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Preface

Should authors feel compelled to justify the writing of yet another lecture notes on
Quantum Field Theory? In an overpopulated world, should parents feel compelled
to justify bringing forth yet another child? Perhaps not! But an act of creation is also
an act of love, and a love story can always be happily shared. These notes originated
from a series of lectures on Quantum Filed Theory delivered at the Faculty of Nuclear
Science and Physical Engineering, Czech Technical University in Prague, over the
period from 2019 to 2020. During the writing, I have attempted to maintain a cohesive
self-contained content. The material is discussed in sufficient detail to enable the
students to follow every step, but some crucial theoretical aspects are not covered
such as the non-perturbative aspects of Yang–Mills gauge theories or quantum field
theory of gravity. Still it is hoped that these notes will serve as a useful introduction to
Quantum Field Theory.

A working knowledge of basic quantum mechanics and related mathematical for-
malisms, e.g., Hilbert spaces and operators, is required to understand the contents
of these lecture notes. Nevertheless, I have attempted to recall necessary definitions
throughout the chapters and the numerous notes.

I would like to express my gratitude to Doctors V. Zatloukal and J. Kňap for their
diligent reading of the manuscript and constructive criticisms. Also special thanks go
to M. Blasone, G. Vitiello and H. Kleinert for teaching me non-perturbative techniques,
as well as to the students of QFT I and II courses for their patience and their numerous
suggestions. Finally these notes would not have seen the light of day had it not been
for the heroic efforts of three modern day scribes and illuminators, Georgy Ponimatkin,
David Grund and Diana Mária Krupová to whom I am deeply grateful.

Books

There are many books on Quantum Field Theory, most are rather long. All those listed
below are worth looking at. They provide a wealth of a complemental material for
these lecture notes.

I E.M. Peskin and D.V Schroeder, An Introduction to Quantum Field Theory, (Addison-
Wesley Publishing Co., 1996).

Provides a good introduction with an extensive discussion of gauge theories



including QCD and various applications.

I M. Srednicky, Quantum Field Theory, (Cambridge University Press, 2007).
Represents a comprehensive modern book organised by considering spin-0, spin-
1 2 and spin-1 fields in turn.

I S. Weinberg, The Quantum Theory of Fields, vol. I Foundations and vol. II Modern
Applications, (Cambridge University Press, 1995,1996).
Written by a Nobel Laureate, contains lots of details which are not covered else-
where, perhaps a little idiosyncratic and less introductory than the above.

I Z. Zinn-Justin, Quantum Field Theory and Critical Phenomenam, (Oxford University
Press, 2002).
Book devotes a large fraction to applications to critical phenomena in statistical
physics but covers gauge theories at some length as well, not really an introduc-
tory book.

I C. Itzykson and J.-B. Zuber, Quantum Field Theory, (McGraw-Hill International
Book Co., 1980).
At one time the standard book, containing a lot of detailed calculations but the
treatment of non abelian gauge theories is a bit cursory and somewhat dated.
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Quantum Field Theory 2 1
1.1 Noether’s Theorem Continued

Apart from the method used in the previous chapter there exists yet
another quick way to conserved currents — the so-called Noether’s
method (1918).

Consider the global symmetry transformation

φ(x) → φ′(x) = φ(x) + εδφ(x) = φ(x) + (iεaTa)φ(x) , (1.1)

which leaves the Lagrangian density L invariant, i.e. δL = 0. Here
φ(x) is an arbitrary field in our theory and ε is a constant infinitesimal
parameter.

We promote now ε to be a small x-dependent parameter, so we con-
sider instead a general transformation

φ→ φ′(x) = φ(x) + ε(x)δφ(x) . (1.2)

Generally, we call the transformations whose parameter ε is constant
(not dependent on a position in spacetime) global, whereas the trans-
formation with x-dependent parameter ε(x) are called local.

Lagrange density (and hence action S) is not invariant under such
transitions for general ε(x), since the symmetry we are considering
is only global symmetry. Since then action would be invariant for
constant ε, its variation is proportional to the derivative of ε(x) and so
it can be written in a general form

δS =
∫

d4x [−Jα(x)]∂αε(x) . (1.3)

for some current Jα. The current defined in this way is always con-
served if the equations of motion are obeyed. The sign of the current is
just a convention.

Indeed, when the equations of motion are obeyed, the action is sta-
tionary under any variation and in particular under variation given by
(1.2). Thus, when the equations of motion are obeyed, i.e. when δS = 0
in (1.3) is zero for any parameters ε(x) from which follows that

∂αJα = 0 . (1.4)

As a simple exercise, we will show that for usual charged scalar fields
this gives the same current as we have obtained in the last semester.
Here the Lagrangian equals

L = ∂µφ
∗∂µφ −m2φ∗φ = − φ∗(∂2 +m2)φ , (1.5)
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where the second identity is valid modulo irrelevant four-divergence
term. This describes two non-hermitian particles such as π± which are
not their own antiparticles.

We have already seen in the previous chapter that the Lagrangian can
be equivalently rewritten in terms of two real fields φ1 and φ2 that are
related to φ via the relation

φ =
1
√

2
(φ1 + iφ2) . (1.6)

Ensuing action equals to

S = −
2∑
i=1

∫
d4x

(
1
2
φi(∂

2 +m2)φi

)
= −

∫
d4x(φ∗(∂2 +m2)φ) . (1.7)

In this case, the Lagrangian is invariant under φ → eiαφ(x). To get
Noether current, we promote α → α(x). For infinitesimal parameter,
one then obtains φ(x) → φ(x) + iα(x)φ(x), which implies

δS = −

∫
d4x

[
(φ(x) + iα(x)φ(x))∗(∂2 +m2)(φ(x) + iα(x)φ(x))−

− φ∗(x)(∂2 +m2)φ(x)
]

= −

∫
d4xφ∗(x)∂2(iα(x)φ(x)) , (1.8)

where we have neglected pieces linear in α(x) because such term must
ultimately sum up to zero due to invariance under global symmetry.
Continuing and integrating by part we get

δS = −

∫
d4xφ∗(x)

[
i(∂2α(x))φ(x) + 2i∂µα(x)∂µφ(x) + iα(x)∂2φ(x)

]
= −

∫
d4x

[
2i(φ∗(x)∂µφ(x))∂µα − i∂µ(φ∗(x)φ(x))∂µα

]
= −i

∫
d4x [φ∗(x)∂µφ(x) − φ(x)∂µφ∗(x)] ∂µα(x)

= −

∫
d4xJµ(x)∂µα(x) , (1.9)

where we have identified the conserved current. This result agrees
with our earlier result Eq. (??).

Noether Charge for Dirac Field

Let us now consider free Dirac field, then the Lagrangian is equal to

L = ψ(iγµ∂µ −m)ψ . (1.10)
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This is invariant under transformation

ψ → eiαψ ' ψ(x) + iαψ(x) ,

ψ → e−iαψ ' ψ(x) − iαψ(x) , (1.11)

where α is a global constant. As before we take α → α(x), which
yields

δL = ψ(1 − iα(x))(iγµ∂µ −m)(1 + iα(x))ψ − ψ(iγµ∂µ −m)ψ

= ψ(iγµ∂µ)i(α(x)ψ) = −ψγµψ∂µα(x)

= − Jµ(x)∂µα(x) , (1.12)

where the parts linear in α(x) were neglected. From this we get the
equation for the Dirac current

∂µJµ(x) = ∂µ(ψγ
µψ) = 0 . (1.13)

In the first quantization, we arrived at the same expression for Dirac’s
probability current. Now we see that it does not reflect a conservation
of probability but a conservation of the charge Q (which can be either
positive or negative) and has a form

Q =
∫

d3x J0(x) . (1.14)

As we know from the former discussion, this charge is time-independent
and relativistically invariant.

Up to now, we considered a “semi-classical level” in which the vari-
ables were not considered as operators. On the quantized level the
operator that generates the corresponding transformation is

Q̂ =
∫

d3x ψ̂γ0ψ̂ . (1.15)

Strictly speaking, one should consider
operators in the normal-ordered form,
but since they differ only by a complex
number (infinity), it is not important
when we compute commutation rela-
tions.It is easy to see that (at a given time t)[

Q̂, ψ̂(y)
]
t
=

∫
d3x

[
ψ̂(x)γ0ψ̂, ψ̂(y)

]
t
= −ψ̂(y) , (1.16)

where we used[
ψα(x)γ

0
αβψβ ,ψγ(y)

]
t
= ψα(x)γ

0
αβ

{
ψβ(x),ψγ(y)

}
t

−
{
ψα,ψγ(y)

}
t
γ0
αβψβ(x)

= −γ0
αβγ

0
γαδ(x − y)ψβ(x)

= −δβγδ(x − y)ψβ(x)

= −δ(x − y)ψγ(x) . (1.17)

Let us Remind two relevant identities:

[AB,C] = A {B,C } − {A,C } B,{
ψα(x),ψβ (y)

}
= γ0

αβδ(x − y).

Thus we obtain the following equations (the second one could be
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computed similarly)

Q̂ψ̂(x) = ψ̂(x)(Q̂ − 1) ,

Q̂ψ̂(x) = ψ̂(x)(Q̂ + 1) . (1.18)

It can be easily seen that (1.18) is equivalent to the following relations

Q̂âλ(p) = âλ(p)(Q̂ − 1) ,

Q̂b̂†λ(p) = b̂†λ(p)(Q̂ − 1) ,

Q̂â†λ(p) = â†λ(p)(Q̂ + 1) ,

Q̂b̂λ(p) = b̂λ(p)(Q̂ + 1) . (1.19)

Note that since Q̂ |0〉 = 0, it follows from the second and the third
equation (considering |p, λ〉 = b̂†λ(p) |0〉 = â†λ(p) |0〉) that

Before Q̂ is applied there is apparently
nothing that would distinguish states
b̂†λ(p) |0〉 and â†λ(p) |0〉 as they both de-
scribe a particle with the same momentum
and helicity. Q̂ |p, λ〉 = Q̂b̂†λ(p) |0〉 = b̂†λ(p)(Q̂ − 1) |0〉 = −b̂†λ(p) |0〉 = − |p, λ〉 ,

Q̂ |p, λ〉 = Q̂â†λ(p) |0〉 = â†λ(p)(Q̂ + 1) |0〉 = â†λ(p) |0〉 = |p, λ〉 , (1.20)

which clearly demonstrates the concept of particles and antiparticles
with opposite charges.

Moreover, it can be easily shown that the transformation of the Dirac
field (1.11) can be rewritten in terms of the conserved charge. In partic-
ular

ψ → eiαψ = e−iαQ̂ψeiαQ̂ ,

ψ → e−iαψ =
(
e−iαQ̂ψeiαQ̂

)†
γ0 = e−iαQ̂ψeiαQ̂ . (1.21)

To prove this it suffices to prove the identity to the lowest order.

LHS : eiαψ ' ψ + iαψ + O(α2) ,

RHS : e−iαQ̂ψeiαQ̂ ' (1 − iQ̂α)ψ(1 + iQ̂α)

= ψ − iα
[
Q̂,ψ

]
+ O(α2) = ψ + iαψ + O(α2) .

Group composition law will then take the infinitesimal transformation
to the full one.

In fact, the result (1.21)-(1.21) is very general. One can show that if

φ → eiαT φ ,

is the symmetry of the Lagrangian L, then it can be equivalently
rewritten in terms of Noether charges Q̂ as

eiαT φ = e−iαQ̂φeiαQ̂ .

So, for compact groups with Hermitian
charges the symmetry is implemented
via unitary transformation as it should
be in Quantum Mechanics.
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1.2 Space-time symmetries

So far we have dealt with internal symmetries, i.e. symmetries that act
on internal indices of fields. Noether theorem is, however, versatile
enough to identify conserved quantities related to space-time symme-
tries, i.e., symmetries that act directly on space-time “indices” rather
than internal field indices.

Translationally invariant systems

Consider a system whose Lagrangian density is invariant (up to a
4-divergence) under the rigid space-time translation. So, particularly
it is invariant under infinitesimal transformations

φ(xµ) → φ(xµ + aµ) ' φ(xµ) + aµ∂µφ(xµ) , (1.22)

where we used the Taylor expansion to the first order in aµ.

Since we deal with continuous x instead of discrete index “i”, the
Lagrangian density can after transformation differ from the original
one by 4-divergence and still provide the same equations of motion.
On the other hand, when we dealt with internal symmetries, we did not
encounter x-derivatives in symmetry transformations (with constant
group parameters) as everything was done at the same point. So, in
fact, in contrast to previous case now δL = ∂µ(Caµ) = aµ∂µC where C
is some function.

We can derive the consequence of this by adopting the same strategy
as before, i.e., we promote aµ to be position dependent.

δS =
∫

d4x [L(φ + a∂φ, ∂(φ + a∂φ) − L(φ, ∂φ)]

=

∫
d4x

[
∂L

∂φ
(aµ∂µφ) +

∂L

∂(∂µφ)
∂µ(aν∂νφ)

]
=

∫
d4x

{[
∂L

∂φ
∂νφ +

∂L

∂(∂µφ)
∂µ(∂νφ)

]
aν +

[
∂L

∂(∂µφ)
∂νφ

]
∂µaν

}
=

∫
d4x

[
(∂µL)aµ +

(
∂L

∂(∂µφ)
∂νφ

)
∂µaν

]
=

∫
d4x

[
(∂µLaµ) − L∂µaµ +

(
∂L

∂(∂µφ)
∂νφ

)
∂µaν

]
. (1.23)

In case when aµ would be a constant then the term (∂µL)aµ would not
contribute to δS and could be omitted. For x-dependent aµ such a term
must be kept. On the other hand, the term (∂µLaµ) can be omitted
because its surface contribution can be majorized by an analogous
contribution coming from a constant aµ (that was irrelevant in the
first place). So, if we assume that the field φ satisfies the equations of
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motion, then

0 = δS =

∫
d4x

[(
∂L

∂(∂µφ)
∂νφ

)
∂µaν − L∂µaµ

]
=

∫
d4x

[(
∂L

∂(∂µφ)
∂νφ

)
− Lη

µ
ν

]
∂µaν . (1.24)

If we define the canonical (or Noether) energy-momentum tensor by

Tµ. ν =
∂L

∂(∂µφ)
∂νφ − Lη

µ
ν , (1.25)

then the invariance of the action under local translation induces the
conservation of the tensor as

∂µTµ. ν = 0 . (1.26)

We see that T0
· 0 = T00 is just usual definition of the energy density (the

hamiltonian densityH ). Other components have interpretation

T i
. 0 = T i0 = −Ti0 (where i = 1, 2, 3) is the energy flux ,

T0i = −T0
. i (where i = 1, 2, 3) is the momentum density . (1.27)

For a real scalar field we find that the (doubly covariant) tensor Tµν =
ηµαTα. ν is symmetric since

Tµν = ∂µφ∂νφ − ηµνL . (1.28)As an example, check that for the Dirac
field we get the energy-momentum ten-
sor introduced earlier.

Summary and Noether procedures

In case of internal symmetries, we consider transformation of a type

φ(x) → φ′(x) = eiαT φ(x) , (1.29)

where the generators satisfy the commutation relations
[
Ti , Tj

]
=

i fi jkTk . These induce conserved currents Jµi and charges of a form

Qi =

∫
d3x J0

i (x) ,

where
[
Qi , Q j

]
= i fi jkQk , i.e., Qi’s satisfy the same algebra as Ti’s.

The transformation (1.29) can be equivalently rewritten as

eiαT φ(x) = e−iαiQ
i

φ(x)eiαiQ
i

.

On the other hand, space-time symmetries, such as translational in-
variance, represent transformations of the type

φ(xν) → φ′(x) = φ(xν + aν) ,

induce conservation of the energy-momentum tensor Tµν and en-
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suing conserved vector “charge”

Pν =
∫

d3xT0ν(x) ,

which is equal to the total momentum of the system. Again, the
transformation can be written as

φ(x + a) = eiP
νaνφ(x)e−iP

νaν .

1.3 Relativistically Invariant Commutation
Relations

Let us consider first

i∆(x) = [φ(x), φ(0)] ,

i∆(x, t) = [φ(x, t), φ(0)] ,

∂

∂t
∆(x, t) = −i[ Ûφ(x, t), φ(0)] . (1.30)

When x0 = t = 0 we recover the equal time commutation relations,
i.e.

∆(x, 0) = −i[φ(x, 0), φ(0)] = 0 , (1.31)
∂

∂t
∆(x, t)|t=0 = −i[π(x, 0), φ(0)] = −i(−i)δ(x) = −δ(x) . (1.32)

Which means that ∆(x)|t=0 and Û∆(x)|t=0 = −δ(x). These can be consid-
ered as initial conditions for ∆(x). What equation satisfies ∆(x)? Since

(� +m2)φ(x) = 0 ⇒ (∂2 +m2)∆(x) = 0 , (1.33)

the solution is

∆(x) = −i
∫

d3 p

(2π)32ωp

[
f (p)e−ipx + h(p)eipx

]
= −i

∑
p

[
f (p)e−ipx + h(p)eipx

]
(1.34)

We fix f and h by applying initial conditions on

∂

∂t
∆(x) = −

∑
p

ωp

[
f (p)e−ipx − h(p)eipx

]
, (1.35)

and

∆(x, 0) = −i
∫

dp3

(2π)32ωp

[
f (p)eipx + h(p)e−ipx

]
= −i

∫
d3 p

(2π)32ωp

[
f (p) + h(pp)

]
eipx . (1.36)
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Figure 1.1: Positive and negative energy
mass shells.

This then implies that

f (p) + h(pp) = 0 . (1.37)

where pµp = (p0,−p). Thus

∂

∂t
∆(x, t)|t=0 = −

∫
d3 p

(2π)32ωp

[
f (p)eipx − h(p)e−ipx

]
ωp

= −δ(x) . (1.38)

Employing the property of Fourier transforms we get

1
2
[ f (p) − h(pp)] = 1 . (1.39)

Together with (1.37) this gives that f (p) = 1 and h(pp) = h(p) = −1 and
hence the general form of ∆(x) reads

∆(x) = −i
∫

d3 p

(2π)32ωp

[
e−ipx − eipx

]
. (1.40)

Note that ∆(x) is relativistically invariant, i.e. ∆(x) = ∆(L−1x) for
any Lorentz transformation L that maps each mass shell to itself,
see Fig. 1.1. This can be shown as follows. First we see that the 4-
dimensional momentum measure is Lorentz invariant, indeed

d4p′ = d4p | det L | , (1.41)

here p′ = Lp. The δ-function δ(p2 −m2) is also Lorentz invariant on the
mass shell, because δ(p′2 −m2) = δ(p2 −m2). Finally, by defining

ε(p0) =

{
1, p0 > 0

−1, p0 < 0
. (1.42)

we can easily see that also ε(p0) is invariant under orthochronous Lorentz
transformations L. Indeed, we know that the defining property of the
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Lorentz transformation implies that(
L0

0

)2
=

∑
i

(
L0

i

)2
+ 1 , (1.43)

which gives (
L0

0

)2
>

∑
i

(
L0

i

)2
. (1.44)

Similarly, by using the dispersion relation

(p0)2 =
∑
i

p2
i +m2 , (1.45)

one obtains
(p0)2 >

∑
i

p2
i . (1.46)

Putting all of these together we get

(
L0

0 p0
)2
>

∑
i,j

(L0
i)

2(pj)2 = ||L0 ||2 ||p ||2 ≥

(∑
i

(L0
i)p

i

)2

. (1.47)

where the last inequality follows from the Schwarz inequality. Eq. (1.47)
yields ��L0

0 p0�� > �����∑
i

(
L0

i

)
pi

����� . (1.48)

Now, p′0 = p0L0
0 +

∑
i piL0

i , which means that the sign of p′0 is fully
determined by the p0L0

0 term. If L0
0 > 1 (i.e. we consider only or-

thochronous Lorentz transformations), the signs of p′0 and p0 are the
same and hence our ε(p0) is Lorentz invariant under such transforma-
tions.

Consequently
d4pε(p0)δ(p2 −m2) , (1.49)

is Lorentz invariant. Let us further realize that∫
d4pε(p0)δ(p2 −m2) · · ·

=

∫
d4pε(p0)

1
2ωp

[
δ(p0 −ωp) + δ(p0 +ωp)

]
· · ·

=

∫
d4p
2ωp

[
δ(p0 −ωp) − δ(p0 +ωp)

]
· · · . (1.50)

With this we see that ∆(x) acquires the form

∆(x) = −i
∫

d4p
(2π)3

ε(p0)δ(p2 −m2)e−ipx . (1.51)

By Lorentz transforming this expression we obtain

∆(L−1x) = −i
∫

d4p
(2π)4

ε(p0)δ(p2 −m2)e−ipL
−1x , (1.52)
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Figure 1.2: Contour of integration in
Eq. (1.54)

But (p, L−1x) = pTL−1x = pTLT x = (Lp)T x = (Lp, x). Here we have
used the fact that L ∈ SO(3, 1). This leads to (taking p′ = Lp)

∆(L−1x) = −i
∫

d4p′

(2π)3
ε(p′0)δ(p

2′ −m2)e−ip
′x = ∆(x) . (1.53)

There exists yet another alternative representation for ∆(x) given by

∆(x) = −
∫
γ

d4p
(2π)4

e−ipx

p2 −m2 , (1.54)

where ∫
d4p =

∫
d3 p

∫
γ

dp0 . (1.55)

and γ represents the integration contour depicted on Fig. 1.2. With this∫
γ

dp0 e−ip
0t

(p0 −ωp)(p0 +ωp)
= 2πi(R1 + R2) . (1.56)

Where the last step follows from the Cauchy theorem and

R1 =
e−iωp t

2ωp
, R2 = −

eiωp t

2ωp
. (1.57)

This leads to the

∆(x) = −(2πi)
∫

d3 p

(2π)4
1

2ωp

(
e−iωp t+ipx − eiωp t+ipx

)
= −(2πi)

∫
d3 p

(2π)4
1

2ωp

(
e−ipx − eipx

)
= −i

∫
d3p

(2π)32ωp

(
e−ipx − eipx

)
. (1.58)

The c-numbered commutator [φ(x), φ(0)] is known as the Pauli–Jordan
commutation function.

Representation (1.58) implies yet another technically convenient repre-



1.3 Relativistically Invariant Commutation Relations 11

sentation of ∆(x) namely

∆(x) =
1
(2π)3

∫
d3 p

ωp
eipx sin

(
x0ωp

)
. (1.59)

This can be explicitly Fourier transformed with the result

∆(x) =
[

1
2π
ε(x0)δ(x2) −

mε(x0)

4π
√

x2
Θ(x2) J1

(
m
√

x2
)]

, (1.60)

where x2 = x2
0 − x2 and J1 is the Bessel function of the first kind. In the

neighborhood of the light cone (i.e. x2 ∼ 0) we get
J1(y) ≈

1
2 y + O(y

3)

for |y | � 1.∆(x) =
[

1
2π
ε(x0)δ(x2) −

m2

8π
ε(x0)Θ(x2)

]
. (1.61)

In particular, for space-like separation (i.e., x2 < 0) we get ∆(x) = 0.
This is called microcausality, i.e.

[φ(x), φ(y)] = 0, ∀x, y, (x − y)2 < 0 . (1.62)

So, free fields and any local observables constructed from such fields
commute at space-like separated intervals. Consequently, they can be
observed/measured independently without influencing each other.
Note also that for causality purposes it was indeed enough to study
only [φ(x), φ(0)], since

[φ(x), φ(y)] = e−iPµy
µ

[φ(x), φ(y)]eiPµy
µ

= [φ(x − y), φ(0)] . (1.63)

Here, the first identity holds because [φ(x), φ(y)] is a c-number.

It should perhaps be stressed that microcausality does not preclude
such non-local quantum effects as quantum correlations and ensuing
entanglement, which result from non-local state (vacuum state) that
enters in their definition.

It can be shown, that microcausality holds for all known relativistic
fields (with anticommutators in case of fermionic fields).

The Feynman Propagator

The basic building block of the perturbative treatment of scattering
problems in particle physics is the so-called Feynman propagator
∆F (x), which is defined as

i∆F (x − y) = 〈0| T [φ(x)φ(y)] |0〉 , (1.64)

where the time ordering (or time ordered product) T(· · · )means

T [φ(x)φ(y)] =

{
φ(x)φ(y), x0 > y0

φ(y)φ(x), y0 > x0
. (1.65)
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For x0 > 0 we can write

i∆F (x) = 〈0| φ(x)φ(0) |0〉

=
∑
p,p′
〈0|

[
a(p)e−ipx + a†(p)eipx

] [
a(p′)e−ip0 + a†(p′)eip0] |0〉

=
∑
p,p′
〈0| a(p)a†(p′) |0〉 e−ipx

=
∑
p,p′
〈0|

[
a(p), a†(p′)

]
|0〉 e−ipx

=
∑
p

e−ipx , (1.66)

and similarly for x0 < 0 we get

i∆F (x) =
∑
p

eipx . (1.67)

Thus, generally we can express Feynman propagator as

i∆F (x) =
∑
p

[
Θ(x0)e−ipx + Θ(−x0)eipx

]
. (1.68)

First term in the sum propagates a particle with positive energy for-
ward in time, while the second one propagates a particle with negative
energy backward in time.

There exists a number of useful representations of ∆F (x). One very
convenient and manifestly Lorentz invariant representation of ∆F (x)
is

i∆F (x) = i
∫

d4p
(2π)4

e−ipx

p2 −m2 + iε

= i
∫

R3

d3 p

(2π)3
eip ·x

∫
R

dp0

(2π)
e−ip0x0

(p0)2 − (ωp − iε)︸                ︷︷                ︸
A

. (1.69)

In the complex p0-plane the pole situation looks like:

(p0)2 − (ω2
p − iε) = (p0 −

√
ω2

p − iε)(p0 +

√
ω2

p − iε)

' (p0 −ωp +
iε

2ωp︸︷︷︸
=iε′

)(p0 +ωp −
iε

2ωp︸︷︷︸
=iε′

)

=
[
p0 − (ωp − iε′)

] [
p0 + (ωp − iε′)

]
. (1.70)

So, the integrand has two poles located at p0 = ωp − iε′ and p0 =

−ωp + iε′, cf. Fig 1.3. When x0 > 0, one can close the contour from
below by a circle with infinite radius. Indeed, note that in this case the
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Figure 1.3: Pole structure of the inte-
grand in (1.69).

timelike integral in (1.69) over the lover circle is zero. Indeed∫

y

dp0 A = {p0 = Reiϕ} = lim
R→∞

iR
∫ −π

0
dϕeiϕ

eix0Re
iϕ

(p0)2 − (ω2
p − iε)

= lim
R→∞

iR
∫ −π

0
dϕ eiϕ

e−iRx0(cosϕ + i sinϕ)

R2e2iϕ − (ω2
p − iε)

. (1.71)

This implies that

lim
R→∞

R

�����∫ −π

0
dϕeiϕ

e−iRx0 cosϕeRx0 sinϕ)

R2e2iϕ − (ω2
p − iε)

����� ≤ lim
R→∞

R
∫ −π

0
dϕ| . . . |

= lim
R→∞

R
∫ −π

0
dϕ

eRx0 sinϕ

R2 + bounded
= 0 , (1.72)

which shows that
∫

ydp0 A = 0. Consequently, for the p0-integral with

x0 > 0 we can write∫
→y

dp0

(2π)
e−ip0x0

(p0)2 − (ω2
p − iε)

= i
∫
→y

dp0

(2π)i
e−ip0x0

(p0 − (ωp − iε′))(p0 + (ωp − iε′))

= −i
e−i(ωp−iε

′)x0

2(ωp − iε′)
ε′→0
→ −i

e−iωp x0

2ωp
. (1.73)

Here we used the Cauchy integral formula:

f (x0) =
1

2πi

∳
dz

f (z)
z − x0

, (1.74)

where f (z) has no pole inside of the closed curve. Thus

i∆F (x)|x0>0 =

∫
R3

d3 p

(2π)3
e−iωp x0−ipx0

2ωp
=

∑
p

e−ipx . (1.75)

Similarly for x0 < 0 we can close the p0-integral with a large upper
circle x. With this we get that

i∆F (x)|x0<0 =
∑
p

eipx . (1.76)
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Hence
i∆F (x) =

∑
p

[
Θ(x0)e−ipx + Θ(−x0)eipx

]
. (1.77)

Should we have started directly from the form (1.77) we could ar-
rive at the integral representation (1.69) by employing the following
representation of Θ function

Θ(x) =
1

2πi

∫
R

dτ
eixτ

τ − iε
. (1.78)

Let us now see that ∆F (x) really corresponds to Green’s function. To
this end we consider

(� +m2)∆F (x) = −i(� +m2) 〈0| T[φ(x)φ(0)] |0〉 . (1.79)

To do this computation it suffices to concentrate only on the T[. . .]
product part. In this case

− i
(

∂2

∂(x0)2
− ∇2

x +m2
)
[Θ(x0)φ(x)φ(0) +Θ(−x0)φ(0)φ(x)]

= −i
∂2

∂(x0)2
[· · · ] − i

[
Θ(x0)(−∇

2
x +m2)φ(x)φ(0)

+ Θ(−x0)φ(0)(−∇2
x +m2)φ(x)

]
. (1.80)

Rewriting the expressing for −i∂2[· · · ]/∂(x0)2 as

− i
∂

∂x0 [δ(x0)φ(x)φ(0) − δ(x0)φ(0)φ(x)

+ Θ(x0)
∂

∂x0 φ(x)φ(0) +Θ(−x0)φ(0)
∂

∂x0 φ(x)
]

= −i
[
δ(x0)

[
Ûφ(x), φ(0)

]
+ Θ(x0)

∂2

∂(x0)2
φ(x)φ(0) +Θ(−x0)φ(0)

∂2

∂(x0)2
φ(x)

]
. (1.81)

Thus

− i(� +m2)T[φ(x)φ(0)] = −δ(x) − iΘ(x0)(� +m2)φ(x)φ(0)

− iΘ(−x0)φ(0)(� +m2)φ(x)

= −δ(x) . (1.82)

Which means that

(� +m2)∆F (x) = −δ(x) . (1.83)

Alternatively, we can prove this directly from the integral representa-
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tion of the Feynman propagator:

−i(� +m2) 〈0| T[φ(x)φ(0)] |0〉 = (� +m2)

∫
d4p
(2π)4

e−ipx

(p2 −m2 + iε)

= −

∫
d4p
(2π)4

(p2 −m2)

(p2 −m2 + iε)
e−ipx

= −δ(x) . (1.84)

The fact that this is indeed equal to the Dirac delta function follows
from the properties of generalized functions. To that end we use
Sokhotski formula

1
x + iε

= P
1
x
− iπδ(x) , (1.85)

which should be understood in the sense that for any Schwartz test
function g one has the scalar product identity(

1
x + iε

, g
)
=

(
P

1
x

, g
)
− iπ(δ, g) . (1.86)

By using the fact that

x
x + iε

= xP
1
x
− iπxδ(x) = xP

1
x

(1.87)

we have( x
x + iε

, g
)
= lim

a→0

(∫ −a

−∞

dx
x
x
g +

∫ ∞

a

dx
x
x
g

)
= (1, g) . (1.88)

Finally we employ the identity for Fourier transforms

(F [ f ], g) = ( f ,F [g]) , (1.89)

and write (
F

[
p2 −m2

p2 −m2 + iε

]
, g

)
= (1,F [g]) = (δ, g) , (1.90)

which confirms the results (1.84).

One can also calculate the momentum integral in (1.69) explicitly.
The actual result splits into 3 parts. Light-like part (i.e., when x2 =

0) that has a simple form δ(x2)/(4π), time-like part (i.e., when x2 >

0) is a combination of Bessel functions J1(m
√

x2) and Y1(m
√

x2), and
finally space-like part ( corresponding to x2 < 0) is proportional to the
modified Bessel function of 2nd kind K1(m

√
−x2). In the neighborhood

of the light cone the solution can be expanded as

∆F (x) '
1

4π
δ(x2) −

i
4π2x2 +

im2

8π2 ln |x | −
m2

16π
Θ(x2) . (1.91)

So, ∆F (x) penetrates also behind the light cone. We will see that ∆F (x)
basically corresponds to an amplitude of probability that a particle start-
ing at x = (0, 0)will end up at the point x = (x0, x). In this respect there
is a non-zero probability that a quantum particle might evolve into a
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space-like separated regions.

Let us consider the part of the solution with x2 < 0 more in detail. This
has the explicit form

∆F (x) =
im
4π2

K1(m
√
−x2)

√
−x2

. (1.92)

For large
√
−x2 ≡ |x | the latter has the expansion

∆F (x) =
1
4

√
m

2(|x |π)3
e−m |x | [1 + O(1/|x |)] . (1.93)

Thus for large |x | the behavior is dominated by the exponential part.

Note that when we reintroduce h̄ and c then e−m |x | → e−
cm
h̄ |x | = e−

|x |
λc .

So a typical distance over which a particle can appreciably "tunel"
behind light-cone is λC =

h̄
mc , which is a Compton wave length. We

have seen that this was a reason for existence of anti particles.

Notes on microcausality

Despite the microcausality, there are nontrivial correlations even at
space-like distances. This is due to vacuum that can mediate such
correlations.

Dirac Field

Recall that we require to use anti-commutation relations for Fermi
field instead of commuting ones. We therefore define the time ordering
(time ordered product) for ψα(x) and ψβ(x) to be

T[ψα(x)ψβ(y)] =

{
ψα(x)ψβ(y) x0 > y0

−ψβ(y)ψα(x) x0 < y0
. (1.94)

We will see in the following that this definition will also be consistent
with other requirements, e.g., it will allow us to get a correct Green’s
function for Dirac equation.

We define the corresponding Feynman propagator to be

i{SF (x)}αβ = 〈0| T[ψα(x)ψβ(y)] |0〉 . (1.95)

It will be this object that will be a basic building block in the per-
turbative treatment of scattering matrix. Again, it will correspond to
the Green function (this time for Dirac equation) with correct pole
avoidance prescription.

If we follow through the same type of argument as for scalar field we
find that

{SF (x)}αβ =

∫
d4p
(2π)4

(/p +m)αβ
p2 −m2 + iε

e−ipx

= −i 〈0| T[ψα(x)ψβ(y)] |0〉 . (1.96)
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Let us recall some relevant steps in the proof. For x0 > 0 we get

{SF (x)}αβ

= −i
∑
p,p′

∑
λ,λ′
〈0| [a(p, λ)uα(p, λ)e−ipx + b†(p, λ)vα(p, λ)eipx]

× [b(p′, λ′)vβ(p′, λ′)e−ip0 + a†(p′, λ′)uβ(p′, λ′)eip0] |0〉 .

Here we note that only first and fourth term in the sum are relevant.
Continuing we get

{SF (x)}αβ = −i
∑
p,p′

∑
λ,λ′
〈0| [a(p, λ), a†(p′, λ′)] |0〉 uα(p, λ)uβ(p, λ)e−ipx

= −i
∑
p,λ

uα(p, λ)uβ(p, λ)e−ipx

= −i
∑
p,λ

(/p +m)αβe−ipx . (1.97)

Similarly we can repeat this procedure for x0 < 0. Finally we get that

SF (x) = −i
∑
p

[
Θ(x0)(/p +m)e−ipx −Θ(−x0)(/p −m)eipx

]
. (1.98)

On the other hand,∫
d4p
(2π)4

(/p +m)

p2 −m2 + iε
e−ipx

= i
∫

d4p
(2π)4

(/p +m)
[p0 − (ωp − iε′)][p0 + (ωp − iε′)]

e−ipx . (1.99)

By closing our contour down (see Fig. (1.4)) we get for x0 > 0 that the
integral above is equal to

−i
∫

d3 p

(2π)3
(/p +m)

2ωp
eipx−iωp x0 = −i

∑
p

(/p +m)e−ipx . (1.100)

This coincides with Eq. (1.98). Similar reasoning can be done for x0 < 0.

