THE ANALYTIC S-MATRIX






THE ANALYTIC
S-MATRIX

BY

R.J.EDEN PV.LANDSHOFF D.1.OLIVE
J.C.POLKINGHORNE

T

. Lﬁ{,%?igﬁi FU
L B

CAMBRIDGE
AT THE UNIVERSITY PRESS
1966




Published by the Syndics of the Cambridge University Press
Bentiey House, 200 Euston Road, London, N.W. 1
American Branch : 32 East 57th Street, New York, N.¥Y. 16022
West African Office : P.M.B. 5181, Thadan, Nigeria

© Cambridge University Press 1966

Library of Congress Catalogus Card Number : 66-13387

Printed in Great Britain
at the University Printing House, Cambridge
{Brooke Crutchley, University Printor)



CONTENTS

Preface page vii

Chapter 1. Introduction
1.1 Survey of objectives

1.2 The S-matrix and its unitary and kinematic

ERRATUM
Page 36 equation 1.5.34 should read:

(P -+ 1) 0y g lCeg - Oty 4 ot + 0o + atgorg oty + oty b 9 -+ )
o+ Oty g Otg o+ Oy O g
+ (g + pa) g g o] + Piloey ctglong - oty g+ atg) + 0 2 %]
+ paloeg oty + oty + g + 20y) + 25 g 01y ]
+ 3oty oralory + oty + ot + ctg) -+t ctgory |
+ Pl oty o (g 0t 0ty - o) + 6ty 2 2y

Bden et al.: The Analytic S-Matrix

AV DUV Y 6 BRLLE UL LUIUD

Chapter 3. Asymptotic behaviour
3.1 Complex angular momentum

3.2 Relativistic theories

Pradfle o0 e g i AW TIDRATIES

123
126



Published by the Syndics of the Cambridge University Press
Bentley House, 200 Fuston Read, London, NNW. 1
American Branch ; 32 East 57th Street, New York, N.Y, 10022
West African Office : P.M.B. 5181, Ibadan, Nigoria

© Cambridge University Press 1066

Library of Congress Catalogue Card Number : 6613387

Printed in Great Britain
at the University Printing House, Cambridge
{Brocke Crutchley, Univeraity Printer)



CONTENTS

Prefuce page vil

Chapter 1. Introduction

1.1 Burvey of objectives 1
1.2 The S-matrix and its unitary and kinematic

properties 6
1.3 Analyticity, crossing and digpersion relations 10
1.4 High-energy behaviour and subtractions 22
1.5 Feynman diagrams and the S-matrix 26
1.6 Applications 36

Chapter 2. Analytic properties of perturbation theory

2.1 Singulazities of integral representations 39
2.2 The Landan equations 50
2.3 The triangle graph : 5
2.4 The square graph 73
2.5 Single variable dispersion relations and physical-

region singularities 80
2.6 Scattering amplitude as a function of two variables 80
2.7 Continuation in the external masses 49
2.8 The acnode graph 104
2.9 Discontinuities and generalised unitarity 110
2.10 Second-type singnlarities 116

Chapter 3. Asymptotic behaviour
3.1 Complex angular momentum 123

3.2 Relativistic theories 126

Prafree o ot s 13 ats PIDRATMEQ

. e 1A



vi
3.3
3.4
3.5
3.6

3.7

3.8
3.9

CONTENTS
Higli-energy behaviour in perturbation theory
End-point contributions
Regge poles in perturbation theory
Mellin transforms and ladder diagrams

Pineh contributions and the Gribov-Pomeranchuk
phenomenon

Regge cuts

Particles with spin : Reggeisation

3.10 Production processes

Chapter 4. S-matrix theory

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

Introductory sarvey

Unitarity and connectedness-structure
Lorentz invariance and kinematios
Analyticity

Physical-region poles

Hermitian analyticity and extended unitarity
Normal-threshold discontinuities
Antiparticles, crossing and the TCP theorem

Unstable particles

4.10 Generation of singularities

4.11 The triangle stugularity in the physical region

References

TIndex

page 131

138
146

151

158
163
170

176

220
229
238
247
258
266

279

285



vii

PREFACE

One of the most remarkable discoveries in elementary purtiole physics
hag been that of the existence of the complex plane. Vrom the early
days of dispersion relations onwards the analytic approach to the
subject has proved a most ugeful tool. Tn this monograph we give an
account of two aspects of this approach. The first topie, dealt with in
chapters 2 and 3, is the gtudy of perturbation theory as a model with
heuristic value as a guide to what we may expect to be true in the
actual physical theory. The second topic, dealt with in chapter 4, is
the exploration of what we may hope will prove to be the actual
physical theory, that is to say the investigation of the properties of
the analytic S-matrix. Our concern is to explain the principles as far
as they are currently understood. For that reason we give no detailed
account of the comparison, where it is possible, of prediction with
experiment, nor of the various bootstrap models which have been
constriucted and which seem to offer the exciting possibility of a
aynthesis between the analytic approach and the other great weapon
in the particle physicigt’s armoury, the group-theoretic exploitation
of symmetries. Accounts of these vital topics can be found elsewhere.

Chapter 1 is intended to zet the scene and to introduce in an
elementary way various notions which congtitute a background to
what follows. Chapter 2 develops the analytic properties of Feynman
integrals. The Landau equations and Cutkosky discontinuity formula
arc ideas encountered here whieh prove more general than their
perturbation theory origin, Chapter 3 discusses agymptotic behaviour.
This chapter is in principle separate from the material of chapters 2
and 4, though in practice a knowledge of high-energy behaviour is
necessary in any computational scheme that uses dispersion relations.
Chapter 4 is concerned with S-matrix theory. The earlier sections
discuss various basic properties of the S-matrix and should be
intelligible to a student who has read only chapter L. From §4.10
onwards, however, a knowledge of at least the material of §§2.1-2.3,
2.9, 2,10 is desirable.

We are grateful to M.J. W. Bloxham, P. R. Graves-Morris, P.
Osborne, T. W. Rogers, A. B. Bwift and M. 0. Tuha for reading
varfous parts of the manuseript and to Mrs Pamela Landshofl’ for
typing most of it. We would like also to thank the staff of the
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Cambridge University Press for their help and care in the preparation
and printing of this book. We apologise to those authors who fail to
find their names in the list of references. We have tried to give due
eredit for the ideas we use. Perhaps it is a consolation to reflect that
the psychologists tell us that unconscious influences ave the most
powerful.

Horw
£
MomE

Cambridge
July 1965



CHAPTER 1

INTRODUCTION

1.1 Survey of objectives

We begin by considering the motivation for developing an S-matrix
theory of particle interactions. The purpose of the book is to indicate
how such a theory may be developed from physical principles and to
discuss some of the properties of the S-matrix. Particular attention
will be given to its analyticity properties and our study of these will
rest very largely, though not entirely, on an analysis of the corre-
sponding properties of Feynman integrals.

At present it.is believed that the forces between particles fall into
four categories, depending on their strength. The most familiar of
these is the electromagnetic force, which has been expressed in terms
of a field since the work of Maxwell. The quantisation of the electro-
magnetic field finally resolved the old paradox of the wave and particle
nature of lght.

The quantisation procedure uses either a Lagrangian or a Hamilto-
nian whose form is taken from classical physics. A solution of the
resulting equations can be achieved in the form of a perturbation
series expansion in powers of the square of the electric charge which,
in rationalised units, is

ef = e

The two most importaut difficulties encountered in this perturbation
solution avize from two types of divergence. Oxne of these, the infra-red
divergence, ean be eliminated in principle by taking account of the
fact that the zero mass of the photon makes it imypossible for the
number of zero-energy photons to be measured, The other, the ultra-
violet divergence, is eliminated by renormalisation, although it may
be thought that the manipulation of infinite constants is still an
unsatisfactory feature of the theory. For an account of these methods
the reader is referred to books on quantum field theory, for example
Schweber (1961); here we remark only $hat the results are in very good
agreement with experiment.

The type of interaction with which S-matrix theory is mainly con-
cerned comprises all strong interactions (we do not distinguish between

I EaA



2 SURVEY OF OBJECTIVES 1.1

these and the possible ‘super-strong’ interactions). These are respon-
sible for nuclear forces and for the production of strange particles.
Barlier formulations of a theory of strong interactions have proceeded
analogously to electromagnetic theory. In the simplest form the
strong interactions correspond to a field that is carried by the r-meson
just as the electromagnetic field is carried by the photon. More
generally a formal theory can be set up that involves the fields of all
strongly interacting particles. However, there is a serions obstacle to
the solution of the resulting equations since the only known methods
of solution are based on a perturbation series in powers of the coupling
constant and, in dimensionless units, so as to compare it with €2, the
square of this constant has a value about 15, Thus the perturbation
series does not even begin to eonverge and a solution based on the first
few terms is very unlikely to be useful.

Tn the last ten years a new approach to strong interactions has heen
developed which avoids the obvious defect of an expansion in the
coupling constant, based on field theory. It is recognised that the fields
themselves are of little interest, but that they are merely used to
caleulate transition amplitudes for interactions. These amplitudes are
the elements of the S-matrix. The new approach is concerned with a
direct study of the S-matrix, without the introduction of fields. It was
first suggested by Helsenberg much earlier (Heisenberg, 1943; see also
Meller, 1945, 1946) that the S-matrix might provide a means of
avoiding the divergence difficulties of field theory, which at that time
had not been solved by renormalisation. Heisenberg’s formulation of
S-matrix theory is in spirit very close to the formulation of a deductive
S-matrix theory which will be described in chapter 4 of this book.
However at that time (1943-52) progress was much more difficuls,
because a knowledge of the analytic properties of perturbation theory
was not available to provide the guide-lines for applications of the
S-matrix theory and for the formation of a deductive theory. The
main parts of chapters 2 and 3 of this book will be concerned with the
analytic properties of perturbation theory.

The deductive approach to 8-matrix theory is based on the idea that
one should try to caleulate S-matrix elemenss directly, without the
use of field quantities, by requiring them to have some general
properties that ought to be valid, whether or not some underlying
Lagrangian theory exists, (There is a tendency in the literature to call
these properties ‘axioms’, but we do not use this term since it would
suggest a degree of mathematical rigour that is lacking in the present
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state of the subject.) A list of the important propertics to be satisfied
by the 8-matrix would include:

{m) the superposition principle of quantum mechanics;
(6) the requirements of special relativity;

(¢} the conservation of probability;

{d) the short-range character of the forces;

{e) causality and the existence of macroscopic time.

Notice that (d) actually excludes the clectromagnetic interaction and
there is at present no S-matrix theory which properly inchides the
presence of photons. The essential difficulty is the same one as leads to
the infra-red divergence of perturbation theory, that the number of
massless particles is not measurable, In praetice one uses a combina-
tion of a perturbation series for the electromagnetic interaction and
S-matrix theory for the strong interactions, but this procedure does
not overcome the difficulty of principle where photons are involved.

The property {e) is the one whose consequences are most difficult
to derive rigorously, and at the same time it is one of the most im-
portant. 16 is generally believed that the causality property requires
the transition amplitudes to be the real-boundary values of analytic
functions of complex variables. In view of the difficulties in deriving
this result rigorously it is common to replace the property (e} by the
assumption

(¢') transition amplitudes are the real-boundary values of
analytic functions.

This assumption is much more precise mathematically than the
property of causality but its physical meaning is more obseuaro. We
will illustrate the connections betwecn the two, and indicate the
nature of the difficulty of making it rigorous, by considering a simple
example.

Let A(z, 1} be a wave packet travelling along the z-direction with

velocity v: A = (2 )%f doale) exp{%w (,wt)} (1.1.1)

Suppose this wave packet is scattered by a particle fixed at the origin
z = (. The scattered wave, in the forward direction, may be written ag

Gr, t) = 2 )%f dew flw) a{w) exp {Mu (—w )} (1.1.2)

I-z



4 SURVEY OF OBJECTIVES 11

The inverse of equation (1.1.1) is

afw) = ”““—““"J dt A(0,8) exyp (iws), (1.1.3)

and this tells us that if the incident wave does not reach the scatierer
before time ¢ = 0, that is if

A0,y =0 for t<0, (1.1.4)

then a(w) is regular in the upper half of the plane of the variable w
now regarded as complex. For if, as we assame, the integral (1.1.3)
converges for real w, it will, by virtue of (1.1.4), converge cven better
for Im (w} > 0.

We now impose a causality condition,

G(r,ty =0 for wt—r < 0. (1.1.5)

This expresses the requirement that no scattered wave reaches a point
at distance r before a time v/r after the incident wave first reaches the
scatterer. Then from the inverse of equation (1.1.2), using (1.1.5) we
find that the product e{w)f(w) is analytic in Im (w) > 0. Hence the
seattering amplitude flo) itself is analytic in Im{w} = 0, exeept
possibly at zeros of a(w).

Argurnents such as this about causality and analyticity can be made
in various branches of classical physics, particularly in the theory of
digpersion in optics {for a review see Hamilton (1959)). Thus the
approach to high-energy physics that we deseribe in this book is often
known as the “dispersion relation’ approach.

The difficulty in making the above discussion rigorous arises from
the condition (1.1.4), which cannot actually be realised. This condition
would imply a precise localisation in time {microscopic time) for the
incident wave packet. But in S-matrix theory the quantity that we
wigh to know precizely is the energy, since this is one of the cesential
variables on which transition amplitudes depend. If we compromise,
in accordance with the uncertainty principle, and set up our theory
with only a partial knowledge of time and a partial knowledge of
energy, our conelusions about analyticity are less precise. These
problems relating to the use of macroscopic time persist in a refativistic
formulation. They will be considered in more detail in chapter 4.

The causality eondition in quantum field theory is usually assumed
to correspond to the comimnutativity of the field opetators for space-
like separation of their arguments

[He), pla)] =0 for (w—2')? < 0, (1.1.6)



1.1] ' SURVEY OF OBJECTIVES 5

where for four-vectors we write « = (,, x) and use the metric
a? = xf — %% (L17)

Only for the electromagnetic fleld is the field operator physically
observable, so the condition (1.1.6} for any other field can only have
an indirect relation to causality in physics, Even if this condition is
accepted it is very difficult to make use of it to prove rigorcusly any
analytic properties of transition amplitudes (see, for example
Froissart (1964)), though an heuristic derivation can be given fairly
simply (Gell-Mann, Goldberger & Thirring (1954}). Within the frame-
work of quantum field theory, without using perturbation expansions,
only very limited information about analyticity properties has been
obtained.

If, however, the perturbation series for a transition amplitude is
uged as a means for obtaining analyticity properties, much more
information becomes available. The procedure, which will be followed
in chapter 2 of this book, iz to examine the analytic properties of
individual terms in the perturbation series. Although one does not
believe the magnitude of the individual terms to be significant, it is
hoped that their analytic properties will indicate the analytic proper-
ties of the transition amplitude iteelf, particularly when properties are
derived that hold for every term in the series. In ehapter 3 this method
is extended to include some aspects (particularly asymptotic beha-
viour) of the analytic properties of partial infinite sums of serics within
the full perturbation series.

In this book our dizcussion of the analytic S-mairix is limited to
gtrong interactions. One hopes that in time a method for dealing with
massless particles can be found. In the meantime, apart from sum
rules, which seem to have limited scope, it is necessary to incorporate
electromagnetic effects by perturbation theory. A similar situation is
met with the weak interactions, at least where neutrinos are involved,
though there ave difficulties of renormalisation. In most practical
situations the weakness of the interactions {about 1071 compared
with electromagnetie 1/137) permits the use of first-order perturbation
theory. The fourth category of fovee, the gravitational force, hag a
strength of order 104, It again is believed to be transferred by a
massless particle, the graviton, so it cannot at present be incorporated
into & dispersion approach.
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1.2 The S-matrix and its unitary and kinematic properties

In using the S-matrix to describe a scattering experiment we will
asstme that the forces are of sufficiently short range that the initial
and final states consist effectively of free particles. These states can
then be specified by the momentum of each particle together with
certain diserete quantum numbers such as the spin and isospin. Due
to the finite size of any experiment there is some residual uncertainty
in the momentum but we assume that this is unimportant in practice.
The momentum eigenvalues form a continuous spectrum but for
clarity of notation in this section we will begin by using a discrete
symbol m, or n, to Iabel the states,

Let |n) denote the initial state of two particles that subsequently
come together, interact, and separate. The superposition principle in
quantum mechanics tells us that the final state can be written Sin),
where § is & linear operator. The probability that a measuroment on
the final state gives a result corresponding to the state [m) is obtained
from the square of the modulus of the matrix element

{m] Sny: (1.2.1)
The set of states |n) is assumed to be orthonormal and complete,
{m|ny = 8,,, im){m] =1, (1.2.2)
m
Thus any state can be expressed by a superposition of the states |n),
and the quantom numbers denoted by » uniquely specify a state.
If the initial state in a scattering experiment is the normalised state

I3, the total probability of the system ending up in some other state
must be unity. Hence, writing

D = Zagln), C(L23)

where ¥ |a,* = 1, we obtain
1= S mSDP = 3¢

= {818]) = T efa,(n'|5 8 n). _ {1.2.4)

Stimy (m 18]

In order for this to hold for all choices of the a,, it is necessary that
<7?"3’STS]%> = §n’na
or S8 = 1. (1.2.5a)
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In the same way, the condition that the total probability be unity for
an arbitrary final state to arise from some initial state gives

S8 = 1. (1.2.55)
Thus the operator & is unitary.
We consider next the consequences of relativistic mvariance. If L
is any proper Lorentz transformation, and if

Limy = |m'y, (1.2.6)
we Tequire that Km/ 181032 = |{(m]8|n)2. (1.2.1)
in order that observable quantities be independent of the Torentz

frame. The definition of the S-matrix elements given above does not
specify the phase uniguely. This permits us to replace (1.2.7) by the

stronger condition (m,Esin,> = (m|S|n. (1.2.8)

For spinless particles this has the consequence that the matrix
elements depend on the four-momenia only through thejr invariant
scalar products. For example, the two-particle - two-particle matrix
element

{Pg> P4| 81D1s o) (1.2.9)
after removal of &-funetions specifying total energy-momentum con-
gervation, can for the case of spinless particles be written as a function
of the variables s, £, 4, where

s=(p1+p)%h t=(p—-p) w=(p—p)* (1.2.10)
Notice that as a consequence of total energy-momentum conservation

and the mass shell condition for each particle, these variables are not
independent, From

p1+.p2$p3+:p4! p?. ﬁm% (lb: 17233:4’)7 (1'211)
4
it follows that s+f4u = 3 mi. (1.2.12)
(231

The above form for the matrix elements applies only to spinless
particles. However, even for these the elements of the S-matrix itself
cannot be analytic, due to the oecurrence of Dirac s-functions. These
oceur in two ways. First, due to overall energy-momentum conserva-
tion, the matrix eloment (1.2.9) will contain a factor

89y + Py—P3—Pa)-
Secondly, since the state-vectors ocourring in (1.2.9) are momentum
eigenstates they can contain no information about the positions of the
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particles in space. Hence they are overwhelmingly likely to be widely
separated in space and not interact at all. When this happens, the four-
moementum for each particle remains unchanged, and the S-matrix can

therefore be separated usefully into two parts by writing (sec Maller,
1945, 1946),

8 = 1+iR. (1.2.13)

"The relation between matrix elements of R and experimental cross-

sections depends on the choice of normalisation for the free-particle

states. These free-particle states are fully specified for spinless

particles when the three-momentum of each particle is given, since
the fourth component of p satisfies

P§ = m*+ P (1.2.14)

We choose & covariant normalisation for the free particle states, so

that the orthogonality and completeness relations, written symboli-
cally in (1.2.2), become

@'y = (2m)*. 2p89(p’ —p), (1.2.15)
[0 g @19 = (2> 1216
P e 1B = R 418)

or equivalently

dip' 8 '
f )= (g = 8y = I (1.2.17)

Then the B-matrix element for two-particle scattering is related to a
trangition amplitude F by

<P3s2741f‘)§p1>102> = (2r) 89 (py + pa—py—p) F. (1.2.18)

The cross-section is obtained from |R|? with integration over all
possible final states when the incident flux is normalised to unity.
For two-partiele scattering this gives for the cross-section o,

1 2 P '

where q is the centre of mass momentum for a particle in the initial
state, p for the final state, W is the centre of mass energy, and Q is
the solid angle in the final state. The differential crogs-section for
scattering to an angle (4, ¢) in the centre-of-mass gystem is

do

PN S Iy 1Y - .
dg (sn)zqwzm ) {1.2.20)

with d{) = gin 0ddde.
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The transition amplitude # is the wmplitude that is given by a
series of Feynman integrals when the particles have spin zero. It is
these Feynman amplitudes that form the main part of our discussion
of analyticity in the remaining sections of this chapter and the whole
of chapter 2.

If the scattered particles have spin the discussion of analytic
properiies does not apply directly to the scattering amplitudes, and in
addition our remarks about Lorentz invariance made earlier in this
section for spinless particles wust be modified. We will do no more
than illustrate the differences that arise, and for a more complete
discussion of the scattering of particles with spin and charge, the
reader is referred to the account by Jacob (Chew & Jucob, 1964).

For our example we consider pion-nucleon scattermg {Chew,
Goldberger, Low & Nambu, 1957). There the amplitude F that oceurs
in {1.2.18) can be expressed in the form

F = amu(ps) {4 — }iBy Apf + 0§ ulpo), (1.2.21)

where u denotes the Dirac spinor for the nucleon lines, for which p,
and p, are the four-momenta. The quantities 4 and B are functions of
two independent invariants chosen from s, ¢, ¥ given by equations
(1.2.10). The analytic properties of 4 and B are essentially the same
as those of the amplitude F for scalar particles, to each order in
perturbation theory. The other factors in cquation (1.2.21) are often
referred to as ‘inessential complications’. Necdless to say they ave
crucial in establishing relations between analyticity and experimental
results,
It is frequently convenient in pion-nucleon seattering to make also

a geparation of the transition amplitude # into isospin amplitudes
F(3) and F(}),

Frtp—sartp) = F(§),

Fiap-mp) = }F(2) + $F(3), (1.2.22)

Flap>m'n) = 1y2{F ()~ ()

In this book we are concerned with analytic properties of the 8-matrix
and not with the important considerations about spin and isospin
which have been fully deseribed elsewhere (Chew & Jacob, 1964). For
mogst of our discussion we will therefore eonsider only the interactions
of particles that have zero spin and isospin. Then the amplitude F is
given by the series of Feynman integrals whose analyticity we will
describe in chapters 2 and 3.
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For the case of elastic scattering of two spinless particles a conse-
guence of Lorentz invariance is the symmetry of the matrix element:
{m|Siny = {(n|8|m), (1.2.23)

that is {Pas Pa)S1 P12y = {P1 P2 18] P P2

This is because in the centre-of-mass system (the Lorentz frame in
which p,+ps = 0 = py-+ Py} a rotation of 7 about the bisector of the
angle between p, and p, interchanges these momenta, and it also
interchanges p, and p, (see Fig. 1.2.1}, So (1.2.23) follows as a result

¥ig. 1.2.1, The centro-of-mass pieture in momentum space for
two-particle seattering 14 2-> 3+ 4.

of {1.2.8}. It need not, however, be true for other amplitudes, though
it sometimes can be deduced from the invariance of strong interactions
under the operation PT. This is true for two-particle - two-particle
amplitudes.

1.3 Analyticity, crossing and dispersion relations

We now discuss in more detail some of the analyticity properties of
the scattering amplitudes that will be derived in chapter 2. First we
consider some consequences of unitarity.

