1||ps|
o 9" Ips] artanh (\p1\2+|p3|2+m2> 1
tot — T -
o 16ms [pa] | 2lpillpsl(lp1f? + [psl? +m2)  @2lpillps])? — ([p1]? + [ps[? + m?)?
lim Otot = +00 (276)
|p1|—0

Problem 34. Consider the decay process ® — 1) in a theory with interaction Lagrangian
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(Here 1) is a Dirac fermion field with mass m, and ® is a real scalar field with mass M.) In
order g* calculate the decay rate T' for unpolarized decay products, i.e., sum over the spins of the
outgoing particles.

Hints: Use summation formulas for Dirac spinors, and trace identities for y-matrices. Note that

3/2
Results: M (1 - 4m2)

8m M?

Problem 35. Consider the decay process ® — 1) in a theory with interaction Lagrangian

(Here 1 is a Dirac fermion field with mass m, and ® is a real scalar field with mass M.) In
order g* calculate the decay rate T for unpolarized decay products, i.e., sum over the spins of the
outgoing particles.

Hints: Use summation formulas for Dirac spinors, and trace identities for ~y-matrices. Note that

1/2
Results: QZ—FM (1 - %Cf;)

Problem 36. Consider the scattering process v + e — v + e (neutrino-electron scattering) in a
theory with interaction Lagrangian

L1 (e, Ve, o, V) = —g huyu(l — ¥ be ey (1 —7°)ty. (279)

(Here v, is a Dirac fermion field describing neutrino with zero mass, and 1. is a Dirac fermion
field describing electron with mass m.) In order g' calculate the (spin summed) transition prob-

ability
STyl (280)
all spins
in the c.m. frame.
Hints: Use summation formulas for Dirac spinors, and trace identities for y-matrices. Note that
Results: 64g%(s —m?)? , where s denotes the Mandelstam variable

Problem 37. Consider the scattering process U + e — U + e (antineutrino-electron scattering)
in a theory with interaction Lagrangian

fl(ibe,?/_)e, 111}1/71/_}1/) =9 1/_11/7#(1 - 75)¢e "/_}elyu(l - Ws)wl/'

(Here v, is a Dirac fermion field describing neutrino with zero mass, and 1. is a Dirac fermion
field describing electron with mass m.) In order g' calculate the (spin summed) transition prob-

ability
ST

all spins

in the c.m. frame.
Hints: Use summation formulas for Dirac spinors, and trace identities for y-matrices. Note that
Results: 64g%(u —m?)? , where u denotes the Mandelstam variable
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