Figure 1.4: Way of closing the contour in
integral (1.99) for the case x0 > 0.

To show that SF (x) is Green’s function of Dirac equation, let us con-
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sider

(i /∂ −m)SF (x) =
∫

d4p
(2π)4

(/p −m)(/p +m)

p2 −m2 + iε
e−ipx

=

∫
d4p
(2π)4

p2 −m2

p2 −m2 + iε
1e−ipx

=

∫
d4p
(2π)4

1e−ipx = δ(x)1 . (1.101)

Another representation of SF (x)

One often alternatively writes SF (x) in yet another form. Take

[/p − (m ± iε)][/p + (m ± iε)] = p2 −m2 ∓ 2iεm + ε2 .

Then by inverting this relation

[/p + (m ± iε)]−1[/p − (m ± iε)]−1 =
1

p2 −m2 ∓ 2iεm + ε2 .

By denoting ε′ = 2iεm and neglecting ε2 we get that

[/p + (m ± iε)]−1[/p − (m ± iε)]−1 =
1

p2 −m2 + iε′
.

Thus finally

(/p +m)

p2 −m2 + iε′
= (/p +m)(/p + (m − iε))−1(/p −m + iε)−1

=
1

/p −m − iε
+

iε
p2 −m2 + iε′

,

and hence

SF (x) =
∫

d4p
(2π)4

e−ipx

/p −m + iε
.

It can be shown that this again corresponds to the transitional am-
plitude and again there is a non-zero contribution from x2 < 0 with
effective penetration distance of the order of λc .

1.4 Interacting Fields

So far we have dealt with non-interacting particles that were repre-
sented through free fields. To include interactions among particles we
must introduce interaction terms into the Lagrangian.

As a test bed for further applications we start with Hermitian (i.e.
uncharged) field Lagrangian. If the field is free we have

LF =
1
2
(∂φ)2 −

1
2

m2ϕ2 . (1.102)
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The interaction is introduced by making the substitution LF → L =

LF +LI , and requiring this quantity to be the Lorentz density (so that
the ensuing equations of the motion are relativistically invariant). Here
the term LI is the so-called interaction Lagrangian. The simplest form
of LI that keeps L to be Lorentz density is the form where LI is a local
function of fields. Among these, the polynomial functions are the sim-
plest ones. Let us thus consider particularly (and phenomenologically)
important case

LI = −
g

3!
φ3 −

λ

4!
φ4 ≡ −V(φ) . (1.103)

The presence of the LI in the Lagrangian density means that φ no
longer obeys the Klein-Gordon equation. If we construct the field π(x)
conjugate to φ(x) from the usual prescription π(x) = ∂L

∂φ(x) , then for

L =
1
2
Üφ −

1
2
(∇φ)2 − 1

2
m2φ2 − V(φ) , (1.104)

we get π = Ûφ, which is formally identical with the free-field case.

Canonical commutation relation is

[φ(x), π(x ′)] = [φ(x), Ûφ(x ′)] = iδ(x − x ′) , (1.105)

where x = (x0, x) and x ′ = (x0, x ′). Recall that Hamilton density is
defined as

H(x) = π(x) Ûφ(x) − L(x) . (1.106)

Thus, if we substitute L(x) given in (1.104) we get

H = π2(x) −
[
1
2
π2(x) −

1
2
(∇φ(x))2 − 1

2
m2φ2(x)

]
+V(φ)

=
1
2
π2(x) +

1
2
(∇φ(x))2 + 1

2
m2φ2(x) +

g

3!
φ3(x) +

λ

4!
φ4(x)

= H0(x) + HI (x) = H0(x) − LI (x) . (1.107)

Here

H0(x) =
1
2
π2(x) +

1
2
(∇φ(x))2 + 1

2
m2φ2(x) , (1.108)

and
HI (x) =

g

3!
φ3(x) +

λ

4!
φ4(x) = −LI (x) . (1.109)

At any given time t the H = H0 +HI and we can calculate them using

H0 =

∫
d3 xH0(x) ,

HI =

∫
d3 xHI (x) . (1.110)

The Heisenberg equations of motion for φ(x) is given by the Euler–
Lagrange equation (check directly via Heisenberg equations of motion)
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∂µ

(
∂L

∂∂µφ

)
−
∂L

∂φ
= 0 , (1.111)

which gives us

∂µ(∂
µφ) + m2φ +

g

2
φ2 +

λ

3!
φ3︸          ︷︷          ︸

∂V
∂φ

= 0 . (1.112)

The extra term ∂V
∂φ in the equation of motion prevents the solutions

from being free-field solutions.

1.5 Perturbation theory

We will make split H = H0 + HI at a reference time t = 0

H0 =

∫
d3x

[
1
2
π2(0, x) +

1
2
(∇φ(0, x))2 +

1
2

m2φ2(0, x)
]

,

HI =

∫
d3x

[
g

3!
φ3(0, x) +

λ

4!
φ4(0, x)

]
=

∫
d3xV(φ(0, x)) . (1.113)

In order to discuss how to deal with such an interacting system we
introduce yet another technical concept.

Interaction (Dirac’s) Picture

We know that in the Schrödinger picture

i
d
dt
|ψ(t)〉S = HS |ψ(t)〉S . (1.114)

If HS is time independent (no external time dependent fields/sources),
then

|ψ(t)〉S = e−iH
S t |ψ(0)〉S . (1.115)

On the quantum level the full information about the interaction is most
naturally encoded in fields in the Heisenberg picture. On the other
hand, the passage to the perturbation calculus is most easily done via
interaction (or Dirac’s) picture. Let us thus first introduce the interaction
picture.

If HS = HS
0 +VS is the full Hamiltonian (and its free and interaction

parts, respectively) in Schrödinger picture, we define interaction pic-
ture by the relation

|ψ(t)〉I = eiH0
S t |ψ(t)〉S , (1.116)

which can be equivalently rewritten as |ψ(t)〉S = e−iH0
S t |ψ(t)〉I .
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In the other words we peel off the free-theory Schrödinger time evolu-
tion so as to be able to concentrate on the effect of the interactions only.
The corresponding equation of the motion for |ψ(t)〉I can be directly
obtained from the defining relation (1.116), indeed

i
d
dt
|ψ(t)〉I = −H0

S |ψ(t)〉I + e−iH0
S t (i

d
dt
|ψ(t)〉S)

= −H0
S |ψ(t)〉I + eiH0

S t (H0
S +VS)e−iH0

S t |ψ(t)〉I

= V I |ψ(t)〉I = H I |ψ(t)〉I , (1.117)

where
H I = eiH0

S tHI
Se−iH0

S t , (1.118)
Here we use a bit clumsy notation H I ,
which stand for even clumsier H I

I . For
other operators in the interaction picture
we stick to the usual notation, e.g. AI .is the interaction part of the Hamiltonian in the interaction picture,

which (in contrast to its Schrödinger picture counterpart) is gener-
ally time dependent. Note, that for a time-independent HI

S , the time
dependence of HI is that of a free Heisenberg field. Equation (1.118)
provides the defining relation between interaction and Schrödinger
picture. So, in general

AI = eiH
S
0 t ASe−iH

S
0 t . (1.119)

This relation should be compared with the usual relation between
Heisenberg and Schrödinger picture where

AH = eiH
S t ASe−iH

S t , (1.120)

i.e., where the time evolution is implemented via full Hamiltonian.

Note

In the interaction picture the evolution of quantum states is dictated
by the interaction while the evolution of operators via free part of
Hamiltonian. This last statement can be also phrased in terms of
the equation of motion for H I . In particular

i
d
dt

H I = − eiH0
S tH0

SHI
Se−iH0

S t

+ eiH0
S tHI

S e−iH0
S

eiH0
S︸        ︷︷        ︸

= 1

H0
Se−iH0

S t

= −H0 H I + H I H0 = [H I ; H0] .

So, finally we have that d
dt H I = −i[H I ; H0], which indeed shows

that evolution of operators is via free-field Hamiltonian. We as-
sumed that HI

S is time independent and H0
S = H0

I ≡ H0.

We now come back to the equation for states. If at t = t1 we have that
|ψ(t1)〉I = |ψi〉, then one can observe from (1.117) that

|ψ(t)〉I = |ψi〉 +
1
i

∫ t

t1

dt ′HI (t ′) |ψ(t ′)〉I . (1.121)
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This an integral equation for |ψ(t)〉I .In mathematics the integral equation
(1.121) is known as the Voltera integral
equation of the second kind.

Indeed, Eq. (1.121) clearly satisfies

i
d
dt
|ψ(t)〉I = H I (t) |ψ(t)〉I , with |ψ(t1)〉I = |ψi〉 . (1.122)

Let us attempt to solve this equation iteratively

0thapprox. |ψ(t)〉I = |ψi〉

1stapprox. |ψ(t)〉I = |ψi〉 +
1
i

∫ t

t1

dt ′HI (t ′) |ψi〉

2ndapprox. |ψ(t)〉I = |ψi〉 +
1
i

∫ t

t1

dt ′HI (t ′) |ψi〉

+
1
(i)2

∫ t

t1

dt ′
∫ t′

t1

dt ′′HI (t ′)HI (t ′′) |ψi〉

...

We can thus generally write

|ψ(t)〉I = U(t; ti) |ψi〉 , (1.123)

where

U(t; ti) = 1 +
+∞∑
n=1

(−i)n
∫ t

ti

dt1
∫ t1

ti

dt2 . . .

∫ tn−1

ti

dtn HI (t1) . . .HI (tn) .

(1.124)
In the integration region (t1 > t2 > t3 . . .) to put (1.124) into a manage-
able form one can use Dyson trick that is based on the time-ordering
product.

To this end, we define T[HI (t1)HI (t2) · · · ], which is the usual product
of operators but organized so that the operators with higher time
argument are more in left, or in other words, the product is such that
time arguments of involved operators are in descending order from
left to right.

Now, from mathematical analysis it is known that the following inte-
gral identity works for c-numbered functions f (t)∫ t

τ
dt1

∫ t1

τ
dt2

∫ t3

τ
dt3 . . .

∫ tn−1

τ
dtn f (t1) . . . f (tn)

=
1
n!

∫ t

τ
dt1

∫ t

τ
dt2

∫ t

τ
dt3 . . .

∫ t

τ
dtn f (t1) . . . f (tn) .

Since behind the symbol “T” all operators HI (ti) commute, we can
write

U(t, ti) = 1 +
+∞∑
n=0

(−i)n

n!

∫ t

ti

dt1
∫ t

ti

dt2 . . .

∫ t

ti

dtn T[HI (t1) · · · ] . (1.125)

In the absence of the time ordering one could naively write

U(t; ti) = e−i
∫ t

ti
dt′HI (t

′) , (1.126)
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but this is wrong! In fact correctly we have

U(t; ti) = T
[
e−i

∫ t

ti
dt′HI (t

′)

]
, (1.127)

where this time-ordered exponential should be understood as “ex-
pand and apply on each monomial separately” as explicitly given in
(1.125).

Note

Note the difference between

e
∫ b

a
dtA(t) ≈ eA(tn=tb )∆t+A(tn−1)∆t+...+A(t1=ta )∆t ,

and

T
[
e
∫ b

a
dtA(t)

]
≈ eA(tn=tb )∆teA(tn−1)∆t . . . eA(t2)∆teA(t1=ta )∆t ,

where tn > tn−1 > . . . > t1.

Only when all operators A(t) at different times commute then both
expressions are identical.

Note that U(t; t1) satisfies the composition law (assuming t1 < t2 < t)

T
[
e

1
i

∫ t2
t1

dt′H I (t
′)+ 1

i

∫ t

t2
dt′H I (t

′)

]
= T

[
e

1
i

∫ t

t2
dt′H I (t

′)

]
T

[
e

1
i

∫ t2
t1

dt′H I (t
′)

]
= U(t; t2)U(t2; t1) . (1.128)

This is composition rule should be expected on the consistency ground
since U(t; t1) is evolution operator. The operator U(t; t1) is called Dyson
operator and the ensuing representation (1.124) is known as Dyson series.

Name Dyson series is frequently used in
yet another connection, namely in the
connection with the mass renormaliza-
tion.

Interacting fields

Scattering processes are described in terms of transitions between an
initial state of free particles far in the distant past and final state of free
particles far in the remote future.

Cluster decomposition property

Assumption that a studied interacting system can be described in
terms of free fields in asymptotic times is called the cluster decompo-
sition property.

Formally, we are thus interested in the limits t → +∞ and t1 → −∞
and therefore the operator

S ≡ T
[
e−i

∫ +∞
−∞

dtH I (t)
]
= T

[
ei

∫ +∞
−∞

dtL I (t)
]

. (1.129)
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We shall shortly see that this evolution operator will be of key practical
importance. From our construction

H I = −

∫
d3xLI (t) . (1.130)

Consider that the interaction part of the Lagrangian has classically the
form

LI = −
g

3!
φ3(x) −

λ

4!
φ4(x) . (1.131)

Let us assume that quantization is first performed via Schrödinger
picture. We can then easily pass to the interaction picture via the usual
relation

φI (x) = φI (t, x) = eiH
S
0 tφS(0, x)e−iH

S
0 t

= eiH
I
0 tφI (0, x)e−iH

S
0 t , (1.132)

Here we have assumed that Schrödinger and interaction pictures co-
incide at the reference time t = 0. So, in particular at t = 0 we have

H I (0) =
∫

d3x

(
g

3!
(φI )3(0, x) +

λ

4!
(φI )4(0, x) + . . .

)
. (1.133)

This structure remains the same for all times. Indeed

H I (t) = eiH
I
0 tH I (0)e−iH

I
0 t

=

∫
d3x

(
g

3!
(φI )3(t, x) +

λ

4!
(φI )4(t, x) + . . .

)
. (1.134)

As already mentioned, the fields that appear in the interaction-picture
are free fields controlled by H0. Recall, that for any operator Q

QI (t2) = eiH
I
0 (t2−t1)QI (t1)e−iH

I
0 (t2−t1) , (1.135)

or infinitesimally

i
dQI (t)

dt
=

[
QI (t); H I

0
]

, (1.136)

which is nothing but that free-field equation of motion.

So, in particular, in the interaction pic-
ture we have (∂2 +m2)φI (x) = 0 where
φI (x) =

∑
p [a(p)e

−i px + a†(p)ei px ].
Moreover, the

canonical commutation relations also hold in the interaction picture.
Indeed, by introducing the conjugated momenta

Π
I (x) = eiH0tΠ

I (0, x)e−iH0t = eiH0tΠ
S(0, x)e−iH0t , (1.137)

we might directly write[
φI (t, x);ΠI (t; x ′)

]
= iδ(x − x ′) ,[

φI (t, x); φI (t; x ′)
]
=

[
Π

I (t, x);ΠI (t; x ′)
]
= 0 ,

Π
I (t, x) = ÛφI (t, x) .

These relations are, of course, simple consequence of the fact that the
interaction picture fields are connected via unitary transformation
with Schrödinger (and also Heisenberg) picture fields.
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Note

Let the interaction and Heisenberg pictures coincide at some refer-
ence time t0. We can use their respective evolution equations

φI (t, x) = eiH
I
0 (t−t0)φI (t0, x)e−iH

I
0 (t−t0) ,

φH (t, x) = eiH(t−t0)φH (t0, x)e−iH(t−t0) ,

and the fact that φH (t0, x) = φI (t0, x) to obtain that

φI (t, x) = eiH
I
0 (t−t0)e−iH(t−t0)φH (t, x)eiH(t−t0)e−iH

I
0 (t−t0)

= Λ(t, t0)φH (t, x)Λ−1(t, t0) . (1.138)

Here Λ(t, t0) is clearly unitary (i.e., Λ†(t, t0) = Λ−1(t, t0)).

Representation (1.138) for Λ(t, t0) is quite inconvenient for practical
purposes as it mixes two distinct representations. In addition, for
perturbation purposes it is convenient to work directly with the inter-
action picture. Fortunately, it is not difficult to find the form of Λ(t, t0)
directly in the interaction picture. To this end we again assume that
t0 is the time when both Heisenberg and interaction picture coincide,
so that Λ(t0, t0) = 1. We know that the correspond Heisenberg field
equations in respective pictures read

∂

∂t
φH (t, x) = i

[
H(φH ,ΠH ), φH (t, x)

]
,

∂

∂t
φI (t, x) = i

[
H I

0 (φ
I ,ΠI ), φI (t, x)

]
. (1.139)

In the following we will also need the simple identity, namely

ΛΛ
−1 = 1 ⇒

(
d
dt
Λ

)
Λ
−1 = −Λ

d
dt
Λ
−1 . (1.140)

Let us now take the derivative of φI and use the former identities. This
gives

∂

∂t
φI (t, x) =

∂

∂t
[
ΛφHΛ−1] = ÛΛφHΛ−1 +Λ Û(φH )Λ−1 +ΛφH Û(Λ−1)

= ÛΛ
(
Λ
−1φIΛ

)
Λ
−1 + iΛ

[
H

(
φH ,ΠH )

, φH
]
Λ
−1

+ Λ
(
Λ
−1φIΛ

) Û(Λ−1)

= ÛΛΛ−1φI + i
[
H I (φI ,ΠI ) , φI ] + φI Λ Û(Λ−1)︸  ︷︷  ︸

− ÛΛΛ−1

=
[
ÛΛΛ−1 + i H I (φI ,ΠI )︸        ︷︷        ︸

H I−H I
0 +H

I
0

, φI
]

. (1.141)

This should be compared with (1.139). In fact, since (1.141) holds for
any interaction-picture operator (not necessarily only for φI (t, x)), we
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inevitably have that

ÛΛΛ−1 + i
(
H I − H I

0
)
= c-number ⇒ ÛΛ = −iH IΛ + cΛ ,

(c is some c-numbered time-dependent function). The previous line
can thus be equivalently rewritten as

i
∂Λ(t, t0)

∂t
=

[
H I (t) + ic

]
Λ(t, t0) . (1.142)

Note that this is the same type of equation we had for states in the
interaction picture. So, by using the boundary condition Λ(t0, t0) = 1,
we can equivalently rewrite (1.142) as the Volterra integral equation

Λ(t, t0) = 1 − i
∫ t

t0

dt1
(
H I + ic

)
Λ(t1, t0)

= T
[
e
−i

∫ t

t0
dτ

(
H I

(
τ)+ic(τ)

) ]
Λ

(
t0, t0

)︸   ︷︷   ︸
1

= e
∫ t

t0
c(τ)dτ

T
[
e
−i

∫ t

t0
dτ(H I (τ)

) ]
. (1.143)

Because both Λ(t, t0) (by its very definition) and T
[
. . .

]
are unitary

operators, we have that
���e∫

cdt
��� = 1. Consequently, such a phase factor

will not contribute to normalized matrix elements of Λ (this point will
be further justified later), and we will discard it in the following con-
siderations. So, we might finally write that Λ(t, t0) = U(t, t0).

Note

It is not difficult to generalize Λ(t, t0) by allowing its second ar-
gument to take on other values than the “reference time” t0. The
correct form is quite natural

Λ(t, t ′) = T
[
e−i

∫ t

t′
dτH I (τ)

]
,

(
t ′ 6 t

)
. (1.144)

Let us check that this is the correct prescription. First, Λ(t, t ′) satis-
fies the same differential equation as Λ(t, t0), i.e.

i
∂

∂t
Λ(t, t ′) = H IΛ(t, t ′) ,

but now with the initial condition Λ = 1 for t = t ′. In addition, it
can be seen that

Λ(t, t ′) = eiH
I
0 (t−t0)e−iH(t−t

′)e−iH
I
0 (t
′−t0)

= Λ(t, t0)Λ−1(t ′, t0) . (1.145)
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Indeed,

i
∂

∂t
Λ(t, t ′) = −H0Λ(t, t ′)

+ eiH
I
0 (t−t0)H

1︷                   ︸︸                   ︷
e−iH

I
0 (t−t0)eiH

I
0 (t−t0) e−iH(t−t

′)e−iH
I
0 (t
′−t0)

= −H I
0 Λ(t, t ′) + H I︸︷︷︸

H I
0 +H I

Λ(t, t ′)

= H IΛ(t, t ′) .

Finally, for t ′ = t0 we get back our original Λ(t, t0).

Note that Λ(t, t ′) satisfies the following important properties:

I For t1 ≥ t2 ≥ t3,

Λ(t1, t2)Λ(t2, t3) = Λ(t1, t0)Λ−1(t2, t0)Λ(t2, t0)Λ−1(t3, t0)

= Λ(t1, t3) .

I
[
Λ(t1, t2)

]†
=

[
Λ(t1, t0)Λ−1(t2, t0)

]†
= Λ−1†(t2, t0)Λ†(t1, t0)

= Λ(t2, t1) = Λ−1(t1, t2) .

These properties can be also directly deduced from the integral
form (1.144). The actual role of Λ(t, t ′)will become clear shortly.

Since we require (as usual in quantum mechanics) that scalar product
should be the same in whatever picture/representation we work, we
have for any operator A(t, x) and any pair of states |ψ〉 and |ψ ′〉

〈ψH | AH (t, x) |ψ ′H 〉 = 〈ψH |Λ
−1(t, t0)AI (t, x)Λ(t, t0) |ψ ′H 〉

!
= 〈ψI (t)| AI (t, x) |ψ ′I (t)〉 . (1.146)

This implies that

λ−1(t, t0)Λ(t, t0) |ψH 〉 = |ψI (t)〉

⇔ |ψH 〉 = λ(t, t0)Λ−1(t, t0) |ψI (t)〉 . (1.147)

Where λ is a phase factor with |λ | = 1.

Note — Summary of key results

φI (t, x) = Λ(t, t0)φH (t, x)Λ−1(t, t0)︸    ︷︷    ︸
Λ†(t,t0)

, (1.148)
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Λ(t, t0) = T
[
e
−i

∫ t

t0
dτHI (τ)

]
These representations of Λ are known as
Dyson representations. The time ordered
exponential is known as Dyson expan-
sion.

= T
[
e
i
∫ t

t0
dτd3xLI (τ,x)

]
= ei(t−t0)H

I
0 e−i(t−t0)H , (1.149)

Λ(t, t ′) = T
[
e−i

∫ t

t′
dτHI (τ)

]
= T

[
ei

∫ t

t′
dτd3xLI (τ,x)

]
= ei(t−t0)H

I
0 e−i(t−t

′)He−iH
I
0 (t
′−t0)

= Λ(t, t0)Λ−1(t ′, t0) . (1.150)

Let us now assume that we can adiabatically switch off the interaction
at t → −∞ so that in the remote past HI = 0 and hence φI (t, x) =
φH (t, x) for t → −∞. This allows us to identify t0 with −∞.

The field φH (t, x) contains the information about the interaction, since
it evolves over time with the full Hamiltonian. In order to describe
the "in" and "out" field operator we can now make the following
identifications

t → −∞ : φin(x, t) = φI (x, t) = φH (x, t) ,

t → +∞ : φout (x, t) = φH (x, t) . (1.151)

Furthermore, since the fields φI evolve over time with the free Hamil-
tonian H0, they always act in the basis of “in” state vectors, such that

φin(x, t) = φI (x, t), −∞ < t < +∞ . (1.152)

Note, when φI and φH coincide at different times, say times t1
0 or t2

0 ,
they are related via different unitary transformation, namely

φ
t1
0
I (t, x) = Λ(t, t1

0 )φH (t, x)Λ
†(t, t1

0 ) ,

φ
t2
0
I (t, x) = Λ(t, t2

0 )φH (t, x)Λ
†(t, t2

0 ) . (1.153)

Here we use a temporal notation φt0I (t, x) to denote different bound-
ary values for φI ’s, see Fig. 1.5. So, in particular, from the relation
φ−∞I (x, t) = Λ(t,−∞)φH (x, t)Λ†(t,−∞) follows that

φin(x, t) = Λ(t,−∞)φH (x, t)Λ†(t,−∞). (1.154)

As we let t →∞we can use the identification (1.151) to write

φin(x,∞) = Λ(∞,−∞)︸      ︷︷      ︸
S

φout (x,∞)Λ†(∞,−∞)︸       ︷︷       ︸
S†

. (1.155)

Note that φin (as any free field) allows to define corresponding set
of creation and annihilation operators ain(p), a†in(p) and the vacuum
state |0〉in (ain(p) |0〉in = 0). Similarly, from φout we have creation and
annihilation operators aout (p), a†out (p) and the vacuum state |0〉out . In
addition, from the relation

in 〈0| φ2
in |0〉in = out 〈0| φ2

out |0〉out = in〈0|Sφ2
outS

† |0〉in , (1.156)
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Figure 1.5: Transformation between
Heisenberg and interaction pictures and
connection with φin and φout fields.

we see that |0〉out = S† |0〉in. By taking into account also the fact that
(1.155) implies

ain(p) = Saout (p)S† ,

a†in(p) = Sa†out (p)S
† , (1.157)

we can immediately write

a†in |0〉in = |p〉in = Sa†out (p)S
†S |0〉out = S |p〉out , (1.158)

and similarly for multi-particle states

|p1, p2, . . .〉in = S |p1, p2, . . .〉out . (1.159)

We can denote this in a schematic way as

|i〉in = S |i〉out , (1.160)

(i stands for initial-state particle configuration and f for the final-state
particle configuration). Here the S-operator is better known under
the name S-matrix, and it allows for unitary transformation that con-
nects in-fields with out-fields. In particular, the rate for |p1, p2〉in →

|p3, p4, . . .〉out transition, is obtained from the matrix element

out 〈 f |i〉in = out 〈p3, p4, p5, . . .|p1, p2〉in . (1.161)

By noting that

| f 〉out = S† | f 〉in , |i〉out = S† |i〉in , (1.162)

we also have

S | f 〉out = | f 〉in , S |i〉out = |i〉in , (1.163)



30 1 Quantum Field Theory 2

which in Dirac’s notation is equivalent to

out 〈S f | = in 〈 f | , out 〈Si | = in 〈i | . (1.164)

The matrix element

Sf i = out 〈 f |i〉in = out 〈 f | S†S |i〉in = out 〈S f | S |i〉in

= in 〈 f | S |i〉in = out 〈 f | SS† |i〉in = out 〈 f | S |S†i〉in

= out 〈 f | S |i〉out , (1.165)

is known as scattering transition amplitude. Generally, one can write the
S-matrix in the Dyson expansion form as (cf. Eq. (1.155))

This is known as Dyson’s formula for
S-matrix

S = T
[
exp

{
i
∫ ∞

−∞

dt
∫

R3
d3xLI

(
φ(x), ∂µφ(x)

)}]
= T

[
exp

{
i
∫

R4
d4xLI

(
φ(x), ∂µφ(x)

)}]
. (1.166)

S-matrix contains all physical information for any scattering process
in the theory described by given Lagrangian, since any transition
amplitude can be computed from it.

Recall, that the key assumption in our description of scattering pro-
cesses was the adiabatic hypothesis, i.e. the assumption that one can
switch off the interaction slowly for large positive and large negative
times without changing the physics. For many purposes this is in-
deed a sensible assumption. However, we will see a bit later (when
discussing renormalization) that this description is too simplistic.

Final upshot of this discussion is that in order to describe any realistic
scattering, e.g., the scattering process |p1, p2〉in → |p3, p4, p5, . . .〉out

Figure 1.6: Schematic representation of
the scaterring process |p1, p2 〉in →

|p3, p4, p5, . . .〉out .

we must compute the transition amplitude

out 〈p3, p4, p5, . . .|p1, p2〉in = in〈p3, p4, p5, . . .|S |p1, p2〉in . (1.167)

Try to fill the gaps and generalize the
present analysis also to non-Hermitian
(i.e, charged) scalar fields. Do you find
any substantial difference?

Advantage of this form is that fields entering in S are the interaction-
picture (i.e. free) fields that coincide with φH at t → −∞. So, the entire
S matrix is phrased in terms of free fields, and hence in the terms of
creation and annihilation operators a†in(p) and ain(p), respectively.
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Time ordered product and Wick’s theorem

To compute the S-matrix, we need to know how to systematically
compute time ordered products of free fields.

Let us begin with 2 free fields. In this case

T [φ(x)φ(y)] = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x) , (1.168)

where

φ(x) =
∑
p

[
a(p)e−ipx + a†(p)eipx

]
= φ(+)(x) + φ(−)(x) . (1.169)

For x0 > y0 we can write

T [φ(x)φ(y)] = φ(x)φ(y) = φ(+)(x)φ(+)(y) + φ(+)(x)φ(−)(y)

+ φ(−)(x)φ(+)(y) + φ(−)(x)φ(−)(y)

= φ(+)(x)φ(+)(y) + φ(−)(x)φ(−)(y) + φ(−)(x)φ(+)(y)

+
(
φ(+)(x)φ(−)(y) − φ(−)(y)φ(+)(x)

)
+ φ(−)(y)φ(+)(x)

= : φ(x)φ(y) : +
[
φ(+)(x), φ(−)(y)

]
. (1.170)

Since [
φ(+)(x), φ(−)(y)

]
=

∑
p,p′

[
a(p)e−ipx , a†(p′)eip

′y
]

=
∑
p,p′

δpp′e−ipx+ip
′y =

∑
p

e−ip(x−y) , (1.171)

one can write

T [φ(x)φ(y)] = : φ(x)φ(y) : +
∑
p

e−ip(x−y) . (1.172)

Similarly, for x0 < y0 one can easily show that

T [φ(x)φ(y)] = φ(y)φ(x) = : φ(x)φ(y) : +
∑
p

eip(x−y) . (1.173)

By combining (1.172) and (1.173) together we obtain

T [φ(x)φ(y)] = : φ(x)φ(y) : + θ(x0 − y0)
∑
p

e−ip(x−y)

+ θ(y0 − x0)
∑
p

eip(x−y)

= : φ(x)φ(y) : + i∆F (x − y) , (1.174)

The later implies, as a byproduct, that the vacuum expectation value
of the corresponding time ordered product is

〈0| T [φ(x)φ(y)] |0〉 = 〈0| : φ(x)φ(y) : |0〉 + i∆F (x − y) , (1.175)
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Since the vacuum expectation value of the normal ordered product is
zero, we have

〈0| T [φ(x), φ(y)] |0〉 = i∆F (x − y) . (1.176)

Similarly, for 3 free fields it can be checked that

T [φ(x1)φ(x2)φ(x3)] = : φ(x1)φ(x2)φ(x3) : + φ(x1)i∆F (x2 − x3)

+ φ(x2)i∆F (x3 − x1) + φ(x3)i∆F (x1 − x2) , (1.177)

and for 4 free fields one obtains

T [φ(x1)φ(x2)φ(x3)φ(x4)] = : φ(x1)φ(x2)φ(x3)φ(x4) :

+ : φ(x1)φ(x2) : i∆F (x3 − x4) + : φ(x1)φ(x3) : i∆F (x2 − x4)

...

+ i∆F (x1 − x2)i∆F (x3 − x4) + i∆F (x1 − x3)i∆F (x2 − x4)

+ i∆F (x1 − x4)i∆F (x2 − x3) . (1.178)

The Feynman propagator i∆F (x − y) is often referred to as the contrac-
tion of the fields φ(x) and φ(y) and it is sometimes denoted as

. . . φ (x) . . . φ(y) . . . = . . . i∆F (x − y) . . . . (1.179)

The so-called Wick’s theorem allows us to rephrase the time ordered
product of N free fields in terms of normal ordering and field contrac-
tions, namely

T [123 . . . N] = : 123 . . . N : + : 123 . . . (N − 2) : i∆F (xN − xN−1)

Here we use an abbreviated
notation φ(x1) . . . φ(xn) = 1 . . . n.

+ "all other terms with 1 contraction"

+ : 123 . . . (N − 4) : [i∆F (xN − xN−1)i∆F (xN−2 − xN−3)

+ i∆F (xN − xN−2)i∆F (xN−1 − xN−3)

+ i∆F (xN − xN−3)i∆F (xN−1 − xN−2)]

+ "all other terms with 2 contractions "

...

+ "till all contractions are exhausted" .

Note that if N is odd then there is at least one normal ordered field
product in each term. Therefore, for N odd

〈0| T [φ(x1) . . . φ(xN )] |0〉 = 0 . (1.180)

One can prove Wick’s theorem by induction, but this is tedious and
unenlightening. It is more instructive to prove the following theo-
rem
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Theorem — Generating functional for Wick’s theorem

Let J(x) be a c-number function, then

T
[
exp

(
−i

∫
d4x J(x)φ(x)

)]
= : exp

(
−i

∫
d4xJ(x)φ(x)

)
:

× exp
(
−

1
2

∫
d4x d4yJ(x) 〈0| T [φ(x)φ(y)] |0〉 J(y)

)
= : exp

(
−i

∫
d4xJ(x)φ(x)

)
:

× exp
(
−

i
2

∫
d4x d4y J(x)∆F (x − y)J(y)

)
. (1.181)

Before we prove this theorem, let us begin with a small comment. The
compact relation (1.181) clearly connects time ordering with normal
ordering and contractions, so it should reproduce the afforested Wick
theorem. To see this, let us replace J(x)with iK(x),

Real J(x) ensures that the generating
functional in (1.181) is unitary. On the
other hand, purely imaginary J(x) =

iK(x) allows to better organize terms in
the expansion.expand out left and

right hand side and compare coefficients. For instance, let us restrict
ourselves to the second order in K , then

T
[
1 +

∫
d4x K(x)φ(x) +

1
2

∫
d4x d4yK(x)K(y)φ(x)φ(y) + . . .

]
= : 1 +

∫
d4x K(x)φ(x) +

1
2

∫
dx4 d4yK(x)K(y)φ(x)φ(y) + . . . :

×

(
1 +

1
2

∫
d4xd4yK(x)K(y) 〈0| T [φ(x)φ(y)] |0〉 + . . .

)
,

implies that

1
2

∫
d4xd4yK(x)K(y)T [φ(x)φ(y)]

=
1
2

∫
d4xd4yK(x)K(y) [: φ(x)φ(y) : + 〈0| T [φ(x)φ(y)] |0〉] , (1.182)

which in turn implies that

T [φ(x)φ(y)] = : φ(x)φ(y) : + i∆F (x − y) . (1.183)

This coincides with Eq. (1.174).

One can proceed similarly also for higher
orders in K .

Let us now prove the above theorem. We first recall the Baker–Campbell–
Hausdorff (BCH) formula

e ÂeB̂ = e Â + B̂ + 1
2 [Â,B̂] , (1.184)

which holds for any pair of operators Â and B̂ provided that Â, B̂
commute with their commutator

[
Â, B̂

]
.

In our case the role of Â, B̂ will be played by free fields φ(x), φ(y).
Since they commute to c-number (Pauli–Jordan function), the as-
sumption will be satisfied. Consider tn > tn−1 > · · · > t1 and set
X̂(t) =

∫
d3xJ(x)φ(x). With this we can break up the time-ordered
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product in an approximate way as

T
[
e−i

∫
dtX̂(t)

]
≈ e−i∆t X̂(tn−1)e−i∆t X̂(tn) . . . e−i∆t X̂(t1)

= e−i∆t
∑n

i=1 X̂(ti ) −
1
2 (∆t)

2 ∑
k>l[X̂(tk ),X̂(tl )] . (1.185)

where on the second line we used (1.184).

Recall that operators after T symbol be-
have as commuting operators.