Substitute from (1.2.13) into the unitarity relation (1.2.5), giving

R —R'= {R'R = {RR, {1.3.1)
or, in the notation of section (1.2}, for two-particle scattering

<P3n1°4| R|P1=P2>“<P1>P21RiPa:PO* = i(pa,p4|R*R!p1,p2> (1.3.2a}
“‘“"5<P3;P4|RR+1P1’172>5 {1.3.28)
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where the star denotes complex conjugation, and the dagger hermitian
conjugation. If the symmetry condition {1.2.23} is valid the left-hand
side of (1.3.2) is just twice the imaginary part of the matrix element:

20 Im (g, Pal £ 1, o). (1.3.3)
Then the unilary relation (1.8.2) becomes

2Im {(py, pa) B pr. poy = %‘a (o} B py pa)* {n| R py, by (1.3.40)
x%(pasPﬂRi?@(ﬁ%,szR]n>*, (1.3.45)

where the ¥ denotes a sum and an integral over all intermediate states
that are allowed by conservation of the total energy and momentum.
Thus for tutal energies below the inelastic threshold the unitarity
condition is, in terms of the amplitude F of (1.2.18)

. [ 4%k, d?k
2Im {pypy| Fip1pe) = (Qﬁ)_'}f “;VQ_Z Uy + Py kg — kea)
x <P3P4E F} by sy <29119;;| FE kg Ry *
= (2'1‘1’)”2J‘d“‘l‘c1 A2l 3R e ) ST — m®)

% 8V (py Py by — ky) sy F| Ry oy
x (pypal F [y kg)®, (1.3.5)
where W ig the cenfre of mass encrgy.

Above the energy-threshold for inelastic scattering a new torm must
be added to the right-hand side of the unitarity relation (1.3.5} g0 as
to include the extra intermediate states that are allowed by energy-
canservation. This implies a chiange in the left-hand side, and suggests
that the elastic scattering matrix-element has a singularity &b each
energy corresponding to a threshold for a new allowed physical
process. This is our first encounter with an effect of unitarity on
analyticity of the S-matrix; later, in chapter 4, we will consider these
effects in more generality.

The thresholds are branch-points of the amplitude F (Eden, 1952},
as we shall see in chapter 2, so we draw ocuts in the complex energy-
squared plane (s = W#), attached to the branch-points and by con-
vention running along the real axis. The purpose of the cuts is to make
the amplitude single valued on a Riemann surface. If we do not eross
the cuts in Fig. 1.3.1, we have a single sheet of this Riemann surface.
This is called the ‘ pliysical sheet’ if the physical seattering amplitude
is & boundary value on the real cut of the amplitude on this sheet.
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Other sheets of the Riemann surface, associated with the amplitude
F as a funetion of s, are reached by burrowing through a branch cut
or through several branch cuts, to reach another layer of this multi-
layer surface. These other sheets are called unphysical sheets and they
are to be distinguished from each other by the manner in which they
are connected to the physical sheet, for example by specifying which
branch cuts must be erossed to reach the physical sheet.

s-plane
P B B, By B,
L
A o 16m®

Fig. 1.3.1. Branch cuts for the seattering amplitude F in the complex s-plane arising
from normal thresholds &y, B,, .... The point P denotes & pole in F,

For two-partiele scattering, the elastic amplitude F'is a function of
two variables which, to be definite, we choose as s, £ given by (1.2.10),

Papa| Bl pypay = Fis,t). (1.3.6)

We have sofar been considering F as a function of theinvariant energy-
squared &, keeping the momentum-transfer-squared ¢, fixed. The
branch-points shown in Fig. 1.8.1 at & = 4m?, 9m?2, 16m? are called
‘normal thresholds’ and correspond to the energies at which prodnac-
tion of extra particles is possible. The leading normal threshold,
¢ = 4m?, is the least energy-squared at which a two-particle state can
exiat. We assume not only equal-mass particles in this example, but
also that no conservation law except energy precludes the creation of
any particular number of particles from a two-particle state. With this
assumption, conservation laws (excluding energy) do not forbid going
from a two-particle state to a one-particle state. It is assumed that
such a state corresponds to a singularity of the amplivude F(s,f},
reached at an unphysical value of the variable s below the leading
normal threshold, at 5= mt (1.8.7)
This singnlarity is denoted P in Fig. 1.3.1, and in perturbation theory
it fs a pole, not a branch-point. Using unitarity and causality we will
show more generally in § £.5 that the singularity must be apole.

The region in which F(s,#) is the amplitude for the physical

scattering process Ay Ay A+ A, (1.3.8)
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must have real positive energy p{ for each particle, and real three-
momentum p;. In the equal-mass case this gives

sz 4m? 10, u<gl (1.3.9)

This result can be obtained by expressing s, t, % in terms of the momen-
tum q and the scattering angle ¢ in the centre-of-mass system, which
gives
§ = 4{m® +¢%),
t = —2g%1 - cos0), (1.3.10)
% = — 231+ cos &),

When the masses are not equal the conditions are not quite so simple;
they are derived by Kibble (1960} (see also §4.3).

So far we have varied only s in discussing analytic continuation, but
in general both s and ¢ can be regarded as complex variables in the
amplitude £'(s,?}. Then we can consider analytic continuation from the
physical region (1.3.9) to the region

w2 dmd s<0, £50 {1.3.11)

It is assumed that the resultant function ¥, evaluated in a suitable
limit on to the region {1.3.11}), is the physical scattering amplitude for
the process - -

Ay Ay Ay Ay, (1.3.12)
where A; denotes the anti-particle of 4,. For this process the energy
in the centre-of-mass frame for the initial (or final) state is just Jau.
It is further assumed that by analytic continuation to the region

tz4m2 w<0, s<g0, (1.3.13)

the function F, evaluated in a suitable lirait, gives the physical
seattering amplitude for the process

A+ Ay Ay+ Ay (1.3.14)

for which the energy in the contre-of-mass frame is JJf.

These important properties are called the ‘crossing’ properties.
They state that the same analytic function can be used to describe the
three different physical processes (1.3.8), {1.3.12), (1.3.14) by making
an appropriate choice of physical values for the variables s and ¢ (or u).
These physicad processes are often called different “channels’, and one
refers to them as the ¢-channel, the i-channel and the w-channel when
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s, t and u, respectively, are the energy variables. Remembering the
relation (1.2.12), which here becomes

St = dm?, (1.3.15)

we can draw the physical regions for the three channels using oblique
axes as in Fig. 1.3.2 (Mandelstam, 1958).

7

A5

Y

Y /

"2:7“ v K 7 t=10
Ty
7K

w = dnt* u =9

Fig. 1.3.2. The Mandelstarm diagram asing oblique axes showing the physieal regions
{shadod areas) in which &, or Z, or u denotes the square of the contre-of-mess energy
for equal-mass particles in collision,

Since we now have symmetry between the three variables s, ¢, u, it
is convenient to change the signs of the four-momenta from those
used in § 1.2 {equation {1.2.10)} so as to give

§ = {py+p)? = (Pa+ps)
L= (p1+pa? = (Pt Pyl (1.3.16)
U= (P +Pa)? = (Pt Pt

This convention will often be used in the remainder of this book,

A further convention that is sometimes used in the literature is to
write the amplitude F(s, f, u) as & function of three variables, but with
the constraint {1.3.15) relating s, ¢ and u. In fact, F is defined only
when (1.3.15) is satisfied so this formal achievement of symmetry is
somewhat ambiguous, and in practice it is better to regard F as a
function of two variables, F(s,t) or F(s, %), for example. Similarly, it
is usually easier to work in the real s, i-plane with orthogonal axes,
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rather than with the obligue axes shown in Fig. 1.3.2. We then obtain
Fig. 1.3.3 which iltustrates the physical regions for the three processes
(1.8.8), (1.3.12) and (1.3.14).

If we commence from the u-channel, with process (1.3.12), and
cross the particles 4, and 4, we obtain the process

A+ Ay A+ 4, (1.3.17)
s () 5 = 4’
A !
*</f;:; : :
7 |
T e e 4’
S L s o
S, :‘( (/
75 I /(}
BN
\\TK\ U0

= A

Fig. 1.3.3. Physical regions (shaded aveas) for sgual-mass scattering
shown in the real (s, t)-planc.

The physical region for this process involviug anti-particles is the
same as that for the process {1.3.8) invelving particles. The TOCP
theorem asserts that the amplitudes for these two processes are the
same. Its proof is discussed in § 4.8,

The reactions (1.3.12) and (1.3.14) also have TCP-inverses,

Ay + Ay A+ Ay,

so that altogether crossing and T'CP relate the amplitudes for six
physical processes to the same function #(s,¢). Combining this with
the symmetry {1.2.23) [P?' invariance] that is valid in strong inter-
actions, we obtain a further six processes by reversing the direction of
the above reactions.

Just as we were able to deduce the existence of singularitios at the
normal thresholds from unitarity, it is possible alse to deduce the
existence of further singularities from the assumption of crossing
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symmetry. Sinee Jtand \Ju represent energies in the ¢ and » channels,
they will yield branch points exactly carresponding to those drawn
in By, B,, By, ... for sin Fig. 1.3.1, that is at

b= 4m?  9m? 16m2, ..., (1.3.19)

we= 4ms,  9m2, 18m?, ... (1.3.20)

If we fix, say, u at 2 real value u,, then because of {1.3.15), the
branch-points (1.3.19) will appear in the s-plane at

§ = Uy,  —Ug—BmP,  —u,—12m?, ., {1.3.213
and the ¢ = m? pole will appear at
8 = — g+ Im (1.3.22)

The resulting picture (for fixed # = u) in the complex s-planc is
shown in Fig. 1.3.4. This figure depicts the physical sheet. As we
remarked earlier this is called the physical sheet since the amplitude
Fis, uy) becomes the physical amplitude for a suitably chosen value of
s on this sheet. It is of course a matter of convention thati the branch
cuts are drawn along the real s-axis. Only their end-points are fixed
and they can be distorted as desired without changing the value of
the function F. The branch-points however are fixed and cannot be
moved so long as the parameter w is kept fized at u,.

With real branch-cats in the s-plane ib is necessary to decide which
limit on to the branch-cut gives the physical amplitude. For 4, < 0,
and with s real and s > 4m? —u,, we have physical values of 5, §, =
that correspond to the s-channel shown in Fig. 1.3.2, We shall =ee
in §2.3 that perturbation theory shows the physical amplitude to
be given by the limit on to this right-hand cut from the upper-half
s-plane, F(physical) = limit F(s +ie, u,). (1.3.23)

e—0+
This result is obtained by showing it to be equivalent to Feynman’s
prescription for obtaining physical amplitudes by giving a small
negative imaginary part (-—i€) to the mass of each particle in any
internal line of a Feynman diagram. With this rule, each Feynman
integral can be evaluated with real external four-momenta, that is
real .

This result (1.3.23) from perturbation theory is referred to as “the
ie-preseription’. Tts derivation and significance outside the framework
of perturbation theory is discussed in § 4.4,



1.3] ANALYTICITY AND CROSSING 17

If, as is generally the case, the symmetry condition (1.2,23) is not
valid, the expression appearing on the left-hand side of the unitarity
condition is not the imaginary part of the amplitude. In this ease, as is
shown in §4.6, the amplitude that gives (p,py| R]pyp,»* is related
to that which gives {p,p,| R|p p,) only by analytic continuation.
The latter amplitude, according to (1.8.23), is the limit on to the real
axis of the complex s-plane from above and we show in § 4.6 that the
former is the limit, of the same analytic function, from helow. This
property is known as ‘hermitian analyticity’ (Olive, 1962). It has
the consequence that the left-hand side of the wnitarity relation
(1.3.2) involves the discontinuity of the analytic function across the
normal-threshold cuts.

When the symmetry relation is valid, the hermitian analyticity
property results in the amplitude F being real on the part of the real
axis between the branch cuts illustrated in Fig. 1.3.4. This iz proved
directly from the Schwartz reflection principle in the theory of fune-
tions of a complex variable,

s-plane

() physical limit
R P ? i
. Hrre——— e

[y Sap—

Fig. 1.3.4. Branch cuts in the complex s-plane arising from thresholds in the s-
channel {on the right), and in the t-channel (on the laft) for a fixed valae of u. Two
poles are also shown.

We can use crossing symmetry to derive the physical amplitude for
the t-channel from the funetion I'(s, u,) whose singularities are shown
in Fig. 1.3.4. With », < 0, we need to go to a real value ¢ > 4m?—w,,
and take the limit from the upper half {-plane, {+ie—¢. From the
relation {1.8.15) this is equivalent to taking s from its physical value
for F'(s, u,) in the s-channel, through the upper half s-plane to the gap
in the branch cuts along the real axis, across thig gap into the lower
half s-plane, and then taking the limit F(s—4e, ug) for s < 0, Thus
two physical amplitudes can be obtained as boundary values of
Fis, ug).

Dispersion relations

In the remainder of this section we will show how many of the simpler
analyticity properties of a seattering amplitude can be summarised

2 EA
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by ‘dispersion relations’. This is the physicist’s terminology for the
Hilbert transforms that are well known to mathematicians.

Let us assume that the singularities shown in Fig. 1.3.4 represent
all the singularities of F(s, ue) on the physical sheet, This assumption
can be justified to every order in perturbation theory for a number of
important physical situations, inclading the scattering of equal mags
particles (for —4m? < w, < 4m?), as we shall discuss in § 2.5.

s-plane

Fig. 1.3.5. The Caachy contour for the amplitude F in the s-plane that is used for
deriving a dispersion relation.

Let C be the contour drawn in Fig, 1.3.5, so that inside € the
function Fis,wuy) is regular. From Canchy’s theorem we obtain the
result, . ds' (s’ 1)
o | BB U :
Fls, up) = 5— o Vos (1.3.24)
Let us assume that F{s', u,) = 0 as ls'| -» 00, Then the contribution to
the integral (1.3.24) from the curved part of the contour € will tend
t0 zero as we let its radius tend to infinity. This gives

— / ’ o - X
F(s,ug) = p_*_iw @MFI?(_SJ“_D) _}_W}WJ\ %Mg}_ (1.3.25)

2mi )y, & s 275 Sy 8 —8
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Here F, and F, respectively represent the discontinuities of #' across
the right-hand and the left-hand cuts shown in Fig. 1.3.4, while P
represents the contribution from the two poles in this figure,

2 2
P=_Y ..m.._g.é_. (1.3.26)
where g, and g, are constant,
If we make use of (1.3.15) and define also
&+t +u = dm?, (1.3.27)

we can write (1,3.25) and (1.3.26) together in & more elegant form
using the notation F(s,t, u),

. th L L M G
Pt = s et ot e v s
L[ dUE(s", F, u) o

Fomi ) pop e (13298
For historical reasons, as we noted earlier, this type of equation is
called a ‘dispersion relation’. The form (1.3.28) is a digpersion relation
with u fixed (that is with « not integrated). Similar dispersion relations
can be writien down with either s or ¢ fixed.

The dispersion relation (1.3.28), with u fixed, containg the dis-
continuitios F, and ¥ respectively associated with the thresholds in the
s- and f-channels. The other two dispersion relations involve also the
dizcontinuity F, in the w-channel, Because of the hermitian analyticity
property these discontinuities are given by unitarity, and when the
symmetry velation (1.2.23) holds they are also twice the imaginary
part of F. In the literature the discontinuity of F and twice the imagi-
nary part are often regarded as interchaungeable concepts, but one
should always confirm first that the symmetry relation (1.2.23) holds.

If this is the case, which we assume merely for simplicity, from

F, = digc ¥V = 2 Im F, (1.3.29)

we have an expression for F, in terms of an integral over the product
of F and £*, given by the right-hand side of (1.3.3) for elastic scattering
with am? <5< OmE, £<0, uw<o. (1.3.30)
Explicitly, this gives

(s — 3t

F{S,t)—w Si

fdﬂF(s,t’)F*(s,t”), (1.3.31)

2-2
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when (1.3.30) holds, where #' relates to the square of the momentum

transfer in the first Tactor of the integrand of (1.3.5) and t” to the same

for the second factor; thug both depend on the solid angle €.
Above the inelastic threshold, for example with

Omi g s < 16m?, <0, g0, {1.3.32)

an extrs integral must be added to the right-hand side of equation
{1.3.31) s0 a8 to include the allowed three-particle intermediate states.
Further terms must be added as s is increased past each threshold.

If £ and » ave not both negative in the dispersion relation (1.3.28),
then F, must be obtained by analytic continuation of the equation
{1.3.31) from the physical vegion (or from the appropriate unitarity
squation including inelastic terms). The other discontinuities F, and
F, can be related to F and F* in similar ways, using unitarity in the ¢
and » channels respectively.

The combined set of three dispersion relations and three dis-
confinuity relations (unitarity) is often called a dynamical set of
equations. Since they are coupled equations for the amplitude it is
clear that they impose severe restrictions on its form. Indeed, if
{1.3.31) represented the full discontinuity relation, instead of just the
part appropriate to elastic scattering, we would have a closed set of
equations for F(s,t). But, unfortunately, the discontinuity relations
giving F, in the inelastic regions, like (1.3.32), involve production
amplitudes in addition to F itself. The system of dynamical equations
cannot be closed without the addition of generalised dispersion rela-
tions for production amyplitudes. The latter are very complicated, and
in practice most ‘dynamical’ caleulations have been based primarily
on the elastie scattering approximation to these equations, Further
details of this type of work in S-matrix theory are given by Chew
{Chew & Jacob, 1964). It represents an important aspect of S-matrix
theory for which it is essential to have as much information as possible
about analyticity properties both of scattering amplitudes and of
production amplitudes.

There iz one particularly interesting extension of the dispersion
relation (1.3.28), that provides a means for obtaining the analytic
continuation of F, which is required in the dynamical programme of
S-matrix theory. This extension was proposed by Mandelstam (1958)
and involves a double dispersion relation. It exploits the analyticity of
F(s,t} as a function of two complex variables, or F(s,¢, %) with the
restriction {1.3.15),
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The representation proposed by Mandelstam in a simple case hag
the form,

F(s,t,u) P~}~MJ‘ ‘O“‘S t - ds' dt'

ﬁaff(tfpm.(t , %) u)dt du’ +—‘”‘ _E&ssf) (;‘is)d ‘s’
(1.3.33)

where P denotes the pole terms, and 8"+ 4w’ = 4m? This is believed
to be valid for the scattering of spinless particles in an equal mass
theory on the assumption that F tends to zero as the variables tend to
infinity in any direction in the complex plane. It has however not been
fully proved even within the framework of perturbation theory.
Moreover, it seems that ¥ does not have the required behaviour at
infinity in the complex plane (this is discussed in § 3.8).

In the Mandelstam representation (1.3.83), the spectral function
pats’, V') repregents a double discontinuity across cuts in the s-channel
and the {-channel simultaneously; p,, and p,, are defined similarly.
The integrations are over certain real regions of the variables s', ¢/, w'.
The representation states that F(s, £, %) is analytic in the topological
product of the complex planes of s, ¢ and w cut along their real axes
and with the relation (1.3.15) between these variables,

In practice the greatest use of the Mandelstam representation has
been in regions where one of the variables remains finite, and it gives
simply an extension of a single variable dispersion relation by analytic
confinuation. Another valuable use has been in the derivation of
partial-wave dispersion relations, Neither of these contain so much
information about #" as (1.3.33) and in some cases thoy can be proved
for every term in perturbation theory.

The partial-wave dispersion relations are of eonsiderable practical
importance. We will consider their form for equal masses. Then if §
is the angle of scattering in the centre-of-mass frame in the s-channel

t = {(a—4m?) (cos F~1). (1.3.34)
Substituting for ¢ into F we obtain
F(s,cos0) = F(s,t). (1.3.35)
The partial wave amplitude a)(s) is defined by

1 .
(s) x; 1d(cos &) (s, cos ) Fi(cos ). (1.3.36)
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For physical values of s and cos @ we obtain the usual series

Fs, cos) = 3, {21+ 1) ay(s) Pleos ). (1.3.37)
IA]

A useful feature of this series is that it converges also when s is physical
and cosf is complex bub within a certain ellipse (Lehmann, 1958).
This convergence follows from the analyticity of ¥ within the same
ellipse (Whittaker & Watson, 1940), which has been established in
field theory by Lelunann, and can also be shown for each term in
perturbation theory by the methods of chapter 2.

The value of the partial-wave series arises in practice from its use in
approximation procedures. For scattering at low or medium energies
a few partial waves may be adequate to approximate the full ampli-
tude. A difficulty arises in analytic continuation, sinee the continua-
tion of an approximate function may differ substantially from the
continuation of the funetion itself. This obstacle bas not been over-
come in general.

Another useful aspect of partial wave amplitudes comes from the
simple form of the unitarity condition, which becomes for elastic
scattering, S At

® Imay(s) = %N/‘Ljﬂ |ay(s)|2. (1.3.38)
However, for inelastic scattering the difficulties from production
processes mentioned earlier modify this relation in a way that has to
be approximated in practical caleulation. The price that is paid for
obtaining such a simple form of unitarity is the loss of simplicity in the
crossing relations. Since a partial wave refers to a definite channel in
which s (or ¢ or u) is the square of the energy, one obtains three types of
partial amplitude with no very simple relation between them. A
gecond penalty oecurs even within a single channel. The integration
in equation (1.3.36) that defines a;(s) leads to branech cuts in g;(s) that
are not present in the full amplitudes. The simplest of these arises from
the pole in one of the crossed channels and in the equal mass case leads
only to an extension of the real left-hand branch-cut. In the unequal
mass case the system of branch-cuts for partial waves may become
quite complicated (MacDowell, 1959; Kennedy & Spearman, 1962},

14 MWigh-energy behaviour and subtractions

The behaviour of a scattering amyplitude at very high energies is
important both for its effeet on dispersion relations and also for its



14 HIGH-ENERGY BEHAVIOUR 23

relation to resonances through the theory of Regge poles. The high-
energy behaviour of amplitudes can be studied within the framework
of perturhation theory by making partial sums of the perturbation
series. These methods will be described in chapter 3. Here we will
indicate briefly its relevance to dispersion relations and to Regge
theory.

In order to derive the digpersion relation (1.8.25) we had to assume
that Fis, )0 (1.4.1)
as |s| = oo with u, fixed. Suppose, however, that this condition does
not hold, but that there exists an integer N such that

|7 (s, ug)] ~ coustant x fg| &=t (1.4.2)

a8 |s| = o0, Then we can still obtain a dispersion relation when F is
analytic in the cut s-plane,
Let sy, 8, ..., 8y be congtant, Then the function

F -
(8"*"1){5"84) ( ““Sv)

will have the behaviour (1.4.1). We can therefore apply Cauchy’s
theorem to @, as we did in deriving the dispersion relation for F, and
we can neglect the eontribution from the circular part of the contour
as ite radius tends fo infinity (see Fig. 1.3.5}. However, now the
function @ has poles at s;,...,5y and we will therefore collect the
residues at these poles. This leads to a dispersion relation for # in the
form

o G5 g (sms) 58y (s—sy)
sty 2g) = ¢ +8 ‘+t ma+ o )

Gls,ug) = (1.4.3)

® {fw --JST(S ¢ u(,) ........

e { & ——s) (8 =8y} ... (8" — sy}

= dt’ F{b t' fu, )
~i~f4m twi ...... 1 _—ﬁl} {(:; mtﬁ)} (L4.4)

where the N quantities ¢, ..., 1y, are defined hy
Sk g = dm?, {1.4.5)
and also st g = dm?, {1.4.6)

so that as |¢'| =c0, s0 also does [s], giving the hehaviour (1.4.2).
The function ¢™ in {1.4.4) is & polynomial of degree (N —1)in s,
Its N coefficients could only be found from a knowledge of the values
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of F at the N points s;. These unknown coefficients are called ‘sub-
traction constants’ and {1.4.4) is called a dispersion relation ‘with N
subtractions’.