Taking the limit as ∆t → dt,
the expression (1.185) turns to

T
[
e−i

∫
d4x J(x)φ(x)

]
= e−i

∫
d4xJ(x)φ(x) − 1

2

∫
d4xd4yJ(x)J(y)[φ(x),φ(y)]θ(x0−y0)

= e−i
∫
d4x J(x)φ(x)

× e−
1
2

∫
d4xd4y J(x)J(y) [φ(x),φ(y)] θ(x0−y0) . (1.186)

On the last identity we used the fact that the term with commutator
is a c-numbered function and hence it can be factored out from the
exponential.

Eq. (1.186) is a nice result in itself, but it is not yet what we need. We
now note that

: e−i
∫
d4xJ(x)φ(x) : = e−i

∫
d4xJ(x)φ(−)(x)e−i

∫
d4xJ(x)φ(+)(x)

= e−i
∫
d4xJ(x)φ̂(x)

× e−
1
2

∫
d4xd4yJ(x)J(y)[φ(−)(x),φ(+)(y)] . (1.187)

The BCH formula was employed in the second identity. By combining
both (1.186) and (1.187) we obtain

T
[
e−i

∫
d4xJ(x)φ(x)

]
= : e−i

∫
d4xJ(x)φ(x) :

× e
1
2

∫
d4xd4yJxJy

{[
φ
(−)
x ,φ(+)y

]
−θ(x0−y0)[φx ,φy]

}
. (1.188)

The expression
[
φ
(−)
x , φ(+)y

]
− θ(x0 − y0)

[
φx , φy

]
is a c-number and hence

it can be conveniently evaluated by taking a vacuum expectation value
from it, i.e.

In passing from 1st to 2nd line we em-
ployed the fact that φ(−)x ∼ a† and φ(+)y ∼

a. Thus, the only surviving part of the
first commutator is φ(+)y φ

(−)
x .

〈0|
[
φ
(−)
x , φ(+)y

]
− θ(x0 − y0)

[
φx , φy

]
|0〉

= − 〈0| φ(+)y φ
(−)
x |0〉 − θ(x0 − y0) 〈0| φxφy |0〉 + θ(x0 − y0) 〈0| φyφx |0〉

= − 〈0| φyφx |0〉 · 1︷                 ︸︸                 ︷
= θ(x0−y0) + θ(y0−x0)

− θ(x0 − y0) 〈0| φxφy |0〉 + θ(x0 − y0) 〈0| φyφx |0〉

= −θ(y0 − x0) 〈0| φyφx |0〉 − θ(x0 − y0) 〈0| φxφy |0〉

= − 〈0| T
[
φxφy

]
|0〉 = −i∆F (x − y) . (1.189)

If we now compare (1.188) with (1.189) we obtain the desired generat-
ing functional for Wick’s theorem.

An important implication of the previous “operatorial” version of
Wick’s theorem is the weaker version of Wick’s theorem for vacuum
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expectation values (also known as Wick’s theorem). Note that

〈0| T
[
e−i

∫
d4xJ(x)φ̂(x)

]
|0〉 = 〈0| : e−i

∫
d4xJ(x)φ̂(x) : |0〉︸                          ︷︷                          ︸

1

× e−
1
2

∫
d4xd4yJ(x)J(y)〈0 |T [φ(x)φ(y)] |0〉 . (1.190)

Again expansions in K (J = iK) provide important relation between
〈0| T [12 . . . N] |0〉 and 〈0| T [i j] |0〉 = i∆F (xi − xj). Wick’s theorem in the
form (1.190) will be particularly important in what follows.

For instance, to fourth order in K we get the identity

δ4

δKy4δKy3δKy2δKy1

〈0| T
[
e−

∫
d4xKxφx

]
|0〉

����
K=0

=
δ4

δKy4δKy3δKy2δKy1

e
1
2

∫
d4xd4yKxKy 〈0 |T[φx ,φy] |0〉

����
K=0

. (1.191)

The simplest way to compute the derivatives is to expand each ex-
ponent and keep only the fourth order in K since no other term can
contribute. The left hand side of (1.191) thus reduces to

δ4

δKy4δKy3δKy2δKy1

1
4!

∫
d4x1 . . . d4x4 Kx1 . . .Kx4 〈0| T[φx1φx2φx3φx4 ] |0〉

= 〈0| T[φy1φy2φy3φy4 ] |0〉 . (1.192)

Here we have used the fact that 〈0| T[φx1φx2φx3φx4 ] |0〉 is a symmetric
function of its arguments.

The right hand side of (1.191) can be then written as

δ4

δKy4δKy3δKy2δKy1

1
4

1
2!

∫
d4x1 . . . d4x4 Kx1 . . .Kx4

× 〈0| T
[
φx1φx2

]
|0〉 〈0| T

[
φx3φx4

]
|0〉 . (1.193)

So, for instance, the first functional derivative gives

δ

δKy1

1
4

1
2!

∫
d4x1 . . . d4x4 Kx1 . . .Kx4

× 〈0| T
[
φx1φx2

]
|0〉 〈0| T

[
φx3φx4

]
|0〉

=
1
8

∫
d4x2d4x3d4x4 Kx2 Kx3 Kx4 〈0| T

[
φy1φx2

]
|0〉 〈0| T

[
φx3φx4

]
|0〉

+
1
8

∫
d4x1d4x3d4x4 Kx1 Kx3 Kx4 〈0| T

[
φx1φy1

]
|0〉 〈0| T

[
φx3φx4

]
|0〉

+
1
8

∫
d4x1d4x2d4x4 Kx1 Kx2 Kx4 〈0| T

[
φx1φx2

]
|0〉 〈0| T

[
φy1φx4

]
|0〉

+
1
8

∫
d4x1d4x2d4x3 Kx1 Kx2 Kx3 〈0| T

[
φx1φx2

]
|0〉 〈0| T

[
φx3φy1

]
|0〉 .

By proceeding with remaining 3 functional derivatives we arrive at
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three following types of terms

〈0| T
[
φy1φy2

]
|0〉 〈0| T

[
φy3φy4

]
|0〉 , (1.194)

〈0| T
[
φy1φy3

]
|0〉 〈0| T

[
φy2φy4

]
|0〉 , (1.195)

〈0| T
[
φy1φy4

]
|0〉 〈0| T

[
φy2φy3

]
|0〉 . (1.196)

Since T
[
φy1φy2

]
= T

[
φy2φy1

]
, each term of the form (1.194), (1.195) and

(1.196) will be generated with the multiplicity of 8.

So, finally we obtain that

〈0| T [1234] |0〉 = 〈0| T [12] |0〉 〈0| T [34] |0〉

+ 〈0| T [13] |0〉 〈0| T [24] |0〉

+ 〈0| T [14] |0〉 〈0| T [23] |0〉 . (1.197)

Graphically one can represent 〈0| T [1234] |0〉 from the Wick’s expan-
sion (1.197) as:

More generally, for any even N we get

〈0| T [1 . . . N] |0〉 = 〈0| T [12] |0〉 〈0| T [34] |0〉 . . . 〈0| T [(N − 1)N] |0〉

+ “all other distinct contractions” . (1.198)

Let us recall that for N odd this would be zero. Formula (1.198) will be
a basis of a perturbation evaluation of the S-matrix elements.

At this stage it is interesting to ask how many distinct terms (i.e., dis-
tinct products of i∆F ’s) can be generated in Wick’s expansion from
a generic 〈0| T [1 . . . N] |0〉. Let us set N = 2M with M being a gen-
eral positive integer. Using again an abbreviated notation 〈x1 . . . x2M 〉,
the result will be composed of 1st pairing that will comprise N − 1
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contractions, 2nd pairing that will comprise N − 3 contractions, etc.
Schematically

〈x1xk〉〈x2 . . . x̂k . . . x2M 〉 (2M − 1) contractions ,

〈x1xk〉〈x2xl〉〈x3 . . . x̂l . . . x̂k . . . x2M 〉 (2M − 3) contractions ,

... (1.199)

which together yields the total number of

(2M − 1) × (2M − 3) × (2M − 5) × · · · × (2M − (2M − 1))

=
2M × (2M − 1) × (2M − 2) × (2M − 3) × · · · × (2M − (2M − 1))

2M × 2(M − 1) × 2(M − 2) × · · · × 2

=
(2M)!
2M M !

, (1.200)

of contractions.

E.g. for M = 2 we see that the number of
terms is equal to 4!/(4 · 2!) = 3, in accor-
dance with our previous result (1.197).

As an exercise, try to find explicitly all 15 terms in the Wick’s expansion
of 〈0| T [123456] |0〉.

M = 3 ⇒
6!

233!
= 15 .

1.6 Green functions — Gell-Mann and Low
formula

Experimentalists are typically interested in matrix elements of the
S matrix, e.g. in 〈p3, p4, . . .| S |p1, p2〉in. From these elements one can
compute directly differential cross-sections in scattering experiments
as we will see in Chapter 1.19. Such computations are typically done
perturbatively in terms of the so-called Feynman diagrams. There
exists a very efficient way to the perturbative treatment (and ensuing
Feynman diagrams) that is based on the vacuum expectation value of
the time-ordered products of Heisenberg fields φH (x), i.e.

τ(x1, x2, . . . , xn) ≡ 〈x1 . . . xn〉

≡ 〈0| T [φH (x1)φH (x2) . . . φH (xn)] |0〉 . (1.201)

These expressions are also known as gen-
eralized Green functions, full n-point Green
functions or correlators. Here, |0〉 is a true
ground state of the interacting system.

Let us now recall that the Heisenberg field φH (x, t) is related to the in
field φin(x, t) by [cf. Eq. (1.155)]

φH (x, t) = Λ−1(t, t0)φin(x, t)Λ(t, t0) , (1.202)

where t0 → −∞.

However, at the moment we only know how to compute

τ0(x1, x2, . . . , xn) ≡ 〈x1 . . . xn〉0

≡ in〈0|T [φin(x1)φin(x2) . . . φin(xn)] |0〉in , (1.203)

where |0〉in is the ground state of the free Hamiltonian H0.
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Now, from Eq. (1.145) we can recall that Λ(t, t1) satisfies the composi-
tion law

Λ(t1, t2) = Λ(t1, t3)Λ(t3, t2) = Λ(t1, t3)Λ−1(t2, t3) . (1.204)

So, if we take points xj , where j = 1, . . . , n satisfying x0
1 > x0

2 > x0
3 >

· · · > x0
n (i.e. they are time ordered), then

φH (x1)φH (x2) . . . φH (xn)

= Λ(t1, t0)−1φin(x1)Λ(t1, t0)Λ(t2, t0)−1φin(x2) . . . φin(xn)Λ(tn, t0)

= Λ(t, t0)−1
Λ(t, t1)φin(x1)Λ(t1, t2)φin(x2) . . .

× . . .Λ(tn−1, tn)φin(xn)Λ(tn,−t)Λ(−t, t0)

= Λ(t)−1T
[
φin(x1)φin(x2) . . . φin(xn) exp

(
i
∫ t

−t

LI (x)d4x
)]
Λ(−t), (1.205)

where Λ(±t) = Λ(±t,−∞) and t > x0
1 > x0

2 > · · · > x0
n > −t. We have also

used that

Λ(t1, t2) = T
[
exp

(
i
∫ t1

t2

LI (x)d4x
)]

, (1.206)

involves φin(x, τ) for times τ ∈ [t2, t1]. We now chose times t and
−t from (1.206) so that they correspond to times where interaction
switches off. In other words, we assume that we adiabatically evolve
the non-interacting vacuum state into the true |0〉 by taking H = H0 +

η(τ)V with η(τ) = 0 at τ = ±∞ and η = 1 at τ ∈ [−t, t]. At the end of
computations the limit t →∞will be taken.

Now we want to take vacuum expectation value of the time ordered
product (1.205). By denoting the is the ground state of the full Hamil-
tonian H as |Ω〉 (this is more conventional notation that |0〉) we have

〈Ω|T [φH (x1)φH (x2) . . . φH (xn)] |Ω〉

= lim
t0→−∞

〈Ω|Λ(t, t0)−1T [φin(x1), φin(x2) . . . φin(xn)

×

[
exp

(
i
∫ t

−t

LI (x)d4x
)]
Λ(−t, t0) |Ω〉 . (1.207)

In order to bring (1.207) to a manageable form we need to convert
the ground state |Ω〉 to the ground state |0〉in. How these two ground
states are connected? We have already seen (cf. Eq. (1.147)) that

|ψH 〉 = λ(t, t0)Λ−1(t, t0) |ψI (t)〉 ,

⇒ |ψH 〉 = λ(t,−∞)Λ−1(t,−∞) |ψ(t)〉in , (1.208)

with |λ− | = 1. This implies, in particular, that

|Ω〉 = λ(t,−∞)Λ−1(t,−∞) |0〉in . (1.209)

Note that since both |Ω〉 and |0〉in are time independent, the term
λ(t,−∞)Λ−1(t,−∞) must also be t independent (or time-dependent
part should be annihilated by |0〉in). In the following we will denote
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λ(t,−∞)with positive t as λ+(t,−∞) and with −t as λ−(−t,−∞). Let us recall that |ψ(t)〉in states includ-
ing the vacuum state |0〉in evolve w.r.t
free Hamiltonian and H0 |0〉in = 0.Let us be more specific here and find this relation more explicitly. Take

e−iHt |0〉in = e−iE0t |Ω〉 〈Ω|0〉in +
∑
n,0

e−iEn t |n〉〈n |0〉in . (1.210)

States |n〉 are energy eigenstates of the full Hamiltonian H. We will
further assume that the overlap 〈Ω|0〉in , 0. This is justified in the
sense that we would like to use perturbation theory and hence |0〉in
should not be “too far” from |Ω〉. Also, we know that E0 = 〈Ω| H |Ω〉.
Since En > E0 for ∀n , 0, we can get rid of all n , 0 terms by sending
t → ∞(1 − iε), where 0 < ε � 1. Then, the exponential factor e−iEn t

dies slowest for n = 0. From (1.210) follows that(
e−iE0t 〈Ω |0〉in

)−1
e−iHt |0〉in = |Ω〉+

∑
n,0

e−i(En−E0)t
〈n|0〉in
〈Ω|0〉in

|n〉 , (1.211)

from which we can directly read

|Ω〉 = lim
t→∞(1−iε)

[(
e−iE0t 〈Ω|0〉in

)−1
e−iHt |0〉in

]
. (1.212)

Note that the previous result holds even when we shift time t by an
arbitrary constant t0

|Ω〉 = lim
t→∞(1−ε)


(
e−iE0(t+t0) 〈Ω|0〉in

)−1
e−iH(t0−(−t)) eiH

I
0 (t0−(−t)) |0〉in︸               ︷︷               ︸

1 |0〉in


= lim

t→∞(1−iε)


(
e−iE0(t0−(−t)) 〈Ω|0〉in

)−1︸                          ︷︷                          ︸
λ−(−t,t0)

Λ
−1(−t, t0) |0〉in


. (1.213)

Apart from the c-number phase factor λ−(−t, t0), this expression tells
us that we can get |Ω〉 by simply evolving |0〉in from time −t to time t0
with the operator Λ. In similar way we can express 〈Ω| as

〈Ω| = lim
t→∞(1−iε)

in〈0|


Λ(t, t0)

(
e−iE0(t−t0)

in〈0|Ω〉
)−1︸                      ︷︷                      ︸

λ+(t,t0)


. (1.214)
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So the n-point full Green function has the form

〈Ω| T[φH (x1)φH (x2) . . . φH (xn)] |Ω〉

= lim
t0→−∞

〈Ω|Λ−1(t, t0)T [φin(x1) . . . φin(xn)

× exp
(
i
∫ t

−t

LI (x)d4x
)]
Λ(−t, t0) |Ω〉

= lim
t0→−∞

lim
t→∞(1−iε)

λ+(t, t0)λ−(−t, t0) in〈0| T [φin(x1) . . . φin(xn)

× exp
(
i
∫ t

−t

LI (x)d4x
)]
|0〉in . (1.215)

In addition [cf. Eq. (1.150)]

1 = 〈Ω |Ω〉 = lim
t→∞(1−iε)

λ+(t, t0)λ−(−t, t0) in〈0|Λ(t, t0)Λ−1(−t, t0) |0〉in

= lim
t→∞(1−iε)

λ+(t, t0)λ−(−t, t0) in〈0|Λ(t,−t) |0〉in . (1.216)

Note that we did not need to invoke the large t0 limit, since the RHS is
explicitly t0 independent (see definitions of λ+(t, t0) and λ−(−t, t0)). For
large (but finite) t we can thus write

λ+(t, t0)λ−(−t, t0) '
1

in〈0|Λ(t,−t) |0〉in
. (1.217)

With this we finally obtain

〈Ω| T[φH (x1) . . . φH (xn)] |Ω〉

= lim
t→∞(1−iε)

in〈0| T
[
φin(x1) . . . φin(xn) exp

(
i
∫ t

−t
LI (x)d4x

)]
|0〉in

in〈0| T
[
exp

(
i
∫ t

−t
LI (x)d4x

)]
|0〉in

≡ 〈x1x2 . . . xn〉 . (1.218)

This is the so-called Gell-Mann–Low formula for the full n-point Green
function. So far this expression is exact, but it is ideally suited for
perturbative calculations, since we work with free fields and hence we
can use a full power of Wick’s theorem which (as we already know)
boils down to products of i∆F .

1.7 Functional Integral Approach

Gell-Mann–Low formula provides a useful starting point for introduc-
ing functional integral. There are basically two distinct ways how to
arrive at functional integrals:

1. Formulate the so-called path integrals in QM - these represent
Green’s function for Schrödinger equation and at the same time
correspond to transition amplitude 〈x ′, t ′ |x, t〉. One then formally
passes to field theory in much the same way as we did when
passing from QM to QFT. In this formulation it can be shown
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that for a Klein–Gordon particle 〈x ′µ, τ′ |xµ, τ〉 ∝ ∆F (x ′ − x) and
similarly also for Dirac’s particle (τ represents a proper time that
parametrizes particle’s wordline).

2. One can use the relation for generating function (1.190), i.e.

〈0| T
[
exp

(
−i

∫
d4x J(x)φ(x)

)]
|0〉

= exp
[
−

1
2

∫
d4xd4y J(x)J(y) 〈0| T[φ(x)φ(y) |0〉

]
, (1.219)

which encapsulates Wick’s theorem.

In this lecture, we will use the second approach because it brings us to
functional integrals faster.

Generating Functional for Full Green’s Functions

Consider a full n-point Green’s function

〈Ω| T[φH (x1) . . . φH (xn)] |Ω〉 ≡ 〈x1x2 . . . xn〉 . (1.220)

Due to the permutation symmetry of 〈x1x2 . . . xn〉 one can conveniently
combine the entire hierarchy {〈x1x2 . . . xn〉, n ∈ N} into one generating
functional

Z[J] = Z[0]
∞∑
n=0

in

n!

∫
R4n

n∏
i=1

d4xi J(x1) . . . J(xn)〈x1x2 . . . xn〉

= Z[0] 〈Ω| T
[
exp

(
i
∫

d4x J(x)φH (x)
)]
|Ω〉 . (1.221)

Here Z[0] is the J-independent normalization constant to be fixed
shortly. The c-number function J(x) is the so-called Schwinger source
term. With the help of Gell-Mann–Low formula this can be rewritten
in terms of free fields as (for simplicity we omit limits and we set
|0〉 ≡ |0〉in and φ(x) ≡ φin(x))

Z[J]
Z[0]

=
〈0| T

[
ei

∫
d4xL I (φ)+J(x)φ(x)

]
|0〉

〈0| T
[
ei

∫
d4xL I (φ)

]
|0〉

. (1.222)

At this point we set Z[0] = 〈0| T
[
ei

∫
d4xL I (φ)

]
|0〉 so that

Z[J] = 〈0| T
[
ei

∫
d4xL I (φ)+J(x)φ(x)

]
|0〉 . (1.223)

It follows from the very definition of Z[J] that 〈x1x2 . . . xn〉 can be
obtained when we n times functionally differentiate Z[J] with respect
to J(x), in particular

〈x1x2 . . . xn〉 =
1

Z[0]
(−i)nδnZ[J]

δJ(x1) . . . δJ(xn)

����
J=0

. (1.224)
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Note

Generating functional Z[J] is an analogue of the moment generating
function (or characteristic function) used in mathematical statistics.

Now, Z[J] in the form given by (1.223) can be formally rewritten as

Z[J] = exp
[
i
∫

R4
d4xLI

(
−i

δ

δJ(x)

)]
〈0| T

[
ei

∫
d4x J(x)φ(x)

]
|0〉 . (1.225)

Now, the “overbar” from LI was removed since we do not need to em-
phasize anymore that it is an operator in the interaction representation.
In deriving (1.225) we used an analog of the formula

f
(
−i

d
dx

)
eixp = f (p)eixp , (1.226)

that is used, e.g. in theory of Fourier transforms. By employing the
generating functional for Wick theorem in (1.190) with J → −J, we
obtain

Z[J] = exp
{
i
∫

R4
d4xLI

(
−i

δ

δJ(x)

)}
× exp

{
−

i
2

∫
d4y1d4y2 J(y1)J(y2)∆F (y1 − y2)

}
. (1.227)

The Functional Integral and Its Measure

In order to establish contact with functional integrals, let us consider
the Fresnel integral (a ∈ R)

The result can also be equivalently writ-
ten as

1√
|a |

e
iπ
4 sign(a)

=

√
i

a
.

∫
R

dx
√

2π
exp

(
i
a
2

x2
)
=


1√
|a |

e
iπ
4 a > 0

1√
|a |

e−
iπ
4 a < 0 .

(1.228)

Proof of this identity is as follows. We first extend x into C and evaluate
the integral

∫
γ

eiaz
2

dz for a > 0, where the contour γ is depicted on
Fig. 1.7.

Figure 1.7: Contour γ used in the eval-
uation of the Fresnel integral (1.228) for
a > 0.)

Since eiaz
2

is an analytic function, it follows from the Cauchy integral
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theorem that

0 =
∫
γ

eiaz
2
dz =

∫
→

eiaz
2
dz +

∫

� eiaz
2
dz

+

∫
↙

eiaz
2
dz +

∫
�e
iaz2

dz . (1.229)

First notice that∫

� eiaz
2
dz = lim

R→+∞
R

∫ π/4

0
dφieiφeaR

2(i cos 2φ−sin 2φ)

⇒

����∫� eiaz
2
dz

���� ≤ lim
R→+∞

R
∫ π/4

0
dφe−aR

2 sin(2φ) = 0

⇒

∫

� eiaz
2
dz = 0 , (1.230)

and similarly for
∫
�eiaz

2
dz. The integral

∫
↙

eiaz
2
dz can be evaluated

as follows (consider a > 0 first):∫
↙

eiaz
2
dz =

{
z = eiπ/4z′, dz = dz′eiπ/4

}
= eiπ/4

∫ −∞

∞

dz′e−az
′2
= {a > 0} = −eiπ/4

( π
a

)1/2

⇒ −

∫
↙

dze−az
2
= eiπ/4

( π
a

)1/2
. (1.231)

So, by plugging these results to (1.229) we obtain∫ +∞

−∞

eiax
2
dx = {a > 0} = eiπ/4

( π
a

)1/2

⇒

∫ +∞

−∞

dx
√

2π
ei

a
2 x2
= {a > 0} = eiπ/4

1
√

a
. (1.232)

For the case a < 0 we would need to chose a different contour, namely
the one where the diagonal line would nor run under the angle π/4
but −π/4.

So, from the Fresnel integral (1.228) we have the following N-dimensional
generalization∫ ∞

−∞

N∏
i=1

dciexp

(
i
2

∑
n,m

cnAnmcm

)
=

N∏
i=1

√
2π
|λi |

eiπsign(λi )/4

=

����det
(

A

2π

)����−1/2

eiηπ/4

= det
(

A

2πi

)−1/2

. (1.233)

Here A is real, symmetric (hence diagonalizable) N × N matrix with
eigenvalues {λi , i = 1, ..., N}.
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Note

Formula (1.233) has sense only if A has no zero modes. Case with
zero modes must be treated independently and it is related to the
concept of the so-called collective coordinates.

The index η =
∑N

i sign(λi) is referred to as the Morse or Maslov index.
The later is mostly important in the context of transition amplitudes
in QM. For typical applications in QFT (as, e.g. computation of Green
functions or S-matrix elements) it is not important as we will see.

In order to establish the connection to fields, let us first observe that any
real function φ(x) can be expanded in term of some real orthonormal
basis {vn(x), n ∈ N}, φ(x) =

∑
n cnvn(x), with cn’s being real expansion

coefficients.

So, in particular, we can write
A(x, y) is some symmetric function or
operator in x and y.

∫
d4xd4yφ(x)A(x, y)φ(y) =

∑
n,m

cnAn,mcm , (1.234)

with

An,m =

∫
d4xd4yvn(x)A(x, y)vm(y) (1.235)

This can be, in a sense, viewed as a simi-
larity transformation where vx formally
represents a unitary matrix with one dis-
crete and one continuous index.

Since both A(x, y) and An,m are symmetric, they are diagonalizable, i.e.
there exist polar bases {un(x); n ∈ N, x ∈ R} and {u(n)m ; n, m ∈ N} such
that ∫

d4yA(x, y)un(y) = λnun(x) , (1.236)∑
k

Amku(n)
k
= λnu(n)m , (1.237)

where un(x) and u(n)
k

are related as

u(n)
k
=

∫
d4x un(x)vk(x) , (1.238)

un(x) =
∑
k

u(n)
k
vk(x) . (1.239)

Relations (1.236)-(1.239) are simple consequences of the orthonormality
condition ∫

d4x vn(x)vm(x) = δnm , (1.240)

and the completeness relation∑
n

vn(x)vn(y) = δ(x − y) . (1.241)

Discretize now points in the spacetime, so that the spacetime is spanned
by N points xi — so-called Minkowski lattice. Then any {φ(xi); i ∈ N}
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can be expanded into N base functions vn(xi) only. In fact

φ(x) =
+∞∑
n=1

cnvn(x) ⇒ φ(xi) =
N∑
n=1

cnvn(xi) . (1.242)

The last equation provides a system of N independent equations for N
unknown cn. Consequently {φ(xi); i ∈ N} is uniquely determined by
its expansion modes cn and vice versa. With this we can formulate the
integral measure as

Dφ = lim
N→∞

N∏
i=1

dφ(xi) = lim
N→∞

N∏
n=1

dcn |J(N ) | , (1.243)

with the Jacobian

J(N ) = det


v1(x1) v1(x2) · · · · · ·

v2(x1) v2(x2)
...

. . .
... vn(xn)

 . (1.244)

The identity in Eq. (1.243) should be understood in the weak sense,
namely that the limit N → ∞ stands in front of the corresponding
multiple integral.

Note that, due to the orthonormality of the base system, we have that
J(N ) → 1 in the large N limit (also known as continuity limit or long
wave limit).

Truncation of the base system elements changes the infinite dimen-
sional matrix to N × N matrix A(N ).

Recalling identity (1.233), we might define the functional integral over
φ as ∫

Dφexp
(

i
2

∫
d4xd4yφ(x)A(x, y)φ(y)

)
= lim

N→+∞

[∫ N∏
i=1

dci exp

(
i
2

∑
n,m

cnA
(N )
n,mcm

)]
|J(N ) |

= lim
N→+∞

����det
(

A(N )

2π

)����−1/2

|J(N ) | = N ′ |det(A(x, y))|−1/2 , (1.245)

where on the last line we have included the Maslov index into N ′,
which by itself is an infinite constant.

Recall that both A and A have identical
spectrum.
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At this point we might note the following identity

N ′ |det(∆F (x, y)|1/2 exp
(
−

i
2

∫
d4xd4y J(x)∆F (x, y)J(y)

)
=

∫
Dφexp

(
i
2

∫
d4xd4yφ(x) [∆F (x, y)]−1 φ(y)

)
× exp

(
−

i
2

∫
d4xd4y J(x)∆F (x, y)J(y)

)
. (1.246)

Here ∆F (x, y) = −i〈0|T[φ(x)φ(y)]|0〉. At this point we use translational
invariance of Dφ, i.e.

Dφ = D(φ + g) ∼
∏
i

d (φ(xi) + g(xi)) , (1.247)

note that g(x) is an arbitrary but fixed function (hence g(xi) is a constant
while φ(xi) changes). This implies that (1.246) can be further written
as ∫

Dφ exp
(

i
2

∫
d4xd4y [φx + (J∆F )x]∆−1

F (x, y)
[
φy + (∆F J)y

] )
× exp

(
−

i
2

∫
d4xd4yJ(x)∆F (x, y)J(y)

)
=

∫
Dφ exp

(
i
2

∫
d4xd4y

[
φ(x)∆−1

F (x, y)φ(y)
] )

× exp
(
i
∫

d4x J(x)φ(x)
)

. (1.248)

What is ∆−1
F (x, y)? We know that it is defined so that∫

d4z∆−1
F (x, z)∆F (z, y) = δ(x − y) .

Since (� + m2)x∆F (x, y) = −δ(x − y) implies that∫
d4zδ(z − x)(� + m2)x∆F (z, y) = −δ(x − y) ,

we see that ∆−1
F (x, z) = −δ(z − x)(� + m2)x . With this we can further

rewrite (1.248) as∫
Dφ exp

(
i
2

∫
d4xφ(x)

[
−

(
� +m2

)]
φ(x) + i

∫
d4x J(x)φ(x)

)
=

∫
Dφ exp

(
iS0[φ] + i

∫
d4x J(x)φ(x)

)
.

Here S0 is the action for a free scalar field. Let us put now everything
together and rewrite the generator of Green functions in the following
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way:

Z[J] = exp
[
i
∫
R4

d4xLI

(
−i

δ

δJ(x)

)]
〈0| T

[
ei

∫
R4 d4x J(x)φ(x)

]
|0〉

= exp
[
i
∫
R4

d4xLI

(
−i

δ

δJ(x)

)]
e−

1
2

∫
d4xd4yJxJy 〈0 |T [φ(x)φ(y)] |0〉

= exp
[
i
∫
R4

d4xLI

(
−i

δ

δJ(x)

)]

×

∫
Dφ exp

(
iS0[φ] + i

∫
d4x J(x)φ(x)

)
N ′ |det∆F |1/2

= exp
[
i
∫
R4

d4xLI

(
−i

δ

δJ(x)

)]

×

∫
Dφ exp

(
iS0[φ] + i

∫
d4 xJ(x)φ(x)

)∫
Dφ exp (iS0[φ])

=

∫
Dφ exp

(
iS[φ] + i

∫
d4xJ(x)φ(x)

)∫
Dφ exp (iS0[φ])

, (1.249)

where S[φ] = S0[φ] +
∫

d4xLI(φ) is the full action of an interacting
scalar field theory. The corresponding full n-point Green function is
[cf. Gell-Mann–Low formula]

〈x1 . . . xn〉 =
〈0| T

[
φ(x1) . . . φ(xn)ei

∫
d4x L I (φ)

]
|0〉

〈0| T
[
ei

∫
d4x L I (Φ)

]
|0〉

=
1

Z[0]
(−i)nδn

δJ(x1) . . . δJ(xn)
Z[J]

����
J=0

=
1

Z[0]

∫
Dφ φ(x1) . . . φ(xn)exp

(
iS[φ] + i

∫
d4x J(x)φ(x)

)∫
Dφexp (iS0[φ])

�������
J=0

. (1.250)

In particular, for n = 0 we get

〈Ω|Ω〉 = 〈1〉 = 1 =
1

Z[0]

∫
Dφ eiS[φ]∫
Dφ eiS0[φ]

, (1.251)

which implies that

〈x1 . . . xn〉 =

∫
Dφ φ(x1) . . . φ(xn)eiS[φ]∫

Dφ eiS[φ]
. (1.252)

This is the so-called functional-integral representation of the n-point
Green function.

So far we have considered only real scalar fields. Extension to complex
scalar fields (charged scalar particles) is obtained by means of an
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analog of Fresnel integral, namely∫
dz∗dz
2πi

ei
a
2 |z |

2
=

∫
dxdy
π

ei
a
2 x2+i a2 y

2

=

√
2
|a|

√
2
|a|

ei
π
4 sign(a) ei

π
4 sign(a)

=
2
|a|

ei
π
2 sign(a) =

2i
a

, (1.253)

where we have employed the complex measure

dz∗ ∧ dz = (dx − idy) ∧ (dx + idy) = 2idx ∧ dy , (1.254)

(we use the notation of differential forms). This can also be alternatively
obtained from the usual (real analysis) change of variables

dz∗dz =
����∂(z∗, z)
∂(x, y)

���� dxdy = 2idxdy , (1.255)

but in the complex calculus the absolute value refers only to the sign
±, not the complex i factor.

By neglecting Morse index we have (set a/2→ a)∫
1

2πi
dz∗dz eia |z |

2
=

1
|a|

. (1.256)

More generally∫
dz∗dz
2πi

eia |z |
2+ib∗z+ibz∗ =

∫
dz∗dz
2πi

eia(z+b/a)(z
∗+b∗/a)−i |b |2/a

=
1
|a|

exp
(
−i
|b|2

a

)
. (1.257)

From these Fresnel integrals we obtain∫ ∞

−∞

N∏
i=1

[
dz∗i dzi

2πi

]
exp

[
iz∗i Ai j zj + ib∗i zi + ibiz∗i

]
=

∫ ∞

−∞

N∏
i=1

[
dz∗i dzi

2πi

]
exp

[
i(z∗ + b∗A−1)iAi j(z +A−1b)j

]
× exp

[
−ib∗i (A

−1)i jbj

]
= e−ib

∗
i (A

−1)i jb j

∫ ∞

−∞

N∏
i=1

[
dz∗i dzi

2πi

]
exp

[
iz∗i Ai j z

]
. (1.258)

Since Ai j is Hermitian, there exists an unitary similarity transforma-
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tion that diagonalizes A, so that we can write [cf. Eq. (1.257)]∫ ∞

−∞

N∏
i=1

[
1

2πi
dz∗i dzi

]
exp

[
iz∗i Ai j zj

]
=

∫ ∞

−∞

N∏
i=1

[
1

2πi
dc∗i dci

]
J︸︷︷︸
= 1

exp
(
iλi |ci |2

)
︸                                                  ︷︷                                                  ︸

(det A)−1

. (1.259)

Here we have used the fact that the Jacobian of any unitary matrix is 1.
Thus we obtain that Eq. (1.258) is equal to

(det A)−1e−ib
∗A−1b . (1.260)

As an exercise, following the same route as for Hermitian scalar fields,
show that∫
DφDφ∗ exp

[
iS0 [φ, φ∗] + i

∫
d4xφ(x)J∗(x) + i

∫
d4xφ∗(x)J(x)

]
= N ′

[
det

(
� +m2

)]−1
exp

[
−

∫
d4xd4yJ∗(x)G(x, y)J(y)

]
, (1.261) Here N ′ contains all constant factors,

Fresnel measure and determinant.

where G(x, y) = 〈0| T
[
φ(x), φ†(y)

]
|0〉 = i∆F (x, y), and thus finally

Z [J, J∗]
Z [0]

=

∫
DφDφ∗eiS[φ,φ∗] + i

∫
d4xφJ∗ + i

∫
d4xφ∗J∫

DφDφ∗eiS[φ,φ∗]
, (1.262)

which implies

〈x1 . . . xn〉 =

∫
DφDφ∗φ(x1) . . . φ(xn) eiS[φ,φ∗]∫

DφDφ∗eiS[φ,φ∗]
. (1.263)

Similar identity holds for the correlator of φ∗ fields or mixed correlator
of φ and φ∗ fields.