Tt is therefore an Important question whether such an integer N
exists and, if it does, what its value is. The situation that is believed to
hold is that N is a function of u,. Thus for different fixed values of u
we will require different pumbers of subtractions, This will be
discussed further in § 3.2

A more general result is required in order to satisfy the double
digpersion relation (1.3.33) suggested by Mandelstam. For the form
given in (1.3.33) it was necessary to assume that

Fis,t,u)->0

ag the variables s, ¢t {with » = 4m?—s—1) tend to infinity simualia-
neously {or separately) in any direction in their respective complex
planes. If this is not the case, then it may be that F is bounded by a
polynomial in the two variables s and £ In that case a dispersion
relation like (1.3.33) conld be written down together with subtrac-
tions, For the validity of the Mandelstam representation with sub-
tractions it is necessary that the number of subtractions N{u,) in the
single variable dispersion relation (1.4.4) shall remain finite as
a,—> o0, However, a discussion of this question by Mandelstam (1963)
suggests that in fact N—oc as 4,00, Then the double disperdion
relation, even with subtractions, would not hold. The methods used
in studying this problem are closely linked with Regge-theory using
comyplex angular momenta. '

Regge developed the use of complex angular momentum in non-
relativistic potential scattering. For this it can be shown that an
analytic function of two complex variables, ! and s,

all, 5) (1.4.7)
can be defined so that il is equal to the partial wave amplitude (s)
when ! takes integer values (see (1.3.36}). It is then possible to replace
the usual partial wave-geries expansion {(1.3.37) by an integral, the
Watson—Sommerfeld transform, namely
a2+ 1) a(l, s) B{ —cos 8} -

7 1y
F(s,cosfl) = 34 oy

(1.4.8)

where ' is a contour in the complex I-plane that lies close to and
surrounds the positive real axis,

If a(l, s) can be defined so that it tends to zero suitably at infinity in
the I-plane, which is the case for potential scattering, the contour ¢
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ean be opened out so that it lies parallel to the imagiary l-axis, In
doing this one will collect residues at the poles I, of a(l, s) that lie in
the right half I-plane. This gives

Fis,coufl) = ¥ (21, + 1}, cosec{l 7)) B {—~cosb)

In

[ EFE U3+ Vya(l, s) B{—cos d)
5 P PPN SR 3 SV 4
i z"’ijiw sin lr , (1.4.9)

where b, denotes the residue of @ at the pole I = [
This formula suggests that because

B~ ocosl} ~ (—cos Y, (1.4.10)
the behavionr of the amplitude #, as eos - oo, will be dominated by
the term in (1.4.9) that has the largest value of real I, (note the integral
lies parallel to Re (I} = 0}. Since, from (1.3.34), 1 is linearly proportional
to cos f, this conclusion can be written

Fs,t} ~ constant x ¢, {L.4.11)

where o' denotes the real part of the pole I, of a(l, s) that lies farthest
to the right in the complex I-plane. Clearly o’ iz a function of s in

general, a = a(s). (1.4.12)

In the t-channel, the argument we have outlined indicates that the
asymyptotic behaviour for large ¢ depends on & as we stated above.

The poles of the partial amplitude a(l, 3) in the complex l-plane are
called ‘Regge’ poles. We have assumed in the above discussion that
a(l,s) is meromorphic in the right-half l-plane. In fact, the work of
Mandelstam (1963} and Polkinghorne (1963d) indicates the existence of
cutsina crossing-symmetric relativistic theory, although meromorphy
holds in potential theory with Yukawa potentials. These difficulties
and a fuller disenssion of Regge theory will be given in chapter 3 (see
also Sguires, 1963; Frautschi, 1963},

For real physical values of s and cos §, Froissart (19615} and Martin
{1964) have established bounds on the scattering amplitude. Their
assumptionst include unitarity, and analytivity of the amplitude in
the product of the cut physical sheets in the variables s,t,#. The
resulés are, for real s> oo,

| F(s, 056 = 1)] < constant s (log s)%, (1.4.13)
. sl (log &)}
|F(s,|cos 8] < )] < const@ntlz(s(n;%); . (1.4.14)

t Note vdded in proof. Martin (1965) has recently derived these bounds using only
analytic propsrties that have been established from sxiomatic guantum field theory.
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Although these resulis are not nearly enough to decide the question of
subtractions, they do provide an important test for any assumptions
that are made about Regge poles in a relativistic theory. In principle
they can also be tested experimentally.

By means of a theorem known as the ‘optical theorem’ (1.4.13)
leads directly to a bound on the total cross-section at high energy. The
theorem, which is valid for all energies, takes the form

Im F(s, cos6 = 1
F ooy = > \/Sn-mm), (1.4.15)

when the {wo particles in the initial state have equal mass, Here ¢ is
their centre-of-mass momentum. The theorem is a direct consequenee
of unitarity; the probability of a transition cccurring out of an initial

state |n) is % |ém| RIn)le, (1.4.16)

where R is the non-trivial part of 8, as defined in (1.2.13), But, from
the unjtarity relation 875 = 1 and the completeness relation

Tjm) {m| =1,
™
(1.4.16) is just 2Tm {n|E|n),
which, by the definition {1.2.18) of F, is proportional to
Im Fis, cos f = 1),
The other factors in {1.4.18) are kinematical, arising from the defini-

tion of the cross-section.
Combining (1.4.15) with (1.4.13) we have, as s-»00,

Fioeg < cOnstant (log &)

1.5 Feynman diagrams and the S-matrix

We have remarked earlier that in the first three chapters we will be
using the perturbation expansion of S-matrix clements, not for their
numerical values but for their analytic properties. We believe that the
singularities of these perturbation terms will in general be present on
thoe physical sheet of the full S-matrix element, The situation on other
sheets iz more complicated and individual terms of the series may not
give singularities that agree with those derived by unitarity. Some-
times also individual terms may give singularities on unphysical
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sheets that ave cancelled when a sum of terms is taken (Landshoff,
1963).

Generally, individual terms in perturbation theory do not yield the
correct singularibics on unphysical sheets where some ‘dynamical’
property is involved, for example the formation of a resonance.
However, on the physical sheet and on its boundary all singularities
refer to stable particles and, whether these are poles or branch cuis,
they do appear in individual terms of the perturbation series. The
properties on unphysieal sheets can be considered by S-matrix
theory, but frequently they can be obtained more easily by a suitable
choice of a summable series of matrix elements, for example by using
the Bethe-Salpeter equation for a scattering amplitude.

For full details of the S-matrix expansion in terms of Feynman
integrals the reader is referred to Schweber (1961) or to the original
papers quoted there. Here we will give only the briefest indication of
the method. The S-matrix can be expressed in operator form as

W ___i k) } o0 .
S = Z (“;{c) ‘{Jm dizy .. B, T{H () ... Hy(z,)), (1.5.1)
where 1" denotes a time-ordered product of the interaction Hamilto-
nian density Hi(x) at the space-time points z;...x,. We will not
specify the form of this Hamiltenian in general, but note just the
example of a neutral pseudo-scalar coupling. For this example,

Hy(w) = GN{f() y5 9 (@) pla)}s (1.5.2)

where @ is the coupling constant and N denotes a ‘normal product’
in which creation operators lie to the left of destruetion operators.
The fields 3 and ¢ are in the interaction representation, so they
satisfy frec-field commutation rules.

The matrix elements of § can be evaluated by rearranging the field
operators in equation (1.5.1) into normal produects by means of the
commutation relations. Thus

T{ply) dlagl} = N{d(wy) plao)} + e (g~ 2,), (1.5.3)
where Ap(x) is the Feynman propagator for the meson field,

20 [d%exp (—ike) .
J‘ ey (1.5.4)

Ap(x) = e

The rearrangement, of the expression (1.5.1} for §, into normal
products permits the selection of only those terms whose creation and
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destruetion operators mateh the particles in the matrix elements that
we wish to consider. Then each term of {1.5.1) can be expressed as a
sum of terms involving propagators like (1.5.4}, other propagators for
fermions, and factors arising for example from the y-matrix in {1.5.2).
The space-time integrations can then be carried out, and they lead to
linear relations between the four-momenta that enter through such
expressions as (1.5.4).

The result i3 that the S-matrix element for a given scattering
process is the sum of a set of integrals over four-momenta. These are
the Feynman integrals with which our analytic studies are concerned.
They can be specified most easily by first writing down all Feynman
diagrams and then applying the Feynman rules, which we enurmerate
below.

7;

b Py

kS g3 P23

Fig. 1L.5.1. An exsmple of & Feymman disgram {or Feynman graph). The symbols
denote energy-momentum four-vectors, the straight lines denote nucleon lines and
the wavy lines denote meson lines.

An example of a Feynman diagram? is given in figure (1.5.1).
More generally an allowed Feynman diagram consists of any diagram
having the right number of external lines and with vertices that
correspond to the fields that occur in each term of the Hamiltonian.
Thus our example of an interaction in equation {1.5.2) has at each
vertex two fermion lines and one meson line. Tn Fig. 1.5.1 the straight
lines are fermion lines and the wavy lines are meson lines. The complete
S-matrix element corresponds to the sum of all topologically different
Feynman diagrams that have the correct number of external lines
and the type of vertex and internal lines specified by the assumed
interaction Hamiltonian.

Corresponding to a given Feynman diagram there is a contribution
to the S-matrix given by the following rules: It is an integral taken

1 Note thet we also use the term Feynman graph instead of Feynmen diagram;
both are common in the literature of quantiun feld theory.
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over the four-momentum of each internal line in the diagram, these
four-momenta being labelled independently in the first instance.
The integrand contains the following factors:
1

(1) a factor - G 2 5 P e for each internal meson line of four-
momentum &;
(2) afactor — Wj +2 - for each internal nucleon line of four-
(z ) p?—m?+ e

momentum p;

{3) afactor &I for each meson-nucleon vertex (where, for example,
I’ = y; for peeudo-gcalar interaction asg in (1.5.2));

(4} a factor 1 for each external meson line;

(5) afactor u,(p) for each external nucleon line loaving the diagram,
and a factor u(p) for each external nucleon line entering the diagram
(the Dirac spinor is normalised by #u = 2m);

(6) a factor {—1) for each closed nucleon loop;

(7} a factor {—1}* corresponding to the diagram being nth order
in the perturbation expansion;

(8) a factor (2m)4®(p —p" + k) for each vertex, so as to give energy-
momentum conservation for a nucleon line p entering and p" leaving
the vertex and a meson line & entering (ot — 4 leaving) the vertex.

The S-matrix element for a given process iz the sum of all the
Feynman integrals allowed for that process.

In practice because of the rule (8) given above many four-momenta
can trivially be integrated. The remaining variables of integration can
be regarded as cirenlating four-momenta following the method of
Maxwell for taking account of Kirchoff’s first law. In this case the
total four-momentum entering each vertex must be conserved, as
follows when we do the integration to eliminate the d-functions in
rule (8). One d-function remains, expressing overall energy -momentum
conservation; this can be factored out asin (1.2.18) so passing from the
S-matrix element to the Feynman amplitude ¥, ,

As an example we take the diagram shown in Fig. 1.5.2, in which all
the particles are scalar mesons and where we alvo assume a scalar
interaction (I" = 1). This gives the Feynman integral

(ﬁﬁ)f [k +py) 13 + €] [(k— py+ )P —mf +16] )
% [(k— pg)? — mi +te] (k% — mi + ie]
(1.5.5)
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In this diagram we have allowed the possibility of the internal
scalar mesons having different masses m, (¢ = 1,...,4). The external
mornenta must, for a scattering amplitude, satisfy the mass-shell
condition and these external masses may take different values, thus
i = M? and 50 on.

2

s g

k Py 2y

Py

Fig. 1.5.2. The Feynman diagram that corresponds t6 the Feynman integral (1.5.5).

For an individual Feynman integral, the singularities, and hence
the analytic structure of the integral, arise from singularities in the
integrand, Those that arise from ultraviolet divergences are removed
by renormalisation and will not concern us, The singularities that do
concern us come from zeros of the denominator factors, These de-
nominator factors are the same for scalar particles as they are for
particles with gpin, namely of the general form

pE—mi+de (1.5.6)
for mass m, and four-momentum p.

The numerator and the gpinor factors given by the Feynman rules
may lead to cancellation between different Feynman integrals, or
within a single integral. However, these other factors are not expected
to affect the possibility of a singularity in most of the torms. It is
therefore advantageous to ignore all numerator terms and spin
complicationg in the first instance, This permits the study of the
analytic properties of individual Feynman integrals by the muech
more simple integrals that eorrespond to scalar particles, like the one
in (1.5.5). If, however, we wish to add together Feynman integrals, for
example by making a partial summation of the series, it is then
esgential to include the relevant numerator and spin factors in each
integral. The latter point will be relevant in part of chapter 3.

For the vest of this section and for chapter 2 we will therefore work
only with Feynman integrals that correspond to secalar bosons since,
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for cach individual term, this gives the correct analytic properties.
The general Feynman integral then takes the form

7. 4
F = limit J ?‘i by oo dtly i (1.

) L@ o)
-

st

T

where &, ... k; denote [ independent loop four-momenta, and ¢4, ...,4,
denote the four-momenta for the # internal lines. Thus each g, depends
linearly on one or more of the k; and possibly on one or more of the
external four-momenta, which we will denote by p,.

We rernark in passing that for the simplest of all Feynman diagrams,
that of Fig. 1.5.3, the encrgy-momentum conservation requirements

tr

q
)

Fig. 1.5.3. A Feynman disgram leading to a pole in the series
for a seattering amplitude,

leave no integrations to be done. Henee the diagram just corresponds
to one of the poles in (1.5.7) with ¢ = p, +p,. The pole oeeurs at
§ = ¢* == m% on the physical sheet, and corresponds to the occurrence
of a physical particie of mass m having the same quantum numbers as
the systemn p, and p;. If this term were taken alone, the pole would
ocetir on every sheet in the variable s, sinee its structure is simple and
is not affected by any branch-points or cuts through which we might
pass to reach other gheets. However, it is easy to check from elastic
unitarity that a pole cannot occur on the physical and the first un-
physical sheet in the same position (sce §4.10). Therefore, on the
unphysical sheet in the full S-matrix element this ferm must be
cancelied by other terms. This is one example which prompted our
cautionary remarks at the start of this section.

For computation {which does not concern us here} and for determi-
nation of analytic properties (which does concern us), it is often more
convenient to transform the integral (1.5.7) by means of Feynman’s

identity, 1 . .
ffflif I T fi" a(ff‘——f—). (1.5.8)
1iJa e Jd N , [Elafrj;-:,

This formula is valid provided that the denominator in the integral
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does not vanish within the renge of a-integration (which otherwise
would have t0 be distorted into the complex o, -planes). If we take

Jo = GE—mi e, (L.5.9)

the denominator does not vanish because of the 4. Then the integral
{1.5.7) is proportional to

(I[ (l“}fc) (Hd&’.) Efx—].)

AL

[E a, (g ~ Ha]

limit

e~ 0p

{1.5.10)

It is now possible to do the k integrations {Chisholn, 1952). The four-
momentum ¢, in any internal line is a linear fanction of the circulating
momenta k; and the external momenta p,. Therefore the quadratic
form

Yik, p,2) = Dat, (g2 —m2) (1.5.11)
can be writien as

gk, py o) = L ks kj+ L bl +c, (1.5.12)

= kT.Akm2kT.Bp+(pT.I‘p——o‘}, (1.5.13)

where o == Do md {1.5.14)

I

Here, A, B, T' are respectively Ix!I, Ix (E—~1) and (1) x(E-1)
matrices, whose elements are linear combinations of the xz-variables.

E denotes the number of external lines of the diagram that gives the
integral (1.5.10), so there are (K -—1) independent external four-
momenta p, occurring in ¢; K and p are column vectors in the spaces
of the matrices, thus k has I components, namely the [ four-vectors k;
and p has (F — 1) components, namely p,; k7 and p7 denote the row
vectors that are the transposes of k and p. The elements of k are
themselves Lorentz four-vectors, so the expressions in (1.5.13)
correspond to double sums, thus

kT Ak = %}j}} Ak {1.5.15)
over both the matrix indices j, ' and the Lbrentz index g.
By a translation k = k' +A-Bp, (1.5.16)

the terms of first degreein kin (1.5.13) can be eliminated. The resulting
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quadratic expresgion k'T. Ak’ can be diagonalised by an orthogonal
transformation in the matrix space,

k' = Rk", R¥R =1, (1.5,17}

RTAR = A" (diagonal}, {1.5.18)

giving tr=K'T A'K"—(Bp)T . A-Y{Bp)+p?.Tp—o. (1519
The Jacobian of the transformation k— %" is unity, that is

f 14k, = J . (1.5.20)

Having diagonalised the gnadratic terms in the variables b}, we may

now do ali the energy-momentum integrations by repeated applecation
of the formula

© du H
wa O Iy & A (1.5.21)
The result is proportional to
1/=n o
* . — ‘n—21—2
ﬁng‘ (1;1 aza,) oo 1) O (1.5.22)
o {D 4 ieC]n# ’
where U =det A" = det A, (1.5.23)
Dip,a) = —(Bp)T . X(Bp)+{(p?.Tp-a)C, (1.5.24)
with X = A0 = adj A, (1.5.25)

and o defined by (1.5.14}.
It can readily be seen that an alternative expression for D is

D =01, (1.5.26)
where 1)’ is the result of eliminating k from ¥ by means of the equations

b

FZ =0 for cach j. (1.5.27)
Note that for each j, this denotes four equations, one for each Lorentz
component of . These equations are just

Ak = Bp, (1.5.28)

so they give k = A-'Bp. (1.5.29)
Insertion of this into (1.5.13) gives, with (1.5.26}, the result (1.5.24).
The discriminant D(p,a) is of great importance in the study of
analytic properties of Feynman integrals. In practice there are two

3 EA
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ways to obtain its detailed form for any given diagram, The first way
is to proceed by labelling all the lines with their appropriate four-
momenta, taking aceount of couservation at each vertex in the
diagram as in Fig. 1.5.2.

This perinits explicit evaluation from (1.5.11) of the coefficients a;
in equation {1.5.12) which are linear functions of the «,; and of the
coefficients b; which are linear in the «, and linear in the external
momenta p; and of ¢ which is also Hinear in the o and quadratic in the
external momenta and the internal masses. With explicif forms for
these coefficients €' and D are given by

yy  ee Uy
Clay=1] ¢t 1 {=detA, {1.5.30)
dy - O
?an e af_u blf
D(P,a}m|a‘n" . ay by J (1.5.31)
161 i bl [} '

1t will be noticed that D is a function of o and of the invariants
formed by the sealar products of the external four-momenta

Pola=1,..,(E~-1)

(' is of degree [ in the o and D of degree ([ +1).

The second method for obtaining Clo) and D{p, o) will be presented
as a seb of rules, which permit these functions to be written down
directly for any given Feynman diagram. We state these rules
without proof; their derivation is similar to that used by Symanzik
(1958} in a slightly different formalism.

These rules are most simply described by means of a particular
example, for which we use the diagram in Fig. 1.5.4¢. In this figure,
the numbers on the internal lines correspond to the indices in the
ahove equations.

‘We first give the rules for writing down the function C{x). A set of
cuts is made in the internal lines, sach that: {i) every vertex is still
connected t0 every other vertex by a sequence of uneut lines; (i) no
farther cuts can be made without violating (i). An example of a
possible set of euts is shown in Iig, 1.6.4b, where the cut lines are
marked with crosses. The set of cuts corresponds to a contribution to
' that is the product of the o; corregponding to the eut lines. Thus the
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cuts in Mg, 1.5.45 yield for € a contribution « ;. The complete
expression for ' arises from adding in the products of a for every
posgible set of cuts that obey (i) and (ii). Hence in our example
= a0y + 0ty ot + 0t ) - a0ty o+ by -+ 015) + atgley g+ )
+ a0ty + gy + atglog + tg) -+ g%y (1.5.32)

Py 1 2 Py
(o} 5 6 7

P 3 4 2N

P 1 2 ?s
() 5 6 7

Py 3 4 p;;

M 1 2 B3 N
(&) 5 6 7

I 3 4 Py

Fig. L.5.4. Examples of possible sets of cats (denoted by a cross on the cut line) used
in evalusting the integrand using Feynman paramecters, {@) the diagram, (5) euts for
evaluating & terin in €, (¢) cuts for evaluating o torm in D).

We now give the rules of writing down the remuainder of the expres-
sion {1.5,24), that is

—(Bp)T . X(Bp)+Cp”.I'p. (1.5.33)
This expression is a linear function of the various Lozentz scalars that
can be manufactured from the external momenta p.
The rules are: By a set of cuts on the internal lines divide the graph
into two disjoint parls, such that within each part the previous rules
32
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{i) and (i1} are obeyed and such that at least one external momentum-
line is conneeted to each part. Any such set of cuts yields a product of
a; for the two disjoint parts, exactly as before. These produets are
multiplied together and are also mmultiplied by the Lorentz scalar
(Z'p)%, where (Z'p) denotes the sum of the external momenta coming
into either of the disjoint parts (because of energy-momentum con-
servation, {£'p)? iz the same for both parts). Do not forget the possi-
bility that (X'p) may include only the four-momentur in one external
line for an appropriate set of cuts.
As an example, the set of cnts drawn in Fig. L.5.4¢ yields the
contribution '
oy cty (D3 + Do)
"The complete expression for the diagram in Fig. 1.5.4qa is
{1+ P2)" [y 250ty + 04 -+ 0t + Gp) - 019004ty + 0ty o+ 005 + ) + 0t 0y g
() + pa)? [ atp ot} + Py aglog + oty + ot + ) + g oty ot}
+ Pt otglory + 0ty + ot + 0tg) + 0ty 26 2]
+ Pl cta oty + oty + 0t + 0tg) ok 2ty g g
o+ Pty Oty + 0ty + 0ty o+ &g) + 0y oy OLg]. (1.5.34)

These general rules are of particnlar value when one needs, as in
chapter 3, the coefficient of a particular external variable, sometimes
for quite complicated diagrams where the whole expression for D
would be immense. For simpler diagrams when one needs the full
expression for D the form (1.5.31) obtained by direct calculation is
often more convenient to use.

1.6 Applications

We conclude this chapter by giving a brief indieation of some of the
applications of §-matrix theory to the physics of particles.

The simplest and best known use of analyticity of a scatbtering
amplitude is given by the Breit-Wigner resonance formula. Near a
resonance an amplitude may be approximated by neglecting all
singularities except a complex pole. Thus the partial amplitude for
an S-wave may have the form

2ih
where % is the numerical value of the three-momentum. This non-
relativistic formula gives a simple illustration of the approximation of
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a transition amplitude by including nearby singularities and ignoring
distant singularities. This kind of approximation provides the basis
for most successful applications of §-matrix theory.

Another well-known result that follows directly from a study of
the nearby singularities of the S-matrix is the scattering-length
and effective-range formula. We shall see in §4.7 that the singularity
of an elastic seattering amplitude at threshold (zero energy) is a
simple square-root branch-point in energy. Thus there will be no
branch cut in the momentum variable k. If we assume a nearby bound
state (or virtual state) the non-relativistic s-wave, for example, takes
the form

@wmm(%ég)@+ak+um (1.6.2)

where we assume the momentum is small and that there are no other
nearby singuolarities. This giveg the usual formula

keotd = ¢y +o k2 (1.6.3)

An application of analyticity methods to the electromagnetic
structure of nueleons by Frazer & Fulco (1959, EQGOa, b) provided a
great stimulug both to the development of S-matrix theory and to
experimental work. For electron-proton scattering one works to first
order in the fine structure constant. Then from Lorentz invariance
the scattering amplitude can depend only on the square of the
four-momentum of the exchanged photon shown in Fig. 1.6.1a

{=g%=¢i—q (1.6.4)

(@ (&
Fig. 1.8.1.

Neglecting spin, the amplitude is
N
AM=%ﬂ+Mm (1.6.5)

The term F(f) represents the modification to the Coulomb interac-
tion due to the structure of the photon-nucleon vertex indicated in
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Fig. 1.6.1a. Since this vertex involves strong interactions the methods
of dispersion theory must be used and one looks for the nearest singu-
larities in the complex t-plane. These include the branch cut that arises
from the ereation of a pion pair as indicated in Iig. 1.6.16. This
branch cut runs from 4m? to oo in the f-plane and may be contrasted
with the physical values of ¢ for electron-proton scattering which are
real and negative.

It can be shown (§2.5) that F() to all orders in perturbation
theory is analytic in the complex f-plane eut along the two-pion
branch cut. Assuming suitable convergence at infinity this gives a
dispersion relation for F(1), namely,

| [ Fz)de

Fit)=_| -~ (1.6.6)
"The spectral function Fi(z) is divectly related to the amplitude for pion-
plon seattering (amongst other terms). By approximating this
ampiitude with a resonance Frazer and Fuleo were able to obtain good
agreement with experimental results for electron-nucleon scattering.

More recently these methods for approximating the analytic
funections of S-matrix theory have been refined and applied to most
experimental situations involving the pion-nucleen system and also
to other strongly interacting particles. For a review of applications to
the pion-nuecleon systemn see Hamilton (1964), and for a gencral account
of the applications of the S-matrix see Frautschi (1963), and Omnes &
PFroissart (1064).

There is & possibility that the analytic properties of the S-matrix
can be used in a more fundamental way to set up a self-consistency
condition when combined with unitarity and symwetry properties.
If it could be solved in a satisfactory manner such a self-consistency
condition could yield relations between the masses of strongly inter-
acting particles including the position and width of resonances, There
are some very difficult mathematieal problems associated with the
rigorous justification of approximations associated with such a self-
consistent scheme and we do not consider it further in this book
though we note its potential importance. A discussion of these aspects
of applieation of §-matrix theory is given by Chew (1962) and Chew &
Jacob (1964},
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CHAPTER 2

ANALYTIC PROPERTIES OF PERTURBATION
THEORY

2.1 Singularities of integral representations

We have said in chapter 1 that a transition amplitude may be
expanded in a perturbation series, each term in the series being a
Feynman integral. Since the perturbation series cannot necessarily be
expected to converge, we attach no significance to the numerical
values of the individual terms, but rather examine their analytic
properties. In this chapter we develop general methods for doing this.
We illustrate thege methods by applying them to individual Feynman
diagrams and even, in some instances, to every diagram occurring in
the perturbation series for a given amplitude.

In general a Feymman integral is oo complicated for its analytic
properties to be studied by explicit integration. For example, one of
the very simplest diagrams, the fourth-order single loop of Fig. 1.5.2
with all scalar particles, produces 192 Spence funetions (sec the paper
by A.C.T. W= (1961)). But fortunately an easier and more powerful
method is available, It is based on o generalisation of a lemma due to
Hadamard (1868), which was re-diseovered in the present context by
Eden (1952) and extended by Polkinghorne & Sereaton (1960a,b).
This lerama is eoncerned with the circumstances in which a function
defined by an integral may have a singularity, In the remainder of
this section we develop the main ideas behind the method, first for
the case of one integration variable and then for several,

Singulariies of simple integrals
Let g(z,w) be an analytic function of two complex variables and let
O be some finite contour in the complex w-plane. Define a funetion

Jz} by
f5 = fag(z, w) dw. (2.1.1)

It is supposed that the singularities of the integrand g ave known and
that their locations in the w-plane are

w=wfz) (r=12..1 (2.1.2)



40 SINGULARITIES OF INTEGRALS [2.1

It is further supposed that for z in a neighbourhood of some point 2,
there is a neighbourhood of the contonr € in the w-plane free from the
singularities w,. Then evidently the definition (2.1.1) makes f(2)
analytic at z,. We wish to discover how a singularity of f{z) can arise
when f i analytically continued away from z,.

As z is moved away from z, the singularities w, will move about in
the w-plane, but f(z} will remain analytic at least until one of the w,
reaches the contour €. Then the integral (2.1.1) becomes undefined.
But even when this has happened, f(z) can usually be further analytic-
ally continued. Suppose that € has end-points 4 and B, We suppose
at first that these end-points are fixed. Then if ¢V is another contour
with the same end-points and if both €” and the region between € and
(" are free of the singularities w,, Canchy’s theorem gives

flz) = Jl} gz, w) duw. (2.1.3)

Fig. 2.1.1. The complex w-plane. Anelytic continuation by deforming the eontour of
integration ¢ to €, Bingularities of the integrand ave denoted by X, and arrows
indicate how they maove as z in equation {(2.1.3) is varied.

So just before one of the w, reaches the contour ¢ we can usually
change to another contour €, and equation (2.1.3) then provides an
analytie contituation of the function originally defined by (2.1.1).
This is illustrated in Fig. 2.1.1; here the crosses represent fypical
positions of the various singularities w, at the original value z; of z and
the arrows indicate how they might have moved during the variation
of 2, .

So generally we can continue f{z) analytically if, by varying the
integration contour €' eontinuously, we can arrange that as zis varied,
none of the singunlarities w,(z} of the integrand g(z,w) meets the
contour, This procedure may be prevented for one of three reasons:

(i) End-point singularities. If one of the singularities w, reaches
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one of the end-points 4, B of the contour ¢ no allowed variation of
C can avoid it. Hence the cé)rresponding point z; may be a singularity
of f(z).

(i) Pinch singularities. If two (or more) singularities approach the
contour from opposite sides and coincide, the contour € will be
trapped between them and no deformation can avoid them.t Hence
the corresponding point z, may be a singularity of f(z).

(i) Infinite deformations. If the contour €' is being deformed to
avoid a singularity w,(z), and that singularity moves off to infinity
dragging C with it, the intogral may diverge because (' is no longer
finite. This can be reduced to a special case of (ii); it is best examined
by making a transformation of integration variable, for example
w = /&, so that the point at infinity is brought into the finite part of
the complex plane.

Tixamples of the above possibilities are given by the following:

dz ~log (f?:?)_ (2.1.4)

U @4—z

) o=

Here the intogrand (w—z)' is singular at the end-points a, b if
z = a,b, eorresponding to the singularity of the logarithm at these
points,

) o) = f :

1 dw 1 a(l-—-z)
o (we2Y(w—a) z—a {

log (i:ajwz} (@ > 1) (2.1.5)

Here the logarithmie singularities 2 = 1, 0 are end-point singularities,
while the singtlarity z = a arises from a pinch between the singulari-
ties wy =2, wy =a of the integrand. Notice, however, that the
singularity z = @ is not present on the Riemann sheet of f(z) corre-
sponding to the prineipal sheet of the logarithm, for the argument of
the logarithm is unity at z = . The singularity is only encountered on
encircling one of the logarithmic singularities, so that now log1 is
+ 2717 instead of zero and no longer cancels the pole. This example
underlines the importance of pinch singularities actually trapping the
contour by approaching it from opposite sides, as in Fig, 2.1.2¢q; if
they approach from the same side or if they come together nowhere
near the contour, asin Fig. 2.1,2b they are harmless. Finding whether
the contour is actually trapped is In practice the difficult part of the
analysis.

T Alternatively, one of the two singilarities w, may be fixed and the trapping may
oceur &8 & resulé of the other approaching it, with € hetween.
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(i) Jizy = f Pl (iﬁi—l) — (2.1.6)

zZ’l;b—{-le

The sipgularities 2 = ~ (), — {4} ave end-point singularities. On the
principal Riemann sheet of the logarithm there is no singularity
2z = 0, but on other sheets it arises as a result of the contour in the
w-integration being dragged to infinity. To see this, make the trans-
formation of integration variable w = 1/§:

. LI .
fz) = J‘% {:(?5 (2.1.7)

The singularity z = 0 now arises from a pinch at { = 0.

i &

Fig. 2.1.2. {a) Two asingularities in the w-plane coming together and pinching the
contour of integration. (b} Examples of voincidence of two singalarities that do not
pinch the contour of integration.

We supposed in the above that the end-points 4, B of the contour ¢
wers fixed, but there is in principle no new feature if one or both is
allowed to be a function of 2. Pinch singularities may occur as before,
while an end-point singularity can occur ab z = z, if for some r,

w,{z) = A(zl}a}

_ (2.1.8)
or if wiz) = Bz}

Again, the contour ¢ may be closed and have no end-points at all.
In this case only pinch singularities are encountered. Finally, we may
drop the restriction that ¢ be initially finite, becansze of our remark
that by a transformation of variables we can see that the point at
infinity is no different from any other point.

Nature of the singularities

The singularities produced by the above mechanisms are usually
branch-points. It is convenient to attach a cut to a branch-point and
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in certain simple cases one can easily determine the discontinuity of
f(2) across a given cut, in particular when the singularities w, of the
integrand g(z, w) are just poles. We suppose, as an illustration, that 4
is fixed and that z = z, Is an end-point singularity produced by wy:

wizg) = 4.

@ 4

At +B

)

b3
wy

9

Fig. 2.1.3. The movement of a singularity w,{z) of the integrand of eguation (2.1.3)
when the variable z encireles an end-point singularity z,. The starting position is
shown in {a}, the end-position in {#) and {c} which are equivaleni.

Then, when 2 is at some point z; +¢ very near to z,, (2} will be very
near to A. If w,(z) is analytic at 2;, and has non-zero derivative there,
we can write ;
dw, ! T
wy(z+e) = A+e— {2.L.9
dz lyena
approximately, Thus if z is made to describe a complete circle round
7yt 7 == 2y -+ €] e, @ varying from 0 o 2w, w, will degeribe a similar
circle, of radins |edw, [dz|, round 4. The contour € must be distorted
to avoid w,, ag it describes its cirele, so that if the situation in the
w-plane before the circle is described is as in Fig. 2.1.34, afterwards it
will be as in Fig. 2.1.35. But, by Cauchy’s theorem, this is equivalent
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to Fig. 2.1.3¢c. Hence the difference between the initial and final
integrals is just a contour round the pole w,(z). So the discontinuity of
f(2) associated with the singularity at z = z,, Is just 2 times the
residue of g(z,w) ab the pole w = w,. Further, the same discontinuity
is picked up each time z, is encircled, indicating that the z =2z,
singularity of f(z) is logarithmic.

Tracing how the singularities w0, move as z is varied also enables us
to understand how a pinch singularity may be absent on one Riemann
sheet associated with an end-point singularity, but be present on
others. This was the case in owr example {2.1.5). Let z = 2, be the
singularity of f(z) arising from a piuch between w, and w,:

w3(2g) = wa{2,),
and let z = z; be the end-point singularity arising from
wy{zy) = A,

where again 4 is fixed. Then near z = z, the situation in the w-plane
will be as in Fig. 2.1.4¢. If now z is made to encircle 2, and return to
near #,, w; will in general move round 4 and so the situation will be
as in Fig. 2.1.4b. Hence the pinch no longer traps the contour and the
pinch singularity is not present on this Riemann sheet,

x 71 * w)
b1 * 20, g0,
(@) )

Fig. 2.1.4. A chenge in the relative position of a singubarity w,(z} that corresponds to
& change in z from one Riernann sheet to ancther. In the firab position (@) there is a
pineh of the eontour; in the second (b} there isno pinch snd no consequent singularity
in the z-plane.

It should be stressed that the arguments of the last two paragraphs
assume that the very simplest possibilities ocour, and in practice each
individual integral has 0 be examined in detail. Thus, if dw jdz = 0
in {2.1.9), though not d*w/dz?, w, will go twice round A when z makes
a complete cireuit round z;. Or in the analysis of the pinch singularity,
other w, may get in the way while 2z is encireling z,. And in either case
if 4 varies with z things may be very different.
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More than one external variable

The previons discussion generalises very easily to a function of more
than one complex variable defined by a simple integral, As an example,
consider

flz, 2y = J‘pg(z,z’, w)daw. {2.1.10}

Lxeept that the positions of the integrand’s singnlarities w, are now
generally functions of two variables z,2’, the conditions for a singu-
larity of f are just as before. Thus, end point singularities are given by
wz,2')y= A {2.1.11)
for some r, and w, and w, can produce a pinch singularity when
(2,27} = wy(z, 2"} {2.1.12)
Each of (2.1.11) and (2.1.12) defines a two-dimensionalt surface X
in the four-dimensional space of the complex variables z,2".

Fig. 2.1.5. An example (2} of how a pinch singularity of equation (2.1.2) falls off the
contour of integration € for one peth in the {2, 2')-space, whilst for another path the
pinch may be retainod as in (b).

Suppose now that (z,,z,) Is some point on the surface X that is
singular by virtue of {2.1.12}, that is at (z,, 2) the contour € is pinched
by w, and w,. Suppose now we move to some neighbouring point on X.
Then (2.1.12) is still satisfied, though the pinch in general now ocemrs
at a different point in the w-plane. That is, the pinch has moved,
dragging the contour O with it if necegsary. This situation will persist
if we move around anywhere on the surface I that is the solution to
{2.1.12) provided neither one of two things happens. The simpler of
the two things is that the pinch falls off the end of the contour G, as
illustrated in Fig. 2.1.5a. But when w, and w, are at 4 we have just
the condition for an end-point singularity. Hence it seerss that at the
intersection of the pinch surface T with an end-point singularity

T Because omch represents two equations, ons involving Re w and one Im w and
80 yields two constraints on the four variables Rez, Im z, Re 2/, Tm 2",
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surface £, the former surface can change from being singular to non-
singular. In other words, it seems that the surface X that corre-
sponds to the pinch equations (2.1,12) can be divided into singular
and non-singular parts by its intersection with the end-point singu-
larity suzface (or surfaces) Z;; on the non-gingular parts the pinch still
aceurs but the contour ' is not trapped by it, ag in Fig, 2.1.25. Notice,
however, that since % and £, are both two-dimensional surfacesin the
four-dimensional complex (z,2') space, their intersections are just a
set of points. These are not sufficient to divide X into different regions,
but to each of the points is attached a cut, since £, is usually a branch-
point singularity. So it is really these cuts that divide X into singular
and non-singular parts. The cuts, however, are arbitrarily positioned—
only their ends (namely the singunlarity surface Z,) are defined—and so
there is no unigue division of £ into singular and non-singular parts.
The division depends essentially on the path of analytic continnation
used.

This last point is illustrated by the observation that, although a
pinch may fall off the end of ¢’ when its end-point is reached, it need
not. In order to see unambiguously what happens to f{z, 2") at a branch-
point one must not pass through the branch-point itself, but take a
small detour round it. Thus in Fig. 2.1.5¢ we must suppose that when
we get near the intersection of 2 with Xy, we must temporarily leave
and take a detour round the intersection bhefore returning to X, Then
the pinch will separate a little and one can see which side of the end-
point 4, w, and w, pass. The side to which they pass will generally
depend on the sense of the detour; if one makes a detour one way round
the intersection of X and I, the result might be Fig. 2.1.5a, while for
the other way it might be Fig. 2.1.55. The latter situation llustrates
that by going a different way round (2.1.12), the end-point singularity
branch-point, the pinch is not lost after all.

Falling off the end of the contour is not, however, the only way in
which a pineh may become harmless. Suppose that the w, are the roots
of some algebraic equation

S(uw;z,2) =0 {2.1.13)

Then the pinch condition (2.1.12} is just the condition for two roots of
8 to coincide. Hence it is equivalent to (2.1.13) together with

BS-O

> 2.1.14
o ( )
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Now generally there will be further roots of 5, other than the pair
involved in the pineh. Suppose, as we move around on X, we come to
& point where a third root joins the pinch, as in Fig. 2.1.6a. At this
point, in addition to (2.1.13) and (2.1.14),

&8

G O (2.1.15)

If we move away from this point where S has three coincident roots we
are back with only a coincident pair, but it is not necessarily the case
that we have the same pair as originalty. One of the roots that origin-
ally formed the pinch may have left, leaving the other together with
the newcomer, as in Fig. 2.1.66. In this way the pinch can become

x3
/ 3
'/2_"__// 2x%
T P~
A
{2) )

Fig. 2.1.6. An examplo of how a pinch singularity may be lost by going through a
multiple pinch siteation. For the initial positions shown in {a) there is a pinch, but in
the final position {b) there is no pinch.

harmless. To see whether this actually does happen in a given continua-
tion one must again avoid the critical point in (2, 2') space by a small
detour. Again the nature and sense of the detour will be important.
This mechanism will be discussed further in § 2.8, when it is found to
arise in the particular Feynman integral which we consider in that
section,

Singularities of multiple integrals

The previous discussion may be generalised to integral transforms
that involve several variables of integration. Consider

fz) meHdwig(z,w.i). (2.1.16)

Here the contour of integration C of the simple integral case has
hecome a ‘hypercontour” H in the mulfi-dimeansional complex w;-
space, In most problems one will have the fanction f defined such that
for some part R of the real axis in the z-plane the integration region J
is some part of the real wp-space, this being possible because no
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singulsrities of the integrand g lie in this part of the real wyspace
when ze.R. The obiective is then to continue f{z) away from B.

The singularities of the integrand g(z,w,) are imagined as being
given by various equations

Sfz,w) =0 ({(r=12..)

For any value of z & given S, will be a {2n— 2)-dimensional surface in
the 2n-dimensional vomplex w,-space. When z is varied away from
R these §, will move arcound #1] one of them comes to intersect . To
avoid this, H must be digtorted away from its original real location,
much as the simple contour ¢ was distorted for the cagse of the single
integration variable. When the possibility of this distortion ceases, s0
that H becomes trapped, we are liable to have encountered a singu-
larity of f(z).

We list the cases when this happens. A proper proof needs the
use of topology; the diffieulty lies in imagining what happens in the
four {or more)-dimensional space of the integration variables. We shall
be econtent with plausibility arguments.

(@) Usually, when a singularity surface S, advances on H a distor-
tion of H away from 8, in the direction of the normal to 8, will keep
H out of the way and so will avoid the singularity. But if two singn-
larity surfaces 8, and S, say, advance on H from opposite sides and the
directions of their normals coincide, H may be trapped. The condi-
tions for this are

Sy =8y =0, (2.1.17a)
o5, o8, .
P i = 1,.,. 2,1.17
o o, +og P, 0 { s e 1) { b)

for some o, a,.

{b) Two different parts of the same singularity surface, 5, say, may
trap H. One may think of 8, becoming locally cone-like, with H
trapped at the vertex of the cone. The conditions for this are

_ a8,
T w

i

8 =0 (i=1,...,n), (2.1.18}

(c) More than two of the S, may participate. The conditions for this
are that the surfaces intersect at a point, and there is a linear relation
among the directions of their normals:

8, =8, =8, =0, (2.1.194)
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o8, a8, 88,

and e e O e g ——
al@wi+ zé?wi_}- % gw,

=0 (i=1..%). (21.195)

With n integration variables at most {(n-+ 1) of the 8, can partici-
pate. With (n+ 1) surfaces (2.1.190) is trivially satisfied.

One way to see that the conditions (2.1.19) are plausible is to
consider the comparison function

Fiz) = f Hdw1;§ T8 {2.1.20)
The integrand has singularity surfaces ocoinciding with those of
interest for g, and so these should produce the same distortions of H
in both (2.1.20) and (2.1.16). But (2.1.20) may be transformed by
Feynman's identity {1.5.8):

Fz) = EJ doey dozy dory U, 6(Za— 1) (2.1.21)

Fr)

Here the integrand contains the aingle singularity surface

in the space of the n+ 3 integration variables oy, a,, a,, w,. So the
conditions for a singularity of F are, by analogy with (2.1.18),

ab 8D
D”‘"OZE&;"aw.

T

>

which are just the eguations (2.1.19).

(d) Just as the distortions of the vontour C in the simple integral
case were not allowed to move the end-points of C, so here there are
regtrictions in the distortions allowed on the boundary of the hyper-
contour H. If we suppose that the boundary of H is specified by
various analytic equations

S,(z,w,w') = 0,

then only distortions within these manifolds are permitted on the
boundary. Sinee the normals to the 8, represent directions in which

4 EA
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the hypercontour cannot move these surfaces play their role in trap-
ping the hypercontour in a similar way to the S,. Thus we treat S,
and 8, surfaces on an equal footing in determining the singularity
equations.

To sum up, all the possibilities can be expressed together by intro-
ducing numbers «;, & and solving the equations

oS == 0, for each 1, (2.1.22qa)
(3o that either o, or 8, = 0),
&8, =0, for each r, (2.1.228)

and, for each integration variable wy,
é .
w—NW{EG""‘i'.Si'{"E(xw‘gr} =2 0, (2.1.220)
aw:i' i r

We reiterate that our discussion of multiple integrals is deveid of
mathematical rigour. We have merely aimed to give the reader
enough information to make plausible the main applications. A
rigorous treatment requires homology theory and for this we refer to
the paper by Fotiadi, Froissart, Lascoux & Pham (1964).

2.2 The Landaun equations

When the general methods of §2.} are appled to a Feynman
integral a set of equations is obtained which, in principle, determines
the location of the singularities in the complex space of the external
momentum variables p. There are two main forms of these equations,
depending on which representation of the Feynman integral is
studied. Both forms of these sets of equations were given by Landau
(19594, b) at the 1959 Kiev Conference and they are usually called the
Landau equations. These equations were also derived by Bjorken
(1959), Mathews (1059) and Nakanishi {1959). These authors used
methods having less general applicability than those based on the
techniques described in §2.1. These techniques were used by Hden
{1952} to discuss normal thresholds and in their extended form were
used by Polkinghorne & Secreaton (1960a, b) to derive the Landau
equations.

We recall from § 1.5 three different representations for a Foynman
integral, in the case when all the & internal lines of the corresponding
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Feynman graph represent spinless particles. Apart from constant
multiplicative factors these are

4 4 4
I J ﬁg}i k- iy (2.2.1)

11 (g —~m3)
asin (1.5.7), and -

N
J k.. d%, ( dcci) 3(Ea, 1)
7= 1

- 222
| Vo, b, ) (2.2.2)
as in (1.5.10), with y defined in (1.5.11) by
N
?/’(29: kyoty = 121 Gt?,(g'f ~m;“7), (2.2.3)

and lastly the result of integrating over the I independent loop
momenta k

1 /N
( il dai) 3(Ser, — 1) V-2
I=| M=L. (2.2.4)

o

The rules for writing down  and D for a given graph we described at
the end of §1.5. € is just & sum of certain products of the «, while D is

of the form . X
D = S/~ O@) S aym. (2.2.5)

Here the 2z, are the various scalar products that can be formed from
the external momenta p of the graph (including the squares of the
masses).

The integral I is a function of the z, and for physical external
momenta each z, is restricted to a certain part of the real axis. To
obtain the physical values of J we recall that each integral (2.2.1),
(2.2.2) or {2.2.4) should bhe evaluated with real hypercontour of
integration and a small negative imaginary part added to the square
of each internal mass m,;. This guarantees that none of the denomi-
nators in the three representations for / vanishes when the z, are
physical and the hypercontours of integration are real and un-
distorted.

The task of this chapter is to investigate the analyticity properties
of I when the z, ave regarded as complex variables. So we start with the
z, real and physical and the hypercontour undistorted, and then vary
the 2, into the complex space, distorting the hypercontour as necessary

4_—2
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to avoid singularities of the integrand. The conditions for the possi-
bility of this distortion to cease were given in § 2.1, and we now apply
them to each of the representations (2.2.1}, (2.2.2} and {2.2.4) in turn.

First representation

Each k-integration is infinite, so the hypercontour in (2.2.1) has
no boundary. Hence in (2.1.22) there are no §,, while the S, are just
the factors (g% — m3}. So we introduce a parameter a, corresponding to
cach of these factors and (2.1.22) gives

either g% = mi, {2.2.6a)
or oy = 0, (2.2.65)
for each ¢, together with
é ;
o, Zealai =) = 0, (2.2.7a)
4

for each loop momentum integration variable k;. Since each q is a
linear combination of the & this is just

g, =0 for each j, {2.2.70)
i

where ¥, denotes summation round the loop around which %; runs.

M
The equations {2.2.6) and (2.2.7) are the Landau equations corre-
sponding to the representation (2.2.1}.

Second representation

In the representation (2.2.2) the integrand has a single surface S of
singularity, namely i = 0, but the hypercontour now drawn in
complex (k, &) space has various boundaries §, namely o, = 0. It might
seem that o; = 1 are also houndaries, but this is not so because of the
8-funetion in the numerator. For example, in the case of three o’s the
projection of the bypercontour on to the real (2, ot,)-plane before it
suffers distortion is ag shown in Fig. 2.2.1. Tts boundaries are ay = 0,
oy = 0 and o +cry = 1; the lagt of these is just oy = 0.