Note — The Feynman-Matthews-Salam formula

Previous relations can be generalized to any functional or function
of fields, e.g.

〈Ω| T
[
F

[
φ̂H

] ]
|Ω〉 = N

∫
DφF[φ]eiS[φ] ,

and similarly for

〈Ω| T
[
G

[
φ̂∗H , φ̂H

] ]
|Ω〉 = N

∫
DφDφ∗G[φ∗, φ]eiS[φ

∗,φ] .
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1.8 Perturbative calculus

As a toy model we will discuss the case with

LI = −
λ

4!
φ4 . (1.264)So, we consider a single real scalar field

at this stage.

We have seen that in order to compute 〈x1, . . . , xn〉 we need to know
the normalized generating functional Z [J] /Z [0]. Indeed

〈x1 . . . xn〉 =
1

Z [0]
(−i)nδnZ [J]

δJ(x1) . . . δJ(xn)

����
J=0

. (1.265)

Let us call the normalized generating functional as Z̃ [J], then

Z̃[ j] =
exp

[
i
∫

d4zLI

(
−i δ

δJ(z)

)]
exp

[
− i

2

∫
d4xd4yJ(x)J(y)∆F (x, y)

]
( ditto )|J=0

.

The only way how to treat exp
(
i
∫

d4xLI

)
is via power series expan-

sion in the coupling constant λ, i.e. via perturbation theory. In particular,
for the numerator we can write[
1 − i

λ

4!

∫ (
−i

δ

δJ(z)

)4

d4z +O(λ2)

]
exp

[
−

i
2

∫
d4xd4y J(x)∆F (x, y)J(y)

]
.

To order λ0, we have just the free-particle generating functional Z0 [J].
To order λ, we proceed as follows. We compute first the single func-
tional derivative

(−i)
δ

δJ(z)
exp

[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
= −

∫
d4x∆(z − x)J(x) exp

[
−

i
2

∫
d4xd4yJ(x)∆F (x − y)J(y)

]
.

Similarly we continue further with higher functional derivatives. For
the second functional derivative we have(
−i

δ

δJ(z)

)2

exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
=

{
i∆F (0) +

[∫
d4x∆F (z − x)J(x)

]2
}

exp
[
−

i
2

∫
Jx∆F (x − y)Jy

]
.

For third derivative(
−i

δ

δJ(z)

)3

exp
[
−

i
2

∫
d4xd4y Jx∆F (x − y)Jy

]
=

{
3 [−i∆F (0)]

∫
d4x∆F (z − x)J(x) −

[∫
d4x∆F (z − x)J(x)

]3
}

× exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
, (1.266)
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and finally for the fourth derivative(
−i

δ

δJ(z)

)4

exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
=

{
−3 [∆F (0)]2 + 3i∆F (0)

[∫
d4x∆F (z − x)J(x)

]2

+ 3i∆F (0)
[∫

d4x∆F (z − x)J(x)
]2

+

[∫
d4x∆F (z − x)J(x)

]4
}

× exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
. (1.267)

We may write this last expression diagrammatically. Let

∆F (x − y) ∼ • •
x y (1.268)

In Feynman rules (that will be intro-
duced shortly) it is conventional to
identify line with contraction, i.e., with
i∆F (x − y) rather than ∆F (x − y).

represents the free propagator. In particular, ∆F (0) = ∆F (z, z) = ∆F (z −
z) is then represented by a closed loop (bubble diagram)

∆F (z, z) = ∆F (0) ∼ . (1.269)

We also introduce the notation∫
d4x J(x)∆F (x − z) ∼ × •

z (1.270)

With these we can write (1.267) as(
−i

δ

δJ(z)

)4

exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
=

{
− 3 + 6i × × +

×

××

×

}
exp

(
−

i
2

∫
J∆F J

)
. (1.271)

The meeting of four lines at a point in diagrams

× ×
and

×

××

×

is clearly a consequence of the fact that LI contains the φ4 term. More-
over, the coefficients 3, 6 and 1 in Eq. (1.271) follow from rather simple
symmetry considerations:

I Factor 3 results from joining up the 2 pairs of lines in the •
••
•

diagram. In particular, pick up any line, there are 3 ways how to
connect it with remaining 3 lines. This will give us one closed
loop diagram. The second loop in the “double” bubble diagram
is obtained by connecting the remaining two lines (there is only
one way how this can be done). Altogether there are 3 ways how
to generate the diagram.
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I Factor 6 results from joining any two lines in the •
••
• diagram

(3 ways). This gives one bubble. The remaining two legs have
two ways how to orient themselves (which one goes left and
which one right). Altogether there are 6 ways how to generate
the × × diagram.

These numerical factors (or better their inverses) are known as symme-
try factors. Diagram is known as vacuum graph or bubble diagram or
vacuum bubble diagram because it has no external lines. The meaning of
this terminology will become clearer shortly.

It is easy to write down the denominator of Z̃ [J]. In particular[
exp

(
i
∫

d4xLI

)
exp

(
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

)] ����
J=0

= 1 − i
λ

4!

∫
(−3 ) d4z , (1.272)

and the complete generating functional Z̃ [J] to order λ is equal to[
1 − i λ4!

∫ (
−3 + 6i × × +

×

××

×

)
d4z

]
e−

i
2

∫
J∆F J

1 − i λ4!

∫
(−3 ) dz

. (1.273)

By employing the binomial expansion we finally obtain (again to order
λ)

Z̃ [J] =

[
1 − i

λ

4!

∫ (
6i × × +

×

××

×

)
d4z

]
e−

i
2

∫
J∆F J . (1.274)

Clearly, the order of the perturbation is given by the considered order

of exp
[
i
∫

d4xLI

(
−i δ

δJ(x)

)]
in the Taylor expansion, while the order

n of the correlation function 〈x1, . . . , xn〉 follows from the number of
J(x)’s we keep in the expansion of Z̃ [J] (or Z [J]).

Let us now consider a toy model with the self-interaction given by

LI = −
g

3!
φ3 . (1.275)

We will be interested in the second perturbation order in g. To this end
we expand Z̃ [J] to order g2, i.e.

Z̃ [J] =
exp

[
−i

∫
d4x g

3!

(
−i δ

δJ(x)

)3
]

e−
i
2

∫
J∆F J

( ditto )|J=0

=

{
1 − i g3!

∫
d4x

(
−i δ

δJ(x)

)3
−

g2

2(3!)2

[∫
d4x

(
−i δ

δJ(x)

)3
]2

}
(ditto)|J=0

× exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
. (1.276)
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We will first consider the numerator, i.e., Z [J]

Z [J] =

{
1 − i

g

3!

∫
d4z

(
−3i × −

×

× ×

)

−
g2

2(3!)2

[∫
d4x

(
−i

δ

δJ(x)

)3
]2

× exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
. (1.277)

On the first line of (1.277) we have used our result from λφ4 theory,
namely the fact that we know what is(

−i
δ

δJ(x)

)3

exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
, (1.278)

see (1.266). Let us now proceed with the remaining 3 functional deriva-

tives
(
−i δ

δJ(z)

)
. In particular, we get(

−i
δ

δJ(z)

) (
−i

δ

δJ(x)

)3

Z0 [J]

=

(
−i

δ

δJ(z)

) {
−3i∆F (0)

∫
d4y∆F (x − y)J(y)

−

[∫
d4y∆F (x − y)J(y)

]3
}

e−
i
2

∫
J∆F J

=

{
−3∆F (0)∆F (x − z) + 3i

[∫
d4y∆F (x − y)J(y)

]2

∆F (x − z)

+ 3i ∆F (0)
∫

d4y∆F (x − y)J(y)
∫

d4y∆F (z − y)J(y)

+

[∫
d4y∆F (x − y)J(y)

]3 ∫
d4y∆F (z − y)J(y)

}
e−

i
2

∫
J∆F J . (1.279)
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We now proceed with the second variation. This gives(
−i

δ

δJ(z)

)2 (
−i

δ

δJ(x)

)3

Z0 [J]

=

{
6
[∫

d4y∆F (x − y)J(y)
]
[∆F (x − z)]2

+ 3∆F (0)∆F (x − z)
∫

d4y∆F (z − y)J(y)

+ 3 [∆F (0)]2
∫

d4y∆F (x − y)J(y)

− 3i
[∫

d4y∆F (x − y)J(y)
]2 [∫

d4y∆F (z − y)J(y)
]
∆F (x − z)

− i
[∫

d4y∆F (x − y)J(y)
]3

∆F (0)

+ 3∆F (0)∆F (x − z)
∫

d4y∆F (z − y)J(y)

− 3i
[∫

d4y∆F (x − y)J(y)
]2 [∫

d4y∆F (z − y)J(y)
]
∆F (x − z)

− 3i∆F (0)
∫

d4y∆F (x − y)J(y)
[∫

dy∆F (z − y)J(y)
]2

−

[∫
d4y∆F (x − y)J(y)

]3 [∫
d4y∆F (z − y)J(y)

]2
}

× exp
[
−

i
2

∫
d4xd4y J(x)∆F (x − y)J(y)

]
=

{
6
[∫

d4y∆F (x − y)J(y)
]
[∆F (x − z)]2

+ 6∆F (0)∆F (x − z)
∫

d4y∆F (z − y)J(y)

+ 3 [∆F (0)]2
∫

d4y∆F (x − y)J(y)

− 6i
[∫

d4y∆F (x − y)J(y)
]2 [∫

d4y∆F (z − y)J(y)
]
∆F (x − z)

− i
(∫

dy∆F (x − y)J(y)
)3

∆F (0)

− −3i∆F (0)
∫

dy∆F (x − y)J(y)
(∫

dy∆F (z − y)J(y)
)2

−

(∫
dy∆F (x − y)J(y)

)3 (∫
dy∆F (z − y)J(y)

)2
}

e−
i
2

∫
J∆F J .
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Finally, the third functional derivatives gives(
−i

δ

δJ(z)

)3 (
−i

δ

δJ(x)

)3

Z0 [J]

=
{
−6i [∆F (x − z)]3 − 6i∆F (0)∆F (x − z)∆F (0)

− 3i∆F (0)∆F (0)∆F (x − z)

− 12
∫

d4y∆F (x − y)J(y)
∫

d4y∆F (z − y)J(y) [∆F (x − z)]2

− 6
[∫

d4y∆F (x − y)J(y)
]2

∆F (x − z)∆F (0)

− 3
[∫

d4y∆F (x − y)J(y)
]2

∆F (x − z)∆F (0)

− 3∆F (0)∆F (x − z)
[∫

d4y∆F (z − y)J(y)
]2

− 6∆F (0)
∫

d4y∆F (x − y)J(y)
∫

d4y∆F (z − y)J(y)∆F (0)

+ 3i∆F (x − z)
[∫

d4y∆F (x − y)J(y)
]2 [∫

d4y∆F (z − y)J(y)
]2

+ 2i∆F (0)
[∫

d4y∆F (x − y)J(y)
]3 ∫

d4y∆F (z − y)J(y)

− 6
∫

d4y∆F (x − y)J(y)
∫

d4y∆F (z − y)J(y) [∆F (x − z)]2

− 6∆F (0)∆F (x − z)
[∫

d4y∆F (z − y)J(y)
]2

− 3∆F (0)∆F (0)
∫

d4y∆F (x − y)J(y)
∫

d4y∆F (z − y)J(y)

+ i
[∫

d4y∆F (x − y)J(y)
]3 [∫

d4y∆F (z − y)J(y)
]
∆F (0)

+ 3i∆F (0)
∫

d4y∆F (x − y)J(y)
[∫

d4y∆F (z − y)J(y)
]3

+

[∫
d4y∆F (x − y)J(y)

]3 [∫
d4y∆F (z − y)J(y)

]3
}

e−
i
2

∫
J∆F J .

This rather lengthy expression has quite simple diagrammatic repre-
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sentation, namely{
− 6i x z − 9i

x z
− 18

x z
× × − 9 × ×

x

z

− 9 × ×
z

x
− 9 ×

x z
× + 3i

x z

×

×

×

×

+ 3i
×

× ×

x z
× + 3i

x
×

×

× ×

z +
×

× ×

x
×

× ×

z

}
e−

i
2

∫
J∆F J .

Thus, at the order g2 we find the following contribution to Z [0]

− 6i x z − 9i
x z

. (1.280)

Consequently we can write for Z̃ [J] [cf. Eq. (1.277)]

Z̃ [J] =
Z [J]

1 − g2

2(3!)2
∫

d4xd4z
(
−6i x z − 9i

x z

)

=

[
1 − i g3!

(
only current diagr.

)
−

g2

2(3!)2
(
vacuum + current diagr.

) ][
1 − g2

2(3!)2
(
only vacuum diagr.

) ] Z0[J].

Again, by expanding the denominator the vacuum diagrams will
cancel:

Z̃ [J] =

[
1 − i

g

3!

∫
d4x

(
− 3i

x
× −

x
×

× ×

)

−
g2

2(3!)2

∫
d4xd4z

(
− 18

x z
× × − 9 × ×

z

x
− 9 × ×

x

z

− 9 ×
x z

× + 3i
x z

×

×

×

×
+ 3i

×

× ×

x z
×

+ 3i
x

×
×

× ×

z +
×

× ×

x
×

× ×

z

)]
Z0[J] . (1.281)

Types of diagrams

Diagrams of the following types

×
x z

× ,
×

× ×

x z
× ,

x
×

×

× ×

z ,
×

× ×

x
×

× ×

z ,
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are called disconnected. On the other hand, diagrams of the type

x z ,
x z

,

are called vacuum diagrams, since they have no external lines present.

Check that for all connected (and planar) diagrams holds the for-
mula

L = I − V + 1 , (1.282)

where L is the number of closed loops, I is the number of internal
lines and V is the number of vertices. This is the famous Euler
formula for planar graphs. So, for instance

x
× ⇒ I = 1, V = 1, L = 1 ,

× ×
x

z
⇒ I = 2, V = 2, L = 1 ,

x z ⇒ I = 3, V = 2, L = 2 .

1.9 More complicated interactions

This section is slightly more technical and can be omitted on a first read-
ing. In some cases (e.g., lower dimensional QFT systems, condense-
matter systems or exactly solvable statistical systems) the interacting
Lagrangian is complicated (not a simple polynomial), then in order to
compute Z [J] (or Z̃ [J]) one can use the following identity

Z [J] = exp
[
−i

∫
d4xLI

(
−i

δ

δJ(x)

)]
e−

i
2

∫
d4xd4yJ(x)∆F (x−y)J(y)

= exp
[

i
2

∫
d4xd4y

δ

δφ(x)
∆F (x − y)

δ

δφ(y)

]
× exp

{
i
∫

d4x [−LI (φ(x)) + J(x)φ(x)]
}����
φ=0

. (1.283)

The passage from the first line to second comes from the simple obser-
vation that

G
(
−i

δ

δJ

)
F [iJ] = F

[
δ

δφ

]
G [φ] ei

∫
d4xφ(x)J(x)

���
φ=0

, (1.284)

which is an infinite-dimensional form of the equation

G
(
∂

∂b

)
F(b) = F

(
∂

∂x

)
G(x)ex ·b

����
x=0

. (1.285)

Here ∂/∂b is a shorthand notation for a vector {∂/∂bi}Ni=1 and similarly
for ∂/∂x.

The proof is as follows. First we prove (1.285) for a special case G(x) =
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ex ·α and F(b) = eβ ·b . The left-hand side then reads

G
(
∂

∂b

)
F(b) = eα ·

∂
∂b F(b) = F(b + α) = eβ(b+α) , (1.286)

and for the right-hand side we get

F
(
∂

∂x

)
G(x)ex ·b

����
x=0

= eβ ·
∂
∂x ex(α+b)

���
x=0
= e(x+β)(α+b)

���
x=0

= eβ(α+b) , (1.287)

which clearly coincide with the left-hand-side result. The result is then
true for any F and G as one may express F and G as a Fourier series,
which then preserves the result term by term.

To provide a simple illustration of (1.283), we consider

Z = exp
(

1
2
∂

∂x
A−1 ∂

∂x

)
exp [−V(x) + bx]

����
x=0

. (1.288)

We get a perturbative expansion by expanding both exponentials. Let
us begin with the case where b = 0 and use the notation

Vi1,i2,i3...ik =
∂

∂xi1

∂

∂xi2

∂

∂xi3
. . .

∂

∂xik
V(x)

����
x=0

. (1.289)

Assume further that V(0) = 0, Vi(0) = 0, so that V(x) is at least quadratic.
Then we get to the second order in V

Z =

(
1 +

1
2
∂

∂x
A−1 ∂

∂x
+

1
8
∂

∂x
A−1 ∂

∂x

∂

∂x
A−1 ∂

∂x
+ . . .

)
×

[
1 − V(x) +

1
2

V2(x) + . . .

] ����
x=0

= 1 −
1
2

A−1
i j Vi j −

1
8

A−1
i j A−1

kl Vi jkl +
1
4

A−1
i j

(
∂xi ∂x jV

2
) ����

x=0

+
1

16
∂xi A

−1
i j ∂x j ∂xk A−1

kl ∂xlV
2
����
x=0
+ . . . . (1.290)

The fourth terms in (1.290) can further be written as

A−1
i j

(
∂xi ∂x jV

2
)���
x=0

= A−1
i j 2∂xi

(
VVj

) ���
x=0

= A−1
i j

(
2ViVj + 2VVi j

) ���
x=0
= 0 . (1.291)

In the fifth term

∂xi A
−1
i j ∂x j ∂xk A−1

kl ∂xlV(x)V(x)
���
x=0

, (1.292)

the contributions ViVjkl or VVjklm are zero due to conditions Vi |x=0 =

V |x=0 = 0. The only non-tivial contributions are from two derivatives
acting on each V separately. There are 3 possible pairings Vi jVkl , VikVjl
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and VilVjk which result in

2A−1
i j Vi jA

−1
kl Vkl + 2A−1

i j VikA−1
kl Vjl + 2A−1

i j VilA
−1
i j Vjk . (1.293)

Factor 2 results from symmetry of VV coming from the first derivative.
In addition, the second and the third term are identical after re-indexing.

Note that both A−1
i j and Vi j are symmet-

ric in the two indices.
The corresponding contribution to Z is thus

1
8

A−1
i j Vi jA

−1
kl Vkl +

1
4

A−1
i j VikA−1

kl Vjl . (1.294)

As an exercise, show that should we have expanded (1.290) to the 3rd
order in propagator then the corresponding contribution (still to 2nd
order in V) would be

1
3!

1
23

∂

∂x
A−1 ∂

∂x

∂

∂x
A−1 ∂

∂x

∂

∂x
A−1 ∂

∂x
V2(x)

����
x=0

=
1
8

Vi jkA−1
i j A−1

kl A−1
mnVlmn +

1
12

Vi jkA−1
il A−1

jmA−1
knVlmn + . . . . (1.295)

This can be diagrammatically represented as follows: A−1
i j joins points

i and j and Vi1i2...in represents a vertex with n lines, for instance for
n = 6 we would have

i1

i2

i3i4

i5

i6

. (1.296)

Then

Z = 1 −
1
2

−
1
8

+
1
8

+
1
4

+
1
8

+
1

12
+ . . . . (1.297)

These are vacuum diagrams (the third one is disconnected). If specially
V(x) =

∑
i x3

i , only diagrams with Vi jk , 0 survive, i.e.

and .

Both are of the second order and up to a different symmetry factor
they coincide with vacuum diagrams in g

3!ϕ
3 theory.

Similarly, for V(x) =
∑

i x4
i , only diagrams with Vi jkl , 0 survive, which

are represented by
.

This is a first order vacuum diagram for λ
4!ϕ

4 theory (again modulo
different symmetry factor).

For the case b , 0 (i.e., by including also external legs) we still assume
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that V(0) = 0 and Vi(0) = 0 for ∀i. Then

Z [b] =
(
1 +

1
2
∂

∂x
A−1 ∂

∂x
+

1
8
∂

∂x
A−1 ∂

∂x

∂

∂x
A−1 ∂

∂x
+ . . .

)
×

{
1 − [V(x) + bx] +

1
2
[V(x) + bx]2 + . . .

}����
x=0

. (1.298)

Now the following new terms appear

Term 1:
1
2
∂

∂x
A−1 ∂

∂x
bx

���
x=0
= 0 ,

Term 2:
1
2
·

1
2
∂

∂x
A−1 ∂

∂x
2bxV(x)

���
x=0
= 2

1
4

A−1
i j (Vbk xk)i j

���
x=0

,

= 2
1
4

A−1
i j

(
Vi j bx +Vibj +Vjbi︸       ︷︷       ︸

= 0

) ���
x=0
= 0

Term 3:
1
2
·

1
2
∂

∂x
A−1 ∂

∂x
bk xkbl xl

���
x=0

=
1
4

A−1
i j ∂i

(
bjbl xl + bk xkbj

) ���
x=0
=

1
2

biA−1
i j bj ,

where the last term is the first non-trivial contribution (apart from
already computed vacuum diagrams).

One can show that there are other higher-order terms like

−
1
6

×

× ×
∼ −

1
6

bibjbkA−1
il A−1

knA−1
jmVlmn ,

1
4
× × ∼

1
4

bibjA
−1
ik A−1

jl VkmnVlpqA−1
mpA−1

nq , (1.299)

which we have already seen in the g
3!φ

3 theory.

Full two-point Green Function

Let us now come back and proceed with the λ
4!φ

4 system. Important
quantity of interest is the full two-point Green function, i.e

〈x1x2〉 ≡ τ(x1, x2) = (−i)2
δ2 Z̃ [J]

δJ(x2)δJ(x1)

����
J=0

. (1.300)

Let us remind that to the leading order in λ we have [cf. Eq. (1.274)]

Z̃ [J] =

[
1 −

iλ
4!

∫ (
6i × × +

×

××

×

)
d4x

]
e−

i
2

∫
J∆F J . (1.301)

So, the first term in 〈x1x2〉 is i∆F (x1 − x2), which is the free particle
propagator. Term

×

××

×
contains 4 J’s and so gives no contribution to

the two-point Green function. The term × × equals to [recall (1.267)
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and (1.271)]

−iλ6i
4!︸︷︷︸
λ/4

∆F (0)
∫

d4xd4yd4z∆F (z − x)J(x)∆F (z − y)J(y) . (1.302)

On differentiation we get

(−i)
δ

δJ(x1)

(
× × e−

i
2 J∆F J

)
= (−i)

[
δ

δJ(x1)

(
× ×

)]
e−

i
2 J∆F J

+ (−i) × ×

(
− •

x1
×

)
e−

i
2 J∆F J

=
−iλ
2
∆F (0)

∫
d4yd4z∆F (z − x1)∆F (z − y)J(y)e−

i
2 J∆F J + . . . , (1.303)

where the remaining terms are not important in the J → 0 limit. The
second derivative then reads

(−i)2
δ2

δJ(x2)δJ(x1)

(
× × e−

i
2 J∆F J

)
= −

λ

2
∆F (0)

∫
d4z∆F (z − x1)∆(z − x2)e−

i
2 J∆F J + . . . , (1.304)

where “. . .” denotes the terms that do not contribute in the limit J → 0.
Finally, we can write the two-point Green function as

〈x1, x2〉 = i∆F (x1, x2) −
λ

2
∆F (0)

∫
d4z∆F (z − x1)∆F (z − x2) + O(λ2)

= i
x1
•

x2
• −

λ

2 x1
•

x2
• + O(λ2) . (1.305)

To order λ, this represents the effect of interaction on the free-particle
propagation.

Let us remind that the free propagator is given as

∆F (x − y) =
1
(2π)4

∫
d4k

e−ik(x−y)

k2 −m2 + iε
, (1.306)

and its Fourier transform contains a pole at k2 = m2. This identifies
mass of the particle as m. We will see that this is not a coincidence but
a consequence of the structure of S-matrix. Let us now see that the
effect of the interaction is to change the value of the physical mass
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away from m. Indeed, the second term in (1.305) is

x1
•

x2
• = ∆F (0)

∫
d4z∆F (x1 − z)∆F (x2 − z)

=
∆F (0)
(2π)8

∫
e−ip(x1−z)

p2 −m2 + iε
e−iq(x2−z)

q2 −m2 + iε
d4pd4qd4z

=
∆F (0)
(2π)4

∫
e−ip(x1−x2)

(p2 −m2 + iε)2
δ(4)(p + q) d4pd4q

=
∆F (0)
(2π)4

∫
e−ip(x1−x2)

(p2 −m2 + iε)2
d4p . (1.307)

So, to the leading order in λ we have for z-point Green function

〈x1, x2〉 =
i
(2π)4

∫
e−ip(x1−x2)

p2 −m2 + iε

[
1 −

i
2λ∆ f (0)

p2 −m2 + iε

]
d4p . (1.308)

Technical note

1
(A+ λB)

= {λ << 1} =
1

A(1 + λA−1B)
=

1
A
(1 − λA−1B) .

With this we can rewrite (1.308)

〈x1, x2〉 =
i
(2π)4

∫
e−ip(x1−x2)

p2 −m2 − i
2∆F (0)λ + iε

d4p . (1.309)

The Fourier transform of 〈x1, x2〉 will now possess a pole at p2 equal
to

m2 +
i
2
λ∆F (0) = m2 + δm2 = m2

R , (1.310)

where δm2 = i
2λ∆F (0). The mass mR is now identified with the physical

mass and for reasons to be explained in the chapter on renormalization
is known also as renormalized mass.

Note I.

∆F (0) is divergent. One says that ∆F (0) is quadratically divergent.
This is because for large p the integrand behaves as d4p

p2 = dΩdp p3

p2 =

dΩdpp. Integral over p behaves as 1
2 p2 |+∞0 , which diverges quadrat-

ically. We will discuss this point more in the part dedicated to
renormalization.

Note II.

Important observation is that the renormalized mass is not the same
as the parameter m in the Lagrangian. The same will be true also
for renormalized couplings.
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4-point Green function

Let us now compute 4-point Green function to the first order in λ. We
start we the defining relation

〈x1, x2, x3, x4〉0 = (−i)4
δ4 Z̃ [J]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

����
J=0

, (1.311)

where to the leading order in λ we know [cf. Eq. (1.301)] that

Z̃ [J] =

[
1 −

iλ
4!

∫ (
6i × × +

×

××

×

)
d4x

]
e−

i
2

∫
J∆F J , (1.312)

The first (i.e., order λ0) term in 〈x1, . . . , x4〉 is

〈x1, . . . , x4〉0 = − [∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)

+ ∆F (x1 − x4)∆F (x2 − x3)]

= −

( x1
•

x2
•

x3
•

x4
•
+

x1
•

x3
•

x2
•

x4
•
+

•x3

•x2•x1

•x4

)
. (1.313)

The next term in Z̃ [J] of order λ is given by

λ

4
(−i)4

δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

[
× × e−

i
2

∫
J∆F J

] ���
J=0

=
λ

4
δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

[
∆F (0)

∫
d4xd4yd4z∆F (x − z)∆F (y − z)

× J(y)J(x) e−
i
2

∫
J∆F J

] ���
J=0

=
−iλ
8
∆F (0)

∫
d4xdyd4zd4z1d4z2 ∆F (x − z)∆F (y − z)

× ∆F (z1 − z2)
δ4Jx Jy Jz1 Jz2

δJx1δJx2δJx3δJx4

=
−iλ
8

∫
d4z


x1
•

x2
•

x3
•

x4
•
+

x1
•

x2
•

x3
•

x4
•
+

x1
•

x3
•

x2
•

x4
•

So, we have 24 terms — each diagram
represents 4 equivalent terms.

+

x1
•

x3
•

x2
•

x4
•
+

•x4

•x2•x1

•x3

+
•x4

•x2•x1

•x3

 . (1.314)

Here, for instance

∫
d4z


x1
•

x2
•

x3
•

x4
•

 =
∫

d4z∆F (0)∆F (x1 − z)∆F (x2 − z)∆(x3 − x4) ,

(1.315)
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etc.

Note

∆F (x) =
1
(2π)4

∫
e−ipxd4p

p2 −m2 + iε
⇒ ∆F (x − y) = ∆F (y − x) (1.316)

The final term in Z̃ [J] of order λ is given by

−iλ
4!

δ4

δJx1δJx2δJx3δJx4

[
×

××

×
e−

i
2

∫
J∆F J

] �����
J=0

=
−iλ
4!

.
δ4

δJx1δJx2δJx3δJx4

∫
d4z

[∫
d4x∆F (z − x)J(x)

]4

=
−iλ
4!

∫
d4zd4y1d4y2d4y3d4y4 ∆F (z − y1)∆F (z − y2)

× ∆F (z − y3)∆F (z − y4)
δ4J(y1)J(y2)J(y3)J(y4)

δJx1δJx2δJx3δJx4

=
−iλ
4!

∫
d4z

 •x3

•x2•x1

•x4

z + all permutations of x1,. . . , x4.

 . (1.317)

Note

〈x1, . . . , x4〉 is by its very formulation given via time ordered prod-
uct symmetric under permutation of positions x1, . . . , x4 (this can
also be directly seen from the functional integral representation
of 〈x1, . . . , x4〉, there φ(x1), . . . , φ(x4) enter as c-numbered functions,
which clearly commute.

From this point of view diagrams
•x3

•x2•x1

•x4

z and
•x1

•x2•x3

•x4

z are the same

and we can count them as 2. This is true for all 24 copies. So, the
previous result can be written as

−iλ
4!

∫
d4z

 •x3

•x2•x1

•x4

z

 × 24 = −iλ
∫

d4z

 •x3

•x2•x1

•x4

z

 . (1.318)

The same is true also for previous 3 types of diagrams - each with
multiplicity 4. So, finally we can schematically wite

〈x1, . . . , x4〉 = −3

[ ]
− 3iλ

∫
d4z

[
z

]

− iλ
∫

d4z

[
z

]
(1.319)
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The first term of order λ0 does not contribute to the scattering since
propagating particles are not disturbed in their evolution (no interac-
tion is present). The numerical coefficients are easily derived by simple
combinatorics.

For instance, if we want to find the contribution to order λn, we need
to consider n-vertices. In short

n vertices of the type
×

××

×
contribute to order λn . (1.320)

For 4-point function we draw four external legs

x1
•

x2
•

x3
•

x4
•
⇐ 〈x1 . . . x4〉 . (1.321)

In particular, the 4-point function in λφ4 theory to order λ is con-
structed from following diagrammatic building blocks (so-called Feyn-
man prediagrams)

x1
•

x2
•

•

x3
•

x4
•

. (1.322)

Now we should join all lines (keeping external legs) and create all
topologically distinct types of diagrams. Corresponding diagrams,
the so-called Feynman diagrams are:

• . (1.323)

Let us see how to deal with combinatorial factors (also known as
multiplicity of diagram). The general idea is the following. If we want
to build first diagram from (1.323), we start with prediagram (1.322),
where we can connect one of the legs with vertex in 4 different ways.
After that we have 3 legs remaining and 3 free legs in vertex, etc. [cf.
Fig. 1.8]

Figure 1.8: Construction of the multiplic-
ity for the first diagram in (1.323).

Hence, we can see that multiplicity of this diagram is

4 · 3 · 2 · 1 = 4! = 24 . (1.324)

This precisely cancel the factor 4! in the definition of λφ4/4!. This, in
turn provides precisely the corresponding coefficient in 〈x1 . . . x4〉 in
Eq. (1.319).
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For the middle diagram in (1.323), we first can connect one external
line with another external line in 3 possible ways. After that there are
2 ways to connect one leg in middle vertex with remaining external
legs and there are 4 legs in the vertex. Then again, there are 3 ways to
connect remaining legs to vertex. Finally, we have 1 way to connect
remaining two lines in the middle prediagram, which builds loop, see
Fig 1.9.

Figure 1.9: Construction of the multiplic-
ity for the second diagram in (1.323).

Thus, the multiplicity is

3 · 2 · 4 · 3 = 24 · 3 , (1.325)

which when taken together with 1
4! gives precisely the factor of 3 in

Eq. (1.319).

As for last diagram in (1.323), we can again start with prediagram
(1.322) and connect external legs in 3 different ways. Then, the vertex
can be connected into double bubble diagram in 3 different ways, see
Fig 1.10.

Figure 1.10: Construction of the multi-
plicity for the third diagram in (1.323).

Thus this diagram has the multiplicity

3 · 3 = 9 . (1.326)



1.9 More complicated interactions 67

One can check that we have all diagrams by realizing that

〈x1 . . . x4〉 =

∫
Dϕϕ(x1) . . . ϕ(x4) exp

{
i
∫

d4x (L0 −V(ϕ))
}∫

Dϕ exp
{
i
∫

d4x (L0 −V(ϕ))
}

=

∫
Dϕϕ(x1) . . . ϕ(x4)e−i

∫
d4xV(ϕ) exp

{
i
∫

d4x (L0)
}∫

Dϕ exp
{
i
∫

d4x (L0)
}

×

∫
Dϕ exp

{
−i

∫
d4xL0

}∫
Dϕ exp

{
i
∫

d4xV(ϕ)
}

exp
{
i
∫

d4xL0
}

=

〈
ϕ(x1) . . . ϕ(x4)e−i

∫
d4xV

〉
0〈

e−i
∫
d4xV

〉
0

. (1.327)

In particular, in λ
ϕ4

4! theory we have

〈x1 . . . x4〉

=
〈0| T

[
ϕ(x1) . . . ϕ(x4)

(
1 − i λ4!

∫
d4xϕ4(x) + O(λ2)

)]
|0〉

〈0| T
[(

1 − i λ4!

∫
d4xϕ4(x) + O(λ2)

)]
|0〉

. (1.328)

So, to order λ contribute all contractions from

〈0| T
[
ϕ(x1) . . . ϕ(x4)

∫
d4xϕ4(x)

]
|0〉

=

∫
d4x 〈0| T

[
ϕ(x1) . . . ϕ(x4)ϕ

4(x)
]
|0〉 . (1.329)

We know that there are in total (2M)!2MM ! contractions [cf. Eq. (1.200)].
Since in our case M = 4, we have 8!

244! = 105 contractions. On the other
hand, our 3 contributing Feynman diagrams have the multiplicity
24 + 24 · 3 + 9 = 105. So, we have correct number of diagrams and
respective multiplicities.

The reason why the vacuum diagram does not appear in 〈x1 . . . x4〉 in
Eq. (1.319) is because it is precisely cancelled by the very same diagram
in denominator. This result is completely general and it is known as
linked cluster property. We will derive this result shortly.

In summary, the Feynman rules for λ φ
4

4! scalar field theory in co-ordinate
space are

I Draw all topologically distinct diagrams. For given n-point Green
function with n external legs. For order λm use m vertices.

I A line between points x and y represents propagator i∆F (x − y).
I A vertex with 4 lines represents a factor −iλ.
I Integrate over z for all vertices.
I Introduce combinatorial factor, where necessary.
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Symmetry factor

Inverse of the overall pre-factor in front of each diagram is known
as a symmetry factor. For a simple monomial interaction (such those
considered so far)

s =
n!(η)n

r
,

where n is a number of vertices, η is a coupling constant factor
(e.g., 4! or 3!) and r is the multiplicity factor (i.e., the combinatorial
factor). E.g. s for left diagram in (1.323) is 1!(4!)1

4! = 1 and for middle

diagram is 1!(4!)1
3·4! =

1
3 .

Linked Cluster Theorem

We have seen that vacuum diagrams will cancel when 〈x1 . . . xn〉 is
perturbatively computed to the order λ for λ ϕ

4

4! theory. This result is, in
fact, general and true to all orders in λ and also true for quite general
potentials. This result is known as linked cluster theorem.