We now apply the equations (2.1.22), temporarily pubting primes
on the a’s there to distinguish them from the integration variables in
(2.2.2). We get, on introducing a parameter &’ corresponding to our
singularity surface S = ¢ = 0,

either o = 0,
} (2.2.84)

oF o= 0,
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with a parameter &; corresponding to each boundary surface

S’;-a:zix(),

gither &; =0, for each '5,} (2.2.85)
or o; = 0, for each ¢ o
{221
1
) 1 “
Fig. 2.2.1. The undistorted hypercontour in o, o, space shown
in the real «,, o, plane.
g ., N )
Also £ [+ &) =0, foreachd,
7 ’ o (2.2.8¢)
that is @’ 5= 0, for eachj,
a r dd .
and o [e'r+ 3, &her,] = 0, for each 4,
: a” (2.2.8d)
that is a’i+c2{- = (0, for each i,
dot;

We discard the possibility o’ = 0 in (2.2.8a) as being trivial so that
(2.2.84) and (2.2.8¢) together are equivalent to

‘f/f = 0,
o : (2.2.9)
va—Ef = 0, for each j,
while (2.2.85) and (2.2.8d) together are equivalent 1o
etthey o, =0, for each i,
2.2.10
or % = 0, for each <. ( )
oot

But these equations are precisely the same as (2.2.6) and (2.2.7)
derived from the first representation.
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Third representation

In the representation (2.2.4) the o are the only integration variables,
The only surface § of singularity of the integrand is D = 0, while the
boundaries of the hypercontour are again o; = 0. Hence the analogues
of (2.2.9) and (2.2.10) are

D=9,
" o

and either c.z.% 0, (2.2.11)
oD

or 0, for each i.

doe,;
That these equations are essentially equivalent to (2.2.9) and (2.2.10)
can be seen from (1.5.26) and (1.5.27), except that further investiga-
tion is required when {7 = 0. This mafter is taken up again in §2.10,
Notiee that, since D is 2 homogeneous function of the 2, Euler’s
theorem gives abh
Hence the first of the equations (2.2.11) is automatically satisfied when
the others are. Further the homogeneity of D allows us o ignore the
$-function in the numerator of the representation (2.2.4). For if a set
of o is found that satisfies (2.2.11) and such that their sum is v 0, if
each is divided by » they will etill satisfy (2.2.11) and now also the
requiremertts of the d-function.t But it is never necessary to go
through this explicitly. Similar remarks apply to the Landau equa-
tions (2.2.9) and (2.2.10) derived from the representation (2.2.2),

Leading and lower-order singularitics

Referring to (2.2.6) we see that in the configuration that produces
the singularity, either each internal momentum iz on the mass shell
or the corresponding o is zero. In the latéer cage the momentum g; does
not appesr in the other Landau equation {2.2.70) and the corre-
sponding mass m, is irrelevant, so that the presence of the internal line
has no effect other than on momentum conservation. Hence exactly
the same singularity appears in the Feynman graph obtuined from the
first by contracting to points the o, = 0lnes. The singularity of a given
graph corresponding 0 no @, = 0 lines, that is to all the lines on the
mass shell, we call the leading singularity for the graph, while those
corresponding to o; == 0, so that they are shared by the contracted
graphs, we call the lower-order singularities for the graph.

T The ease » = 0 will srise in §2.10.



2.2] LANDAU EQUATIONS 55

If the Feynman graph were regarded as an clectric circuit we should
say that o; = 0 corresponds to the line ¢ being short-circuited. The
eleciric circuit analogy has been carvied much further, by Bjorken
(1959, T. T. Wu (1961} and Boyling {1963, 19644). Here we note
only the simplest aspects. The Landau equations (2.2.6) and (2.2.7)
are formally the same as the Kirchhoff laws for an electric network
identical topologically with the Feynman graph. In the clectric
civcuit the current in the ¢th line is ¢; and the resistance is ;. Condition
(2.2.6) tells us that unless the line is short-cirenited the current must
have a numerical value m,,

ANV S

(@

P S

1G] )

Fig. 2.2.2. Bxamples of reduced geaphs {or diagrams) giving lower order singularitios
coming from the Feynman integral for the sguare diagram.

To find the complete set of lower-order singularitics for a given
graph, draw all the possible contracted graphs by making all possible
sets of contractions of internal lincs. The leading singularities for the
contracted graphs are then the lower-order singularities of the original
graph. Thus the lower-order singularities of the graph in Fig. 2.2.24
are the leading singularities of the graphs in Fig. 2.2,25, each of which
corresponds to one contraction, together with those in Fig.2.2.2 ¢
corresponding to two contractions. We do not, in this case, make more
than two contractions, since the Feynman integrals for the resulting
graphs, such as Fig. 2.2.24d, have trivial analyticity properties.

Nature of the singularities

Landau (195958) used the representation {2.2.2) to determine how a
given Feynman integral behaves in the neighbeorrhood of its leading
singularity. By using the representation (2.2.4), Polkinghorne &
Sereaton (19605) extended the analysis to include lower-order
singularities.
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Suppose the Feynman graph under study has N internal lines, and
consider the singularity corresponding to » contractions where
0 < v < {N—1). We may label the « so that (2.2,11) reads

D=0,
a; =90, i=01,...,» (2,2.12)
2

=0, (=p4+l,r+2, ..., N
da;

Now perform the oy-integration, which is trivial because of the
d-function in the numerator of the integrand in (2.2.4). This has the
effect of changing Iz, oy, &, ... 2y) toO

Dz agotg o ayg, 1=ty — g — .o —ayq) = D'{z; oy, ...y y) say.

The equations (2.2.12} become

Dy =0,
=0, i=0,1 ..., {2.2.13)
22

=0, t=p4lLrs2 ., N1,
dor;
Now D’ is not homogeneous, so that the first equation of (2.2.13) is
not automatically satisfied when the others are. In fact, if the solution
to the other equations is, for a given point z,,

g = Tylz ),
the equation of the surface of singularity of the Feynman integral is
just D'z, 8ylz,)) = O, (2.2.14)

In the neighbourkood of a point 2, that Hes on (2.2.14) we expand IV
by Taylor's theorem, retaining only the lowest terms;

: o z _ e
D'z gy = D'z @)+ 2 (=)t
i=1 oy oy
1 N1 e ry
= . - 2.15
-+ 2 j,k:zv-i—] (a'J aJ} (a’k a’k) aaj aak s (2 )

To find the nature of the singularity, it will be sufficient to use this
approximation for D and also, although we are only concerned with
some finite segment of hypercontour in the neighbourhood of & = &,
the singular part will not be changed if we let each a-integration run
from — oo to oo, provided the power (V — 21) of the denominator in
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(2.2.4) is sufficiently large. Explicit integration then gives, apart from
variotis factors, the result that the singularity is the same as in the
expresgion

[D'(z,; @z )], (2.2.16)

provided y = N~y 41720 > 0, If ¥ < @ the infinite extension of
the hypercontour is not valid. However, then we may replace D' by
D’ +7 and differentiate the integral with respect Lo # a sufficient
number of times to increase the power of the denominator so that the
infinite extension of the hypercontour becomes valid. The result of
the integration may then be integrated again with respect to 5. So it
emerges that when v in (2.2.16) is a negative integer, the result (2.2.16)
i to be replaced by 7y 2 W ilog 1, (2.2.17)
When v is negative but fractional (half-integer) the result (2.2.16)
again holds.

For most graphs v is negative and then the singularity is of & square
root or logarithmic nature according as N — v (the number of lines in
the contracted graph or ‘Landau diagram’ of the singularity) is even
or odd.

Care is required in applying these results to the complete amplitude
because different Landau diagrams with different values of y may
have the same Landau curve, e.g. those in Fig. 2.2.3 both have
& = {4m)? as leading sincrulcm‘ty but differing y's. In fact ¢ = (nm)®
is two sheoted only if n =

X S

Pig. 2.2.3. s={4m)* graphs,

2.3 'The triangle graph

We are now in a position to consider the singularitios corresponding
to one of the simplest Feynman graphs, that of Fig. (2.3.14}. Here the
lower-order singularities are the leading singularities for the three
contracted graphs in Wigs. (2.3.15, ¢ and d}. The latter singularities
are known as normal thresholds; we shall see that they correspond
exactly with those singularities whose presence we have deduced
directly from unitarity (see §1.3 and the discussion following (1.3,5)).
It is not guite so simple to discover from unitarity the existence of the
triangle graph’s leading singularity (sce §4.11), so this singularity is
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known as an anomaelous threshold. Anomalous thresholds were first
investigated by Nambu (1957) and by Karplus, Sommerfield &
Wichmann (1958), whose methods were the forerunners of those
developed by Landan (19595), but which relied on the simplicity of the

31
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Fig. 2.8.1. The triangle graph and the three contracted (or reduced) graphs that can
he obtained from it.

integral under discussion. The singularities were alse studied by
Kallen & Wightman (1958), who explicitly integrated a certain
derivative of the Feynman integral. The problem was first approached
with the techniques described here by Fowler, Landshoff & Lardner
(1960).

The analysis consists naturally of two parts; the first is to find the
equation of the surface £ which may be a singularity of the integral,
and the second to determine which parts actually are singular on a
given Riemann sheet. We discuss the fivst part of the problem using
first the (g, x)-form (2.2.6) and (2.2.7) of the Landau equations, and
then again using the a-form (2.2.11). ¥or the second part it is simplest
to work with the a-representation (2.2.4) of the Feynman integral, and
80 we shall restriet our considerations to this.

For the graph of Fig. 2.3.1a, with the momenta as labelled in the
figure, there are three independent scalar invariants z that may be
formed from the external four vectors p. We take these as

2=, 2=pd 25=ph (2.3.1)
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All other scalars that may be formed from the p may be reduced to a
combination of those in (2.3.1) when use is made of ithe encrgy-
momentum conservabion relation
3

2 p=0. (2.3.2)
Of course if each of the external particles is physical, that is on the
mass shell, each of the z; would be constant and equal to 3% Here,
however, we shall suppose that ab least one of the p, is off the mass
shell. This will be the case when one constders a form-factor, or when
more than one external line is attached to the vertex asin Fig. 2.2.2b,
In the latter situation the form of the Feynman integral, and therefore
of the singularity structure, is exactly the same, provided the corre-
spoending p is regarded as the total four-momentum coming into the
vertex.

First form of the Landaw equations

Consider first the leading singularity, for which the Landau equa-
tions {2.2.6) and (2.2.7) read

gt =m} for each ¢, {2.3.3)
and Sog; = 0, (2.3.4)
i

The summation in (2.3.4) normally rans round a given internal loop of

the graph, but here there is only one such loop and so the sum is over

all 7. In this summation it is necessary to make the vectors ¢; point the

same way all round the loop. '

Multiplication of (2.3.4) by g; yields the three simulianeous

equations - . . .
Soylgq) =0 (=123 (2.3.5)
k3

[where (g, . ¢;) denotes a scalar product of the four vectors]. These have

a non-trivial solution for the o if and only if the 3 x 3 determinant

dot{g;.q;} = 0. (2.3.5)

However, energy-momentum conservation at the (g;,q,. ;) vertex

gives o
Ph =g~k

2 = mi+mi—2(q - 4, (2.3.7)
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where (2,7, k) is a permutation of (1, 2, 3). So (2.3.6) and (2.3.7) yield
the eqguation

] Lol =~z Yz
L= =Yy 1 —Ym | =0, (2.3.8)
~ Y — Y2 1
where we have defined
o mzk—m%—mﬁmmqi.qj
Yo = Ygu = Smgmy 2y (2.3.9)

with (7,7, k) a permutation of (1, 2, 3). The surface ¥ ia the surface in
complex 2y, z,, z; space on Which the leading singularity can be found.
We postpone the task of deciding on which parts of I it actually 4s
found.

We may discover in a similar way the equations of the surfaces
corresponding to the lower-order singularities. For example, the «,
contraction, eorresponding to the leading singularity of the graph in
Fig. 2.3.15 is given by the cquations

“=0 2.3.10

g3 = m3, é"-”—“m%,} (2310
and again (2.3.4), in which the first term of the sum will no longer
appear because of a; = 0. Multiplying (2.3.4) in turn by ¢, and ¢, now
vields two simultaneous equations for a, and «,. The condition for
these to have a solution reduces to

£ 1 _y
Iz, = B
! — Ysa 1
or 2y = {1y + 7ma)% (2.3.12)

=0 (2.3.11)

We may obtain the surfaces Z, and £, corresponding to Figs. 2.3.1¢
and 2.3.1d by cyclic permutation.

Dual diagrams

One may solve the equations (2.3.3) and (2.3.4), and (2.3.4) and
(2.3.10) by geometrical methods (Landau, 1939a,b; J.(C. Taylor,
1960). We draw the vector diagram for internal and external momenta.
Because of the encrgy-momentumn conservation law (2.3.2) the external
veetors p will form a closed triangle. The squares of the lengths of the
sides of this triangle are just the three z,. The internal momenta are
drawn so that energy-momentum is conserved at each vertex of the
graph; hence the complete vector diagram, known in this context as
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the dual diagram, is as drawn in Fig. 2.3.2. The Landau equation
(2.3.4), which says that there is o linear constraint among the three
vectors g, requires the g, to be drawn in a plane. Hence the whole
diagram is drawn in a plane. (Unfortunately, in general, the corre-
sponding geometrical constraint is not usually so simple as for this
graph!) For the case of the leading singularity, the lengths of the

Py

Fig. 2.3.2. The dual disgram for the triangie graph. Tho length of each side is given
by the mass of the corresponding particle.

vectors ¢, are given as the m,. This imposes a single constraint on the
shape of the external triangle; this constraint is just the equation of
the desired singularity surface . The constraint takes the form

b, +0y+ 6, = 2, (2.3.13)

where 8, is the angle between the lines that represent ¢; and ¢ in the

vector diagram. In fact A— (2.3.14)

and (2.3.13) and (2.3.14) are together equivalent to (2.3.8).

The lower-order singunlarity Z, is found by relaxing the condition
that ¢% = m} and replacing it by o, = 0. Then the Landau equation
(2.8.4) requires g, and ¢, to be linearly related, that is they are parallel.
Hence the point O in the vector diagram (2.3.2) lies on the side of the
triangle that represents p,, and we see at once that

pi = (mgkmy)?,
just as in (2.3.12).

In this discussion we have talked of the vectors as if they were
Euclidean. In fact one may always pretend that the vectors in a dual
diagram are Euclidean, provided it is recognised that they are liable
to have complex components. In other words, the distance between
two points having coordinates ,, v}, where o, § = 1,2,3, 4, Is

[y —@])2+ (g — )2+ (g — 23)2 + (y — 23)2 2,
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but the 2,, 27 may be complex. All the usual rules of geometry apply,
except that the trigonometric functions may take any values; for
example, cos §; in (2.3.14) need not lie between —1 and +1 nor even
be real.

More details of dual diagram constructions are given by Okun &
Rudik (1960}, but see Landshoff (1960).

Second form of the Londaw equations

We now derive the previous equations again, using the other form
{2.2.11) of the Landau equations. According to the rules givenin § 1.5
the denominator D(p,a} of the Feynman integral after the internal
loop momenta have been integrated out is, in the present example,

3
D= a2a321+a3a322~i~o¢1a223——( 3 aim%) oty +ag+ag).  (2.3.15)
i1

1t is best not to simplify D by using the §-function condition Xa = 1,
since this spoils its homogeneity. The Landau equations 8D/dx; = 0
for the leading singularity give

3
gy + g Zg —mE(Ta) — 3 aymi = 0, (2.3.16)
i1

together with the two equations obtained from this by permuting the
suffixes. The determinantal condition that these three equations give
a non-trivial solution for the « can again be reduced to (2.3.8). The
lower-order singularity surfaces Z,, X, and Xj are obtained similarly,
by putting the appropriate «’s equal to zero. They correspond to the
principal minors of the determinant.

Shape of the singularity surface

The equation £ = 0in (2.3.8) involves three complex variables y or,
equivalently, the three z. It is rather diffieult to have a clear picture
of this six-dimensional space, so we henceforth consider the restricted
problem in which one of the y (or 2) is fixed at a real value. We may
suppose that it is yy that isfixed. From (2.3.8} we have, as the equation
for T, ‘

Y+ s+ Yiat 2y1a1sYea— 1 = 0. (2.3.17)

In the real (¥, ¥5)-plane, that is in the plane in four-dimensional
complex (4,9, ¥15)-space on which Imy,, = Imy,, = 0, this equation
describes a conic. We distinguish three cases:
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(@} |#2] < 1.Inthis casethe mass M, corresponding to the external
momentum p,, has been fixed such that each of the masses M, m,, m,
is stable against decay into the other pair:

My < mytmg; mg < My+mg; mg < My 4m,

Then the conic is an ellipse, as drawn in Fig. 2.3.3a. The cllipse is
mscribed in the square formed by the lines y, = +1, gy = +1;
according to (2.3.11) these pairs of lines are just Z; = 0 and I, = 0,
the lower-order singularity equations.

() ¥es < =1, s0 that M, is stable again decay into m, and g but
one or both of mg, m, is unstable against decay into the other pair.
Then the conic is a hyperbola, as drawn in Fig. 2.3.35. It still has the
same horizontal and vertical tangents.

{¢} Yaq > 1, 8o that B, is wnstable against decay into the other pair,
my and my. Again we have a hyperbola, with the same horizontal and
vertical tangents, as shown in Fig, 2.3.3¢.

The above description only deals with the real section of the swface
&, To draw its complex parts requires another two dimensions; to get
over this difficulty it is best to use the searchline method of Tarski
(1960, Imagine a line

g = A+, A, p real, (2.3.18)

drawn in the real (yy,,%,,) plane and intersecting the ellipse in
Fig. 2.3.3a. If Aiskopt fixed and pisincreased the line moves upwards
in the direction perpendicular to itself. In the process the two real
intersections with the conic eventually coalesce and after that are no
longer real; they have become conjugate eomplex points.f. It is
evident from (2.3.18) that the imaginary parts of their coordinates
have the same or opposite signs according as A > 0, or A < 0. Hence
we see that attached to the real are 4B of negative gradient in
Fig, 2.3.3a there are two parts of complex surface running off to the
top right of the figure; on one of these parts

Imy, >0 Imy,<0, (2.3.19qa)
and on the other Imy,, <0, Imy, > 0. {2.3.198)

Similar parts of complex surface are attached to the negative-gradient
arc C'D), but these parts run down towards the bottom left of the

1 Note that every complex point Hos on ono and oniy one soarchiine, so that nothing
ia missed.
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Fig. 2.3.8. The real section of the Lundau sarface I for the trianglo diagram drawn in
the real (Y9, ¥1a)-Plane, (o) when |yl < 1, (b) when vy, < —1, (¢} when yy, > 1. The
paris shown by heavy lines correspond to positive « {see the discussion following
equation 2.3.26).
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diagram. Aftacked to the positive-gradient arcs 4C, DR, on the other
hand, are parts of surface on which, either

Imy, >0, Imy, >0, (2.3.204)
or Imy, <0, Imy, <o {2.3.205)

In Fig. 2.3.3b the semi-infinite positive-gradient ares Eco, Fouo, have
attached to them complex surfaces of the type (2.3.20); the same
complex surfaces are nttached respectively to the arcs Goo and Heo.
On the other hand, the negative gradient ares EF and GH are con-
nected by two parts of complex surface of type (2.3.19). In Fig. 2.3.3¢
the situation is similar, except that the types are reversed because the
gradients of the real curve are different,

Phystcal sheet singularity properties

Because the variables y are linearly related to the z by the definition
(2.8.9), the picture in the real (z,, z;) plane will be very similar, except
that the square formed by the horizontal and vertical tangents is now
a rectangle. The location of the physical region of the variables z will
depend on what lines are attached to the external vertices, However,
wherever the physical region is, we have said that the appropriate
integration a-space hypercontour in that region is the real undistorted
one. Swmall imaginary parts —ie are attached to the internal masses
w; to guarantee the possibility of this. Now when the value at which
z, iz fixed is real, and the @ are on the original undistorted hypercontour
of integration so that they are real and positive, the explicit form
(2.3.18) for D gives

Im D s agory Imay + o Im 2y 4 (Za,)2 6. (2.3.21)

This does not vanish for Im z, and Imz,  0; hence the integral may
immediately be continued throughout this region of complex (2, z)-
space with no danger of the singularity D = 0 of the integrand foreing
a distortion of the hypercontour. This proves that the physical values
of the integral are boundary valuest of an analytic function, the real
boundary heing approached from the direction Tmz,, Tmzg »04.
Having reached this conelusion, we may now dispense with the —ie
and let the internal magses be real; the —de were merely put in to tell

T 'The tern ‘boundary value’ is a survival from the days when it was thought that
the analytie continustion could not boe teken ecross the real axis, In fact tho real
axis is not & natural boundary of the analytic function and, provided the discrete

points of singularity aro avoided, we may vontinue into tho lower-half of the com-
plex z, and z, planes.

5 A



66 TRIANGLE GRAPH 2.3

us which is the correet limit on to the real boundary, to achieve the
physical value of the integral.

Now the last term in (2.3.21) is missing so that we are no longer
sure that [} &= 0 when 2, and 2, are real, This leads to the possibility
of the integral having singularities on the real boundary, though still
not of course in the region Imz,, Imz, > 0. However, we can see from
{2.3.18) that if the real value at which z, is fixed isless than (m, +mg)?, D
will not vanish for real positive a if 2, and 2, are negative.} So we may
continue the integral from the physieal mit fmz, = Imzy = 04, via
the region Imz,, Imz, > 0, and down to the bottom left-hand part of
the real (z,, z4)-plane, without any singularity, D = 0, of the integrand
forcing a distortion of the hypercontour, Next we move z,, 2, towards
the top right of the real (z,,2,)-plane. Since now they are real, the
situation in a-space must be symmetrical about the real hypercontour,
that is, any part of the singularity surface I = 0 lying to one side of
the hypercontour is matched by a complex conjugate part to the other
side. Eventually, as we move towards the top right of the real (z,,z4)
plane some part of D = 0 will come down to interseet the hyper-
contour, together with its complex conjugate part. Then the hyper-
contour eannot be distorted away from all singularities, because if we
try to move it away from one part of D = 0 along the normal to that
part, we encounter the complex conjugate part. Hence we are liable to
have reached a value of 2,, 2, for which the integral is singular; we are
somewhere on the leading singularity surface X = 0 or one of the lower-
order singularity surfaces X, = 0 and X, = 0. However, since the
trapping oceurs without the hypercontour having been distorted from
its original position, it is only the parts of X, Z,, X4 that correspond to
positive « that are relevant at this point. We will prove later (following
equation 2.3.264, b) that these are just the parts drawn in heavy line
in Fig. 2.8.3a. 8o the aro ACDE and the tangents at (' and D in Fig.
2.3.3¢ are not singularities of the integral if we approach them from
the physical limit via the region Im z,, Imz; > 0, If, however, we move
t6 approach them via a different route, we might well find them to be
singularities; we should then be on a different Riemann sheet.

Single variable analyticity properties

To clarify what we have discovered so far, we now fix z, at a real
value, and [ix z, so that jy,| < 1. We draw again in Fig. 2.3.40 the

1 This is evident for z; <0, but for § < 2, < (mg-+my)? some algebra is reguired
(compare with equation (2.4.16)}).
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lines in Fig. 2.3.3a that are singular when we approach them by the
route specificd above. We have also drawn, in dotted line, a part of
the ellipse that we have discovered not to be singular. Suppose first
that z, is fixed at the real value corresponding to the line L; in
Fig. 2.3.40. This intersects the singular part of £, at N, given by

2,3.12
( ) g = {7y + iyt

Re o
mmmmm e
(a}
Y ..
B
R ~— Re z,
23
Xy — {&}
Y. o
X
N ; ¥
s e )] Lg*—---kn_*::”::fa“ (g

Fig. 2.3.4. (a} The real soction of 1 (in the resl z,+, 2;-plane) for positive o (continuous
lines}; & part not singuler on ilie physical sheet is shown by a dotied line, The broken
lines Ly, Lg, [y demote sections with z, fixed and real of the complex space for which
the eorresponding eoraplex zp-plene is shown in Figs. {8}, (¢} and (4}, {¢) respectively;
whore {d) corresponds t0 L, moving to Ly &s in {f}, and {¢} to the path in (g).

This is called the two-particle normal threshold in the z,-channel. Tt is
a branch-point, so it is drawn with a cut attached to it, by convention
running along the real positive axis in the complex zy-plane, as in
Fig. 2.3.4b. This convention defines the Riemann sheet that is known
as the physical sheet. In this figure we have also drawu the point X,

3-z
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which is the intersection of IL; with the non-singular arc of L. We
assert that if we were to go from X in Fig. 2.3.45 round N, so that we
pass through the cut on to another Riemann sheet, and back to X,
we should now find X to be a singularity. To prove this, consider
what happens when we move I, upwards, to the position L,. In the
zg-plane, first X moves towards N, and coincides with it when L,
passes through 4. Itis convenient to avoid this by making z, slightly
complex, so that L, does not pass through 4. Then X will move round
N; the sense in which it moves round depends on whether we give 2,
a small positive or negative imaginary part to make I, avoid 4.
After L, has passed 4, the Intersection X moves back away from N
again, and when I, has become L, we have the situation of Fig. 2.3.4¢.
Now, however, X represents an intersection of L, with the singular
are of X, so in Fig. 2.3.4¢ X represents a branch-point on the physical
sheet with a cuf attached. Because, in the transition from Fig. 2.8.4b
t0 2.3.4¢, X moved round N, and so passed across the cut attached to
N, we conelude that this braneh-point has actually emerged from the
neighbouring Riemann sheet of the branch-point N. That i, if in
Fig. 2.3.4b we had gone through the cut attached to N, we should have
found that X represented a singularity. This singularity has, in
Fig. 2.3.4¢, emerged on to the physical Riemann sheet, trailing its
cut behind it. Notice that the sign given to Im z, to avoid 4 makes no
difference to the final configuration of singularities in Fig. 2.3.4¢,
because there is no fixed branch-point in the z,-plane with equation
%y == %4, where z4 is the z,-coordinate of 4 (though see below). Inone
case the branch-point X emerges from the Riemann sheet reached
from the physical sheet by going clockwise round N, and in the other
from that reached by going anti-clockwise round N, but the net
result is the same.

In Fig. 2.3.4¢ we have also drawn the point Y, which is the inter-
section of L, with the non-singular are of Z. If we now move L,
upwards, X and ¥ approach each other and coincide when T, reaches
X, and when [, has passed X, they move off in complex conjugate
directions. Since neither X nor Y passes through a cut in the process,
X is still singular and trailing its cut after it, while ¥ iIs still non-
singular. To decide whether X or Y goes into the upper half-plane, we
again have to avoid the critical configuration by temporarily giving z,
a small imaginary part to avoid L, coinciding with Z,. For one sign of
the imaginary part, X will move into the upper half plane, so that
when L, reaches Ly we have the situation of Fig, 2.3.44; for the other
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gign X moves into the lower half plane and we have the sitnation of
Fig. 2.3.4e. Unlike in the previous case, these two possibilities are
plainly very different. This is because £, is a fixed branch-point in the
z,-plane and going round different sides of this branch-point with the
variable z, gives different singularity structures. The two possible
paths in the z,-plane to get from L, to L, are sketched in Figs. 2.3.4f, g;
here N represents the X, branch-point. Since we recall that our
integral is not singular in the region Imz, Tmz; > 0, the path of
Fig. 2.3.4g must be the one that corresponds to Fig, 2.3.44, 5o that
Fig. 2.3.4f corvesponds to Fig. 2.5.4e.

Singularity properties of the complex: purts of

Consider now the singularity properties of the various complex
parts of £ that sprout from the four ares BD, AC, CD and A8 in
Fig. 2.3.3a. The two complex conjugate parts attached to 1) stretch
off to the bottom left of the figure, into the region where Rez, and
Rez, < 0. In this region Re D does not vanish for undistorted hyper-
contour of a-integration, so this region must be free of singularities on
the physical sheet: we can continue our integral on to this part of ¥
without being forced to distort the hypercontour. An alternative way
to see that these parts of & are non-singular is to notice that they are
connected to the real are €D, which we already know is non-singular,
by a path that lies entirely in X and does not cross any cut (since all the
cuts have been drawn stretching off in the direction Rez » 0}, and we
decided in: § 2.1 that it normally required a cut to divide & singular part
of £ from a non-singular part. In a similar way, the two complex
conjugate partes of & attached to the real are AC are non-singular,
since that arc is non-singular (since it lies in a region where D < 0 for
& > 0) and we arc again able to connect every point on these parts to
AC by a path lying on X and not passing through a cut. In any case,
since AC has positive gradient one of the attached parts of complex
surface lies in the region Imz,, Tz, > 0, which we know to be free of
singulazity. The other lies in Imz,, Imz, < 0, which region we can
easily show is also free of singularity throughout. This is becanse we
have already seen that for z,, 2, real and to the lower left-hand side of
the arc 4B the integration may be performed with real, nudistorted
hypercontour. So if we start at some real point (z,. z;) in this region and
continue to some complex point (z;, z3), the distortion of hypercontour
forced on us, if any, will be just the complex conjugate of that forced
on us if we continued instead by the complex conjugate path to the
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region € of complex z-space is the same as that in the complex
conjugate region (J, provided we continue from @ to ¢ via the
‘safe’ region of the real (z,,%,) plane to the left of and below the
arc AB.

Exactly similar considerations apply to the two complex conjugate
parts of L attached to the arc BD; each is non-singular. However, the
parts attached to the are AE are singular. This is becanse 4B is
singular and they are not separated from AB by a eut. They lie in the
regions

Imz/Imz, < 0,

of complex z-space and are found using real searchlines of negative
gradient above and to the right of 4B. To get from these parts of &
to the neighbouring, non-singular, complex parts it is necessary for
either Im z, or Im 2, t0 change sign; one must either pass through the
eut attached to X,, defined by

zpreal;  (my+mg)? < 2, < 0, {2.3.224q)
or that attached to %; and defined by
ggreal; {my+iny)? € 2, < 0. (2.3.220)

Continuation in 2z,

We recall that so far we have been discussing the situation where z,
is fixed at a real value such that figure (2.3.3a} is applicable, that is
Jras| < L.

Suppose wo now vary z,, keeping it real. Then the ellipse in Fig.
2.3.3a changes shape continuously. So long as we encounter no fixed
branch-points in the z,-plane, we can say that any point of X that does
not pass through & ent retains its singularity properties. Hence, since
analogy with z, and z; tells us that the only fixed branch-points in the
variable z, is the normal threshold

By = (my+mg)> OF Ygg=+1, {2.3.23)

the general sitnation will be much the same so long as the diagram in
¥ig. 2.3.3a applies. This is the case for ly,g| < 1, or

(my—mg)® < 2y < (my+mMy)%,

which is the situation considered above.
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If we now decrease 2, past the value {#, —m,)? the ellipse degenerates
into a pair of straight lines passing through the intersection of the
normal thresholds, and then opens out into the hyperbola of Fig.
2.3.3b. In this process the complex part of X that was singular, the
part attached to AB, has shrunk away to nothing. In fact now no
complex part of X is singular. For, as we prove below, no part of the
bottom left-hand are of the hyperbola corresponds to positive «, and
80, by arguments exactly parallel to those we used above, no part of
it is singular. But each complex part of X is attached to some part of
this arc, as can be seen by the searchline argument. For example, the
part attached to the arc Foo is also attached to the are Heo,

But although no complex part of 2 is singular on the physical sheet,
the real are £ F is singular if we approach it from the correct complex
direction of the physical sheet. Since the complex part attached to it
lies in the region Im 2,/Tmz, < 0, (2.3.24)
and is not singular, the are EF cannot be singular if we approach it
from this direction. However, it is singular if we approach it from the
direction Imz/Imz, > 0. (2.3.25)
Thig is because the arc corresponds to real, positive o and, as we have
said before, in the region (2.3.25) of complex «-space we have an
undistorted hypercontour, so that if we come down from this region
on to the real platte a critical configuration of the singularity surface
D = 0 is relevant when it ocours for real, positive a. If we go into the
region (2.3.24), however, we have to distort the hypercontour away
from its original position and a critical configuration oceurring in its
original, undistorted position need no longer be harmful.

If we now increase z, above the value {m,+my)? we arvive at the
hyperbola drawn in Fig. 2.3.3¢. The situation is now rather different,
in that ne real part of the real (2, z,}-plane is “safe’. Thus, although we
can still see from (2.3.21) that [} == 0 when the hypercontour is un-
distorted and Imz,, Imzg > 0, it is no longer true that D < 0 when
the hypercontour is undistorted and z,, z; ave real and negative. So if
we eross from the region Im z,, Tmz, > 0, to Iz, Tma; < 0, we have
to distort the hypercontour and no longer arrive at the complex con-
jugate situation. The reason for this asymmetry is that we have to
decide which side of the normal threshold z;, = (my+my)? we should
pass as we increase z,, and the correct choice for the physical ampli-
tude is in fact to go to the upper side of it. For we can see from
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(2.3.21) that if we go to the lower side of it, so that Im 2, < 0, Disliable
to vanish and foree a distortion of the hypercontour. We should then
not be able to arrive at the physical boundary value; Feynman's —de
was put in just to avoid the need to distort the hypercontour when we
calculated the physical boundary value.

Since our subsequent discussion will always be of examples where
there is a ‘safe’ region in the real plane, we shall not discuss further
the case of Fig. 2.3.3¢.

Positive o

The parts of the singularity surfaces that correspond to real,
positive @ are drawn in heavy line in Figs. 2.3.832 and 2.3.36. The
values of the « corresponding to any point on X or on the lower-order
surfaces Z; may be found explicitly from the Landau equations such as
(2.3.16), but it is easier to use the dual diagrams. Thus, for the lower
order surface Z, we had the point O in Fig. 2.3.2 on the side p, of the
external triangle, with & = 0, (2.3.26)
A+ gty = 0. (2.3.26b)
The point O lying on p, leads to the two solutions

Zy = Py = (gt my)?

Evidently for the (my+m,)* solution the vectors ¢, and ¢, point in
opposite directions, so that (2.3.264) leads to positive oy and a,,
while for the {m,—m,)? solution g, and ¢, point in the same direction
and o, o, must be of opposite gigns.

Having decided in this way that the normal thresholds

7y = (mgtmy)?,  2g = (my+my)®

correspond to positive o {with respectively a, and a, zero), we can see
from continuity that the arc AB in Fig. 2.3.3a and the arc EF in
Fig. 2.3.3b must correspond to all the & being positive. This is because
L and X, and similarly Z and X;, share the same values of the « at
their contact, as is evident from the dual diagram. At 4 on the ellipse
in Tig. 2.3.8a we have o, = 0, 30 on the are AC we have oy, oy > 0,
2y < 0. At C we have a, = 0, 50 on the arc CD we deduce &, > 0, a,,
ey < 0. Similarly, on the are DB we find, since oy = O at I, ay, 0, > 0
and a, < 0. So the arc 4AF is the only part of the ellipse that corre-
sponds to positive o and so, by our previous arguments, it is the only
real part of the ellipse to be singular on the physical sheet. In terms of
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the dual diagram, Fig. 2.3.2, the condition for positive o is that the
point O should be #nside the external triangle. Hence the are 4B
corresponds to

g+l 2z, Ou+Oyzm Oy+0,2m7, (2.3.27)

where the ¢ are defined in (2.3.14} ag the angles between the lines
representing the internal momenta ¢.

24 The square graph
Chovee of variables

We consider now the fourth-order single-loop graph of Fig. 2.4.1,
with the momenta labelled ag in that figure. We suppose that each
external line is on the mass shell

pi=M} (i=1,2,34}

5 J25

k!

[ S 74 gy e

/ 93 Ps
2 ?
$

Fig. 2.4.1. The squars Foynman graph.

so that the independent scalar products 2 of the external momenta,
of which the Feynman integral is a function, may be taken as s and ¢,

§=(py+p® = (P +P4)2:} (2.4.1)

E={py+p* = (Pt pa)®

The definition of these variables is the same as we adopted in (1,3.16);
the third variable 4 defined there need not be used here, since it is
dependent on s and ¢ through the relation

s+t =3 M, (2.4.2)
i
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which is derived from the cnergy-momentum conservation relation
Ep; =0, (2.4.3)

and the mags-shell condition.
It is ugeful again to define variables ¥, as we did in (2.3.9) for the
triangle graph:

Yy =— gi.%. = Yy (2.4.4)
)

Then, since the external masses M, are to be fixed, vy, Yym, Yagr Yar- will
be fixed, by virtue of the relation

] 2
M~ mi—mi

. 2‘ “DH
Y1 Syt {2.4.5)

and three similar ones obtained by cyclic permutation. On the other
hand, y,, and y,, vary with ¢, £

8 —mE i t—md i
?124 e yls . et e
2mg gy

e (2.4.6)
The surfaces of singularity
The equation of the surface Z, in four-dimensional complex (s,#}-
space, on which the leading singularity may be found, can be obtained
in more than one way, as in the case of the triangle graph. The dual
dagram is drawn in Fig, 2.4.2, The external vectors p form a closed
quadrilateral, because of the energy-momentum conservation condi-
tion {2.4.3}, and each is of a definite length M which we have fixed. To
get the leading singularity each internal line ¢ must be put on the
mass shell @ = m?, (2.4.7)
and also there must be a set of parameters o such that
Satyq; = 0, (2.4.8)

as in {2.2.8) and (2.2.7). The latter condition, being a linear relation
among four vectors, requires those four vectors to lie in a three-
dimensional subspace of the four-dimensional Lorentz space. This
means that the whole dual diagram must be drawn in a three-dimen-
gional space. This places a single constraint on the shape of the
quadrilateral 4 BCD, which yields an equation relating the lengths
AC and BD of ite diagonals. These lengths are just s and 4/t respec-
tively, and the constraint i just the desired equation of the surface Z.
It may thus be found geometrically.



2.4] SQUARE GRAPH 75
Alternatively, we may multiply (2.4.8) by each of the ¢; in turn:

Yougeg; =0 {j=1,2,84), (2.4.9)
1
and write down the condition that these four simultancous linear

equations have a solution with the o not all zero. If we use (2.4.7) and
the definitions (2.4.5 and 2.4.6), this condition reads

. —Y¥i2 —Yiz —¥Yu ‘

! Y12 1 Tl Y \2 0 (2.4.10)
% Y Y i —Has

i

_ “Yia ~Hu ¥ 1
which is the desired equation for X.

P

C
Fig. 2.4.2. The dusal diagram for the square Feynman graph that
ig drawn in Fig. 2.4.1.

Finally, we may use the explicit form for the denominator function
D that iy to be inserted in the integral (2.2.4). According to the rules of
§1.5, this is

D= cgo, 84 ooy oty -+ oty 00, M 4 o000, M
4 oot M A oy, M2 — (Zor,m?) (o). (2.4.11)

The eguations, 8D/8a = 0, of (2.2.11) yield four simultaneous linear
equations for the «, and the condition that these have a non-trivial
solution may again be reduced to the form (2.4.10).

The lower-order singularities, corresponding to one of the internal
lines being contracted, are the leading singularities for four triangle
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graphs in Fig. 2.4.3 ¢d. Those corresponding to two a being contracted
are the ‘normal threshold’ graphs in Fig. 2.4.3e, f. The other lower-
order singularities corresponding to two contractions would only be
of interest if the external masses M, were variables, for example the
(ce1> 25) contraetion would give a surface with equation

M3 = (mg+ my )R

pl PZ pl I PZ
\,4““ ' 4 2
Py Pa Py TS N
® {c)
5
» 2y i’ P2
# 2
1 1
P
= X | ) B g
3 FA 3 P
Py P4
Py by
(d; (e) )

Fig. 2.4.3. Reduced diagrams obtained by contracting lines in the square Feynman
graph, These give lower order singularities of the Feymman integral for the sguare
graph.

We already know, from §2.3, what are the equations for the
surfaces X, 2, Xg, X, corresponding to the triangle singularities.
They are just obtained from the four leading minors of the determinant
in (2.4.10) (compare (2.3.8)), namely

1 Yoz —Hm
Y i — g | =0, (2.4.12)
¥ —Ym 1

and three similar equations. We also know, as in (2.3.12), that the
surfaces Z,,, Z,;, corresponding te the contracted graphs of Fig,
2.4.3¢, f have equations

Yu==+1, or s=(m, im@"“,}

2.4,13
=1, or = (mtmg* ( )
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The singularity structure

Once again the physical values of the Feynman integral are to be
found by attaching an imaginary part - e to each internal mass mj,
and then integrating over the real, undistorted «-hypercontour. We
have, from (2.4.11),

ImD = a0, Ims+ o o Imt+ (Za,)e {2.4.14)

on the undistorted hypercontour. Hence, just as in the discussion of
{2.3.21), we may immediately continue the integral from the real,
physical boundary throughout the region Ims, Imi > 0, without
danger of D vanishing on the undistorted hypercontour and so forciug
a distortion. Provided that we have chosen the fixed values of the
external masses suitably, we also find that D does not vanish on the
undistorted hypercontour for s, ¢ in some region B of the real (s,)
plane. Then we may also continue the integral from the region Ims,
Tmt > 0 onto R. Then, exactly as in the diseussion of § 2.3, we know:

{a} That the boundary of R is composed of those parts of 2, %,
Tige Bgy that correspond to real, positive o,

(b} That eomplex conjugate regions of complex {s,f} space have
similar analytic properties. We recall that this iz because, if we
continue from R to some point (¢, £) by some path P and are forced to
make some distortion of the hypercontour, we must make the complex
conjugate distortion if we continue to the complex conjugate poind
(3,7) along the conjugate path P, and so end up with just the complex
conjugate situation.

The condition for the region £ to exist is that we fix the external
masses M, such that each M, is stable against docay into the pair of
internal particles at the corresponding vertex of the graph. So we
require '

M, < m, +m,, ete.,
BT } (2.4.15)

or Y1z Yoz Yaar Yra < 1.
That B does indeed exist when (2.4.15) holds may easily be scen by
re-writing the explicit form (2.4.11) for D as (Karplus, Sommertield &
Wichmann, 1959)
D = aporyfs — (mg - mg )+ oy orgd — (g — g )]
— (ot 1y + 0ty 1y — Sy My~ atymg)* oty oy [ M — {1y 4 1my)*]
— oy g B (g + g }] = cpatg[ M5 ~ {1y -+ 1014)7]
— oty Oty M — (my +10,)7], (2.4.16)
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from which we sce thot R contains at least the region
s < (my—mg)?, §< (my—mg)t (2.4.17)

The details of which parts of I, Z;, correspond to real, positive «,
and so can provide the boundary of R, depend on the values at which
the external masses M, are fixed. If these do not provide any parts of
the boundary, we have seen in §2.3 that the normal thresholds

§ = {1y +11)%,
which is a part of X,y (see 2.4.18} and
t o= (o +mg)®,

which is a part of Z,,, do cotrespond to real positive o and so will
provide the whole boundary.

We suppose here that the masses M, are fixed such that each of the
y in (2.4.15) is less than one in modulus and, farther, such that the
sum of any two of the corresponding angles is less than 7. We recall
that we define 8, as in (2.3.14), by

cosfl = —y.

The second of these conditions guarantees that none of the lower-order
triangle sarfaces I; of Fig. 2.4.3a-d hasg a part corresponding to real,
positive a. This we discovered in § 2.3; only when theline Lin Fig, 2.3.4
intersected the arc A8 in Fig. 2.3.3¢ did we get a triangle singularity
on the physical sheet, and the eondition for this wus (2.3,27).

With these constraints, we find (Tarski, 1960) that the section in the
real {s,?) plane of the quartic surface, ¥, whose equation is (2.4.10),
has the appearance of Fig. 2.4.4. It consists of four infinite ares y,, ¥y,
Vg ¥4 804 o closed loop ;. Its horizental and vertical tangents are the
%, the surfaces corresponding to one contraction, and its asymptotes
are L5 E,,, which correspond to two contractions. The precise
ordering of the lines &, in the figure depends on the relative magnitudes
chosen for the M,

When, as in the case we are considering, none of the parts of Z;
corresponds to real, positive o, no part of any y to either side of its
contaot with & Z; can correspond to real positive o. This follows from
the continuity of the values of the ¢ round an are, and the fact that at
a contact, & and Z, share the same values of the a (with one of them
zera). This latter fact may readily be seen from the dual diagram of
Fig. 2.4.2. At the contact of © and X, for example, the dual diagram
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must be drawn with all the lines on the mass shell and also oy = 0; then
actually 0, 4, C, D) are coplanar. At the infinite intersection of the
asymptotes with the curve the values of the @ on 2 and Z 4 (or Xyy) are
again shared (the dual diagram is drawn with 4, O, C (or B, 0, D)
eollinear, so that B, D (or 4, €) go off to infinity). Hence, again by the
continuity argument, the arc y,, being asymptotic to both the normal

5= (my - mé)z § e (my mL})z
¥y
Ya

b E— {my - mq)2

24 /
%, ]
T
L4
% M
z

'y

72
Zos o= (g — )
73
E‘13 ES 21 }:3 2I 213

Fig. 2.4.4. The real section of the surfaces of singulsrity for the square Feynman
graph. The curves correspond to the leading singularities, and the straight lines to
lower order singularitios from reduced diagrams. Heavy lines denote curves that are
singular for positive o when conditions stated in the text are satisfied.

thresholds each of which corresponds to positive o (with two of them
zero), corresponds to all the o real and posifive, But this arc is the other
side of the normal thresholds from the region E, so it is the normal
thresholds that provide the boundary of £.

Just as in the discussion of (2.3.18), we may use the searchline
method to discover the complex parts of Z. Each of the arces vy, vy, v
Y Vs has gprouting from it parts of complex surface. However, since
the latter four arcs lie in & and so are not singnlar on the physical
sheet, the parts of complex surface attached to them cannot be
singular, not being divided from them by cuts. Also, the two complex
conjugate parts of complex gurface altached to y; ure not singular,
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because those parts are also joined to the non-singular arc XY of v,
These parts lie in the region

Yo sfImé# < 0,
o if we approach v, from these directions we must also find it to be
non-singular. However, because v, corresponds to positive «'s, if we
approach from the opposite directions,

Ims/Imt > 0,
we expect it €0 be singular, just as in the discussion after (2.3.25} of
the are EF in Kig. 2.3.35.

Hence, for the particular choice of masses M, that we have been
considering, there are no complex singularities on the physical
Riemann sheet. This property leads to a Mandelstam representation
{1.3.33) for the graph, though only the first of the double integrals
there is needed, since this graph has neo normal threshold in the
w-channel, so that Do, = = 0

e Puys -

The analytic properties when the M do not satisfy the conditions we
have imposed in this section are discussed in §2.7.

2.5 Single variable dispersion relations and physical-region
singularities

For both the triangle graph and the square graph we discovered a
region R in the real z-plane for which the Feynman integral was
defined with undistorted hypercontour of a-integration. The existence
of such a region R is useful for two reasons. First, it simplifies the
discussion of the analytic properties of the Feynman integral as a
function of several complex variables z, in that analytic continuations
out of R along complex-conjugate paths P, Pin z-space just lead to
complex conjugate distortions of the integration hypercontour so that
if we can prove analyticity in one region we are guaranteed it in the
complex-conjugate region. Secondly, the knowledge that the Feynman
integral is analytic in the real region R enables one, ag we show below,
very simply to deduce that the integral is actually analytic in a larger
region, which is sufficient to allow a single-variable dispersion relation.
So if the intersection R, of the regions R for all the Feynman graphs
that contribute to a given process is non-empty, a single-variable
dispersion relation may be devived that is valid for each of those
graphs. If the perturbation series converged uniformly, it wounld then

% R, is sometimes called the Symanzik region, or the Wu region.
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be certain that the complete transition amplitude for the given
process satisfied the same digpersion relation. However, since there
certainly is not uniform convergence, the argument can only be
regarded as one of plausibility.

The intersection £, of the regions £ for a complete set of graphs was
first investigated by Nambu (1957), Symanzik {1958), J.C.Taylor
(1960) and Eden (1960a), More powerful methods have recently been
used by Logunov, Todorov & Chernikov (1962), T.T. Wu {1961) and
Boyling (1963, 19644}, who have exploited the analogy between a
Feynman diagram and an electric circuit. To make our discussion
sell-contained, we here confine our discussion to the less sophisticated
techniques, The general method is called “majorisation’ and is
directed towards showing that all diagrams for a given process lead to
Feynman integrals that are regular analytic functions in a domain B,
whose extent is determined from one or more simple diagrams.

Vertex function in equal-mass theory

For definiteness, we consider the form factor of a particle of mass m,
in a theory that containg no other particles. 8o we must consider all
Feynman graphs that contribute to the process of Fig. 2.5.1, where

Py

7

23

Fig. 2.5.1. The vertex diagram that éorresponds to all Feynmnan
graphs with the given external lines.

pE = p} = m?, each internal line in any graph corresponds to mass m,
and each integral s studied as a function of the single variable z = pi.
Of course, having only one variable simplifies the problem greatly; for
cach graph, the region R is just a segment of the real axis in the
complex z-plane.