Proof: Let us illustrate the situation on the monomial interaction of
the type g

ϕk

k! . If we concentrate on n-th perturbative order of general
m-point Green function we get

〈x1 . . . xm〉(n) ≡ 〈F[x]〉(n) =
(−ig)n

n!(k !)n

〈
F[x]

(∫
d4zϕk(z)

)n〉
0

. (1.330)

Figure 1.11: Illustration of the Linked
Cluster Theorem.

Fig. 1.11 implies that the contribution to (1.330) from vacuum diagrams
of p-th order (in coupling g) is

(−ig)n

n!(k !)n

(
n
p

) 〈
F[x]

(∫
d4zϕk(z)

)n−p〉n.v.

0

〈(∫
d4zϕk(z)

)p〉v.

0
(1.331)

Here the combinatorial factor counts how many times one can select
p vertices out of n vertices. Acronym “n.v.” denotes non-vacuum dia-
grams while “v.” vacuum diagrams (i.e., diagrams without external
legs).

By summing over p we get perturbation expansion of the n-th order
with all possible vacuum diagrams included. The entire perturbation
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expansion thus reads

∞∑
n=0

n∑
p=0

1
(k !)n

(−ig)n

(n − p)!p!

〈
F[x]

(∫
d4zϕk(z)

)n−p〉n.v.

0

〈(∫
d4zϕk(z)

)p〉v.

0

=

∞∑
p=0

∞∑
n=p

1
(k !)n

(−ig)n

(n − p)!p!

〈
F[x]

(∫
d4zϕk(z)

)n−p〉n.v.

0

〈(∫
d4zϕk(z)

)p〉v.

0
.

Figure 1.12: Equivalence between∑∞
n=0

∑n
p=0 and

∑∞
p=0

∑∞
n=p .

By denoting n′ = n − p we can further write

∞∑
p=0

∞∑
n′=0

(−ig)n′

n′!(k !)n′′
(−ig)p

p!(k !)p

〈
F[x]

(∫
d4zϕk(z)

)n′〉n.v.

0

〈(∫
d4zϕk(z)

)p〉v.

0
.

Note that the summation over p precisely gives the denominator in
〈x1 . . . xm〉 (see, e.g., Eq. (1.327)).

Let us now illustrate the linked cluster theorem on a simple example of
the gϕ3/3! theory to second order in g.

〈x1x2〉 =

〈
φ(x1)φ(x2)e−i

∫
d4zV

〉〈
e−i

∫
d4zV

〉 =
{
V =

g

3!
ϕ3

}

=
x1
•

x2
• +

x1
•

x2
•

(
+ + O(g2)

)
(
1 + + + O(g2)

)

+

• •
x1 x2

+ •
x1 x2

• + x1 x2
• •(

1 + + + O(g2)
)

+

(
• •
x1 x2

+ •
x1 x2

• + x1 x2
• •

) (
+ + O(g2)

)
(
1 + + + O(g2)

)
=

x1
•

x2
• + • •

x1 x2
+ •

x1 x2
• + x1 x2

• • , (1.332)

As an exercise, try to fill in the correct symmetry factors.
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1.10 Generating Functional for Connected
Diagrams

Before attempting to evaluate sums of Feynman diagrams we shall
perform some further formal manipulations to simplify the task of
organizing them.

As they stand, the Green functions 〈x1, . . . , xm〉 (say, for example, for
scalar theory) are cumbersome quantities to use. In fact, even when vac-
uum diagrams are removed, there are many diagrams in 〈x1, . . . , xm〉
that are disconnected.

We note here that by a disconnected diagram we mean a diagram com-
posed of two or more subdiagrams that are not linked by propagators,
e.g.

•x1 x2• ↔ 〈x1x2〉φ3 ,

x1 • x3•
x2 • x4• ↔ 〈x1x2x3x4〉φ4 ,

x1 • x3•
x2 • x4• ↔ 〈x1x2x3x4〉φ3 , etc.

(Here the sub-index of Green function denotes the type of considered
potential.)

On one hand side, the connected diagrams are more elementary build-
ing blogs from which one can systematically generate more compli-
cated perturbative diagrams. On other side, we will see that for scat-
tering purposes in particle physics the connected diagrams are very
important tools. To this end we will in this section isolate connected
parts of Greens functions — the so-called connected Green functions. The
first step is to break down the Feynman diagrams (and hence Green
functions) into their connected parts.

Previously in Eq. (1.221) we have seen that the generating functional
for Green functions Z[J] can be expanded as

Z̃[J] =
Z[J]
Z[0]

=

∞∑
n=0

in

n!

∫
R4n

n∏
i=1

d4xi J(x1) . . . J(xn)〈x1x2 . . . xn〉 , (1.333)

where

〈x1x2 . . . xn〉 =

∫
Dφφ(x1) . . . φ(xn)eiS[φ]∫

DφeiS[φ]
. (1.334)

Disconnected Green functions arise when 〈x1x2 . . . xn〉 factorises into
(typically sum) of products of Green functions.

Let 〈x1x2 . . . xn〉c ≡ τcn denote connected Green function with n fields.
A general Green function can be written as the sum of products of con-
nected Green functions. Suppose that 〈x1x2 . . . xn〉 ≡ τn has n1 factors
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of 〈x1〉
c ≡ τc1 , n2 factors of 〈x1x2〉

c ≡ τc2 , etc.

•x1
•x2

. . . •
xn

=
∑
{nk }

with constraint∑
k knk= n

©«
• τc1

...
• τc1


× n1

ª®®®®¬
©«

•
• τc2

...
•
• τc2


× n2

ª®®®®®®¬
. . .

The number of ways of factorizing 〈x1x2 . . . xn〉 in this fashion is the
same as the number of ways of partitioning n particles with n1 boxes
with one particle each, n2 boxes with two particles each etc.

• • •

n1

•
•

•
•

n2

•
•
•

•
•
•

n3

. . .
=

n!
n1!n2!n3! . . . (1!)n1 (2!)n2 (3!)n3 . . .

=
n!

n1!(1!)n1 n2!(2!)n2 n3!(3!)n3 . . .
.

To understand this result, it is illuminating to go through the following
two examples.

Example 1: In how many ways can we arrange r1 balls of color 1, r2

balls of color 2, ..., rk balls of color k in a sequence of length n := r1 +

r2 + . . . rk? If we number the balls 1 to n, then there are n! arrangements.
Since we ignore the numbering, any permutation of the set of ri balls
of color i, 1 ≤ i ≤ k, produces the same arrangement. So the answer to

the question is the multinominal coefficient
(

n
r1, . . . , rk

)
.

Example 2: We wish to split {1, 2, . . . , n} into b1 subsets of size 1, b2

subsets of size 2, ..., bk subsets of size k. Here
∑k

i=1 ibi = n. The same
argument as used in the previous example applies. Furthermore, the
subsets of the same cardinality can be permuted among themselves
without changing the configuration. So the solution is

n!
b1!b2! . . . bk !(1!)b1 (2!)b2 . . . (k !)bk

. (1.335)

We now multiply by J(x1) . . . J(xn) and integrate to get∫
d4x1 . . . d4xn J(x1) . . . J(xn) •x1

•x2
. . . •

xn

= ×

×
. . .
×︸        ︷︷        ︸

n legs

=
∑
{nk }

with constraint∑
k knk= n

n!
n1!n2! . . .

(
×

)n1
(

1
2!
×

×

)n2

. . . . (1.336)
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Here we use the obvious symbolic notation

× =

∫
d4x J(x) •

x
(1.337)

× =

∫
d4x J(x) •

x
(1.338)

and similarly for more legs.

Eq. (1.336) can be further rewritten as

∑
{nk }

δ

(
n −

∑
k

knk

)
n!

n1!n2! . . .

(
×

)n1
(

1
2!
×

×

)n2

× · · ·

where the symbol δ-function stands for corresponding Kronecker’s δ
function. With this we can write

Z̃[J] =
Z[J]
Z[0]

=
∑
n

in

n!
×

×
. . .
×︸        ︷︷        ︸

n legs

=
∑
n

in

n!

∑
{nk }

n!
n1!n2! . . .

δ

(
n −

∑
k

knk

) (
×

)n1
(

1
2!
×

×

)n2

. . .

=
∑
{nk }

(
i ×

)n1

n1!

(
i2 1

2!
×

×

)n2

n2!
. . .

= exp
(
i ×

)
· exp

(
i2 1

2!
×

×

)
· exp

(
i3 1

3!

×

×
×

)
. . .

= exp
(
W̃[J]

)
, (1.339)

where

W̃[J] =
∑
n=1

in

n!
×

×
. . .
×︸        ︷︷        ︸

n legs

=
∑
n=1

in

n!

∫
d4x1 . . . d4xn 〈x1, . . . , xn〉c J(x1) . . . J(xn) . (1.340)

We should note here that it is often convenient to rescale W̃[J] as
W̃[J] = iW[J] so that

Z̃[J] = exp (iW[J]) . (1.341)

Since Z̃[J] = Z[J]/Z[0], we work with normalized generating func-
tional and hence no vacuum diagrams are present in Z̃[J] (nor in
〈x1, . . . , xn〉 ∀n)). This implies that W generates connected diagrams of
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non-vacuum type —- they have at least one external leg.

Relation to Characteristic Functions

In probability theory one introduces characteristic function for any
given (multinomial) probability density function p(x).

Characteristic function is defined as the Fourier transform of p(x),
i.e.

φ(t) =

∫
Rn

dnx eitxp(x) ↔ Z̃[J] =
∫
Dϕei

∫
Jϕ eiS[ϕ]∫
DϕeiS[ϕ]

,

where the last fraction is analogous to probability density function
p(x).

Characteristic function carries all information on moments and
correlations (if they exist), e.g.,

〈xi , xj〉 =
∂2

∂(iti)∂(t xj)
φ(t)

����
t=0

↔ 〈0| T[ϕ(xi)ϕ(xj)] |0〉

=
δ2

δ(iJxi )δ(iJx j )
Z̃[J]

����
J=0

.

Generating function of cumulants is defined as

H(t) = log φ(t) = log E
(
eitx

)
↔ W̃[J] = log Z̃[J] .

Analogy with probability theory will become even stronger when
we perform the so-called Euclidezation of the functional integral.

Some examples (W[J] in action)

Let us now show how the prescription

Z̃[J] = eiW [J] ⇔ W[J] = −i log Z̃[J] , (1.342)

allows to generate connected diagrams in perturbative analysis. To
this end we will consider the 2-point and 4-point Green functions in
λφ4 theory.

We have, firstly

δ2W
δJ(x1)δJ(x2)

=
δ

δJ(x1)

(
−

i
Z̃[J]

δZ̃[J]
δJ(x2)

)
=

δ

δJ(x1)

(
−

i
Z[J]

δZ[J]
δJ(x2)

)
=

i
Z2[J]

δZ[J]
δJ(x1)

δZ[J]
δJ(x2)

−
i

Z[J]
δ2Z[J]

δJ(x1)δJ(x2)
. (1.343)
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When J = 0,

−i
Z[J]

δZ[J]
δJ(x)

����
J=0

=
−iδZ̃[J]
δJ(x)

����
J=0
=

∫
Dϕ ϕ(x)eiS[ϕ]∫
DϕeiS[ϕ]

=
〈ϕ(x)e−iV [ϕ]〉0
〈e−iV [ϕ]〉0

=

{
V[ϕ] = λ

∫
d4x

ϕ4

4!

}
= 0 ,

since 〈ϕ(x)e−iV [ϕ]〉0 is (when e−iV [ϕ] is expanded) the vacuum expecta-
tion of the time ordered product of odd number of free fields.

This would not be true e.g. for gϕ3 the-
ory.

Alter-
natively, this can be seen by changing ϕ(x) to −ϕ(x) in the Feynman
functional integral.

Furthermore, from (1.343), one gets

δ2W
δJ(x1)δJ(x2)

����
J=0
= −

1
Z[J]

iδ2Z
δJ(x1)δJ(x2)

����
J=0
= i〈x1x2〉 , (1.344)

which shows that W generates the propagator (2-point Green function)
to any order in λ. This could be expected, since the propagator has no
disconnected parts.

As already suggested, this would not be the case, e.g., for gϕ3 theory
where we have diagrams of the type

•x1 x2• or •x1 • x2 (1.345)

The expansion, however, becomes less trivial when we consider the 4-
point connected Green function. To this end, we differentiate Eq. (1.343)
twice more and set J = 0 at the end. This gives

δ4W
δJ(x1)δJ(x2)δJ(x3)δJ(x4)

����
J=0

=
δ2

δJ(x4)δJ(x3)

[
i

Z2[J]
δZ[J]
δJ(x1)

δZ[J]
δJ(x2)

−
i
Z

δ2Z[J]
δJ(x1)δJ(x2)

]
J=0

=
δ

δJ(x4)

[
−

2i
Z3

δZ
δJ(x3)

δZ
δJ(x1)

δZ
δJ(x2)

+
i

Z2
δ2Z

δJ(x3)δJ(x1)

δZ
δJ(x2)

+
i

Z2
δZ

δJ(x1)

δ2Z
δJ(x2)δJ(x3)

+
i

Z2
δZ

δJ(x3)

δ2Z
δJ(x1)δJ(x2)

−
i
Z

δ3Z
δJ(x3)δJ(x1)δJ(x2)

]
J=0

=

[
i

Z2
δ2Z

δJ(x4)δJ(x1)

δ2Z
δJ(x2)δJ(x3)

+
i

Z2
δ2Z

δJ(x4)δJ(x3)

δ2Z
δJ(x1)δJ(x2)

+
i

Z2
δ2Z

δJ(x3)δJ(x1)

δ2Z
δJ(x4)δJ(x2)

−
i
Z

δ4Z
δJ(x4)δJ(x3)δJ(x2)δJ(x1)

]
J=0

= i〈x4x1〉〈x2x3〉 + i〈x4x3〉〈x1x2〉 + i〈x3x1〉〈x4x2〉 − i〈x4x3x2x1〉 . (1.346)

To see that this expression contains no disconnected diagrams, let us
check it to order λ. From Eq. (1.305) we know that (using Feynman
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rules)

〈x1, x2〉 = x1
•

x2
• − i

λ

2 x1
•

x2
• , (1.347)

while

〈x1x2x3x4〉 =

©«
x1
•

x2
•

x3
•

x4
•
+

x1
•

x3
•

x2
•

x4
•
+

•x3

•x2•x1

•x4

ª®®®¬
−

iλ
2

©«
1
•

2
•

3
•

4
• +

1
•

3
•

2
•

4
• +

1
•

4
•

2
•

3
•

+

3
•

4
•

1
•

2
• +

2
•

4
•

4
•

3
• +

2
•

3
•

1
•

4
•

ª®®¬
−

iλ
4!

©« •
3

•
2

•
1

•
4

+
∀ permutations of
x1, . . . , x4 (24 terms)

ª®®®¬ . (1.348)

Thus,

W (4)(x1 . . . x4) = τc(x1 . . . x4)

= i

[(
• •
1 2

− i
λ

2
• •
1 2

) (
• •
3 4

− i
λ

2
• •
3 4

)

+

(
• •
1 3

− i
λ

2
• •
1 3

) (
• •
2 4

− i
λ

2
• •
2 4

)

+

(
• •
1 4

− i
λ

2
• •
1 4

) (
• •
2 3

− i
λ

2
• •
2 3

)
− 〈x1x2x3x4〉]

= −
λ

4!

©« •
3

•
2

•
1

•
4

+
∀ permutations of
x1, . . . , x4 (24 terms)

ª®®®¬ ≡ −λ •
••
•

. (1.349)

So, the disconnected pieces cancelled, and the only terms which sur-
vived are connected pieces, which form a topology of a cross.

In terms of W̃ we would have the (con-
ventional) multiplicative coefficient −iλ
instead of −λ.

We will discuss diagrammatics of the perturbation expansion more in
the chapter dedicated to renormalization. Let us now make one more
observation that will be relevant at the later stage.

Let us write the 2-point connected Green function up to order λ2 in
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the λϕ4 theory. This reads (symmetry factors omitted)

〈x1x2〉
c = • •

x1 x2
= • •

x1 x2
+ • •

x1 x2

+ • •
x1 x2

+ • •
x1 x2

+ • •
x1 x2

. (1.350)

The organization of the perturbation series is quite straightforward.
While W[J] generates connected diagrams, it still contains diagrams
that are reducible to two connected diagrams upon cutting an internal
line, e.g.

• •
x1 x2

(1.351)

is reducible upon cutting the internal propagator. Such diagrams are
called 1P (one particle) reducible. It is clear that 1P irreducible diagrams
are more fundamental building blocks of generic diagrams since we
can construct all the connected diagrams from them. We will study the
1PI (one particle irreducible) diagrams in connection with effective action
and renormalization. We will see their role also when discussing the
Källén–Lehmann spectral representation of 2-point Green functions.

Loop Expansion

The loop (or loopwise) perturbation expansion, i.e., the expansion
according to the increasing number of independent loops of connected
Green functions, may be identified with an expansion in powers of h̄.
To show this, let us reinsert h̄. The best starting point is the functional-
integral representation of the generating functional Z[J]. In particular,
when h̄ = 1 we know that

Z[J] h̄=1
= N

∫
Dϕ exp

{
i
∫

d4x [L(ϕ, ∂ϕ) + Jϕ]
}

h̄,1
= N

∫
Dϕ exp

{
i
h̄

S[ϕ] + i
∫

d4x Jϕ
}

, (1.352)

where N is normalization constant. On the dimensional ground we
had to divide the action S[ϕ] by h̄. Note also that there is no h̄ factor in
front of the

∫
d4x Jϕ term. This is because we require that

〈Ω|T[ϕH (x1) . . . ϕH (xn)]|Ω〉 =

∫
Dϕϕ(x1) . . . ϕ(xn) exp

{
i
h̄ S[ϕ]

}∫
Dϕ exp

{
i
h̄ S[ϕ]

}
=

(−i)nδn

δJ(x1) . . . δJ(xn)

∫
Dϕ exp

{
i
h̄ S[ϕ] + i

∫
d4x Jϕ

}∫
Dϕ exp

{
i
h̄ S[ϕ]

} �����
J=0

. (1.353)

Eq. (1.352) implies [see also Eq. (1.249)] that

Z[J] = exp
[

i
h̄

∫
d4xLI

(
−i

δ

δJ(x)

)]
Z0[J] . (1.354)
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Here we have divided the Lagrangian into free (quadratic) and inter-
action parts, L = L0 +LI ,

Z0[J] = exp
(
−

i
2

∫
d4xd4yJ(x)A(x, y)J(y)

)
, (1.355)

where the operator A(x, y) deduces fromL0 =
∫

d4yd4x 1
2φxA−1(x, y)φy .

Since A−1(x, y) = − i
h̄ δ(x− y)(�+m2)x , we immediately get that A(x, y) =

h̄∆F (x, y), and consequently

Z0[J] = exp
(
−

i
2

∫
d4xd4yJ(x)h̄∆F (x, y)J(y)

)
. (1.356)

Let us now count h̄ in a typical Feynman graph. For any Feynman
diagram, each propagator comes from Z0[J] and is multiplied by h̄.
However, each vertex, because it appears in the combination LI/h̄,
is multiplied by a factor h̄−1. So, for an arbitraty Feynman graph,
the total h̄ has power h̄E+I−V (E – external line, I – internal line, V –
vertex), which is (by Eulers theorem that states L = I − (V − 1)) equal
to h̄E−1+L .

In particular, for a fixed number of external legs (lines), i.e. for a given
Green function each loop contributes with one h̄.

Note

The minimal values of h̄ occures (with fixed E) for I = 0 and V = 1,
e.g.

• • , (1.357)

resulting in h̄E−1. Simple propagator • • does not count as it
does not have clear concept external-internal lines.

For vacuum bubble diagrams the minimum is reached with 1 vertex
and I = 2 (with one it does not provide vacuum diagram). Then
h̄I−V = h̄2−1 = h̄ meaning minimal contributions disappear in the
limit h̄ → 0. This implies that vacuum diagrams are entirely of
quantum origin.

It is interesting to observe that in theories with a single coupling
constant (e.g., g ϕ

3

3! , λ ϕ
4

4! etc.) the loopwise expansion coincides with
expansion according to powers of coupling constants. This is because
there exist in these cases auxiliary relations between V , i.e. number of
vertices (i.e., power of λ, g, ...) and L. Indeed, e.g. for λ ϕ

4

4! we have

4V = E + 2I

= {Euler form} = E + 2(L + (V − 1))

⇒ 2V = E + 2L − 2

⇒ V =
E
2
+ L − 1

(
E is event for ϕ4

)
. (1.358)
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For fixed E , power of λ is dictated by number of loops.

Similarly for g ϕ
3

3! where one has

3V = E + 2I = E + 2(L + (V − 1))

⇒ V = E + 2L − 2 . (1.359)

Again for fixed E , the total power of g is equal to gV ∼ g2L = (g2)L .
Hence, expansion in number of L is expansion in g2.

Note

Because our conclusions are valid because of the Euler formula
(which in turn holds only for planar graphs), they are valid only
for connected Feynman diagrams. In particular, they are not valid,
e.g. for

• • (1.360)

diagram, where E = 2, I = 2, V = 2 and L = 2, thus 2 = L ,
I − (V − 1) = 1).

Note

All loops disappear in the limit h̄ → 0. Diagrams that do not
disappear in this limit are known as tree or Born diagrams, e.g.

•

•

•

• (1.361)

Beyond simple scalar fields

For a scalar field multiplet we have the generating functional

Z̃[J1, J2, . . . , Jn] =

∫ [∏n
r=1Dφr

]
eiS[φ1,...,φn]+i

∫
d4x

∑
r Jr (x)φr (x)∫ [∏n

r=1Dφr
]

eiS[φ1,...,φn]
. (1.362)

In particular, for n = 2 it is conventional to introduce a complex field

ϕ =
1
√

2
(φ1 + iφ2) and ϕ∗ =

1
√

2
(φ1 − iφ2) , (1.363)

which allows us to write

S[φ1, φ2] → S[ϕ, ϕ∗] ,

Z̃[J, J∗] =

∫
DϕDϕ∗eiS[ϕ,ϕ∗]+i

∫
d4x(J∗ϕ+Jϕ∗)∫

DϕDϕ∗eiS[ϕ,ϕ∗]
. (1.364)

Objects of interest are again Green functions. In order to be able to
do perturbative calculus we need to identify first the corresponding
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propagators. As before, propagators follow from the term in the action
that is quadratic in the fields.

S[φ1, . . . , φn] =
n∑

r=1

1
2

∫
d4x

{
φr (x)

[
−

(
� +m2

r

)]
φr +LI (φ1, . . . , φn)

}
,

S[ϕ, ϕ∗] =
∫

d4x
{
ϕ∗(x)

[
−

(
� +m2

)]
ϕ(x) +LI (ϕ, ϕ∗)

}
. (1.365)

Thus,

Z[J] = exp
[
i
∫
R4

d4xLI

(
−i

δ

δJ1(x)
, . . . ,−i

δ

δJn(x)

)]
× exp

(
−

1
2

∫
d4xd4y

n∑
r=1

Jr (x)i∆rF (x, y)Jr (x)

)
, (1.366)

where [
∆
r
F (x, z)

]−1
= −δ(x − y)

(
� +m2

r

)
x

. (1.367)

Note

We recall that
∫ [
∆
r
F (x, z)

]−1
∆
r
F (z, y)d4z = δ(x − y) ,

⇔ (� +m2
r )x∆

r
F (x, y) = −δ(x − y) .

So, perturbation expansion of, e.g.,

〈Ω| T[φH1(x1)φH2(x2) . . . φHn(xn)] |Ω〉 , (1.368)

consist of diagrams constructed from various typologically distinct
vertices.

Figure 1.13: n external legs should be
joined with vertices prescribed by the
interaction Lagrangian LI . For illustra-
tive purposes we sub-divided the vertex
point (should be a single point!) into sub-
vertices of the same field type.

Note

There are no propagators of the type 〈0| T[φ1(x)φ2(y)] |0〉 in the
Feynman diagrams. In fact these would-be propagators are zero,



80 1 Quantum Field Theory 2

because

〈0| T[φ1(x)φ2(y)] |0〉 ∝ 〈0| a1(p)a
†

2(q) |0〉 = 0

or 〈0| a2(p)a
†

1(q) |0〉 = 0 . (1.369)

Situation with complex fields is a bit more complicated. Let us recall
that complex fields are convenient if the theory is invariant under
phase transformations. For instance, the Lagrangian

L = |∂µϕ|2 −m2 |ϕ|2 −
λ

4
|ϕ|4 (1.370)

is invariant under ϕ→ ϕ′ = eiαϕ with α being an arbitrary parameter.
In these cases

Z[J, J∗] = exp
[
i
∫
R4

d4xLI

(
−i

δ

δJ∗(x)
,−i

δ

δJ(x)

)]
× exp

(
−

∫
d4xd4yJ∗(x)i∆F (x, y)J(y)

)
, (1.371)

where ∆F (x, y) now corresponds to

〈0| T[ϕ(x)ϕ∗(y)] |0〉 =
1
2
〈0| T[φ1(x)φ1(y)] |0〉 +

1
2
〈0| T[φ2(x)φ2(y)] |0〉

= i
∫

d4p
(2π)4

e−ip(x−y)

p2 −m2 + iε
. (1.372)

From this follows that

〈0| T[ϕ(x)ϕ∗(y)] |0〉 = 〈0| T[ϕ(y)∗ϕ(x)] |0〉 = 〈0| T[ϕ(y)ϕ∗(x)] |0〉

= 〈0| T[ϕ∗(x)ϕ(y)] |0〉 , (1.373)

is the same propagator as for real scalar field.

We note here that

〈0 |T [ϕ(x)ϕ(y)] |0〉

= 〈0 |T [ϕ∗(x)ϕ∗(y)] |0〉 = 0 .

Corresponding full
Green functions are obtained from Z[J, J∗] as before, e.g.

〈Ω| T[ϕH (x1)ϕ
∗
H (x2)] |Ω〉 = (−i)2

δ2

δJ∗(x1)δJ(x2)
Z[J, J∗]

���
J ,J∗=0

. (1.374)

First, to order λ we have

Z[J, J∗] =
[
1 − i

λ

4

∫
d4x (−i)4

δ2

δJ∗(x)2
δ2

δJ(x)2

]
e−

∫
J∗i∆F J . (1.375)

To order of λ0, we have just the free particle generating functional. To
order λ we can write

δ

δJ(z)
exp

[
−i

∫
d4xd4yJ∗(x)∆F (x, y)J(y)

]
= −i

∫
d4xJ∗(x)∆F (x, z) exp

[
−i

∫
d4xd4y∆F (x, y)J∗(x)J(y)

]
. (1.376)
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Then the corresponding second variation δ2/δJ(z)2 needed in (1.375)
is

δ

δJ(z)
[Eq. (1.376)]

=

[
−i

∫
d4xJ∗(x)∆F (x, z)

]2

e−i
∫
d4xd4yJ∗(x)∆F (x,y)J(y) . (1.377)

Analogously, by taking variation wrt. J∗(z)we get

δ

δJ∗(z)
[Eq. (1.377)]

= 2
[
−i

∫
d4xJ∗(x)∆F (x, z)

]
[−i∆F (0)] e−i

∫
J∗∆F J

+

[
−i

∫
d4xJ∗(x)∆F (x, z)

]2 [
−i

∫
d4y∆F (z, y)J(y)

]
e−i

∫
J∗∆F J . (1.378)

And finally, the last variation wrt. J∗(z) provides

δ2

δJ∗(z)2
[Eq. (1.377)]

= −2 [∆F (0)]2 e−i
∫
J∗∆F J

− 2
∫

d4xJ∗(x)∆F (x, z)∆F (0)(−i)
∫

d4yJ(y)∆F (z, y)eiJ
∗∆F J

− 2
[∫

d4xJ∗(x)∆F (x, z)
]
∆F (0)(−i)

∫
d4y∆F (z, y)J(y)e−iJ

∗∆F J

+

[
−i

∫
d4xJ∗(x)∆F (x, z)

]2 [
−i

∫
d4y∆F (z, y)J(y)

]2

e−iJ
∗∆F J .(1.379)

This result can be graphically represented (recalling Feynman rules)
as (

δ

δJ∗(z)

)2 (
δ

δJ(z)

)2

exp
(
−i

∫
J∗∆F J

)

=

2
z
− 4 × ×

z
+

×

×

×

×

×

×
z

 e−i
∫
J∗∆F J . (1.380)

Arrow in the propagator indicates that the propagator is oriented in
the sense that the endpoints of the propagator line refer to independent
(different) fields ϕ and ϕ∗. Combinatorial factors 2 and 4 are simple
result of symmetry considerations.

Standard convention

The standard convention is that incoming arrows refer to ϕ and
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outgoing ones to ϕ∗, i.e.

× •
z

= i
∫

d4xJ(x)∆F (x, z)

=

∫
d4xJ(x) 〈0| T[ϕ∗(x)ϕ(z)] |0〉 . (1.381)

As we said, a formulation in terms of complex fields (rather than real
ones) is useful if the theory is invariant under phase transformation,
i.e. ϕ → ϕ′ = eiαϕ. In that case, every (full) Green function must
contain an equal number of ϕ and ϕ∗ fields (otherwise it is zero) since
in LI (ϕ, ϕ∗)must be for each field ϕ also field ϕ∗. So, each vertex has an
equal number of incoming and outgoing lines. In forming diagrams,
the lines can be only joined if their orientation arrows match. The
orientation often corresponds to the flow of electric charge, obviously,
charge will be conserved if the number of incoming and outgoing
arrows is the same at each vertex.

1.11 Functional Integral for Fermions

In canonical quantization [, ] → {, } for fermions. This will bring vari-
ous signs modifications into Wick’s theorem. As in the boson case, we
can derive a generating relation for Wick’s theorem that will serve as
a basis for corresponding functional integral treatment. The simplest
passage to a generator for fermionic Wick’s theorem and ensuing Feyn-
man functional integral is via Grassman variables and Berezin calculus.

1.12 Grassmann variables

Grassmann variables are a set of anticommuting symbols. Name “vari-
able” is really misnomer, as Grassman variables are not really variables.
Nevertheless, terminology “Grassmann variables” is standardly used,
and so we stick to it also in this lecture. Suppose there are n Grassmann
variables. We denote them as θi . The only properties we require is that
they are linearly independent and that

θiθ j + θ jθi = 0 ⇒ θ2
i = 0 . (1.382)

So, θi are nilpotent. We combine θi with a coefficient field (either R or
C) and form the algebra An consisting of all sums of products of θi . A
typical element of An has the form

p(θ1, θ2, . . . , θn) = p0 + piθi +
1
2

pi jθiθ j +
1
3!

pi jkθiθ jθk + · · · , (1.383)

where pi jk · · · are elements of the coefficient field. We assume that they
are antisymmetric under exchange of pairs of indices. The expansion
in (1.383) clearly terminates at the (n + 1)-th term due to θ2

i = 0.

The combinatorial factor 1/2!, 1/3!, etc.
are only conventional and often are omit-
ted.
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Elements containing only terms with an even number of θi factors
commute with all elements of the algebra and are called even or bosonic
elements. Those with odd numbers of θi anticommute with one an-
other, and are known as odd or fermionic. In physics context, we will
find ourselves only adding even elements to even elements and odd el-
ements to odd elements, but this is not a mathematical requirement.

One can also mix Grassmann variables with usual variables (say x)
within one function. In such as cases, a generic element of the algebra
(say algebra A1) will be of the form

p(x, θ) = p0(x) + p1(x)θ . (1.384)

Integrals over Grassmann variables were introduced by Berezin in
1966.

Motivation: One of the features we would like to incorporate is ana-
logue of the fact, that the integral over space is transitionally invariant,
i.e. ∫

R

dxφ(x) =
∫

R

dxφ(x + c) . (1.385)

We define the “integral” as a linear functional taking the elements of
the algebra to elements of the coefficient field and satisfying (n = 1)∫

dθp(x, θ) =
∫

dθ [p0(x) + p1(x)θ]

=

∫
dθ [p0(x) + p1(x)(θ + α)] , (1.386)

where α is a constant. Let us define I0 =
∫

dθ, I1 =
∫

dθθ, then∫
dθp(x, θ) =

∫
dθp0(x) +

∫
dθθp1(x) = I0p0(x) + I1p1(x)

= (p0 + αp1)I0 + I1p1 . (1.387)

Thus we see that this is satisfies if we chose I0 = 0 and I1 = 1. This, in
turn, provides the following unorthodox definition:∫

dθ = 0,
∫

dθθ = 1 . (1.388)

The choice I1 = 1 is only conventional (could by, in principle, any
number). Number 1 is chosen so that the integral over Grassmann
variables behaves as a derivative∫

dθ =
d
dθ

. (1.389)

For more variables we can use the prescription (1.383). By again requir-
ing∫

dθip(x, θ1, . . . , θn) =
∫

d θip(x, θ1, . . . , θi + α, . . . , θn) , (1.390)
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we get∫
dθi = 0,

∫
dθiθi = 1,

∫
dθiθ j = 0 , for i , j . (1.391)

Again, we might notice that our convention implies∫
dθi =

∂

∂θi
. (1.392)

For example ∫
dθ2dθ1(θ2θ1) =

∂

∂θ2

(
∂

∂θ1
θ2θ1

)
=

∂

∂θ2

∂

∂θ1
(−θ1θ1)

= −
∂

∂θ2
θ2 = −1 . (1.393)

The same result can be achieved if we prescribe that

∂

∂θi

∂

∂θ j
= −

∂

∂θ j

∂

∂θi
, (1.394)

and

dθ1dθ2 = −dθ2dθ1 . (1.395)

Another example would be∫
dθ2dθ1 f (x; θ1, θ2) =

∫
dθ2dθ1

(
a + biθi +

1
2

cεi j θiθ j

)
= c

∫
dθ2dθ1

(
1
2
θ1θ2 −

1
2
θ2θ1

)
= c

∫
dθ2dθ1θ2θ1 = c(x) . (1.396)

One can also define analogue of Dirac’s δ-function. In fact, by analogy
with classical calculus we want∫

dθ δ(θ) f (x, θ) = f (x, 0) ,∫
dθ δ(θ) [ f0(x) + f1(x)θ] = f0(x) . (1.397)

This implies that we can choose δ(θ) = θ. Note that for this repre-
sentation of δ-function holds also other consistency conditions, e.g.
θδ(θ) = θ2 = 0 (analogue of xδ(x) = 0) or more generally f (θ)δ(θ) =
( f0 + f1θ)δ(θ) = f0θ = f (0)δ(θ).

Also, note that the only term that will survive in the integral
∫

dθ1 . . . dθn
will be the one with n θ’s (all other terms will not have enough θ’s or
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too much θ’s to survive integration). So, that∫
dθn . . . dθ1 p(x, θ1, . . . , θn)

=

∫
dθn . . . dθ1

[
p0 + piθi + pi jθiθ j + · · · + pi1...in θi1 . . . θin

]
= εi1i2...in pi1i2...in

= n!p12...n . (1.398)

Here εi1i2 · · ·in is the permutation symbol (the Levi-Civita symbol). If we
now change variable of integration according to

θ̂i = ai jθ j , (1.399)

then ∫
dθ̂n . . . dθ̂1 p(x, θ̂) =

∫
dθn . . . dθ1 p(x, θ̂) (?) , (1.400)

where (?) denotes an analog of Jacobian that we would like to ind out.
We can see that

p(x, θ̂(θ)) = p0(x) + · · · + n!p1...na1i1 . . . anin θ1i1 . . . θin

= p0(x) + · · · + n!p1...n det(a)θ1 . . . θn

= p0(x) + · · · + n!p1...nεi1...in θ1 . . . θn . (1.401)

Consequently, we can write∫
dθn . . . dθ1p(x, θ̂(θ)) = n!p1...n det(a) . (1.402)

On the other hand, from (1.401)∫
dθ̂n . . . dθ̂1p(x, θ̂) = n!p1...n , (1.403)

so that (?) = [det(a)]−1, or in other words∫
dθ̂n . . . dθ̂1 p(x, θ̂) =

∫
dθn . . . dθ1 p(x, θ̂(θ)) [det(a)]−1 . (1.404)

Consequently, we have the following relation for differentials

dθ̂n . . . dθ̂1 = [det(a)]−1 dθn . . . dθ1

= det
[
∂(θ̂1, . . . , θ̂n)
∂(θ1, . . . , θn)

]−1

dθn . . . dθ1 , (1.405)

which is different than expected form of Jacobian — it is inverse of the
Jacobian.
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1.13 Gaussian Integrals over Grassmann
Variables

We wish to compute∫
dθn . . . dθ1 exp

(
1
2
θT Aθ

)
. (1.406)

If A is a n × n antisymmetric matrix then

det A = det(−A)T = (−1)n det AT .

So, if n is odd, the determinant vanishes.
Hence, all odd dimension antisymmetric
matrices are singular (not invertible) as
their determinants are always zero. The
even-dimensional case is more interest-
ing. It turns out that the determinant of
A for n even is always positive [cf. (1.409)-
(1.410).]

Here we consider that n is even and that the matrix A is antisymmetric
(or skew-symmetric). Specifically, for the case n = 2 we have∫

dθ2dθ1e
1
2θ

T Aθ =

∫
dθ2dθ1e

1
2 θ1A12θ2+

1
2 θ2A12θ1

=

∫
dθ2dθ1eA12θ1θ2

=

∫
dθ2dθ1 [1 + A12θ1θ2]

= A12 =
√

det A = Pf A . (1.407)

√
det A is well defined for both A12 > 0 and A21 < 0. Pf A is called

Pfaffian. For any antisymmetric (skew symmetric) matrix we have

(Pf A)2 = det A . (1.408)

For general n we first recall that for each real antisymmetric matrix A

there exists unitary transformation U such that

UAU† = As . (1.409)

Here As is matrix in a block diagonal Jacobi form

As =

©«

a
(

0 1
−1 0

)
0 . . . 0

... b
(

0 1
−1 0

)
...

. . .
0 0

ª®®®®®®®®®¬
(1.410)

If n is even (our case) a, b, . . . are real and positive definite. Define now
matrix

T =

©«

±a−1/2 . . . . . . 0
0 ±a−1/2 . . . 0
... ±b−1/2

...
. . .

0

ª®®®®®®®®¬
. (1.411)
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Note that det
(
T−1

)
=
√

det A and, in addition

T
(
UAU†

)
T = T AsT

= Ãs =

©«

(
0 1
−1 0

)
0 . . . 0

...
(

0 1
−1 0

)
...

. . .
0 0

ª®®®®®®®®®¬
. (1.412)

Let us now introduce new Grassmann variable

θ̃ =
(
T−1U

)
θ . (1.413)

Then

exp
(

1
2
θT Aθ

)
= exp

(
1
2
θTU†T−1 ÃsT

−1Uθ

)
= exp

(
1
2
θ̃
T
Ãs θ̃

)
. (1.414)

This implies that∫
dθn · · · dθ1 exp

(
1
2
θT Aθ

)
=

∫
dθ̃n · · · dθ̃1 det

(
T−1U

)
exp

(
1
2
θ̃
T
Ãs θ̃

)
. (1.415)

Note that

det
(
T−1U

)
= det

(
T−1

)
detU =

√
det A = Pf A . (1.416)

Because ∫
dθ̃2dθ̃1 exp

[
1
2

(
θ̃1 θ̃2

) (
0 1
−1 0

) (
θ̃1

θ̃2

)]
=

∫
dθ̃2dθ̃1

(
1 + θ̃1θ̃2

)
= 1 , (1.417)

we can generally write∫
dθ̃n · · · dθ̃1 exp

(
1
2
θ̃
T
Ãs θ̃

)
=

∫
dθ̃n · · · dθ̃1 exp

(
θ̃1θ̃2 + θ̃3θ̃4 + · · · + θ̃n−1θ̃n

)
=

∫
dθ̃n · · · dθ̃1 exp

(
θ̃1θ̃2

)
exp

(
θ̃3θ̃4

)
· · · exp

(
θ̃n−1θ̃n

)
= 1 . (1.418)
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So, when we finally collect all our results we get∫
dθn . . . dθ1 exp

(
θT Aθ

)
=
√

det A = Pf A . (1.419)

To be able to treat Dirac (charged) fermions we double the number
of generators in the algebra and define an involution that takes an
element θi to an associated element θ∗i , inverts the orders of products,
and takes the complex conjugation of coefficients. The term “involu-
tion” means that if we perform the mapping twice, we get back the
original element, i.e. (θ∗i )

∗ = θi . Despite the similarity of this procedure
to the operation of Hermitian conjugation, the variable θ∗i should be
regarded as being an object quite independent of θi . This means that
{θi} and {θ∗i } are distinct sets of Grassmann variables.

Involution θ∗i is often also denoted as θ̄i .

Following the rules above, we have∫
dθdθ∗eθ

∗aθ =

∫
dθdθ∗ (1 + θ∗aθ) = a . (1.420)

The exponential series terminated after the second term because θ2 =

(θ∗)2 = 0.

Gaussian Integrals with Complex Grassmann Variables

Let us use the notation

[dθ] [dθ∗] =
N∏
i=1

dθidθ∗i . (1.421)
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We wish to compute∫
[dθ] [dθ∗] eθ

∗
i Ai j θ j

=

∫
[dθ] [dθ∗]

[
1

N !
(θ∗i Ai jθ j)

N

]
=

∫
[dθ] [dθ∗]

[
1

N !
N !θ∗1 A1i1θi1θ

∗
2 A2i2θi2 · · · θ

∗
N ANiN θiN

]
=

∫
[dθ] [dθ∗] A1i1 A2i2 · · · ANiN θ

∗
1θi1θ

∗
2θi2 · · · θ

∗
N θiN

=

∫
[dθ] [dθ∗] A1i1 A2i2 · · · ANiN θ

∗
1θ
∗
2 · · · θ

∗
N θi1 · · · θiN (−1)1+3+5+· · ·

=

∫
[dθ] [dθ∗] A1i1 A2i2 · · · ANiN θ

∗
1θ
∗
2 · · · θ

∗
N θ1 · · · θNεi1,· · ·iN (−1)1+3+5+· · ·

=

∫
[dθ] [dθ∗] A1i1 A2i2 · · · ANiN εi1,· · ·iN θ

∗
1θ1θ

∗
2θ2 · · · θ

∗
N θN

=

∫ (
N∏
i=1

dθidθ∗i θ
∗
i θi

)
︸                    ︷︷                    ︸

=1

A1i1 A2i2 · · · ANiN εi1,· · ·iN︸                          ︷︷                          ︸
det A

= det A . (1.422)

An essential point is that the determinant appears in the numerator (!!),
rather than in the denominator (as one could naively expect).

To complete the analogy with Gaussian/Fresnelian integration, we
should define and evaluate integrals of the form∫

[dθ] e
1
2 θi Ai j θ j+ηiθi . (1.423)

ηi here is an analogue of Schwinger’s
source.

To do this, we must embed the original Grassmann algebra in a larger
one, where the vectors η form a set of elements that anticommute
with each other and with θi . They serve as “constants” that will not be
integrated over (i.e., no integral of type

∫
dηi , but

∫
dθiηj = 0 ∀i, j). To

evaluate the integral we must complete the square in the exponent and
shift the variable of integration. Despite of no “domain of integration”
in Berezin integration we know that∫

dθθ = 1 =
∫

dθ(θ + η) . (1.424)

So, the integral is by construction invariant under shifts. The same
holds true for the general shift θi → θi + ηi . By using the fact that the
inverse of an antisymmetric matrix is also antisymmetric matrix one
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can write ∫
[dθ] e

1
2 θi Ai j θ j+ηiθi

=

∫
[dθ] e

1
2 (θi−A

−1
ik
ηk )Ai j

(
θ j−A

−1
j l
ηl

)
+ 1

2ηk A
−1
kl
ηl

=

∫
[dθ] e

1
2 θi Ai j θ j e

1
2ηk A

−1
kl
ηl

= (Pf A) e
1
2ηk A

−1
kl
ηl =

√
det Ae

1
2ηk A

−1
kl
ηl . (1.425)

This is exactly the same result we obtained for real Gaussian integral
— except that the determinant is now in the numerator rather than
denominator.

As an exercise, prove that∫
[dθ] [dθ∗] eθ

∗
i Ai j θ j+θ

∗
jη j+η

∗
j θ j = (det A) e−η

∗
i A
−1
i j η j . (1.426)

Measure definitions

Sometimes the measure (1.421) is defined differently, e.g.∫
[dθ] [dθ∗] =

∫ ∏
dθi

∏
dθ∗i =

∫
dθ1 . . . dθN dθ∗1 . . . dθ

∗
N .

This brings about an extra sign (−1)n(n−1)/2 in comparison with our
definition of the measure given by Eq. (1.421).

Now, we make transition from discrete-index Grasmann variables
θi and θ∗i (≡ θ̄i) to two sets of continuous-index Grassmann variables
ψα(x) and ψ̄β(x) ≡ ψ∗β(x).

We agian stress that ∗ denotes here invo-
lution and not complex conjugation.

We further introduce two Grassmann sources
ηα(x) and η̄β(x) and define the generating functional

Z[η, η̄] = N
∫
DψDψ̄ei

∫
d4x[L0(ψ,ψ̄)+η̄ψ+ψ̄η] , (1.427)

where
L0 = ψ̄(iγµ∂µ −m)ψ , (1.428)

and

DψDψ̄ = lim
N→∞

(
N∏
i=1

4∏
α=1

dψα(xi)dψ̄α(xi)

)
. (1.429)

Let us now compute Z[η, η̄] by using the same analysis as for discrete
Grassmann variables θi and θ̄ j , i.e.

In expressions η̄(z)A−1(z, x) and
A−1(y, z)η(z) the integration over z is
tacitly assumed.

Z[η, η̄] = N
∫
DψDψ̄ei

∫
d4xd4y[ψ̄(x)δ(x−y)(iγµ∂µ−m)ψ(y)] + i

∫
d4x(η̄ψ+ψ̄η)

= N
∫
DψDψ̄ ei

∫
d4xd4y(ψ̄(x)+η̄(z)A−1(z,x))A(x,y)(ψ(y)+A−1(y,z)η(z))

×e−i
∫
d4xd4y[η̄(x)A−1(x,y)η(y)] . (1.430)
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Recalling that (i /∂ −m)SF (x, y) = δ(x − y)we get [cf. Eq. (1.426)]
Here Ñ contains both i factors and
prospective − signs resulting from the
choice of functional integral measure. .

Z[η, η̄] = Ñ det
(
i /∂ −m

)︸        ︷︷        ︸
Z[0,0]

e−i
∫
d4xd4yη̄(x)SF (x,y)η(y) . (1.431)

To obtain a free particle Green function we should compute

δ

δη̄(x)
δ

δη(y)

Z[η, η̄]
Z[0, 0]

����
η=η̄=0

=
δ

δη̄(x)
δ

δη(y)

(
−i

∫
d4x1d4x2η̄(x1)SF (x1, x2)η(x2)

)����
η=η̄=0

=
δ

δη̄(x)
δ

δη(y)

(
−i

∫
d4x1d4x2η(x2)SF (x2, x1)η̄(x1)

)����
η=η̄=0

= −iSF (y, x) = iSF (x, y) . (1.432)

Antisymmetry of Fermion Propagator

From definitions of time-ordered products:

T
[
ψα(x)ψ̄β(y)

]
= θ(tx − ty)ψα(x)ψ̄β(y) − θ(ty − tx)ψ̄β(y)ψα(x) ,

T
[
ψ̄β(y)ψα(x)

]
= θ(ty − tx)ψ̄β(y)ψα(x) − θ(tx − ty)ψα(x)ψ̄β(y) .

This implies that

T
[
ψα(x)ψ̄β(y)

]
= −T

[
ψ̄β(y)ψα(x)

]
, (1.433)

and hence for propagator we get that

{SF (x, y)}αβ = − {SF (y, x)}βα . (1.434)

1.14 Wick Theorem for Dirac Fermions

In order to formulate Wick’s theorem for Fermion fields we introduce
anticommuting sources η̄ and η for ψ and ψ̄. Note that the sources are Grassmann

variables while now ψ and ψ̄ are con-
sidered to be operators.

These sources anticom-
mute among themselves as well as with ψ and ψ̄ (so that η̄ψ and ψ̄η

are bosonic quantities that can enter in action). With the help of η and
η̄ we can write
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[η̄(x)ψ(x), ψ̄(y)η(y)]

= ψ̄(y) [η̄(x)ψ(x), η(y)] + [η̄(x)ψ(x), ψ̄(y)] η(y)

= ψ̄(y)η̄(x) {ψ(x), η(y)}︸         ︷︷         ︸
=0

− ψ̄(y) {η̄(x), η(y)}︸        ︷︷        ︸
=0

ψ(x)

+ η̄(x) {ψ(x), ψ̄(y)} η(y) − {η̄(x), ψ̄(y)}︸         ︷︷         ︸
=0

ψ(x)η(y) . (1.435)

So, [η̄(x)ψ(x), ψ̄(y)η(y)] = η̄(x) {ψ(x), ψ̄(y)} η(y). We now introduce the
source Lagrangian

LS(x) = η̄(x)ψ(x) + ψ̄(x)η(x) . (1.436)

Note that [LS(x),LS(y)] is a c-number and hence it commutes with
LS(z), indeed

[LS(x),LS(y)] = [η̄(x)ψ(x), η̄(y)ψ(y)] + [η̄(x)ψ(x), ψ̄(y)η(y)]

+ [ψ̄(x)η(x), η̄(y)ψ(y)] + [ψ̄(x)η(x), ψ̄(y)η(y)]

= −η̄(x) {ψ(x),ψ(y)}︸         ︷︷         ︸
=0

η̄(y) + η̄(x) {ψ(x), ψ̄(y)} η(y)

+ η(x) {ψ̄(x),ψ(y)} η̄(y) − η(x) {ψ̄(x), ψ̄(y)}︸         ︷︷         ︸
=0

η(y)

= c − number . (1.437)

Thus indeed [LS(z), [LS(x),LS(y)]] = 0.

To prove Wick’s theorem for fermion field we will follow the same
strategy we employed when dealing with scalar field. In particular, we
will show that

T
[
exp

(
i
∫

d4x [η̄(x)ψ(x) + ψ̄(x)η(x)]
)]

= : exp
(
i
∫

d4x [η̄(x)ψ(x) + ψ̄(x)η(x)]
)

:

× exp
(
−

∫
d4xd4y η̄(x) 〈0| T[ψ(x)ψ̄(y)] |0〉 η(y)

)
. (1.438)

Since [LS(z), [LS(x),LS(y)]] = 0, we can use our strategy from Chap-
ter 1.5 and substitute instead of −J(x)φ(x) the source term η̄(x)ψ(x) +
ψ̄(x)η(x). By employing the Baker–Campbell–Hausdorff formula we
can write

T
[
exp

(
i
∫

d4x [η̄(x)ψ(x) + ψ̄(x)η(x)]
)]
= ei

∫
d4xLS (x)

× exp
(
−

1
2

∫
d4xd4y [ψ̄(x)η(x) + η̄(x)ψ(x), ψ̄(y)η(y) + η̄(y)ψ(y)]

)
.
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In the second step we split ψ and ψ̄ to positive and negative frequency
parts and write

ei
∫
d4xLS (x) = ei

∫
d4x[(η̄(x)ψ(−)(x) + ψ̄(−)(x)η(x)) + (−) → (+)] . (1.439)

With the help of the BCH formula eA+B+ 1
2 [A,B] = eAeB ⇔ eA+B =

eAeBe−
1
2 [A,B] we can rewrite (1.439) as

ei
∫
d4xLS (x)

= ei
∫
d4x[η̄(x)ψ(−)(x) + ψ̄(−)(x)η(x)]

× ei
∫
d4x[η̄(x)ψ(+)(x) + ψ̄(+)(x)η(x)]

× e
1
2

∬
d4xd4y[η̄(x)ψ(−)(x) + ψ̄(−)(x)η(x), x → y and (−) → (+)] . (1.440)

Plugging this results back we obtain

T
[
exp

(
i
∫

d4xLS(x)
)]
= : exp

(
i
∫

d4xLS(x)
)

: eA, (1.441)

where

A =
1
2

∬
d4xd4y

{[
L
(−)

S
(x),L(+)

S
(y)

]
− θ(x0 − y0) [LS(x),LS(y)]

}
.

Since the integrand is a c-number, it can be evaluated via its vacuum
expectation value, i.e.

〈0|
[
L
(−)

S
(x),L(+)

S
(y)

]
− θ(x0 − y0) [LS(x),LS(y)] |0〉

= − 〈0| L(+)
S
(x)L(−)

S
(y) |0〉 − θ(x0 − y0) 〈0| LS(x)LS(y) |0〉

+ θ(x0 − y0) 〈0| LS(y)LS(x) |0〉

= −1︷              ︸︸              ︷
θ(x0−y0) + θ(y0−x0)

· 〈0| LS(y)LS(x) |0〉 − θ(x0 − y0) 〈0| LS(x)LS(y) |0〉

+ θ(x0 − y0) 〈0| LS(y)LS(x) |0〉

= −θ(y0 − x0) 〈0| LS(y)LS(x) |0〉 − θ(x0 − y0) 〈0| LS(x)LS(y) |0〉

= − 〈0| T[LS(x)LS(y)] |0〉 . (1.442)

Note that terms of the type 〈0| T[ψ̄(x)η(x)ψ̄(y)η(y)] |0〉 = 0, since ψ̄

contain only a† and b and there is no way how the product ψ̄ψ̄ could
survive vacuum expectation value. So, the only surviving parts are

〈0| T[LS(x)LS(y)] |0〉 = 〈0| T[ψ̄(x)η(x)η̄(y)ψ(y)] |0〉

+ 〈0| T[η̄(x)ψ(x)ψ̄(y)η(y)] |0〉

= η(x) 〈0| T[ψ̄(x)ψ(y)] |0〉 η̄(y)

+ η̄(x) 〈0| T[ψ(x)ψ̄(y)] |0〉 η(y) . (1.443)
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By noting that T
[
ψα(x)ψ̄β(y)

]
= −T

[
ψ̄β(y)ψα(x)

]
we have that

〈0| T[LS(x)LS(y)] |0〉 = η̄(x) 〈0| T[ψ(x)ψ̄(y)] |0〉 η(y)

+ η̄(y) 〈0| T[ψ(y)ψ̄(x)] |0〉 η(x) . (1.444)

This consequently implies that

A = −
∫

d4xd4y η̄(x) 〈0| T[ψ(x)ψ̄(y)] |0〉︸                  ︷︷                  ︸
= iSF (x,y)

η(y) . (1.445)

If we now take the vacuum expectation value of the Wick theorem
generating identity (1.438), we obtain

〈0| T
[
exp

(
i
∫

d4x [η̄(x)ψ(x) + ψ̄(x)η(x)]
)]
|0〉

= exp
(
−

∬
d4xd4y η̄(x) 〈0| T[ψ(x)ψ̄(y)] |0〉 η(y)

)
. (1.446)

This again allows to obtain relation between 〈0| T[ψψ . . . ψψ̄ψ̄ . . . ψ̄] |0〉
and two point Green functions 〈0| T[ψψ̄] |0〉. In particular, we see that
the n-point (free field) Green function must have equal number of ψ’s
and ψ̄’s, so that n must be even.

Working with the fermionic Wick’s theorem is analogous to the situa-
tion with scalar fields. Let us, for instance, twice functionally differen-
tiate the LHS of (1.446). This yields(
−i

δ

δη̄(x)

) (
i

δ

δη(y)

)
〈0| T

[
ei

∫
d4z[η̄(z)ψ(z)+ψ̄(z)η(z)]

]
|0〉

���
η,η̄=0

=
δ

δη̄(x)
〈0| T

[
−iψ̄(y)ei

∫
d4z[η̄(z)ψ(z)+ψ̄(z)η(z)]

]
|0〉

���
η,η̄=0

= 〈0| T [(−iψ̄(y))(−iψ(x))] |0〉 = − 〈0| T [ψ̄(y)ψ(x)] |0〉

= 〈0| T [ψ(x)ψ̄(y)] |0〉 , (1.447)

When the same differentiation is performed on the RHS of (1.446) we
get (

−i
δ

δη̄(x)

) (
i

δ

δη(y)

)
e−

∫
d4z1d

4z2 η̄(z1)〈0 |T [ψ(z1)ψ̄(z2)] |0〉η(z2)
���
η,η̄=0

=
δ

δη̄(x)
δ

δη(y)

[
−

∫
d4z1d4z2 η̄(z1) 〈0| T[ψ(z1)ψ̄(z2)] |0〉 η(z2)

]
=

δ

δη̄(x)

∫
d4z1η̄(z1) 〈0| T[ψ(z1)ψ̄(y)] |0〉

= 〈0| T[ψ(x)ψ̄(y)] |0〉 . (1.448)

Let us also notice that successive differentiation over the source fields
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on the LHS gives

n∏
i=1

(
−i

δ

δη̄(xi)

) n∏
j=1

(
i

δ

δη(yj)

)
〈0| T

[
ei

∫
d4z[η̄ψ+ψ̄η]

]
|0〉

���
η,η̄=0

= 〈0| T [ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(yn)] |0〉 . (1.449)

As an exercise, we now show that

〈0| T [ψ(x1)ψ(x2)ψ̄(x3)ψ̄(x4)] |0〉

= − 〈0| T [ψ(x1)ψ̄(x3)] |0〉 〈0| T [ψ(x2)ψ̄(x4)] |0〉

+ 〈0| T [ψ(x1)ψ̄(x4)] |0〉 〈0| T [ψ(x2)ψ̄(x3)] |0〉 . (1.450)

To see this, we 4 times functionally differentiate the RHS of (1.446),
namely[
(−i)δ
δη̄(x1)

(−i)δ
δη̄(x2)

] [
iδ

δη(x3)

iδ
δη(x4)

]
e−

∫
d4xd4yη̄(x)〈0 |T [ψ(x)ψ̄(y)] |0〉η(y)

���
η,η̄=0

=
δ

δη̄(x1)

δ

δη̄(x2)

δ

δη(x3)

∫
d4x η̄(x) 〈0| T [ψ(x)ψ̄(x4)] |0〉

× e−
∫
d4xd4y η̄(x)〈0 |T [ψ(x)ψ̄(y)] |0〉η(y)

���
η,η̄=0

=
δ

δη̄(x1)

δ

δη̄(x2)

[
−

∫
d4x η̄(x) 〈0| T [ψ(x)ψ̄(x4)] |0〉

×

∫
d4x η̄(x) 〈0| T [ψ(x)ψ̄(x3)] |0〉

× e−
∫
d4xd4yη̄(x)〈0 |T [ψ(x)ψ̄(y)] |0〉η(y)

] ���
η,η̄=0

=
δ

δη̄(x1)

[
− 〈0| T [ψ(x2)ψ̄(x4)] |0〉

∫
d4x η̄(x) 〈0| T [ψ(x)ψ̄(x3)] |0〉

×e−
∫
d4xd4yη̄(x)〈0 |T [ψ(x)ψ̄(y)] |0〉η(y)

+

∫
d4x η̄(x) 〈0| T [ψ(x)ψ̄(x4)] |0〉 〈0| T [ψ(x2)ψ̄(x3)] |0〉

×e−
∫
d4xd4yη̄(x)〈0 |T [ψ(x)ψ̄(y)] |0〉η(y) + · · ·

] ���
η,η̄=0

= − 〈0| T [ψ(x1)ψ̄(x3)] |0〉 〈0| T [ψ(x2)ψ̄(x4)] |0〉

+ 〈0| T [ψ(x1)ψ̄(x4)] |0〉 〈0| T [ψ(x2)ψ̄(x3)] |0〉 . (1.451)

This coincides with the assertion (1.450). The minus sign is clearly
associated with the odd permutation 1234→ 1324 while the plus sign
with the even permutation 1234→ 1423. Analogous statement holds
also for higher-order Green functions.
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More generally, one can write

〈0| T[[F[ψ, ψ̄] |0〉

= F
[
−i

δ

δη̄
, i
δ

δη

]
e−

∫
d4xd4yη̄(x)〈0 |T [ψ(x)ψ̄(y)] |0〉η(y)

���
η,η̄=0

, (1.452)

where F is a function (or functional) of Dirac field operators.

In order to compute the vacuum expectation value of the time ordered
product of Dirac fields in Heisenberg picture, we can follow the same
strategy as for scalar fields. It is not difficult to see that we can write

〈Ω| T[ψH (x1) . . . ψH (xn)ψ̄H (y1) . . . ψ̄H (yn)] |Ω〉

=
〈0| T[ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(yn)ei

∫
d4xLI ] |0〉

〈0| T[ei
∫
d4xLI ] |0〉

. (1.453)

This is the Gell-Mann–Low formula for Dirac fields. The actual reason
why the aforestated form emulates the form (1.218) for scalar fields is
because the basic logical steps that went into the derivation of (1.218)
do not depend on spin.

Now, we note that for free fields we can write

〈0| T[ψ(x1) . . . ψ̄(yn)ei
∫
d4xLI ] |0〉

=

n∏
i=1

(
−i

δ

δη̄(xi)

) n∏
j=1

(
i

δ

δη(yj)

)
e
i
∫
d4xLI

(
−i δ

δη̄(xi )
,i δ
δη(yj )

)

× e−i
∬

d4xd4yη̄(x)SF (x,y)η(y)
���
η,η̄=0

. (1.454)

This can be equivalently rewritten as

〈0| T[ψ(x1) . . . ψ̄(yn)ei
∫
d4xLI ] |0〉

=

n∏
i=1

(
−i

δ

δη̄(xi)

) n∏
j=1

(
i

δ

δη(yj)

)
e
i
∫
d4xLI

(
−i δ

δη̄(xi )
,i δ
δη(yj )

)

× Z−1[0, 0]
∫
DψDψ̄eiS0[ψ,ψ̄]+

∫
η̄ψ+

∫
ψ̄η

����
η,η̄=0

= Z−1[0, 0]
∫
DψDψ̄ψ(x1) . . . ψ̄(yn)eiS0[ψ,ψ̄]+iSI [ψ,ψ̄]

= Z−1[0, 0]
∫
DψDψ̄ψ(x1) . . . ψ̄(yn)eiS[ψ,ψ̄] . (1.455)

Here S[ψ, ψ̄] is a full action. With this we can write

〈Ω| T[ψH (x1) . . . ψ̄H (yn)] |Ω〉

=

∫
DψDψ̄ψ(x1) . . . ψ̄(yn)eiS[ψ,ψ̄]

Z[0, 0] 〈0| T
[
eiSI [ψ,ψ̄

]
|0〉

. (1.456)
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In particular, for n = 0 we get

1 = 〈Ω|Ω〉 =

∫
DψDψ̄eiS[ψ,ψ̄]

Z[0, 0] 〈0| T
[
eiSI [ψ,ψ̄]

]
|0〉

. (1.457)

With this we finally arrive at functional-integral representation of the
2n-point Green function for Dirac fields

〈Ω| T[ψH (x1) . . . ψ̄H (yn)] |Ω〉

=

∫
DψDψ̄ψ(x1) . . . ψ̄(yn)eiS[ψ,ψ̄]∫

DψDψ̄eiS[ψ,ψ̄]
. (1.458)

Yukawa Interaction

In cases when only scalars and spin-1/2 fermions are present in the
theory, or when we are interested only in scalar-fermion sector of a
theory (e.g., when describing pion-nucleon scattering) the Lagrangian
has the generic form

L = L0 +Lint

= ψ̄γµ∂µψ +Mψ̄ψ +
1
2
∂µφ∂µφ −

1
2

m2φ2 +Lint (ψ, ψ̄, φ) . (1.459)

Here both ψ and φ might be generally field multiplets. A particular
form of Lint is the so-called Yukawa interaction, which appears in two
versions:

a) when φ is a parity even scalar then

LY ,int = −gψ̄φψ , (1.460)

b) when φ is a parity odd scalar (i.e., pseudoscalar) then

LY ,int = −igψ̄γ5φψ . (1.461)

(Here i ensures that LY ,int is Hermitian).

Note

For real pion-nucleon interaction the Yukawa interaction term is a
bit more complicated, because both nucleons and pions are field
multiplets:

ψ =

(
ψp

ψn

)
, and φ→ φ =

©«
π+

π−

π0

ª®®¬ .

Besides, Higgs scalar field (in Standar Model of particle physics it
is a complex scalar doublet) is also coupled to quarks and leptons via
Yukawa interaction.

In order to quantize such systems via functional integrals, we first
write generating functional (we consider for simplicity only one, parity
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even scalar field and one Dirac fermion)

Z[η, η̄, J]

= exp
(
i
∫

R4
Lint

[
−i

δ

δη̄(x)
, i

δ

δη(x)
,−i

δ

δJ(x)

] )
× 〈0| T

[
ei

∫
R4 d4x[ψ̄(x)η(x)+η̄(x)ψ(x)+φ(x)J(x)]

]
|0〉

= exp
(
i
∫

R4
Lint

[
−i

δ

δη̄(x)
, i

δ

δη(x)
,−i

δ

δJ(x)

] )
× N

∫
DψDψ̄ eiS0[ψ,ψ̄] + i

∫
d4xη̄ψ + i

∫
d4xψ̄η

×

∫
DφeiS0[φ] + i

∫
d4xJφ

= N
∫
DψDψ̄DφeiS[ψ,ψ̄,φ] + i

∫
d4xη̄ψ + i

∫
d4xψ̄η + i

∫
d4xJφ . (1.462)

Here

S[ψ, ψ̄, φ] =
∫

d4x
[
ψ̄

(
i /∂ −M

)
ψ +

1
2
∂µφ∂

µφ −
1
2

m2φ2 − gφψ̄ψ

]
.

Here M and m are masses of fermion and scalar particle, respectively.
We can get rid of the factor N by working directly with the generating
functional for Green functions

Z̃[η, η̄, J] =
Z[η, η̄, J]
Z[0, 0, 0]

. (1.463)

For this we get

Z̃[η, η̄, J] =

∫
DψDψ̄DφeiS[ψ,ψ̄,φ]+i

∫
d4xη̄ψ+i

∫
d4xψ̄η+i

∫
d4xJφ∫

DψDψ̄DφeiS[ψ,ψ̄,φ]
. (1.464)

By having Z̃[η, η̄, J], we can generate the mixed full Green function in
a standard way, for instance

〈Ω| T [φH (x1) . . . φH (xn)ψH (y1) . . . ψ̄H (zm)] |Ω〉

=

n∏
i=1

(
−i

δ

δJ(xi)

) m∏
l=1

(
−i

δ

δη̄(yl)

) m∏
j=1

(
i

δ

δη(zj)

)
Z̃[η, η̄, J]

��
η,η̄,J=0

=

∫
DψDψ̄Dφφ(x1) . . . φ(xn)ψ(y1) . . . ψ̄(zm)eiS[ψ,ψ̄,φ]∫

DψDψ̄DφeiS[ψ,ψ̄,φ]
. (1.465)

Feynman Rules for Yukawa Interaction

In the position space we can formulate Feynman rules as we did for
scalar fields. Lines (i.e. propagators) are deduced from quadratic parts
of the action (propagators correspond to the inverse of the integral ker-
nel), while the vertices are implied by the interaction term. So, Feynman
rules read:
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I Draw all topologically distinct diagrams for given n-point Green
function with n external legs for order gm use m vertices.

I A line between points x and y can be either bosonic

• •
x y ∼

∫
d4p
(2π)4

ie−ip(x−y)

p2 −m2 + iε
, (1.466)

or fermionic

• •
x y ∼

∫
d4p
(2π)4

ie−ip(x−y)

/p −m + iε
. (1.467)

Arrow Orientation

The orientation of the arrow is just a convention. Since

ψ =
∑
p,λ

[
ap,λup,λe−ipx + b†p,λvp,λeipx

]
,

ψ̄ =
∑
p,λ

[
bp,λv̄p,λe−ipx + a†p,λūp,λeipx

]
.

For x0 > y0 we have that

〈0|T[ψ(x)ψ̄(y)]|0〉 =
∑
p,λ

〈0| ap,λ︸︷︷︸
↖ x

a†p,λ︸︷︷︸
↖ y

|0〉 · · · ,

which describes a particle created at y and annihilated at x and
particle, hence charge of a particle flows from y to x.

For x0 < y0 we have

〈0|T[ψ(x)ψ̄(y)]|0〉 =
∑
p,λ

〈0| bp,λ︸︷︷︸
↖ y

b†p,λ︸︷︷︸
↖ x

|0〉 · · · ,

terms which describe antiparticle created at x and annihilated at y,
hence charge of an antiparticle flows from x to y, which is equivalent
to saying that charge of a particle flows from y to x.

I A vertex with 3 lines is represented by

•
x

∼ −ig
∫

d4x · · · , (1.468)

or

•
x

∼ +gγ5
∫

d4x · · · . (1.469)

I Introduce symmetry factors where necessary.
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It is quite instructive to see explicitly that the rule for pseudoscalar

•
x

∼ +gγ5
∫

d4x · · · , (1.470)

is correct (i.e., correctly factor i is absent and the overall sign is +).