According to § 1.5, the denominator fonction D of the representation
{2.2.4} of the Feynman integral is given by

D = —(Bp)” . X(Bp) +(p?.Tp—0)C, (2.5.1)

6 EA
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where the matrices B, X, IT' are obtained by writing the function i,
which is a quadratic in the internal momenta g; of the graph,

¥ = X a,(gi—mi), (2.5.2)

in the formm ¢ = k7. Ak —-2kT. Bp+ (p7.Tp -0}, {2.5.3)

with X=adjA, C=detA, o= TFoami {2.5.4)
?: -

By definition, R, is that part of the real axis in the complex z-plane
for which no I} for any graph vanishes on the undistorted a-hyper-
contour, that is with all the o real and positive.

According to the rules given in §1.5 for writing down D for any
graph, (' is a sum of products of the «. Hence (' is positive on the un-
disgtorted hypercontour. Another way to see this is to equate the
expressions for ¢ in (2.5.2) and (2.5.3) for the particular case p = 0,

¥y = Q. rheﬁ Elx?’q% - kT. Ak, [p = 0’ my = 0] (25'5)
i

If the g, were Fuclidean (rather than Lorentz) vectors, the left-hand
side of (2.5.5) would, for positive a, be a positive-definite quadratic
form in the £, and therefore also the right-hand side. But the condition
for the right-hand side to be positive definite for Euclidean momenta
is just that ¢/ = det A be positive and that all it principal subdetermi-
nants are positive. Since C is a function only of the «, this result is
independent of our choosing to prove it by making the momenta
Euclidean and taking p = 0, m; = 0.

In the same way, we equate (2.6.2} and {2.5.3) when k = 0, and

get then Y algt~md) =pP.Tp—o, [k=0L (2.5.6)
i

But each g, is a lincar combination of the various k and p,, p,. Buppose
that we have chosen to run p, and p, through the graph (and cut along
the external line p,) such that each internal momentum g¢; depends on
at most one of p,, ¢, Then, since we are discussing the cage

P = p§ = m?,
when & = 0 each ¢ is either 0 or m?. Hence, as we are also faking each
m? = m?, the left-hand side of (2.6.6) is negative for positive «, and s0
also the right-hand side. Thus the second term in the expression

(2.5.1) for D is negative.
If the vectors p are Euclidean the first term in D is also negative,
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We sec this in the following way: the quadratic forms

xT Ax, xT Xx (2.5.7)
may be simultaneously diagonalised and we already know from (2.5.5)
that the first of these is positive definite, so that det A and all the
leading minors of the diagonalised matrix A must be positive. Hence
since X = adj A, we know also that det X and all the leading minors
of the diagonalised matrix X are also positive. So the positive definite-
ness of the first quadratic form in {2.5.7) implies a similar property for
the second. So if the p are Fuclidean (Bp)T. X(Bp) is positive and the
first term in the expression {2.5.1) for [} is negative. So, for Buclidean
p and positive a, the whole expression for D is negative.

Now the condition that the p can be Buclidean is

VPP < P S Wl < NPT APS b < Jpi VpE (2.6.8)
80 when pf = pi = m?, they are Euclidean when z = p} satisfies
0 <2< 4me,

anrd so D is certainly negative for undistorted hypercontour and 2 in
this part of the real axis, But D is linear in 2, and according to the
rules of § 1.5 the coefficient of z s a sum of products of & and so pogitive.
Henee the region in which D does not vanish for undistorted hyper-

contour is -0 < 2 < dm?, {2.5.9}

At z = 4m? there is the normal threshold, so (2.5.9) is the region R, we
set out to find. It should be stressed that in this analysis we have
made crucial use of the equal-mass condition; the region B, does not
always extend up to the normal threshold.

Other amplitudes

In the case of a scattering amplitude we must congider two variables
3,1 as in the example of § 2.4. In that example the region B in the real
(s, t}-plane extended to - co in both variables, but for a more general
graph we know that this eannot be so. This is because a general graph
possesses normal thresholds in the u-channel, and » is inearly related
to 5, t by (2.4.2). 8o if the intersection I, of the regions B for the set of
seattering graphs exists, we expect it to lis somewhere within the
triangle in the real (s, #)-plane formed by the normal thresholds. This is

5 4mt, g 4m? Ami-s—f=ou < 4md, {2,5.10)
in the equal-mass case. By arguments exactly parallel to those we have

used for the vertex graphs, we may show that £, at least contains the
62
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part of the interior of this triangle that corresponds to Euclidean
external vectors p, namely

>0, £>0, dmPes—t=u>0

Home further work (Eden, 1960«; T.T. Wu, 1961) reveals in the equal
mags cage that K, is actually the whole region (2.5.10).

When the equal-mags restriction is relaxed, T.'T. Wu (1961} has
shown that a region R, still oxists for scattering, provided no external
mags exceeds /2 times the smallest internal mass. His analysis also
covers multiparticle amplitudes, provided not more than ten external
particles are involved. Boyling (1963, 1964a) has shown that the
restriction on the external masses may berelaxed somewhat, provided
it is replaced by a conservation law. He has been able to apply the
analysis to pion-nucleon interactions, taking the masses at their
physical values and using baryon conservation and the pseudo-scalar
nature of the pion. The results of Wu and Boyling using more powerful
methods of majorisation are that the region R, for a given process is
bounded by leading singularities corresponding to some of the
simplest graphs.

Single-variable dispersion relations

Thereal region R, in which the Feynman integrals for a given process
are well defined with undistorted hypercontour, and therefore analytic,
may readily be extended in two ways (T. T. Wu 1961):

(a) If D= 0 for o real, positive and zeR,, D similarly will no$
vanish if the z are made complex, such that Re({z) e K, So all the
Feynman integrals are analytic in the “tube’ in the spacc of the
complex variables z whose real section is £,

{#) Suppose the real point 2z, = Z, is in £, and define a line L
through Z, in the real subspace of the complex variables 2,

Liz, = Z +Ax. (2.5.11)

Here the numbers A, are fixed; they determine the direction of L.
Different points on L are given by different values of the real para-
meter . Because D iz linear in the z,, at the point on L determined by
a given value of x it takes a value that may be written

Dix} = Flayz+6, (2.5.12)

where F(2)is a function of the aonly. Beeause the point x = 0 (that is
the point z = ), is in R, the function & does not vanish when the o
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are on the undistorted hypercontour. Now replace « by the complex
variable £ ¢ = z+iy.

Then, when the « are on the undistorted hypercontour, so that they
are real, I D) = yF, ReD(l) = «F + 6. (2.5.13)

We see that D({) cannot vanish when Im ¢ = 0 and the @ are on the
undistorted hyperconfour because, when » = 0, Im.D = 0 implies
F =0, and if then also ReD = 0 it would be necessary that @ = 0,
which we have discovered not to be the case. 8o all the Feynman
integrals for the given process are well defined with undistorted
hypercontour throughout the complex part of the ¢-plane, and also
for those real values » of { sueh that the point 2 defined by (2.5.11) Hes
in B,. Hence the integrals are analytic in the {-plane, with cuts along
the real axis, except for a cut-free gap corresponding to the inter-
section of L with B,

These analytic properties are just what we need to allow a dispersion
relation in the variable { {see §1.4). So for the vertex part ¥ in equal-
mass theory, where we worked with only one variable z and found in
(2.5.9) that R, extends from z = —o0 10 2 = 4m?, we have

V(z) = L[ dise V(E)db
Tt J w2 z-f
Here we have supposed that V(z}— 0 at infinity, so that no sub-
traction is necessary.

In exactly the same way, for elastic scatbering in the egual mass
case the existence of the region R, of {2.5.10) leads directly to single-
variable dispersion relations (Eden, 18606). Now there are two inde-
pendent variables and so we have an infinity of different choices of the
line L in (2.5.11). For example, if we take L to be

t =1,

(2.5.14)

where £, is a constant, satisfying
—dm? < f, < 4m?
0 a8 to make L pass through By, we obtain a fixed-f dispersion rela-
tion. Similarly, there are dispersion relafions in which s, w or a suit-
able linear combination of the variables is fixed.
A partial-wave digpersion relation can also be derived. The partial-
wave amplitude a,{s) iz defined in (1.3.36} by

a,s) = %fiid(cos@)F(s, costl) Pycosb) (2.5.17)
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2t
§—4m?’
We assert that when the integral (2.5.17) is continued from physical
values of s, where the contour in the complex cos@ plane is by defini-
tion real, into the complex g-plane no distortion of the contour is
required for any complex value of 5. To sec this, note that for I an
integer P, is a polynomial and so has no singularity to force a distor-
tion. That no singularity of F forces a distortion arises from the fact
that when cos@ is fixed at a value Z,, where ~1< Z, <1, (2.5.18)
represents the equation of & line Ib that passes through the region B,
of (2.5.10) and so contains no complex points of singularity. So for
complex ¢ no singularity of the integrand in (2.5.17) crosses the real
undistorted contour and a,s) can only have singularities at real
values of 5. If the behaviour of @, as |s] — oo is suitable, this guaran-
tees the validity of o dispersion relation to all orders of perturbation
theory in the equal mass case. For unequal masses the relation
between angle and momentum transfer does not take the simple
form (2.5.18) and this method eannot be used to establish the validity
of a partial-wave dispersion relation.

Similar methods of deriving dispersion relations may be applied to
multiparticle amplitudes. These are considerably more complicated,
if only becanse there are so many more independent variables (see
§4.3). For example, for the two-particle -+ three-particle amplitude
it is natural to work with ten scalar products of the four-momenta,
though only five of these are mdependent (just as of the variables
8, ¢, u for scattering only two are independent). It may be shown that
there are no simple single-variable digpergion relations for which four
of the five independent wvariables are fixed at physical values
(Landshoff & Treiman, 1962), This is because one of two things hap-
pens, according to which of the variables are fixed: either

(i) the analogues of the right-hand and left-hand cuts in Fig. 1.3.4

overlap, with the physical limit to be taken between them. This
means that any continuation away from the physical limit in-
volves pushing the cuts out of the way and so exposing the
Riemann sheet below, on which one expects to find all sorts of
complex singularities;

where cosf = 1+ (2.5.18)

or
{11) the normal threshold cuts do not overlap, but complex singu-
larities occur on the physieal sheet. These are produced by
triangle graphs and probably also by other graphs.
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Nevertheless, beeause there does exist a region B, for the two-
particle — three-particle amplitude, there are some simple dispersion
relations for this amplitude {Branson, Landshoff & Taylor, 1963).
These are obtained again by taking a line L through E, zo that only
real singularities arise for the corresponding choice of variable. The
trouble is that this corresponds to all the primitive variables varying
together, so that the dispersion relations do not seem easy to use.

For amplitudes involving more than five particles yet further com-
plications arise. The constraints among the primitive variables, of the
type (1.2.12), that arise from energy-momentiun conservasion are
linear. But when there are many particles onc also has quadratic
constraints, arising from the dimensionality of space-time. This is
explained in § 4.3. Its effect is that, if one chooses a set of indepen-
dent scalar-product variables and expresses the remaining variables
in terms of them, square-root branch points are introduced, which
must be reflected in any dispersion relation.

Physical region singularities

We now show that the only singularities in the physical regions are
those such that, in the diagrams for which the singularities are the
leading singularities, all the internal momenta ¢, (as well as the ex-
ternal momenta) take physical values in the critical configuration
{which is the configuration for which all variables satisfy the Landau
equations). We then use this result to show that the only singularities
of two-particle~two-particle scattering amplitudes in the physical
regions are the normal thresholds. In physical regions the physieal
unitarity condition holds and can be used to derive these results. The
proof by this method is due to Kden (1960a) and Landshoff (1962).
A stronger result was later proved by Coleman & Norton (1965): not
only do the internal momenta g, have to take physical values to give
a physieal-region singularity; they also must be such that, if each
vertex of the Feynman graph be regarded as representing a point
interaction, these points can oceur at physical values of the space-
time coordinates,

First, it is easy to prove that the g, must bereal for a physical-region
singularity, and that further the o must be real and positive. For if we
use the (k,a) representation {2.2.2} of the Feynman integral, the
physical values of the integral are given by integrating over the un-
distorted (&, a)-hypercontour. The possibility of this is guaranteed by
Feynman’s addition of — ¢ to each internal mass. The presence of the
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— ig keeps the physical regions clear of singularities. As ¢ is allowed to
tend to zero the normal thresholds and other possible physical-region
singularities come on to the real axis, but the hypercontour can remain
undistorted till the last moment. So the physical-region singularities
must correspond to real, positive o and real k. Since the external
momenta p are real in the physical regions, and each g is & linear com-
bination of the & and the p, this means that the g are real.

Now if a singularity is the leading singularity for a graph, we must
also have the Landau equations (2.2.6¢) and (2.2.7h);

3 = m3, : (2.5.19)
2 gy = O (2.5.20)
any
ioon

The reality of the g, together with the on-mass-shell condition (2.5.19)
implies that they can be regarded as the momenta of physical particles.
Now we see that it is consistent to identify ;m, with a constant
multiple of the proper time of flight of the particle ¢. The positive-a
condition guarantees that each particle moves forward in time, while
{2.5.20) guarantees that if we follow two different routes, by different
chains of internal lines, between two vertices in a Feynman graph, the
total space-time displacement associated with either route is the
same. Hence we see that the leading singularity of any graph only
occurs in the physical regions if the internal vertices can be regarded
as point interactions occurring successively at real space-time points
and with the associated particles having physical momenta.

Now if all the particles in the theory are stable,T at least four
of them must be involved in an interaction if all their momenta are
to be physical. So for two-particle — two-partiele scattering the only
leading singularities that can oceur in the physical region are those for
graphs of the structure of Fig. 2.5.2a, These are characterised by the
initial-state particles entering the same vertex, and the final-state
particles leaving the same vertex. This class of graphs includes the
normal-threshold graphs, and in fact only the latter can be singular
in the physical regions. To see this, notice that the graphs of the class
of Fig. 2.5.2a correspond to Feynman integrals that are functions
only of the total momentum p in the initial {or final) state, rather than
of the momenta of the $wo individual particles in the state. By con-

T Unstabie particles, as we see in § 4.9, contribute to Landau singularitios in the
saine wiay ad stable ones, oxcept that their masses are given complex values. This
displaces the corresponding singularitios off the real axis, so they do not oceur in the
physical region.
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sidering dual disgrams, it is easy to see that in the case of normal
thresholds the internal momenta in the critical configuration are
parallel to p, while for all other graphs of the class they are not. This
implies that only the normal thresholds ean correspond to positive «
and so be physical-region singularities. This we see as follows: in the
notation of (2.5.8) the Landau equations (2.5.20) read

Ak = Bp. (2.5.21)

(@)

& {&)

()

Fig. 2.6.2. Diagrams, for equal-mass theory, showing the general strueture of (o) any
Feynman graph that is singular on the physical shoot; (b), (¢) vertex graphs; {d)
a product of vertex graphs, having only normal thresholds on tho physical sheet.

This can only produce a solution for the momenta & not in the space
spanned by the momenta p (in the present case there is just one p) if

¢ = det A = 0. (2.5.22)
But we know that C'is a sum of products of the o, and so cannot vanish
for positive .

A corollary of this result is that, in the equal-mass theory, the only
singularities of vertex graphs on the physical Riemann sheet ave the
normal thresholds. For the vertex graphs have the same internal
structure as the scattering graphs of Fig, 2.5.20,¢. Hence they can
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have no singularities other than normal thresholds in the physical
regions for scattering. In the s-chanmnel the physical region is s > 4m?.
On the other hand, according to {2.5.9} the region R, extends from
—o0 up to 4m?, and in this region the vertex graphs can have no
singularities, because for a vertex graph D has the structure

D= fla) s+ K(x, m?), {2.5.23)

which does not vanish on the undistorted hypercontour if we continue
from R,into Im s # §. Hence the only singularities of the vertex graphs
in the equal-mass case are the normal thresholds.

Similar results apply to the class of graphs of Fig, 2.5.2d, because
each such graph represents an integral that factorises into the product
of two integrals, one corresponding to a graph of the class of Fig.
2.5.26, and the other of Fig. 2.5.2¢.

2.6 Scattering amplitude as a function of two variables

We now briefly review techniques for investigating the whole
class of Feynman graphs that contribute to a two-particle-two-
particle seattering amplitude. The aim of this investigation (Eden,
19606, ¢, d, 1961; Landshoff, Polkinghorne & Taylor, 1860, 1961) was
to show that each graph had, on the physical Riemann sheet, only real
singularities. This property is necessary for the Mandelstam represen-
tation (1.3.33) to be valid. The proof of the property is, however,
incomplete (Eden, Landshoff, Polkinghorne & Taylor, 19618); the
reasons for this are described in §2.8,

The analysis proceeds by induction; when any given graph is being
considered, it is supposed that all its lower-order singularities have
already been shown to be harmless (1.e. real), so that the tagk Is merely
to show that its lending singularity is similarly harmless. This is
achieved by showing that, because of the existence of the real region
By in which no Feynman graph can be singular, some part of the
leading singularity surface is non-singular. But, by the diseussion of
§2.1, a non-singular part is divided from singular parts usually only
by the cuts attached to the lower-order singularitics. If the latter have
already been shown to be harmless, this enables one to show that the
leading singularity is similarly harmless. We now briefly sketeh the
argument for this; for fuller accounts the reader is referred to the
original papers. The other means of division of non-singular parts
from singular parts we discuss in §2.8.
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Foundations of the induction procedure

The cuts attached to lower-order singularities may divide singular
parts of the leading singularity surface  from non-singular parts, but
the precise positions of these cuts are not determined. We may
chooge how we draw them; only their ends, the lower-order singulari-
ties, are fixed for us. So it is evidently important to study the inter-
sections of X with the lower-order surfaces. We are only interested in
those intersections that eorrespond to the same values of the @ on the
two surfaces; only at such points (sometimes called effective inter-
sections) can a pinching configuration of the singularity D = 0 in
a-space fall off the edge of the hypercontour. Further, we need
only consider intersections with lower-order surfaces that are them-
selves singular on the physical sheet, for if 2 is to have different
singularity behaviour on either side of the intersection, the lower-
order surface must be singular in order to cause that difference,
In the following discussion we call intersections that satisfy both the
above conditions crifical intersections,

To set the induction procedure going, we must first consider the
gimplest graphs, those whose Feynman integrals depend only on one
of the variables, s, ¢, w. These graphs are those having the structure of
any of the diagrams of Fig, 2,5.2, Of these, the normal thresholds are
inevitably singular on the physical sheet, but we have seen in §2.5
that, if the values of the masses are suitably chosen, these are the only
singularities that these graphs produce on the physical sheet. Such a
githation occurs in the equal-mass case, or more generally if the
external masscs are not too large compared with the internal masses.
We shall suppose that this is the case hero.

The normal thresholds have the crucial property that their critical
intersection with higher-order surfaces is at infinity, that is they are
agymptotic to the higher-order curves where they have critical inter-
section with them. To see this we consider a graph having the structure
of Fig. 2.6.1. To obtain the leading surface Z we must put all the
internal momenta, both those exhibited explicitly in the figure and
those contained in the two blobs, on the mass shell, and must also
take aceount of any geometrical constraints imposed on the momenta
in either blob by the Landau conditions

> o, =0, (2.6.1)
ench
Toop
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To obtain the critical intersection of X with the normal threshold that
is the leading singularity for the graph obtained from Fig. 2.6.1 by
contracting the two shaded cireles to points, we must in addition put
all the 2 for the Ines in these circles equial to zero. Consider now also
the vertex graphs obtained from Fig. 2.6.1 by contracting one of these
circles to a point. It is evident that the eonditions for the internal
momenta of the original graph to be such as to eorrespond to a eritical
intersection of £ with the normal threshold, are more than need be

=

Fig. 2.6.1. A disgrarmn showing the structure of the Feynman graphs that is relevant
to the proof that eritical intersections with normal thresholds are at nfinity.

satisfied for the leading singularity of the vertex graph. In other words,
the leading surface for the vertex graphs passes through the critical
intersection in question. But both the normal threshold graph and the
vertex graph correspond to Feynman integrals that involve only one
of the variables s, £, u; for definiteness let it be 5. So the normal
threshold and the vertex singulurity are just parallel straight lines
s = constant, These only meet at infinity,

General technigues

A general graph has normal thresholds corresponding to each of the
three variables s, t, . However at any point in the real plane at most
two of these sets of cuts overlap. For example, in the equal-mass case
the cuts occupy the three regions

s = dmd, t24md u = 4dmd,
of the real plane. If we apply the linear constraint among the variables,
S t+u = dm?,
these three regions appear in Fig. 2.6.2 as the regions to the sides of
the lines g = dm?, { = 4m?, u = dm® marked by the arrows. The over-
laps of two such regions are cross-hatched. In the central triangle is
the region R,

The significance of the regions of overlap is that, as we saw in the
examples of §§2.3 and 2.4, any piece of the real section of a Landau
surface X lying in these regions may have different singularity
behaviour depending on the choice of complex direction from which
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it 18 approached. We have alzo seen that there are at most two
different types of behaviour; approaches from complex-conjugate
directions must give essentially the same resuits. This means that
in regions where there are normal-threshold cuts corresponding to
only onc variable all approaches must give the same behaviour,
because the way in which the approach is made in the variables not
having the cuts is immaterial.

Fig. 2.6.2. The rveal region R, and the three regions (cross-hatched) where there are
normal threshold branch euts in two of the variables, s, ¢ or w, for elastic scattering
in an equat-mass theory,

The normal-threshold euts divide a Landau surface into a number of
sections. If, as is supposed in the induction procedure, there are no
other cuts corresponding to lower-order singularities, the arguments of
§2.2 require each of these sections to be either wholly singudar or
wholly non-singular. These sections are then linked together in chaius,
such that cach chain passes through a region of complex space which is
already known, from the existence of single-variable dispersion
relations that we proved in section 2.5, to be free of singularity. So the
whole chain must be non-gingular.

We give an illustration of how we link together the sections to form
chains. In Fig. 2.6.3¢ we draw a loop y of the real section of some
Landau surface Z, lying in the region where the s and ¢ normal-
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thresholds cuts overlap. As in §§2.3 and 2.4, the searchline method
shows that from y sprout four sections X4, 3y, Zy, Ly of complex
surface. On 2, Ims/Imt < 0,

while on Xy Ims/Imit > 0,

3
[ dm

8 e damy
]
5 = 4 NoZ Y /
J— R
Branch cut
Branch cut

t = o’ e \\

&

Fig. 2.6.3. (g) A real curve y that is the real seotion of a Landau surface ¥ which is
dividod into parts Xg, Zp, Lg, Ip by the normal threshold branch euts. (b) The
distortions of normal threshold branch cuts $hat are used in tracing & path on I that
links X4 0 Zg. The real points X, ¥, Z are also shown in the drawing (o} sbove.

so that X ; and % are separated by the cut running along Imt =0,
Bimilarly, 25, £, are separated by the s-cut, £, and X, by the f-cut
and X5, £, by the s-cut. Fo link together X, and £, we must join
them by a path that lies entirely in Z and does not pass through any
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cut., To achieve this, we must temporarily push these cuts out of the
way, which we are allowed to do because only the end-points of the
cuts, the branch points, are rigidly fixed by the theory, (Alternatively,
instead of pushing back the cuts, we may think of the path as tem-
porarily passing on to another Riemann sheet). So we start at some
point on X, with, for definiteness,

Ims >0, Imi<0.

We attompt to cross from X, to 5, but when we get to the point X
on the boundary between the two, we have reached the cut Tmt = 0.
We push this cut back, and so can move on to £, where now we have

Ims >0, Imt>0.

We now come down on to p at the real point ¥ and cross through into

the region
Ims <0, Imit< O

of Zp, pushing back the s-cut to allow this. We then cross over to 2,
going through the point Z at which Ims = 0. The projections of our
path on the complex s- and {-planes are shown in Fig. 2.6.35, Provided
we have not encircled any vnwanted lower-order singularity we have
now successfully linked 2 ,, X, and may now restore the cuts to the
real axes.