This can be directly seen from the fact that in the functional integral we
have the action multiplied by i and the interaction term in the action
comes with the factor −ig , so the overall factor in the vertex in Feyn-
man diagram should be i · (−i)g = +g. This can also be independently
checked by computing an appropriate 3-point Green function in a tree
approximation. In particular, let us consider the generating functional

Z[η, η̄, J] = eiSY ,int

[
−i δ

δη̄(x) ,i
δ

δη(x) ,−i
δ

δJ (x)

]
Z0[η, η̄]Z0[J] . (1.471)

The connected 3-point function at tree level is given by the term

i(−ig)
∫

d4x
(
i

δ

δη(x)

)
γ5

(
−i

δ

δη̄(x)

) (
−i

δ

δJ(x)

)
Z0[η, η̄]Z0[J] . (1.472)

Given that

Z0[J] = e−
i
2

∫
d4x1d

4x2J(x1)∆F (x1−x2)J(x2) ,

Z0[η, η̄] = e−i
∫
d4x1d

4x2η̄(x1)SF (x1−x2)η(x2) . (1.473)

we find from Eq. (1.471) that

i(−ig)
∫

d4x
(
i

δ

δη(x)

)
γ5

(
−i

δ

δη̄(x)

)
Z0[η, η̄]

(
−i

δ

δJ(x)

)
Z0[J]

= {relevant part only, i.e., we want to end up with connected diagram

with two Grassmann sources and one J source }

=
g

2

∫
d4x

(
i

δ

δηα(x)

)
γ5
αβ

(
−i

δ

δη̄β(x)

) ∫
d4x1d4x2 η̄

a
x1

iSab
F (x1 − x2)η

b
x2

×

∫
d4y1d4y2 η̄

c
y1

iScd
F (y1 − y2)η

d
y2

∫
d4z [−∆F (z − x)]J(x)

= −g

∫
d4xd4x1d4x2d4z η̄(x1)SF (x1 − x)γ5SF (x − x2)η̄(x2)

× ∆F (z − x)J(z). (1.474)

The corresponding 3-point Green function is obtained by taking 3
functional derivatives of Z̃[η, η̄, J] (which on the tree level is the same
as Z[η, η̄, J]), in particular
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〈0| T [ψ(x1)ψ̄(x2)φ(x3)] |0〉

=

(
−i

δ

δη̄(x1)

) (
i

δ

δη(x2)

) (
i

δ

δJ(x3)

)
Z̃[η, η̄, J]

��
η̄,η,J

= −(−i)g
∫

d4x (−1)SF (x1 − x)γ5SF (x − x2)∆F (x − x3) + O(g
2)

= (−i)g
∫

d4xSF (x1 − x)γ5SF (x − x2)∆F (x − x3) + O(g
2)

=

∫
d4x [iSF (x1 − x)] gγ5 [iSF (x − x2)] [i∆F (x − x3)] + O(g

2) . (1.475)

This is precisely the result that we would have obtained should we
have used Feynman rules with the vertex prescription

•
x

∼ gγ5
∫

d4x · · · . (1.476)

As an exercise, compare relative signs of loops in:

A) Yukawa theory with LY ,int = −gψ̄ψφ

x1 • x2 ↔ 〈x1x2〉ψ̄ψφ .•

B) scalar theory with Lint = −
g
3!φ

3 theory

x1 • x2 ↔ 〈x1x2〉φ3 .•

To make this comparison, we can employ the generating functionals
Z[η̄, η, J] and Z[J] for respective Green functions. We should use only
that parts of Z[η̄, η, J] and Z[J] that contributes to the second order in
the coupling constant and use only as many external source terms J
that are relevant to the above Feynman diagrams. In particular, for the
diagram A)we can thus write
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(
−i

δ

δJ(x1)

) (
−i

δ

δJ(x2)

)
1
2
(−i)g

∫
d4x

(
i

δ

δη(x)

) (
−i

δ

δη̄(x)

) (
−i

δ

δJ(x)

)
× (−i)g

∫
d4y

(
i

δ

δη(y)

) (
−i

δ

δη̄(y)

) (
−i

δ

δJ(y)

)
×

[
−

1
2!

∫
d4x ′d4y′ η̄(x ′)SF (x ′ − y′)η(y′)

×

∫
d4xd4y η̄(x)SF (x − y)η(y)

]
×

[
−

1
2!22

∫
d4x ′d4y′ J(x ′)∆F (x ′ − y′)J(y′)

×

∫
d4xd4y J(x)∆(x − y)J(y)

]
. (1.477)

Similar formula would hold for diagram B) but with only J sources
and different combinatorial factors.

Now, due to anticommuting property of Grassmann derivatives we ob-
tain from the functional differentiation of Grassmann sources overall
−1 sign. On the other hand, in the diagram B) the structure of compu-
tations would be analogous, but the commuting nature of functional
derivatives δ

δJ brings an overall sign of +1.

Notes on Fermionic loops

i) Above result is quite generic. Fermionic loops appear with op-
posite sign than analogous bosonic loops. In fact, one should add
to Feynman rules for Yukawa theory that each Fermionic loop carries
extra −1 factor.

ii) In exactly supersymmetric theories bosonic loop diagrams are
cancelled by fermionic loop diagrams.

1.15 Feynman Rules in Momentum Space

It is often technically simpler and conceptually more convenient to
give Feynman rules in momentum space, i.e., to consider the Fourier
transform of τ(x1, . . . , xn)

τ̃(p1, . . . , pn) =
∫

d4x1e−ip1x1 · · ·

∫
d4xne+ipnxn τ(x1, . . . , xn) , (1.478)

where

τ(x1, . . . , xn) ≡ 〈Ω| T [φH (x1) . . . φH (xn)] |Ω〉 . (1.479)
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"Sign convention"

The minus sign in the exponent in (1.478) is associated to incoming
particles (momenta flow to interaction zone) and the plus sign in the
exponent is associated to outgoing particles (momenta flow from
interaction zone). We will say more about this convention when
discussing LSZ formula.

Recall that in the position space we had following rules (e.g., for λφ4

theory)

• •
x y

= ∆F (x − y) =

∫
d4p
(2π)4

i
p2 −m2 + iε

e−ip(x−y) ,

•
••
•
= −iλ

∫
d4x · · · . (1.480)

Clearly, in τ̃ the momentum of every external line is affiliated to the
external momentum (appropriate argument of τ̃). This is due to the fact
that d4xi integration is followed by d4pi integration. So, that

where p1, . . . , pn appear as arguments of τ̃.

In order to better understand the situation let us discuss some exam-
ples.
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Example 1

• •
x1 x2

→
p1 p2

=

∫
d4x1d4x2 e−ip1x1 eip2x2i∆F (x2 − x1)

=

∫
d4x1d4x2 e−ip1x1 eip2x2i

∫
d4p
(2π)4

e−ip(x1−x2)

p2 −m2 + iε

=

∫
d4p
(2π)4

d4x1d4x2 e−ix1(p1+p)eix2(p2+p)
i

p2 −m2 + iε

= (2π)4δ(p1 − p2)
i

p2
1 −m2 + iε

. (1.481)

Example 2

x1
• •

x x2
• →

p1 p2

q

= i3
∫

d4x1d4x2 e−ip1x1 eip2x2 (−iλ)
∫

d4x∆F (x1 − x)∆F (x − x)∆F (x − x2)

= (−iλ)
∫

d4x1d4x2d4x e−ip1x1 eip2x2

∫
d4q1

(2π)4
ie−iq1(x1−x)

q2
1 −m2 + iε

×

∫
d4q
(2π)4

i
q2 −m2 + iε

∫
d4q2

(2π)4
ie−iq2(x−x2)

q2
2 −m2 + iε

= (−iλ)
∫

d4x1d4x2d4x
d4q1

(2π)4
d4q
(2π)4

d4q2

(2π)4

× e−ix1(p1+q1)eix2(p2+q2)eix(q1−q2)
3∏
i=1

i
q2
i −m2 + iε

= (−iλ)
1
(2π)12

∫
d4q1d4qd4q2δ(p1 + q1)δ(p2 + q2)δ(q1 − q2)

× (2π)12

(
2∏
i=1

i
q2
i −m2 + iε

)
i

q2 −m2 + iε

= (−iλ)(2π)4δ(p1 − p2)

(
i

p2
1 −m2 + iε

)2 ∫
d4q
(2π)4

i
q2 −m2 + iε

. (1.482)
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Example 3

x1
•

x3
•

x2
•

x4
•

x
• →

p1

p3p2

p4

= (−iλ)
∫

d4x1 e−ip1x1

∫
d4x2 e−ip2x2

∫
d4x

∫
d4x3 eip3x3

∫
d4x4 eip4x4

× i4
∆F (x1 − x)∆F (x2 − x)∆F (x − x4)∆F (x − x3)

= (−iλ)
∫

d4x1d4x2d4x3d4x4d4x e−ip1x1 e−ip2x2 eip3x3 eip4x4

×

∫
d4q1

(2π)4
i

q2
1 −m2 + iε

e−iq1(x1−x)

∫
d4q2

(2π)4
i

q2
2 −m2 + iε

e−iq2(x2−x)

×

∫
d4q3

(2π)4
i

q2
3 −m2 + iε

e−iq3(x−x3)

∫
d4q4

(2π)4
i

q2
4 −m2 + iε

e−iq4(x−x4)

= (−iλ)
∫

d4x1d4x2d4x3d4x4d4x
d4q1d4q2d4q3d4q4

(2π)16

× e−ix1(p1+q1) e−ix2(p2+q2) eix3(p3+q3) eix4(p4+q4)eix(q1+q2−q3−q4)

×

4∏
i=1

i
q2
i −m2 + iε

= (−iλ)
∫

d4q1d4q2d4q3d4q4 (2π)4δ(p1 + q1)δ(p2 + q2)δ(p3 + q3) (1.483)

× δ(p4 + q4)δ(q1 + q2 − q3 − q4)

4∏
i=1

i
q2
i −m2 + iε

= (−iλ)(2π)4δ(p1 + p2 − p3 − p4)

4∏
i=1

i
p2
i −m2 + iε

. (1.484)

What we have learned from the foregoing 3 examples:

I Momentum of every external line is affiliated with the external
momentum (the argument of τ̃). This is because each d4xi inte-
gration is followed by d4pi integration in the propagator that is
associated with a given external line.

I Each d4x integration of a vertex enforces momentum conserva-
tion at that vertex. For instance, for λφ4 theory we have

p1

p3p2

p4

∼ (−iλ)
∫

d4x eix(p4+p3−p1−p2)

= (−iλ)(2π)4 δ(p1 + p2 − p3 − p4) .

I Since each propagator has argument either at a vertex or on
external point, all e±ipx factors of propagators ∆F ’s are used up.
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In particular, all e±ipx disappear and are turned into δ-functions.
I Momentum conservation at all vertices is enforced via δ-function

and “kills” many of the d4p integrations.
I All those propagator moments that are not fixed by the δ-functions

(originating from integrating d4x over external or vertex points)
are still integrated over with

∫
d4p

(2π)4 . These are the so-called “loop
momentum” integrals. In fact, the following statement holds:

Note

There are as many remaining momentum integrations (in a given
Feynman diagram) as there are loops.

Proof: External lines do not have any integration (as we said, d4xi
and d4pi integration follow each other and e±ipx in the propagator
produces δ-functions that cancel integration and set the momenta in
propagator to corresponding external momenta.

I What remains are integrations for each internal propagatot/line
(= I).

I Each vertex produces one δ-function representing momentum
conservation. Hence the number of δ-functions is equal to the
number of vertices (= V).

I All δ-functions are not independent, they provide overal mo-
mentum conservation δ-function.

I Hence we end-up with V − 1 independent δ-functions.

Total number of integrations is then I − (V − 1) = I −V + 1 = L by Euler
formula.

Note

The fact that the δ-function corresponding to total momentum con-
servation must always be factored out from τ̃ is a consequence of
translational invariance of τ.
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Indeed, we first note that

〈Ω| T [φH (x1) . . . φH (xn)] |Ω〉

= 〈Ω| eiP
νaνT

[
e−iP

νaνφH (x1 + a)eiP
νaν × · · ·

· · · × e−iP
νaνφH (xn + a)eiP

νaν
]

e−iP
νaν |Ω〉 . (1.485)

By employing assumption of the translational invariance of the vac-
uum state |Ω〉 (i.e. eiP

νaν |Ω〉 = |Ω〉) we get

τ(x1, . . . , xn) = τ(x1 + a, . . . , xn + a) . (1.486)

Now,

τ̃(p1, . . . , pn) =
∫

d4x1 . . . d4xn e−i
∑

i pi xi τ(x1, . . . , xn) . (1.487)

Here pi’s appear with appropriate signs. Then

τ̃(p1, . . . , pn)

=

∫
d4(x1 + a) . . . d4(xn + a)e−i

∑
i pi (xi+a)τ(x1 + a, . . . , xn + a)

= e−i
∑

i pia

∫
d4x1 . . . d4xn e−i

∑
i pi xi τ(x1, . . . , xn)

= e−i
∑

i pia τ̃(p1, . . . , pn) . (1.488)

This gives an equation(
e−i

∑
i pia − 1

)
τ̃(p1, . . . , pn) = 0 . (1.489)

That must be satisfied for all a. Particularly for small a we have up to
the first order in a that(∑

i

pi

)
τ̃(p1, . . . , pn) = 0. (1.490)

This has a general solution

τ̃(p1, . . . , pn) = δ

(∑
i

pi

)
(2π)4τ(p1, . . . , pn) , (1.491)

where the residual Green function τ(p1, . . . , pn) is (for simplicity) de-
notes with the same symbol “τ” as the position-space Green function.
Factor (2π)4 is mere convention.

Consequently, the total momentum conservation is always factorized
out from momentum-space Green functions. Since this is true for any
full Green’s function, it must be true also order by order and diagram
by diagram.
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Summary of Feynman rules for momentum-space
Green functions τ(p1, . . . , pn)

1. Draw all topologically distinct diagrams with n external lines
with ensuing momenta p1, . . . , pn. Incoming momenta are consid-
ered to be positive, while outgoing momenta are negative. For each
diagram denote by q1, . . . , qI the momenta of internal lines. I
stands for a total number of internal lines. (In scalar theory with-
out derivative coupling the choice of an orientation of internal
lines is irrelevant.)

2. To the j-th external line assign the factor

i
p2
j −m2 + iε

3. To the i-th internal line assign the propagator, i.e.

i
q2
i −m2 + iε

∼

4. To each vertex assign vertex factor, i.e. (−iλ) for λφ4/4! theory
and (−ig) for gφ3/3! theory, i.e.

• ∼ −iλ , • ∼ −ig .

5. Additionally the following rules apply:

I Assign momenta at each vertex so that the momentum
conservation is ensured.

I Multiply by
∫

d4q

(2π)4 for each closed loop, here q is the free
(unconstrained by momentum conservation) momenta prop-
agation along the loop.

I Factor out total factor (2π)4δ(p f − pi) representing total mo-
mentum conservation.

6. Divide by the symmetry factor.
7. Sum the contributions of all topologically distinct diagrams to a

given order in λ or g, etc.
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Example 4

• •
p1

p2

p3

p4

q

q − p1 − p2

= (−iλ)2
i

p2
1 −m2 + iε

i
p2

2 −m2 + iε
i

p2
3 −m2 + iε

i
p2

4 −m2 + iε

×

∫
d4q
(2π)4

i
q2 −m2 + iε

i
(q − p1 − p2)2 −m2 + iε

.

By convention momenta entering ver-
tex have positive sign and outgoing mo-
menta have negative sign. So, the mo-
mentum z propagating on the lower half
of the loop satisfies p1 + p2 − q + z = 0 or
equivalently z = q − p1 − p2.

This is a second order contribution to the 4-point Green’s function
τ(p1, p2, p3, p4).

1.16 LSZ Formalism

Particle physicists and phenomenologists are mostly interested in S-
matrix elements

out 〈p′1, . . . , p′n |p1, . . . , pm〉in ,

that are directly relevant, e.g., for cross-section computations (see,
Section 1.19). On the other hand, quantum field theorists are mostly
interested in Green functions

〈Ω| T [φH (x1) . . . φH (xn+m)] |Ω〉 ≡ τ(x1, . . . , xn+m) ,

because they are easily calculable in perturbation theory and they also
provide basic building blocks in applications that go beyond simple
scattering theory.

We will now demonstrate that it is possible to compute the S-matrix el-
ements (i.e., scattering amplitudes) directly in terms of τ(x1, . . . , xn+m),
so that all our labor with a perturbation computations of τ(x1, . . . ) can
be justified, e.g., in cross-section computations. Let us, however, first
start with two important concepts.

Spectral density and Zφ-factors

For simplicity’s sake we will carry out our subsequent argumentation
in terms of scalar fields, even though the results obtained will be more
general and with small modifications valid also for Dirac fermions and
gauge fields.

In the following, we will use the Heisenberg picture (hats over opera-
tors are omitted)

φH (x) = eiHtφS(x)e−iHt , H = H0 + HI ,

|ψ〉 ≡ |ψH 〉 = |ψS(t = 0)〉 . (1.492)
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Here H is the full Hamiltonian in Schrödinger picture.

Consider now the correlation function

i∆+(x − y) = 〈Ω| φH (x)φH (y) |Ω〉 . (1.493)

For a free field (let us denote it here as φ0) with mass m0 we have

〈0| φ0(x)φ0(y) |0〉 =
∑
p

∑
q

〈0| a(p)a†(q) |0〉 e−ipx+iqy

=
∑
p

∑
q

〈0| [a(p), a†(q)] |0〉 e−ipx+iqy

=

∫
R3

d3p

(2π)32ωp
e−ip(x−y)

=

∫
R4

d4p
(2π)3

e−ip(x−y)δ(p2 −m2
0)θ(p0)

≡ iD+(x − y, m0) . (1.494)

Let us now turn to the general case (i.e., situation when interaction is
included). Then we can write

〈Ω| φH (x)φH (y) |Ω〉 =
∑
α

〈Ω| φH (x) |α〉 〈α | φH (y) |Ω〉 , (1.495)

where the sum runs over some complete set of states in the Heisenberg
picture. We chose these base states to be eigenstates of the full Hamil-
tonian (HH = H). Since the momentum P̂ operator commutes with H,
we can chose |α0〉 to be eigenstates of H with momentum zero (i.e.,
P̂ |α0〉 = 0), then all the boosts of |α0〉 are also eigenstates of H. The
eigenvalues of the 4-momentum operator pµ = (H, p) are organized in
sets of hyperboloids.

Figure 1.14: Schematic picture of the en-
ergy spectrum for scalar field theory.

Multiparticle continuum is bounded by a hyperboloid with H =
√
(2m)2 + (p)2.
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Consider two-particle state with

H =
√

m2 + p2
1 +

√
m2 + p2

2 . (1.496)

Taking into account that
√

m2 + p2 is a convex function in p, one can
then use the Jensen inequality√

m2 + (sp1 + (1 − s)p2)
2 ≤ s

√
m2 + p2

1 + (1 − s)
√

m2 + p2
2 , (1.497)

which is valid for any s ∈ [0, 1]. For s = 1/2 we get

1
2

√
(2m)2 + (p1 + p2)

2 ≤
1
2

√
m2 + p2

1 +
1
2

√
m2 + p2

2 , (1.498)

which implies that (we set the total 3-momenta P = p1 + p2)√
(2m)2 + P2 ≤

√
m2 + p2

1 +

√
m2 + p2

2 . (1.499)

Thus, the lower bound for two-particle state is hyperboloid H =√
(2m)2 + P2. For more than two particle states the Jensen inequality

implies √
(Nm)2 +

(∑N
i pi

)2
≤

N∑
i=1

√
m2 + p2

i , (1.500)

which is still bounded from below by the hyperboloid H =
√
(2m)2 + P2.

Bound states have lower energy than is a sum of free particles energies
(due to negative binding energy). So, for instance, energy for bound
state of two particles must appear in the graph H vs. P below the
hyperboloid H =

√
(2m)2 + P2, see, Fig. 1.14.

Let |αp〉 be the boost of |α0〉 with momentum p. The resolution of unity
can be formally written as

1 =
∑
α

|α〉 〈α | ≡ |Ω〉 〈Ω| +
∑
α

∫
d3P

(2π)3
1

2ωP(α)
|αP〉 〈αP |

≡ |Ω〉 〈Ω| +

∫
d3 p

(2π)3
1

2ωp
|p〉 〈p |

+ · · · multiparticle contributions . (1.501)

Here ωP(α) =
√

m2
α + P

2, mα is the mass of the state |αP〉, i.e. the energy
of the state |α0〉.

∑
α in the first sum in α is meant both over discrete

and continuous indices and in the second sum we sum over all zero-
momentum states |α0〉.

Let us now use two already known relations, namely

φ(x + a) = ei P̂
νaνφ(x)e−i P̂

νaν ⇒ φ(x) = ei P̂
ν xνφ(0)e−i P̂

ν xν , (1.502)

and
e−i P̂

νaν |αP〉 = e−iP
ν
αaν |αP〉 , (1.503)
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(in short e−i P̂
νaν |α〉 = e−P

ν
αaν |α〉). With these we get

〈Ω| φH (x)φH (y) |Ω〉 =
∑
α

e−iP
ν
α (x−y)ν | 〈Ω| φH (0) |α〉 |2

=

∫
d4q

∑
α

e−iq(x−y) | 〈Ω| φH (0) |α〉 |2δ(Pα − q)

=

∫
d4q
(2π)3

e−iq(x−y)ρ(q) . (1.504)

Here we have used the fact that e−i P̂
ν xν |Ω〉 = |Ω〉 and defined

ρ(q) ≡ (2π)3
∑
α

δ(pα − q) |〈Ω| φH (0) |α〉|2 . (1.505)

Note that ρ(q) is obviously positive and vanishes for q0 < 0 (due to
positivity of the energy of physical states |α〉). Furthermore, it is invari-
ant under a Lorentz transformation as required by the corresponding
property of the field φH . To see this we use the fact that under the
Lorentz transformation

U(Λ)φH (x)U†(Λ) = φ(Λx) . (1.506)

and U(Λ) |Ω〉 = |Ω〉. With this we see that the LHS of (1.504) equals
to

〈Ω| φH (x)φH (y) |Ω〉

= 〈Ω|U†(Λ)U(Λ)φH (x)U†(Λ)U(Λ)φH (y)U†(Λ)U(Λ) |Ω〉

= 〈Ω| φH (Λx)φH (Λy) |Ω〉 . (1.507)

This implies that the LHS of (1.504) is a Lorentz scalar and hence also
ρ is a Lorentz scalar. This, in turn, implies that ρ(q) can depend only
on q2.

At this point we can introduce the spectral density σ(q2)

ρ(q) ≡ θ(q0)σ(q2) . (1.508)

σ thus defined quantifies the contribution of the intermediate states
|α〉 with p2

α = q2.

Further rewriting yields

〈Ω| φH (x)φH (y) |Ω〉

=

∫ ∞

0
d(M2)

∫
d4q
(2π)3

e−iq(x−y)δ(q2 −M2)θ(q0)σ(M2)

=

∫ ∞

0
d(M2)iD+(x − y, M2)σ(M2) . (1.509)

It can be easily seen that by choosing σ(q2) = δ(q2 −m2
0) we obtain the
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result for free field. At this point we note that

ρ(q) = θ(q0)σ(q2) = (2π)3
∑
α

δ(pα − q)| 〈Ω| φH (0) |α〉 |2

= (2π)3δ(q)| 〈Ω| φH (0) |Ω〉 |2

+ (2π)3
∫

d3 p

(2π)32ωp
δ(p − q)δ(q0 −ωp)| 〈Ω| φH (0) |p〉 |2

+ (2π)3
∑
α0

∫
d3P

(2π)32ωP(α)
δ(P − q)δ(q0 −ωP(α)| 〈Ω| φH (0) |αP〉 |2.

(1.510)

The vacuum term 〈Ω| φH (0) |Ω〉 is typically zero by symmetry (cf. λφ4

theory, but not gφ3) and for higher-spin fields, it is zero by Lorentz in-
variance. If the vacuum term is non-zero, we can appropriately shift the
field φH → φH + const. So, in the following we neglect 〈Ω| φH (0) |Ω〉.
We can further manipulate matrix elements 〈Ω| φH (0) |αP〉 as follows

〈Ω| φH (0) |αP〉 = 〈Ω| φH (0)U−1
P UP |αP〉 = 〈Ω| φH (0) |α0〉 . (1.511)

Here UP is an unitary operator that implements a Lorentz boost from P

to 0. In the above derivation we used that UPφH (0)U−1
P = φH (0) which

implies that φH (0)U−1
P = U−1

P φH (0) and 〈Ω|U−1
P = 〈Ω| so, 〈Ω| φH (0) |αP〉

is momentum independent due to Lorentz invariance. For fermions it
is more difficult to show, but it works as well. Consequently we can
write

ρ(q) =
δ(q0 −

√
m2 + q2)

2
√

m2 + q2
| 〈Ω| φH (0) |1p=0〉 |

2

+
∑
α0

δ(q0 −
√

m2
α + q2)

2
√

m2
α + q2

| 〈Ω| φH (0) |α0〉 |
2

= δ(q2 −m2)θ(q0)Zφ

+
∑
α0

δ(q2 −m2
α)θ(q

0) | 〈Ω| φH (0) |α0〉 |
2 . (1.512)

This means that

σ(q2) = δ(q2 −m2)Zφ +
∑
α0

δ(q2 −m2
α)| 〈Ω| φH (0) |α0〉 |

2 . (1.513)

Here Zφ ≡ | 〈Ω| φH (0) |1p=0〉 |
2 and it is known as field-strength renormal-

ization or wave-function renormalization parameter. For free fields we
have clearly Zφ = 1.

The quantity m is the exact mass of a single particle — exact energy
eigenvalue at rest. The mass m will, in general, differ from the value of
mass parameter that appears in the Lagrangian.
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Note on Mass

It is customary to refer to the mass parameter in the Lagrangian
as m0 and call it bare mass. m is known as the physical mass (or
renormalized mass).

Using (1.509) we can write

〈Ω| φH (x)φH (y) |Ω〉 = i
∫ ∞

0
d(M2)D+(x − y, M2)σ(M2)

= iZφ D+(x − y, m2) + i
∫ ∞

M2
t

d(M2)σ(M2)D+(x − y, M2) . (1.514)

M2
t is known as multiparticle threshold and M2

t ≈ 4m2.

Figure 1.15: Typical spectral function
σ(M2) for an interacting theory looks
like this. The peaks shortly before (2m)2

correspond to multiparticle bound states
or resonances. These peaks start at the
multipartcle threshold M2

t .

From (1.514) it follows that the full Pauli–Jordan function reads as

〈Ω| [φH (x), φH (y)] |Ω〉

= iZφ∆(x − y, m2) + i
∫ ∞

M2
t

d(M2)σ(M2)∆(x − y, M2) , (1.515)

with i∆(x − y, M2) = 〈0| [φ(x), φ(y)] |0〉. Here φ(x) is a free field with the
mass M .

To understand some further properties of Zφ we apply ∂
∂y0

���
y0→x0

to the

full Pauli–Jordan function. For scalar field we use the fact that Ûφ = π
and obtain

[φ(x0, x), π(x0, y)] = iδ(3)(x − y) . (1.516)

Both for the interacting and free fields. Thus we get

iδ(3)(x − y) = iZφδ(3)(x − y) + iδ(3)(x − y)

∫ ∞

M2
t

d(M2)σ(M2) . (1.517)

This implies that

1 = Zφ︸︷︷︸
> 0

+

∫
M2

t

d(M2)σ(M2)︸                 ︷︷                 ︸
> 0

, (1.518)Zφ − 1 accounts for the overlap of
φH (0) |Ω〉 with multiparticle states.

which means that 0 < Z ≤ 1 (and particularly Z = 1 for free theory).
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Finally, in complete analogy, we can derive spectral expansion for
two-point Green function

〈Ω| T [φ(x)φ(y)] |Ω〉

= iZφDeltaF (x − y, m2) + i
∫ ∞

M2
t

d(M2)σ(M2)∆F (x − y, M2) .(1.519)

Note on Mass

Spectral representations for

〈Ω| φH (x)φH (y) |Ω〉 , 〈Ω| [φH (x), φH (y)] |Ω〉 and

〈Ω| T [φH (x)φH (y)] |Ω〉 ,

are generically known as Källen–Lehmann representations.

Note that in momentum space we can write the two-point Green
function as

τ(p) =
iZφ

p2 −m2 + iε
+ i

∫
M2

t

d(M2)σ(M2)
1

p2 −M2 + iε
. (1.520)

The analytic structure of this function can be seen on Fig. 1.16

Figure 1.16: The analytic structure of
τ(p).

The Källen–Lehmann dispersion relation has also representation in
terms of contour integral. To see this let us recall that for arbitrary
analytic function f (p2) Cauchy’s theorem states that

f (p2) =
1

2πi

∮
γ

ds
f (s)

s − p2 , (1.521)

provided that

I p2 ∈ C is inside the contour γ.
I Contour γ does not cross any singularity.

Let us apply this to the two-point function τ(p) and use the knowledge
of its analytic structure. We choose the contour γ as in Fig. 1.17.
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Figure 1.17: Choice of γ contour for τ(p).

Consider first that f (p2) has only branch cut but no poles. We further
assume that f (p2) falls of rapidly enough so that the contribution from
the large radius circle can be neglected. Note that the contribution
from the part “A” in Fig. 1.18 (represented by curve γA) goes to zero
as ε → 0.

Figure 1.18: Detail of the branch cut
avoidance in f (p2).

Indeed, for z = p2 we can write∫
γA

ds
f (s)
s − z

= lim
ε→0

iε
∫ 2π

0
dϕ

f (M2
t + ε + εeiϕ)

M2
t − ε + εeiϕ − z

. (1.522)

Let us now observe that the absolute value of the right-hand-side of
(1.522) reads

lim
ε→0
| · · · | ≤ lim

ε→0
ε

∫ 2π

0
dϕ

| f (· · · )|
|M2

t − ε + ε
iϕ − z |

= 0 . (1.523)

Here we have used the fact that |M2
t − ε + ε

iϕ − z | = M2
t − z + O(ε).

Thus, after the double limit ε → 0 and R → ∞ we are left only with
contributions from with γC and γB, i.e.

f (z) = lim
η→0

1
2πi

{∫ ∞+iη

M2
t +iη

ds
f (s)
s − z

−

∫ ∞−iη

M2
t −iη

ds
f (s)
s − z

}

= lim
η→0

1
2πi

{∫ ∞

M2
t

ds
f (s + iη)
s + iη − z

−

∫ ∞

M2
t

ds
f (s − iη)
s − iη − z

}
. (1.524)

Since z is not on the cut, we can neglect ±iη in the denominators and
write

f (z) =
1

2πi

∫ ∞

M2
t

ds
f (s + iη) − f (s − iη)

s − z
. (1.525)

The numerator of the integrand is the discontinuity of f (z) across the
cut, which is typically denoted as “disc f (s)”. When f (z) is real on
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the real axis except for a cut, then f ∗(z) = f (z∗) for z ∈ R\(branch cut
region). This property can be analytically extended to entire complex
plane (except of branch cut). So we have

lim
η→0
[ f (s + iη) − f (s − iη)] = lim

η→0
[ f (s + iη) − f ∗(s + iη)]

= lim
η→0

2i Im f (s + iη)

= 2i Im f+(s) . (1.526)

This relation is known as the Schwartz reflection principle. Hence, f (z)
can be rewritten as

f (z) =
1
π

∫ ∞

M2
t

ds
Im f+(s)

s − z
. (1.527)

If f (z) has simple poles at z = zk , k = 1, . . . (for us are relevant
poles zk ∈ R+) then f (z) is analytic inside of the curve depicted on
Fig. 1.19.

Figure 1.19: Curve of integration for
f (z = p2)with simple poles included.

Consequently, we can use the Cauchy theorem to write

f (z) =
1

2πi

∫
γ

ds
f (s)
s − z

=
1

2πi

∫
→

· · · −
1

2πi

∫
←

· · · +
1

2πi

∑
k

∫
	γk

ds
f (s)
s − z

=
1
π

∫ ∞

M2
t

ds
Im f+(s)

s − z
+

1
2πi

∑
k

Res f (zk)
∫
	γk

ds
(s − z)(s − zk)

=
1
π

∫ ∞

M2
t

ds
Im f+(s)

s − z
+

∑
k

Res f (zk)
zk − z

. (1.528)

Here	 γk denotes (anticlockwise) integration around small circles that
encircle respective simple poles. Now, by setting z = p2 + iη (η → 0)
we get

f+(p2) =
1
π

∫ ∞

M2
t

ds
Im f+(s)

s − p2 − iη
+

∑
k

Res f (zk)
zk − p2 − iη

. (1.529)

Comparing this with formula

τ(p) =
iZφ

p2 −m2 + iε
+ i

∫
M2

t

d(M2)σ(M2)
1

p2 −M2 + iε
, (1.530)
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we see that that by setting iτ(p) ≡ f+(p2), s ≡ M2, zk ≡ mk (mk corre-
sponds to a mass of single particle state and bound states) and η ≡ ε

we obtain the following importnat relations

σ(M2) = −
Im(iτ(p2 = M2))

π
, Zφ = −Res(iτ(p2 = m2)) . (1.531)

1.17 LSZ Reduction Formulas

In this chapter we will relate time ordered correlation functions (i.e.,
full Green functions) 〈x1 . . . xn〉 ≡ 〈Ω| T [φH (x1) . . . φH (xn)] |Ω〉 to scat-
tering amplitudes.

Let us denote α = {p1, . . . , pn} to be set of initial state momenta and β =

{q1, . . . , qm} to be set of momenta of outgoing particles. In scattering
processes we are interested in scattering amplitudes

〈β, in|Ŝ |α, in〉 = 〈β, out|α, in〉 . (1.532)

This can be rewritten as

〈b, out|a†in(p1)|α
′, in〉 = 〈b, out|a†in(p1)|α

′, in〉

− 〈b, out|a†out (p1)|α
′, in〉

+ 〈b, out|a†out (p1)|α
′, in〉 , (1.533)

where α′ denotes the set of momenta {p2, . . . , pn}. At this stage we also
realize that

aout (p1) |β, out〉 = aout (p1) |q1, . . . , qm, out〉

= aout (p1)a
†
out (q1) . . . a

†
out (qm) |0, out〉

=
[
aout (p1), a†out (q1) . . . a

†
out (qm)

]
|0, out〉

=

m∑
j=1

(2π)32ωp j δ(q j − p j) |β
′
j , out〉 . (1.534)

Here β′j = {q1, q2, . . . , qj−1, qj+1, . . . , qm}.

Now, from the mode expansion of a free scalar field

φ(x, t) =
1
(2π)3

∫
d3p

2ωp

[
a(p)e−ipx + a†(p)eipx

]
=

∑
p

[
ape−ipx + a†peipx

]
=

∑
p

[
ape−iωp t + a†−peiωp t

]
eipx . (1.535)
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and its canonically conjugated field momenta

π(x, t) = ∂0φ(x, t) =
∑
p

[
−iωpape−ipx + iωpa†peipx

]
=

∑
p

[
−iωpape−iωp t + iωpa†−peiωp t

]
eixp , (1.536)

we can find that ap and a†p can be written as

a(p) =
∫

d3xeipx
[
ωpφ(x, t) + iπ(x, t)

]
= i

∫
d3x eipx

↔

∂0φ(x, t) . (1.537)

Here u
↔

∂ v = u(∂v) − (∂u)v.

It should be noted that despite explicit appearance of t on the right-
hand side of (1.537) the integral is t independent (as is the left-hand
side). So, one can choose to work with any t that is convenient for
computational purposes. By Hermitian conjugation we also get

a†(p) = −i
∫

d3x e−ipx
↔

∂0φ(x, t) . (1.538)

With this, we can write (1.532) and (1.533) as

〈β, out|α, in〉 − 〈β, out|a†out (p1)|α
′, in〉

= 〈β, out|a†in(p1)|α
′, in〉 − 〈β, out|a†out (p1)|α

′, in〉

= −i lim
t→−∞

∫
d3x1e−ip1x1

↔

∂0 〈β, out|φin(x, t)|α′, in〉

+ i lim
t→∞

∫
d3x1e−ip1x1

↔

∂0 〈β, out|φout (x, t)|α′, in〉 . (1.539)

Time limits used are taken for future convenience and at this stage
they might seem to be redundant since the corresponding integrals are
time independent.

Note that while both a†out and a†in de-
scent from free fields, the correspond-
ing free fields have different (asymptotic)
boundary conditions (cf. Eq. (1.151)).To proceed, we now use a simple identity(

lim
t→∞
− lim

t→−∞

) ∫
d3x f (x)

↔

∂0g(x) =
∫

d4x∂0[ f (x)
↔

∂0g(x)]

=

∫
d4x

(
f ∂2

0g − g∂
2
0 f

)
. (1.540)
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By setting f (x) = e−ipx we have∫
d4x

(
f ∂2

0g − g∂
2
0 f

)
=

{
∂2

0 f = −p2
0 f = (−p2 −m2) f = (∇2 −m2) f

}
=

∫
d4x

(
f ∂2

0g − g∇
2 f + gm2 f

)
P.P.
=

∫
d4x f (∂2

0 −∇
2 +m2)g

=

∫
d4x f (� +m2)g . (1.541)

Consequently, this allows us to write

〈β, out|α, in〉 − 〈β, out|a†out (p1)|α
′, in〉

= lim
t→∞

i√
Zφ

∫
d3x1e−ip1x1

↔

∂0 〈β, out|φH (x, t)|α′, in〉

− lim
t→−∞

i√
Zφ

∫
d3x1e−ip1x1

↔

∂0 〈β, out|φH (x, t)|α′, in〉

=
i√
Zφ

∫
d4x1e−ip1x1 (� +m2) 〈β, out|φH (x, t)|α′, in〉 . (1.542)

Mass m is the on-shell asymptotic mass. It enters through in/out-states
in S-matrix. So, this mass is actually measured mass (when preparing
the initial particle state) and hence it corresponds to physical mass.

As for the appearance of the factor Zφ (wave function renormalization
factor) let us remind that originally we introduced the limits

φin(x)
t → −∞
←− φH (x)

t → ∞
−→ φout (x) , (1.543)

where the Heisenberg field φH (x) interpolates between “in” and “out”
asymptotic regimes. Even though this picture is logically persuasive it
is mathematically not entirely correct. Indeed, if we understand (1.543)
as a “strong” operatorial relation (in sense of asymptotic identity be-
tween operators), then it can be shown that the S-matrix becomes triv-
ial and no scattering takes place. For this reason, Lehmann–Symanzik–
Zimmerman (LSZ) proposed that the form of the asymptotic condition
should be understood as a “weak” relation (in sense of asymptotic
identity between expectation values) as

lim
t → ∞

〈ψ1 |φH (x)|ψ2〉 = 〈out,ψ1 |φout (∞, x)|out,ψ2〉 ,

lim
t → −∞

〈ψ1 |φH (x)|ψ2〉 = 〈in,ψ1 |φin(x,−∞)|in,ψ2〉 , (1.544)

for all states ψ1 and ψ2.

Convergence Issues

Even convergence in this weak operatorial sense is not strong enough
to ensure that the limit of a product is the product of the limits.
Consequently, it is generally not true that the limit of a commutator



1.17 LSZ Reduction Formulas 121

is the commutator of limits, e.g.

lim
t→∞
〈ψ1 |[φH (x), φH (y)]|ψ2〉

, 〈out,ψ1 |[φout (∞, x), φout (∞, y)|out,ψ2〉 ,

and similarly for “in” regime.

On the other hand, we know that both the Heisenberg field φH (x) (that
we used in deriving the Lehmann–Källen representation) and φin/out
fields obey canonical commutation relations. At the same time we can
use translational invariance of full quantum vacuum and write that

〈Ω|φH (x)|1p〉 = e−ipx 〈Ω|φH (0)|1p=0〉 = 〈0|φ(x)|p〉
√

Zφ . (1.545)

Here φ(x) is a free field. In deriving (1.545) we used the fact that

〈0|φ(x)|p〉 =
∑
q

〈0|
(
a(q)e−iqx + a†(q)eiqx

)
a†(p)|0〉

=
∑
q

e−iqx 〈0|a(q)a†(p)|0〉

=
∑
q

e−iqx 〈0|[a(q), a†(p)]|0〉

= e−ipx , (1.546)

and the definition of Zφ , cf. (1.513). So, Lehmann–Källen representation
implies that

lim
t→∞
〈Ω|φH (x)|1p〉 = 〈out, 0|φout (x,∞)|p, out〉

√
Zφ ,

lim
t→−∞

〈Ω|φH (x)|1p〉 = 〈in, 0|φin(x,−∞)|p, in〉
√

Zφ . (1.547)

By denoting the interpolation Heisenberg field as φ̃H and the Lehman–
Källen Heisenberg field as φH (x), we see that there must hold the weak
relation

φH (x) =
√

Zφ φ̃H (x)
t→+∞
−→

√
Zφ φout (x,∞)

t→−∞
−→

√
Zφ φin(x,−∞) . (1.548)

This weak relation was used in formula (1.542). So, by collecting our
results together we can write that

〈β, out|α, in〉 =
i√
Zφ

∫
d4x1e−ip1x1 (� + m2) 〈β, out|φH (x1)|α

′, in〉

+ disconnected term . (1.549)

We have neglected the disconnected term 〈β, out|a†out (p1)|α
′, in〉. In fact,
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this term can be explicitly written as (cf. Eq. (1.534))

〈q1, . . . , qn, out|a†out (p1)|p2, . . . , pm, in〉

= 〈0|aout (q1) . . . aout (qn)a
†
out (p1)|p2, . . . , pm, in〉

= 〈0|[aout (q1) . . . aout (qn), a†out (p1)]|p2, . . . , pn, in〉

=

n∑
i=1

2ωqi (2π)
3δ(qi − p1)

× 〈q1, . . . , qi−1, qi+1 . . . , qn, out|p2, . . . , pm, in〉 . (1.550)

This is clearly disconnected term because in the sum there is always one
particle whose energy and momenta are unaffected by the scattering
process.

We have now completed the first step in the LSZ program. In order
to proceed let us now define β′ = {q2, q2, . . . , qm}. With this we can
write

〈β, out|φH (x1)|α
′, in〉 − 〈β′, out|φH (x1)ain(q1)|α

′, in〉

= 〈β′, out|aout (q1)φH (x1)|α
′, in〉 − 〈β′, out|φH (x1)ain(q1)|α

′, in〉

= i
∫

d3y1eiq1y1
↔

∂0 〈β
′, out|φout (y1)φH (x1)|α

′, in〉

− i
∫

d3y1eiq1y1
↔

∂0 〈β
′, out|φH (x1)φin(y1)|α

′, in〉 . (1.551)

Since the relation between ain/out and φin/out is true for any time argu-
ment, we can again rewrite the later identity as

i lim
ty→∞

∫
d3y1eiq1y1

↔

∂0 〈β
′, out|φout (y1)φH (x1)|α

′, in〉

− i lim
ty→−∞

∫
d3y1eiq1y1

↔

∂0 〈β
′, out|φH (x1)φin(y1)|α

′, in〉

= lim
y0→∞

i√
Zφ

∫
d3y1eiq1y1

↔

∂0 〈β
′, out|φH (y1)φH (x1)|α

′, in〉

− lim
y0→−∞

i√
Zφ

∫
d3y1eiq1y1

↔

∂0 〈β
′, out|φH (x1)φH (y1)|α

′, in〉 . (1.552)

Clearly, some trick is needed in order to recast this to the full-fledged
four-dimensional integral (as we did before in the first LSZ step). Time
ordering is what does the job here. Note, that previous identity can be



1.17 LSZ Reduction Formulas 123

rewritten as

lim
y0→∞

i√
Zφ

∫
d3y1eiq1y1

↔

∂0 〈β
′, out|T[φH (y1)φH (x1)]|α

′, in〉

− lim
y0→−∞

i√
Zφ

∫
d3y1eiq1y1

↔

∂0 〈β
′, out|T[φH (y1)φH (x1)]|α

′, in〉

=

(
lim
y0→∞

− lim
y0→−∞

)
i√
Zφ

∫
d3y1 · · ·

=
i√
Zφ

∫
d4y1eiq1y1

(
�y1 +m2

)
〈β′, out|T[φH (y1)φH (x1)]|α

′, in〉 .

(1.553)

So, once two particles have been reduced in the tsansition amplitude
the element of the S-matrix looks like

〈β, out|α, in〉 = 〈β, in|S |α, in〉

=

(
i√
Zφ

)2 ∫
d4x1d4y1eiq1y1−ip1x1

(
�y1 +m2

) (
�x1 +m2

)
× 〈β′, out|T[φH (y1)φH (x1)]|α

′, in〉

+ disconnected terms , (1.554)

(disconnected part here involves one or two δ(3) functions). The same
reasoning can be now carried further until all incoming and outgoing
particles have been reduced

〈β, out|α, in〉 = 〈q1, . . . , qm, out|p1, . . . , pn, in〉

=

(
i√
Zφ

)n+m∫
d4y1 . . . d4ymd4x1 . . . d4xn exp

(
i

m∑
k=1

qk yk − i
n∑

k=1

pk xk

)
×

(
�y1 +m2

)
· · ·

(
�ym +m2

) (
�x1 +m2

)
· · ·

(
�xn +m2

)
× 〈Ω|T[φH (y1) . . . φH (xn)|Ω〉

+ disconnected terms . (1.555)

In the last line we passed from |0, in〉 to |Ω〉 by using the weak limit,
namely by denoting

〈ψ | ≡ 〈· · · , out| T[φH (y1) . . . φH (xn−1)] , (1.556)

we have

〈ψ |φin(x1)|0, in〉 = lim
txn→−∞

〈ψ |φH (xn)|Ω〉
1√
Zφ

, (1.557)

and similarly for 〈out, 0|.

Expression (1.555) provides the relation between the on-shell transition
amplitudes of n +m particles and the full n +m point Green function.
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This relation is known as LSZ Reduction Formula and it implies, in
particular, that in the momentum space the Green functions must
have poles in the variables p2

i (pi are conjugates to xi) as otherwise
the S would be trivially zero. So, up to a wave function normalization
constant the S-matrix elements are nothing but the residue of the multi-pole
structure of full Green function.

Note that there are many n + m-particle scattering processes but to
compute their S-matrix we need to know only single n +m point full
Green function (difference is reflected only in the plane-wave factors in
the integration). In this respect, Green functions are more elementary
than scattering amplitudes.

LSZ for Dirac Spinors

For Dirac spinors one can derive LSZ reduction formula along the
same lines as for bosons. Due to extra indices and anticommutativ-
ity, the derivation is more involved.

1.18 Perturbative Computation of the S Matrix

Define

τ̃(p1, . . . , pn,−q1, . . . ,−qm)

=

(∏
i

∫
d4yi

) (∏
j

∫
d4xj

)
e−i

∑
i piyj+i

∑
j qj x j

× τ(x1, . . . , xn, y1, . . . , ym) . (1.558)

The LSZ formula in the momentum space then reads

Sf i = 〈{ f }, in|Ŝ |{i}, in〉 = 〈{ f }, out|{i}, in〉

= lim
p2,q2→m2

p

(∏
l

1√
Zφ

(p2
l
−m2

p)

i

) (∏
j

1√
Zφ

(q2
l
−m2

p)

i

)
× τ̃(p1, . . . , pn,−q1, . . . ,−qm)︸                               ︷︷                               ︸
(2π)4δ

(∑n
i=1 pi−

∑m
j=1 qj

)
τ(p1,...,pn ,−q1,...,qm)

+ disconnected term . (1.559)

Here we have identified { f }, with set of outgoing-particle momenta
q1, . . . qm and {i} with set of incoming-particle momenta p1, . . . pn.

p1

...

pn

q1

...

qm
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Presence of the terms (p2
l
−m2

p), . . . , (q2
l
−m2

p) causes that the external
lines in the diagrams contribution to the τ are amputated. We speak
about amputated Green function in the LSZ formula. So, for instance, for
a scattering of 2 particles to 2 particles (e.g., 2-particle elastic scattering)
we obtain

〈q1, q2, out|p1, p2, in〉

=
(−i)4

(
√

Zφ)4
lim

p2
i ,q2

j→m2
p

2∏
i=1

(
p2
i −m2

p

) 2∏
i=1

(
q2
i −m2

p

)
τ̃(p1, p2,−q1,−q2). (1.560)

The diagrammatic representation of τ̃(p1, p2,−q1,−q2) has the form

τ̃(p1, p2,−q1,−q2) ∼

where the external propagator has pole in the physical mass, i.e. mp . One
particular contribution in this schematic diagram is (we use φ4 theory
as an example)

For a general diagram with external legs, we define amputation in the
following way: start from the tip of each external leg, find the last point
at which the diagram can be cut by removing a single propagator, such
that this operation separates the leg from the rest of the diagram. Cut
there. Consequently we can graphically depict this as

〈q1, . . . , qm, out|p1, . . . , pn, in〉

=
(√

Zφ
)n+m

AMP

p1

...

pn

q1

...

qm

(1.561)

Here the circle with the acronym AMP denotes the sum of all ampu-
tated n +m-point diagrams and Zφ is the wave function renormaliza-
tion factor. Here the external lines do not contribute with any propaga-
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tor. They merely indicate flow (and hence sign) of the incoming/out-
going momenta.

In passing we should notice that we have factor (
√

Zφ)n+m and not(
1/

√
Zφ

)m+n
(as one could expect from Eq. (1.559)). This requires some

explanation. Before truncation the full external propagator has the
structure:

AMP

= + + + + · · · AMP

+ + + + · · · AMP

+ + · · · AMP

...

= + 1PI + 1PI 1PI + · · · AMP

For simplicity we have omitted the symmetry factors. Acronym 1PI
stands for all 1-particle irreducible diagrams, i.e., diagrams that cannot
be split to two by removing/cutting one line. By denoting the value of
1PI as −iΣ(p2) (also known as 1PI self-energy or simply self-energy), we
see that

Expansions (1.562) and (1.562) represent
the so-called Dyson equation for (full) 2-
point Green function.

= + 1PI + . . .

=
i

p2 −m2
0 + iε

+
i

p2 −m2
0 + iε

[−iΣ(p2)]
i

p2 −m2
0 + iε

+ . . .

= {geometric series} =
i

p2 −m2
0 − Σ(p

2) + iε
. (1.562)

Here m0 is a mass parameter in Lagrangian, not a physical mass mp. If
we now power expand the self-energy correction around p2 = m2

p , we
get

Σ(p2) = Σ(m2
p) + (p

2 −m2
p)Σ
′(m2

p) + Σ̃(p2)︸︷︷︸
∼O((p2−m2

p )
2)

. (1.563)
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This implies

Compare with the Källen–Lehmann rep-
resentation (1.530).

i
p2 −m2

0 − Σ(p
2) + iε

=
i

p2 −m2
0 − Σ(p

2
m) − (p2 −m2

p)Σ
′(m2

p) − Σ̃ + iε

=
i

p2 −
[
m2

0 + Σ(m
2
p)

]
− (p2 −m2

p)Σ
′(m2

p) − Σ̃(p2) + iε

=
i

(p2 −m2
p)[1 − Σ′(m2

p)] − Σ̃(p2) + iε

=
iZφ

p2 −m2
p + iε

+ regular terms . (1.564)

On third line we have set m2
0 + Σ(m

2
p) = mp, which allows to fix the

unknown m0 in terms of physical mass mp. The wave function renor-
malization factor Zφ = [1 − Σ′(m2

p)]
−1. The “regular terms” refer to

parts of the full propagator that have no poles at p2 = m2
p .

Now, by cutting external leg it will survive factor iZφ (from denomi-
nator of Green’s function). On the other hand, LSZ reduction formula
multiplies each external leg with the factor −i/

√
Zφ . Consequently we

get precisely Eq. (1.561).

In passing we note that all amputated Green functions should only be
connected Green functions, because in LSZ we discard disconnected
scattering parts.

By knowing the momentum-space Feynman rules for Green functions,
we can now directly write Feynman rules for the elements of the S-
matrix 〈q1, . . . , qm, out|p1, . . . , pn, in〉.

Bosonic Feynman rules for 〈q1, . . . , qm, out |p1, . . . , pn, in〉

I Draw all topologically distinct connected diagrams with n+m
external lines with incoming momenta considered as positive
and outgoing momenta considered as negative.

I To each internal propagator assign

• •
ki

∼
i

k2
i −m2 + iε

I To each vertex assign vertex factor, i.e. (−iλ) for λφ4/4! theory,
(−ig) for gφ3/3! theory, etc.

• ∼ −iλ , • ∼ −ig .

I To each external propagator affiliate the factor
√

Zφ , i.e.

•
pi︸    ︷︷    ︸

outgoing

and
pi

•︸    ︷︷    ︸
incoming

∼
√

Zφ
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Heavy dot denotes a vertex point from/to which particle
flows.

I Impose momenta conservation at each vertex.
I Integrate over undetermined loop momenta

∫
d4p

(2π)4 .
I Divide by the symmetry factors.

For fermions the LSZ reduction formula prescribes that each external
line should carry also spin polarization factors u or v. This in turn
changes the rule 4 from the previous box. The corresponding Feynman
rules for fermions read:

Fermionic Feynman rules for 〈q1, . . . , qm, out |p1, . . . , pn, in〉

I Draw all topologically distinct connected diagrams with n+m
external lines with incoming momenta considered as positive
and outgoing momenta considered as negative.

I To each internal propagator assign

• •
ki

∼
i(/k i +m)

k2
i −m2 + iε

I To each vertex assign vertex factor, i.e. −ig for gψ̄φψ theory,
gγ5 for igψ̄γ5φψ theory, etc.

• ∼ −ig ,

or

• ∼ gγ5 .

I To each external propagator affiliate the factor
√

Zψ (for fermi-
ons) and/or

√
Zφ (for scalar field) and spin polarization fac-

tors (for fermions) in the following way

p
•︸    ︷︷    ︸

incoming

∼
√

Zψ u(p)

p
•︸    ︷︷    ︸
outgoing

∼
√

Zψ ū(p)

and for antiparticles

p →
•︸    ︷︷    ︸

incoming

∼
√

Zψ v̄(p)
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p →
•︸    ︷︷    ︸
outgoing

∼
√

Zψ v(p)

I Impose momenta conservation at each vertex.
I Integrate over undetermined loop momenta

∫
d4p

(2π)4 .
I With each fermionic loop affiliate sign −1.
I Divide by the symmetry factors.

Note: By convention, the arrows on the fermion lines do not represent
momentum flow, but particle number flow: particle number flows
into the diagram along an in-coming fermion line and out of the
diagram along an outgoing fermion line. For antiparticles, the flow
is reversed.

Lest us finally stress that the factor Zφ = [1 − Σ′(m2
p)]
−1 can be dis-

carded when the leading order computations (i.e., tree diagrams) are
considered but it must be reinstated when higher-order corrections are
considered.

1.19 Cross Section and Particle Decay

If there is no interaction the S matrix is 1. One therefore often writes
that

Note that the unitarity of the S matrix,
i.e. the relation S†S = 1 implies an im-
portant non-linear relation

i
(
T † −T

)
= 2ImT = T †T . (1.565)

S = 1 + iT . (1.566)

Here T is the so called T-matrix and it contains the information on the
interaction. In particular, for the matrix elements of the S matrix we
have

〈 f |S |i〉 = δf i + i 〈 f |T |i〉 . (1.567)

Here δf i symbolically represents the particles not interacting at all and
〈 f |T |i〉 is represented by LSZ formula. Thus

i 〈 f |T |i〉 = i
(√

Z
)n+m

τ̃(p1, . . . , pn,−q1, . . . ,−qm)amp

= i(2π)4
(√

Z
)n+m

δ
(∑

ipi −
∑

jqj

)
× τ(p1, . . . , pm,−q1, . . . ,−qn)amp

≡ i(2π)4δ(pi − qf )Tf i . (1.568)

The subscript “amp” denotes amputated Green’s function. Matrix Tf i

is known as the transition matrix. In the following we will consider
only f , i which implies that δf i = 0.

From (1.568) it follows that the probability of making the transition
i → f is

| 〈 f |T |i〉 |2 =
(
(2π)4

[
δ(pi − p f )

] )2
|Tf i |

2 . (1.569)

In order to make sense of the square of a δ-function we can proceed
heuristically and use the fact that δ(x) f (x) = δ(x) f (0) for any function
f (x). By analogy we can formally write that δ2(x) = δ(0)δ(x). By using
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the Fourier representation of δ-function we have
Note that δ(0) has a very different phys-
ical interpretation depending whether
δ-function is in p or in x space. δ(4)(0) = δ(4)(p = 0) =

∫
d4x
(2π)4

eix ·0 =
VT
(2π)4

. (1.570)

Here V is the volume of the system in question (in this case our uni-
verse) and T is the time of the universe duration. Thus we can write
that

| 〈 f |T |i〉 |2 = V · T · (2π)4 δ(4)(p f − pi)|Ti f |2 . (1.571)

In other words, the transition rate i → f per unit volume is

Γi f = (2π)4 δ(4)(p f − pi)|Ti f |2 . (1.572)This is nothing but the relativistic ver-
sion of Fermi’s “Golden Rule” known
from quantum mechanics.

If the rate of transition is restricted to some range of final states (i.e.
final momenta of particles are not sharp but belong to some allowed
range of values) then

Γi f =
∑
f

(2π)4δ(4)(p f − pi)|Ti f |2 . (1.573)

Let us now discuss the connection between Γi f and scattering cross-
section. In fact, there are many ways in which to define the phenomeno-
logically important concept known as cross section. The simplest and
most intuitive is to define it as the effective size of each particle in the
target.

Let us consider a thin target with NT particles in it. Each particle has
the effective area σ (= cross-section). As seen from an incoming beam,
the total amount of area taken by these particles is NTσ. If we aim at
the target a beam of particles with area A then

probability of hitting particle =
NTσ

A
.

Figure 1.20: A target with NT target par-
ticles is bombarded with a beam with
NB particles. The cross section σ is the
effective size in m2 of each target particle
as seen by the beam.

Let the beam has NB particles. A total number of events is thus

NB × probability of hitting =
NBNTσ

A
, (1.574)

and hence

σ =

(
number of events

NBNT

)
A . (1.575)

This can be still rewritten in more expedient form. If the beam is mov-
ing at velocity v towards a stationary target. The number of particles
is ρBV . If the beam is a pulse that is turned for t seconds then V = vt A
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and hence NB = ρBvt A, which implies that

σ =
(number of events)

(ρBvt)NT

=
(number of events)/t

ρBvρTVT

=
transition rate
ρBvρTVT

. (1.576)

If NB and NT = 1, then

transition rate
VT

=
probability transition rate

VT
= Γi f . (1.577)

Thus

σ =
1

ρBρT v
Γi f =

1
ρBρT v

∑
f

(2π)4δ(p f − pi)|Ti f |2 . (1.578)

If we consider a final state of n distinct spinless particles, i.e.

p1

p2

p3

...

pn+2

(1.579)

then the corresponding cross-section is given by

Note that we use here the Lorentz invari-
ant measure.σn←2 =

1
ρT ρBv

∫
∆

d3 p3

(2π)32ωp3

· · ·
d3 pn+2

(2π)32ωpn+2

× (2π)4δ(4) (p1 + p2 − p3 − · · · pn+2) |Ti f |2 . (1.580)

Here ∆ is restricted range of observed momenta. In case we have
scattering where all n final particles are indistinguishable, we need to
include 1/n! factor before the integral.

We will now use two facts:

I velocity v of a particle (i.e., relative velocity of the particle in the
laboratory frame) is given by v = |p |/Ep = |p |/ωp

I relativistic normalization of plane-wave states |p〉 implies that
the number of particles per unit volume (i.e., particle density in
state with 4-momenta p) is 2Ep = 2ωp .

The second statement comes from the fact that the average number of
particles in state |p〉 is

〈p|N̂ |p〉 = ρpV = 〈p|1|p〉 = 〈0|apa†p |0〉

= 〈0|[ap , a†p]|0〉 = (2π)
32ωpδ

(3)(0) . (1.581)

By realizing that V = (2π)3δ(3)(0)we get that ρp = 2ωp = 2Ep . If we take
particle 1 to be at rest (target particle) we have p1 = (m1, 0), p2 = (E2, p2)
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and v = v2 = |p2 |/Ep2 = |p2 |/ωp2 , hence

ρT ρBv = 4m1Ep2

|p2 |

Ep2

= 4m1 |p2 | . (1.582)

Now we can finally rewrite cross section as

σn←2 =
1

4m1 |p2 |

1
n!

∫
∆

d3 p3

(2π)32ωp3

· · ·
d3 pn+2

(2π)32ωpn+2

× (2π)4δ(4) (p1 + p2 − p3 − · · · pn+2) |Ti f |2 . (1.583)

Of special interest are the elastic scattering cross sections in the case
where n = 2. In these cases we can simplify (1.583) by partially evalu-
ating the phase-space integrals in the center of mass (COM) frame . This
is possible because two-particle elastic scattering is known to be most
simply described and managed in the COM frame.

Let us recall that elastic scattering is a type
of scattering process in which the total ki-
netic energy of the system is conserved.

p1

p2

p3

p4

(1.584)

For scattering processes of two particles to two particles one introduces
kinematic Lorentz invariant

s = (p1 + p2)
2 = (p3 + p4)

2 , (1.585)

which is nothing but the squared center-of-mass energy (i.e., s > 0).This is because (p1 + p2)
2 = (E1 + E2)

2 −

(p1 + p2)
2 and since in the center-of-mass

frame p1 + p2 = 0.

Mandelstam Variables

The kinematic invariant s is known as the Mandelstam variable. In
connection with two-particle elastic scattering one introduces yet
another two kinematic invariants — the Mandelstam variables

t = (p1 − p3)
2 = (p2 − p4)

2 ,

u = (p1 − p4)
2 = (p2 − p3)

2 .

s, t and u are not independent. In fact

s + t + u = (p1 + p2)
2 + (p1 − p3)

2 + (p1 − p4)
2

= p2
1 + p2

2 + p2
3 + p2

4 + 2p1(p1 + p2 − p3 − p4)

= m2
1 +m2

2 +m2
3 +m2

4 .

Mandelstam variables encode the energy, momentum, and angles
of particles in a scattering process in a Lorentz-invariant fashion.

Symbols s, t and u are also used to name 3 possible scattering chan-
nels: s-channel, t-channel and u-channel. These channels represent
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different Feynman diagrams or different possible scattering events
where the interaction involves the exchange of an intermediate par-
ticle whose squared four-momentum equals s, t or u, respectively.

s-channel t-channel u-channel

Let us in the passing stress that since σ represents effective area of
the scatterer, perpendicular to incident beam, it remains invariant
under a Lorentz transformation to any other collinear frame (Lorentz
contractions do not affect the size of any area provided boosts are in
directions perpendicular to that area). Consequently, the cross section
is not a true Lorentz invariant, since it transforms like area under
arbitrary Lorentz transformation.

Two most important collinear frames where σ does not changes are
the laboratory frame (one particle is in rest) and center of mass (COM)
frame. Both frames are routinely used in σ analysis.

Let us now analyze the elastic scattering p1 + p2 → p3 + p4 of equal
mass particles (m1 = m2 = m3 = m4 ≡ m) in laboratory frame. We do
not assume that final particles are identical. In this case we can chose
the experimental setup so that

p1 = (EL , 0, 0, pL) , p2 = (m, 0, 0, 0) , (1.586)

which implies that

s = (EL +m)2 − p2
L = E2

L + 2mEL +m2 − p2
L

= 2m2 + 2mEL = 2m(m + EL) . (1.587)

In other words

EL =
s − 2m2

2m
. (1.588)

With this result we can also express pL in terms of s, namely

p2
L = E2

L −m2 =

(
s − 2m2

2m

)2

−m2

=
s2 − 4m2s + 4m4 − 4m4

4m2 =
s2 − 4sm2

4m2 . (1.589)

This in turn implies that

pL =

√
s(s − 4m2)

2m
, (1.590)

and so s ≥ 4m2 must be satisfies for the process to occur. 4m2 is thus
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the threshold value of s. With these results

σ2← 2 =
1

2
√

s(s − 4m2)

∫
∆

d3p3

(2π)32ωp3

d3p4

(2π)32ωp4

× (2π)4δ(4) (p1 + p2 − p3 − p4) |Ti f |2 . (1.591)

For identical final particles the combinatorial factor 1/2! would need
to be included. While the prefactor 1/

√
s(s − 4m2) is Lorentz invariant,

the integral part of (1.591) is invariant only under collinear boosts.
For computational purposes it is particularly convenient to move to
the COM frame. In this case the incident particles have the respective
3-momenta in the z direction p and −p, and energies

√
s/2 and

√
s/2.

Consequently

p1 =

(√
s

2
, 0, 0, p

)
, p2 =

(√
s

2
, 0, 0,−p

)
. (1.592)

Since

p2
1 = m2 ⇒

s
4
− p2 = m2 ⇒ p =

√
s
4
−m2 , (1.593)

and p1 + p2 = (
√

s, 0, 0, 0).

In computing σ2← 2 we need to evaluate (ωp ≡ Ep)∫
∆

d3 p3

(2π)32Ep3

d3 p4

(2π)32Ep4

(2π)4δ
(
Ep4 + Ep3 −

√
s
)

× δ(3)(p3 + p4) |Ti f |
2 . (1.594)

We now extend
∫
∆

∫
∆

to
∫

R3

∫
R3 . The latter yields the so-called total cross

section σtot ,2← 2. In this setting the integral (1.594) reduces to∫
R3

d3 p3

(2π)2 4E2
p3

δ
(
Ep4 + Ep3 −

√
s
)
|Ti f |2 . (1.595)

At this stage we use that p4 = −p3, which in turn implies that Ep3 =

Ep4 =
√

m2 + |p3 |
2. Next, we denote W ≡ Ep3 + Ep4 = 2

√
m2 + |p3 |

2 and
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write the integral in (1.595) as∫
R3

d3 p3

(2π)22E2
p3

δ(W −
√

s)

=

∫
dΩ(p3)d |p3 |

|p3 |
2

(2π)22E2
p3

δ(W −
√

s) =
{
Ep3 = Ep4 =

√
s

2

}
=

∫
dΩ(p3)

(2π)2s
|p3(s)|

2��� dW
d |p3 |

��� =
{

dW
d |p3 |

=
2|p3 |√

m2 + |p3 |
2
=

2|p3 |

Ep3

}

=

∫
dΩ(p3)

(2π)2s
|p3(s)|

2

√
s

2
=

∫
dΩ(p3)

(2π)2 4

√
s
4 −m2

√
s

=

∫
dΩ(p3)

16π2

√
s
4 −m2

√
s

. (1.596)

By combining (1.591), (1.595) and (1.596) we get for the total cross
section

σtot , 2← 2 =
1

2
√

s(s − 4m2)

√
s − 4m2

16π22
√

s

∫
dΩ(p3) |Ti f |

2

=
1

64π2s

∫
dΩ(p3) |Ti f |

2 . (1.597)

From this formula we can read off corresponding rate of change of the
cross section with respect to solid angle, i.e.,

dσ2← 2

dΩ(p3)
=

1
64π2s

|Ti f |2 . (1.598)

This is the so-called differential cross-section fro two-body elastic scat-
tering of non-identical (but equal mass) particles. Formula (1.598)
works also for more general 2 → 2 scatterings such as, e.g., e−e+ →
µ−µ+.

Note on Frames

In laboratory frame we have seen (cf. Eq. (1.582)) that

ρ1ρ2 |v12 |︸     ︷︷     ︸
Lorentz invariant under collinear boosts

= 4m1 |p2 | = 2
√

s(s − 4m2) .

This fact was used in deriving (1.597). This can be written in the
explicitly Lorentz invariant form

4
√
(p1p2)2 − p2

1p2
2 = 4

√
(p1p2)2 −m2

1m2
2 .

Indeed, if we go to laboratory frame p1 = (E1, 0), p2 = (E2, p2), then
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the previous formula acquires the form

4
√

E2
1 E2

2 − E2
1 (E

2
2 − p2

2) = 4
√

E2
1 p

2
2 = 4|p2 |E1

= 4
|p2 |

E2
E2E1 = |v12 |ρ1ρ2 ,

where on the last line we used that ρ1 = 2E1 and ρ2 = 2E2 (cf.
Eq. (1.581)).

Cross sections — summary and generalizations

I σ =
(number of events)/t

ρBvNT

=
number of events per unit time and unit target particle

incident flux
.

Here, the incident flux = ρBv = (ρBvt A)/(t A) = (ρBV)/(t A) = num-
ber of incoming particles per unit time and unit area.

I σn← 2 =
∑
f

(2π)4 |Tf i |
2δ(4)(p f − pi)

4
√
(p1p2)2 −m2

1m2
2

,

which in differential form reads as

dσn← 2 =
1

4
√
(p1p2)2 −m2

1m2
2

(2π)4

S
|Ti f |2 δ(pi − p f )

n∏
l=3

dp̃l .

Here dp̃ = d3pi

(2π)32ωpi
is the Lorentz invariant measure for bosons.

The factor S =
∏

i ki ! must be included for identical particles (ki
identical particles of species i) in the final state.

I
dσ2← 2

dΩ(p3)
=

1
64π2s

|Ti f |2 .

Which is valid for equal-mass (non-identical final) particles in
the COM frame. Here Tf i = τ(p1, p2,−p3,−p4)amp and Z = 1 at
tree level.

Further important use of the S matrix elements is in computations
describing a decay of unstable particle. As an example we consider
interaction described by the Lagrangian

LI = −
g

2
Φ(x)ϕ2(x) . (1.599)

The corresponding tree level interaction vertex is

•
−igpi

M p1

p2

m

m

(1.600)



1.19 Cross Section and Particle Decay 137

The initial state is a single unstable particle state Pi = (M, 0) in the
rest frame of the unstable particle. The S matrix describing the decay
described on (1.600) is

Sf i = 〈p1, p2 |S |Pi〉 = i(2π)4δ(4)(p1 + p2 − Pi)Tf i . (1.601)

In the lowest order in g we have Tf i = (−i)3(−ig) = g. Thus the corre-
sponding probability of transition (decay) is

Pf i = |Sf i |
2 =

∑
p1,p2

(2π)4δ(4)(0)︸        ︷︷        ︸
=VT

(2π)4δ(4)(p1 + p2 − Pi) |Tf i |
2 . (1.602)

So, the rate of transition per unit volume is

ω =
Pf i

VT
= (2π)4

∑
p1,p2

δ(4)(p1 + p2 − Pi) |Tf i |
2 . (1.603)

For the rate of transition per particle we might thus write

Γ =
ω

ρ
=

Pf i

ρVT
=
(2π)4

2M

∑
p1,p2

δ(4)(p1 + p2 − Pi) |Tf i |
2 . (1.604)

Here ρ = 2E which is 2M in the rest frame. Consequently, to the lowest
order in g we have

Γ =
(2π)4

2M
g2 1

2!

∫
d3p1

(2π)32Ep1

d3p2

(2π)32Ep2

δ(4)(p1 + p2 − Pi)

=
g2

(2π)2
1

4M

∫
d3 p1

4Ep1 Ep2

δ(Ep1 + Ep2 −M) . (1.605)

Here the factor 1/2! must be included because the final particles are
identical. By using the fact that in the rest frame of unstable particle
p1 + p2 = 0, then Ep1 = Ep1 =

√
m2 + |p1 |

2. With this the momentum
integral in (1.605) simplifies to∫

d3 p1δ(W −M) =
{
W ≡ Ep1 + Ep2 = 2

√
m2 + |p1 |

2

}
=

∫
d |p1 | |p1 |

2dΩ(p1)δ(W −M)

=

∫
dΩ(p1)

dW��� dW
d |p1 |

��� |p1 |
2δ(W −M) . (1.606)

Applying further that

dW
d |p1 |

=
2|p1 |

Ep
=

2|p1 |
M
2

=
4|p1 |

M

|p1 | =

√
E2
p1
−m2 =

√
M2

4
−m2 =

√
M2 − 4m2

2
, (1.607)
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we arrive at

Γ =
g2

4π2
1

4M

∫
dΩ

4 |p1 |

M

|p1 |
2

4E2
p1

=
g2

4π2
1

4M

∫
dΩ

8M2

√
M2 − 4m2

=
g2

32πM2

√
M2 − 4m2 . (1.608)

Since density of unstable particle decays proportionally to e−Γt , the
1/Γ represents the mean lifetime of a particle.

Particle decay is a Poisson process, and
hence the probability that a particle sur-
vives for time t before decaying is given
by an exponential distribution.
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