There is evidently a certain amount of freedom in the cheice of the
precise shape of path, sand in fact the only lower-order singularities
that we cannot avoid encircling are those that touch ¢, In this case the
path cannot avoid going on to the wrong Riemann sheet of that
singularity and will not end up back on the physical sheet. This is why
it is erucial that the crifical intersections with the normal thresholds
are at infinity, where they are harmlesa.

There are two difficultics with the above procedure. One is discussed
in § 2.8, The other concerns what have been called virtual singularities.
These are real arcs lying in crossed cuts, such as we encountered in
$§2.3 and 2.4, that are singular from one method of approach, though
not from those directions that would require the complex surfaces
attached to them %o be singular. Although these are harmless in that
they are not associated with complex singularities, special arguments
must bé involved to ensure that they do not block the linking of the
sections into chains, For these, and some other details, the reader is
referred to the original papers (Eden, 1961; Landshoff ef al. 1961).
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The method of analytic completion

The foregoing discussion is based on linking different parts of the
Landau surface T without crossing branch cuts that would lead off
the physical sheet. With this linkage if & part of 2 is known to be non-
singular on the physical sheet, one can deduce that any other part to
which it i8 linked in this manner is also non-singular.

An alternative approach (Eden, 1961) is to establish a part of the
physical sheet that is non-singular and then use the methods of
‘analytic completion’ (Wightman, 1960) to sweep out a tube that is
free from singularities. We briefly review this method here.

If for some value of ¢ the function A(s,¢) can be proved to be
analytie within a closed curve €' in the s-plane, then from Cauchy’s

theorem 1 Als',1)ds’
o §—s

Als, ) =

(2.6.2)

If the contour C is displaced by varying ¢, the equation (2.6.2) can be
used to define 4 (s, t) for all points s within the tube swept by ' doring
the displacement of C, provided that during the displacement no
singularity of 4{s, #) in the integrand crosses the curve €. This has two
consequences that are of great value in discussing domains of
analyticity:

(A) we need consider only singularities on the boundary of ¢ during
such a displacement. If we can establish that no singularity meets the
boundary during the displacement, then snalytic completion tells us
that there can be no singularity inside the boundary (within the
tube).

(B) because no singularities can appear inside the closed curve ¢
during such a displacement, there can be no singularity that would
tead to a ‘horn’ of singularities projecting into the closed curve C.
A horn of singularities is illustrated in Fig. 2.6.4. If the shaded region
were singular but its surroundings were not singularities of Fis, ), then
a displacement from € to ¢ would not meet any singularities. Formula
(2.6.2) provides a method of continuing analytically within (¥, hence
the shaded projestion cannot be singular. The fact that such pro-
jections cannot be singular is called the ‘dise theorem”’,

The method of analytic completion can be applied to a scattering
amplitude using both the features A and B noted above. We will
consider it for equal raastes. We begin from our knowledge of analyti-
city of 4{s, ) in the upper half s-plane when ¢ is real and in {—4m?,
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4m?), The closed curve € used in equation {2.6.2) can be the large

semicirele ¢ in the upper half s-plane, illustrated in Fig. 2.6.5.
Keeping Re (t)in (0 < ¢ < 4m?} we can now displace C to Im (£} = ig’.

No singularities will be encountered by €' sinee for ¢ in (0, 4m?) the only

Fig. 2.6.4. A hom of singularities (shaded) that can be removed through analytic
completion by dispiacing the contour of integration € of equation (2.6.2) o & new
coniour €.

Fig. 2.6.5. A real Landau curve y, showing that if it were singular in a certain limit
its attached singular surface would be a horn of siugularities penetreting the contour
1, and could therefore be rewoved.,

singularities near € are: (i) normal thresholds in s; s = 4m? for
example; {ii) normal thresholds in «; u = 4m?® for example.

A normal threshold in ¢ is avoided by the line Im (s) = ¢ (which is
the nearest boundary of (), independently of the value of £. Similarly,
a normal threshold in w is avoided by

I (u) = Im (4mP — s 1) = —i(e-+¢'),
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provided ¢ is positive. More generally in considering ¢’ negative it
must be required that |¢'| < ¢, which does not seem to be a serious
restriction in this context. )

The circular part of €' is assumed to be of very large radiug; it can
therefore only meet a singularity that moves in from the point at
infinity in the z-plane. Such behaviour cannot arise from a normal
threshold so it is not relevant at this stage.

We next increase Re (f) to Re (f) > 4m® with the contour ¢ having
its straight part along Fm {s) = ¢, and with Tm () = 4¢’. The normal
threshold at ¢ = 4m? is avoided by the imaginary part ic” of £. If the
only singularities were normal thresholds, the displacement could
continue with Re{f}—co. Similar displacements with Im () = —i¢’,
and also displacements with Re (u)—+ + 00, would then establish that
A(s, 1) is analytic in the product of complex planes out along the real
-, t-, and w-axes. However there are, in addition to normal thresholds,
alzo curves of singularities in the real (s,7)-plane, which we must
consider.

Tt can be established that certain general classes of Landau curves
in the real (s, #)-plane do not block the process of analytic completion.
But, as we shall see in § 2.8, these classes of curve do not include curves
having acnodes or cusps. We illustrate the method by an example.

Since, in the displacement considered above, s and # have imaginary
parts ie, i’ of the same sign, the eontinued displacement of ¢ along
Im {t} = ie" as Re (f) = o0, can be blocked only if there is a real singular
eurve vy having positive slope m, to which is attached a singular
surface I having Im (#)

To(s) ™
If the second dertvative also were positive, the surface Z would extend
downwards in the complex (s, 1) space as indicated in Fig. 2,6.5. Thus
if 2 were singular on the physical sheet, a horn of singularities would
extend into C, contradicting the result {B) quoted above. Hence X
cannot be singular on the physical sheet. Therefore if v is singular on
the boundary of the physical sheet {the product of cut planes), it must
be singular only in the limit )
Tms = 0+de, Imi=0-—ig, (2.6.4)

> 0. (2.6.3)

talken from opposite half-planes, Then the singular part of X is reached
obly by going through the branch cuts along the real s-, f-axes; since
(2.6.3) means that Z lies in corresponding half-planes, but it is singular
only when approached in the limit (2.6.4).
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The only type of surface of singularity that can block the analytic
completion method using displacement of €, is one that presents a
concave surface to the approach of . Thus the surface 3 must come
out of the real {s,t)-plane through v so that it slopes away from C.
Then the boundary curve (7 strikes the singular surface and further
displacement of C is blocked. In practice a surface of this awkward
type can come out from y at 5 cusp, or at an acnode, as we shall see in
§2.8. Thus analytic completion suffers the same lmitations as the
methods described earlier in this section. However, both are useful in
establishing that certain regions are free from singularities. The
linkage of singular parts of the surface L is essential to both methods,
but using analytic completion this linkage need be studied only in the
neighbourhood of the real (s, f)-plane where the surface £ iz deter-
mined by the form of its real section, namely the curve .

2.7 Continuation in the external masses

If it can be proved that, for a certain set of values of the masses,
there are no complex singularities in the scattering amplitude, we may
then study what happens when the external masses are increased. As
in the example of § 2.3, the only way in which a complex section of a
Landau surface can becoms singular is for the whole section to pass
through a cut (by complex section we mean an area of the Landau
surface with s, £, or both complex). Hence as the external masses are
increased the first cornplex section to become singular will necessarily
do so by first shrinking to zero. This is becausc before that happens
there are no complex cuts, so that to become singular the section must
go through an existing real cut, which it can only do by shrinking down
to zero.

The square graph

We illustrate this process by considering the square graph. In §2.4
we found that, if the values of the masses are chosen such that the
leading singnlarities corresponding to the triangle contractions are
not singular, the square graph produces no complex singularities. The
condition for thiz was that each % in (2.4.15) be less than one in
modulus, and that the sum of any two of the corresponding 0, defined
in (2.3.14), be less than 7.

SBuppose we now increase the external masses so that the sum of a
pair of & becomes greater than 7. Then one of the triangle graphs

P
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becomes gingular, say Z, in Fig. 2.4.4, by moving up to the normal
threshold Z,, and away again. (To see what happens in detail we
should have to avoid 2, passing through £,, by temporarily giving the
external masses a small ireaginary part, as in §2.3. We should then
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Fig. 2.7.1, The real sections y; and v, of the surfacs I, as the external masses are
incressed for the sgquare disgram. For diagrams (a}, (), (¢} there are no complex
gingularities on the physical sheet, for {d) there are compiex singularities arising from
the part of £ jeining y, and .

find that Z, passed round Z,,, so that it passed through the cut attached
to it. Bo the singularity has emerged from the neighbouring Riemann
sheet of 2,,.) As 2, moves away from Z,, it pulls the are y, with i, so
that the picture now is as in Fig. 2.7.1a. In that figure parts of the
curve corresponding to positive o are drawn in solid line, other parts
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in broken line. As usual these parts are identified by continuity
arguments: on X,; we have

y =ty = 0. o, oy > 0.
On Z,, since it is now a singularity,
Wy =0, oy, g, cty > 0O;

go on the part of v, between its contact with X, and its asymptotic
intersection with %, all the « are positive. On the other hand, the
other part of y, has ¢, < 0, since «, passes through zero at the contact
with Z,.

We know, from the analysis of §2.4;

{i) That the boundary of R (the part of the real plane in which the
Feynman integral is defined with undistorted hypercontour) is given
by pieces of curve with positive a.

{ii) That for a piece of real curve in this region of the real (s, f)-plane
to be singular from the limit

{Im s)/Im ()} > 0,
it must have positive a.

So in the situation of ¥ig. 2.7.1¢ the region R is bounded by the lines
I,y and X, it extends down to s = —20, t = —o0, Also, the pari of y,
between the contact with %, and the asymptotic intersection with X,
is singular in the limit with

{Im {s)/lm (1)} < 0,
but the pleces of complex surface attached toitlie in the regions having
{Im {8)/km (1)} > O

Hence there is still no complex singularity. Indeed a complex singu-
larity cannot have appeared, because no part of complex surface has
shrunk to zero in the transition from the situation of Fig. 2.4.4 to that
of Fig. 2.7.1a. That this is so is most easily seen by noting that each
piece of complex surface atéached to y, 1s also afbached to one of the
otherreal arcs y,, vy, ¥4, v5 of Fig. 2.4.4 (not drawn in Fig. 2.7.1¢), and
none of these arcs has undergone any fundamental change in shape
that would allow a piece of surface attached to it to degenerate.

If we now further increase the external masses, but in such a way
that the sum of the four @’s remains less than 2#, either Z; or X, will
sooner or later move up to 2, and away again, becoming singular in
the process and pulling y; away with it. For definiteness let it be Z;;
the situation is then as drawn in Fig. 2.7.16. Again no plece of complex
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surface has shrunk to zero, so thers are still no complex singularities;
each part of y, is singular when approached from the limits opposite
to those corresponding to the regions ocoupied by the attached pieces
of complex surface. The region R is now bounded by %, and 2.

If now the external masses are increased further, when the sum of the
four s is equal to 27 the picture is as in Fig. 2.7.1¢. The lines X, and
Z, have coalesced, also Z, and X, and the real curve y has degenerated.
The two complex conjugate pleces of surface joining v, and v, have
shrunk $o zero. If the masses are further increased, so that the sum of
the s becomes greater than 27, these pieces re-emerge and so could
be singular.

In fact they are singular. This is because, as indicated in Fig. 2.7.14,
the relevant piece of y; now corresponds to positive a. 8o this part,
together with parts of £, and Z,, provides the boundary of B and must
be singular from any direction of approach. Hence the pieces of
complex surface attached to it must be singular.

General case

The development of the cruncde or. deuble point indicated in
Fig. 2.7.1¢ signals the onsct of complex singularities on the physical
sheet as the extornal masses are increased. The crunode and the
subsequent complex singularities are closely related to the movement
of the anomalous thresholds. This mechanism for the appearance of
complex singularities on the physical sheet was the first and simplest
to be discovered (Mandelstam, 1959). It is possible to show that, asthe
external masses are increased, the square graph is the first graph to
acgtire complex singularities in this manner (Eden, Landshoff,
Polkinghorne & Taylor, 1961a). Any lines inserted into the graph
delay the onset of these complex singularities. Unfortunately, as we
shall see in § 2.8, there are other less tractable mechanisms by which
complex singularifies may appear, and it is not yet known whether
these occur first in the simpler graphs. -

The first point to note for a general graph is that the development of
complex singularities by the above mechanism must also be associated
with the occurrence of a double point at the intersection of two
{perpendicular) anomalous thresholds in the real (s,f)-plane. If a
portion of a Landau curve is to have attached to it a surface corre-
sponding to singularities of the amplitude on the physical sheet (as in
Fig. 2.7.14d), the portion of curve must be singular when approached
from the same side as the attached surface. Conversely, before the
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singularities on the physical sheet appear (that is with smaller external
magses), the portion of the Landan curve must be singular only when
approached from a direction oppesite to that occupied by the attached
surface, Thus in Fig. 2.7,15 the solid-line portion of y,, is singular only
in the limit (Ims/lm¢#} > 0. The broken-line portion of v, is singular
only from the limit (Im s/Im¢) < 0. The crucial point here is that the
change from singularity in one type of limit to singularity in the other
type ocours only ab the point of tangency of y to the anomalous
thresholds. Since we require the limit that is relevant for a portion of v
to switch from one type to the other when it shrinks to a crunode and
expands again, it is evident that this can ocour only if the points of
tangency to the anomalous thresholds coincide at the crunode when
it forms. Then, and only then, can the attached surface switch from
being singular on the unphysical side of the real branch cut (the s 4-ie,
t—1e, side) to being singular on the physical side (the s+ ¢, £ +4¢, or
the s —ie, { —i¢, side in this example).

Thus we must, for the gencral graph, study the situation in which a
crunode coincides with the intersection of an anomalous threshold in
¢ and an anomalous threshold in f. We will indicate briefly how it can
be seen that the insertion of lines into the square graph will delay the
onsct of complex singularities when the external masses are increased.
Our discussion here is limited to the above mechanism involving a
erunode and anomalous thresholds. The method is based on dual
diagrams, which were introduced in §2.3.

We consider first the oceurrence of anomalous thresholds from the
vertex parts formed by reducing a scattering diagram. A vertex dual
diagram must be drawn in a plane in order to give an anomalous
threshold. (It will be recalled that dual diagrams may be drawn in
complex Euclidean space.) It follows that for fixed masses the
anomalous threshold (if any) from the lowest order vertex oceurs at a
smaller value of the appropriate variables (s,f or %) than any such
threshold from a higher order vertex part. This result comes from the
fact that for a physical-sheet anomalous threshold the dual disgram
can be drawn in real Enclideanspace (Taylor, 1960). If the lowest order
diagram does not give an anomalous threshold, nor does any other.

The dual diagram for a general seattering diagram is drawn in three
dimensions, The dual of the square diagram is shown in Fig. 2.4.2
For a higher-order dual diagram the tetrahedral framework ABCD
remains the same, since it refers only to the external variables 5, 2
and the external masses, but the internal structure is more complicated.
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For a eritical double point on the Landau curve, as in Fig. 2.7.1¢,
there must be a simultaneous coincidence of the two perpoendicular
anomalous thresholds and the Landau curve. This requires that two
parts of the corresponding dual diagram must be simulfaneously
coplanar and real Euclidean since the crunode lies on the boundary of
R,. Since for coplanar dual diagrams the lowest anomalous threshold
comes from the simplest such diagram it can be seen that the required
simultaneous coplanarity oceurs first for the dual of the square dia-
gram. Thus increasing external masses give rise to a crunode and
to complex singularities for the square dingram before they arise
from more complicated diagrams.

2.8 The acnode graph

There are two matters that prevent the techniques of § 2.6 yielding
a complete proof that, for suitable values of the masses, each graph
that contributes to a scattering amplitude is free of complex singulari-
ties, Both these points are illustrated by a particular example, that of
the Feynman graph of Fig. 2.8.1a (Eden, et al. 1061 b). Other examples
have since been discovered by Olive & Taylor (1962) and Islam (1963},

b

M d

(@ ()]

Tig. 2.8.1, The Feynman graph {g) and the corresponding dual diagram (b}, that can
lead to acnodes and cusps on the Landsu curve.

The form. of the Landaw curve
The dual diagram for the graph is drawn in Fig. 2.8.15. The Landan
equations require eaeh line to be on the mass shell for the leading
singularity, and also the conditions
E oxgy =10
each foop

of the
graph



2.8] ACNODE GRAPH 105

require that the three lines connected to p in the dual diagram lie in
a plane, and also the three lines connected to g. To oblain the equation
of the leading singularity surface is now a matter of geornetry; one has
to find the constraint that the figure imposes between the lengths \fs
and \Jf of the diagonals ac, &d. The calculations are simplified consider-
ably if a symmetrical set of values is assigned to the masses. Accord-
ingly, we set each mass equal to unity except for the two external
masses be and ad which we take to be M. Then the solution of the
Landau eguations having the symmetry

Oﬁaﬁ) = ogs abp = ocdg

is readily found to be
§=D5-+4cos¢+2(2— LM%+ cos G+ cos @) sin P/sin 4, 2.8.1)
te= 5+40080+2(2— 1 M2+ cosg + cosb) sinﬁ/singﬁ,} (2.8

with #4-¢ = 7. # and ¢ are in fact the angles between pg and ap, bp

produced. These angles are also equal to the angles between pg and

ef, dg produced. There are other portions of curve having different

symmetry; these we do not investigate.

The Feynman parameters are given by

Pap _ Cp _ g %g | g (2.8.2)
sing  sinf /3  sing sing’ o

so that they are all real and positive when

O<t<dm 0<¢<in
The part of the real curve for which § and ¢ satisfy these conditions is
drawn for various values of M2 in Fig. 2.8.2. As may be seen from
equation (2.8.1), the curve is asymptotic to the normal threshold
5 = 9m? for ¢ = O; this normal threshold is the contraction

Oty == Qo = 0
in agreement with equation (2.8.2). Again, the value § = 0 yields
asymptotic intersection with the normal threshold { = 9m?, corre-
sponding to the contraction

Upy = Ggy = 0.

To obbain the form as M? increases we write
b= dn+iy, ¢=Ln—1iy (2.8.8)

When 4+2,/2 < M2 < 445/./3 = 6-887,
it is found that there are real non-zero values of % such that

Ims =TImi¢=0.
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Thus at M2 = 44 2 .,/2 coincident isolated real points appear and then
separate as M2 is increased, to give the sitnation of Fig. 2.8.26, Such
isolated real points are known to geometers as acnodes. As M2 passes
through the value 4+ 5/4/3 one of the acnodes meets the continuous

(a) (&)

(e} (@

Fig. 2.8.2, The Landau curve for the ‘rencde diagram’ shown in Fig. 2.8.1 ¢, showing
the effect of increesing the external mass giving a variation from (a) through (b) and
{c} to {d}). The dots denote acnodes (isolated real peints).

part of the real curve, and changes into a different type of node, a
erunode. This is a point where a real arc crosses itself; we now have the
situation of Fig. 2.8.2¢, [We already encountered a erunode, in Fig,
2.7.1c, but that one only existed for special sets of vaiues of the
external masses. The present one is there for all M2 > 4+ 5/./3.] The
curve now also has a pair of real cusps; the position of these may be

found from the conditions
ds  di

a5 =a0="

For M?® < 4+5/.J3 the equations (2.8.4) do have solutions, but for
complex s, t: they correspond to complex cusps.

(2.8.4)
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Ag M?increases further, the two cusps cross the normal thresholds;
and for 7> ME > 4.3 = 6928,

part of the arc lies outside the normal-threshold cuts, as is drawn in
Pig, 2.8.2d. Above M? =7 the vertex contractions produce new
singularities and the character of the curve changes in a way we need
not consider.

The complex surfaces attached to the real arc are of complicated
shape. We consider intersections with the partieular set of searchlines

Sf =g, preal (2.8.5)

Fig. 2.8.3. The paths in the complex s-plane on the Landau surface, that are traced
out by the searchline {2.8.5) when there are two acnodes 4 and B. This is the situation
shown in Fig. 2.8.25.

The paths traced out in the complex s-plane us g is varied are shown
for the configuration of Fig. 2.8.25, in Fig. 2.8.3. The acnodes are
lazbelled A, B, the midpoint of the real arc is denoted by C, and 1), D’
are complex cusps. The parts of the paths in Fig. 2.8.3, drawn in
s0lid line correspond to real  and those in broken line to complex 7.

Singulority properties

When the real arc extends outside the normal-threshold cuts, as in
Fig. 2.8.2d, since it corresponds to positive o it forms part of the
boundary of the region R for the graph, in which the Feynman integral
is defined for undistorted hypercontour of integration. Hence that part
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is singular from any direction of approach, and therefore also the two
complex-conjugate pieces of complex surface attached to it are
singalar on the physical sheet. Since the intersection of the arc with
the normal thresholds is not an effective intersection (the values of the
« are different on the arc from on the normal threshold at the inter-
section) the whole part of the arc between the cusps must have the
same singularity property, and therefore also the whole of the
attached pieces of complex surface, At their other ends these pieces of
complex surface are attached to the acnode, as may be seen by
considering searchlines,

At the cusps the second meechanism for division of a surface into
singular and non-singular portions is involved; so that the complex
surfaces attached to the rest of the real arc do not have to be singular.
This is the mechanism discussed in connection with (2.1.13) and
subsequent equations, or rather its analogue for multiple integrals.
That this occurs at a eusp may readily be seen. The denominator
function D takes the form

D= flo)st+glayt+ K. (2.8.6)
On the leading Landau curve each
ap
= (2.8.7)

But, since D is homogeneous in the , so is 8D /éx,. Therefore, by Euler’s

theorem, 2D oD

——— 0.
7 fo by 7 doty

Bo (2.8.7) implies that the NV x N matrix 820/dx, do; has zero determi-
nant: the Landan curve is characterized by this matrix having rank
(¥ —1) instead of N, The matrix determines the form of the surface
D) = 0 in the neighbourhood of the critical peint in o-space. When its
rank is (¥ —1) this form is locally cone-like, and the possibility of a
singularity of the Feynman integral arises from trapping of the hyper-
contour of integration between the two halves of the cone. Now if we
vary the parameters o so that we move to another point of the Landan
curve, from {2.8.6) and {2 8.7} the displacement (ds,df) along the
curve is given by

apy  of . g D
d(ad) B U S gy (2.8.5)
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But if we are at a cusp a small variation of the o does not change s, ¢,
as may be seen from (2.8.4}, So then

2
0=y 2P

e (ot
K aai 6057- g

Since the de are not proportional to the o (we recall that only the ratios
of the « are involved in the Landau equations; their absolute magni-
tides would come in only if we were to make use of the §-funetion in
the numerator of the Feynman integral (2.2.4)) this means that the
matrix 8208, dx; is further reduced in rank, to (& —2}. So the cone
hags degenerated and the intersection of I = 0 with the hypercontour
involves more points than are necessary for the trapping. This is the
multi-dimensional analogue of the situation illustrated in Fig. 2.1.6.

If we now reduce M2, so passing from Fig. 2.8.24 to Fig. 2.8.2¢, the
pieces of complex surface joining the part of the real arc between the
eusps to the acnode must remain singular, because it has not shrunk
to zero. If we reduce M2 still further, so as to arrive at Fig. 2.8,28,
these pieces of complex surface have broken away from the real arc
and now just join the two avnodes; they must still be singular.

Bo now we have complex singularities even though there are no real
cusps. The analysis of §2.6 has broken down because of the acnodes,
which do not allow us to link together the sections of complex surface
in chains. It was originally thought that acnodes, being degenerate
points of curves, would occur only for aceidentally chosen sets of
values of the masses, so that if the masses were varied slightly the
scnode would become a real closed loop and the arguments used for Fig.
2.6.3 would apply. However, the present example nullifies this hope.

It is easy to see that the acnodes persist if the masses are changed
slightly so as to give & more general diagram. The simplest divect way is
to ntote that the derivative ds/df in the Landau surface at tlie acnode is
complex, and that it remains complex when the masses sre varied
slightly. Hence the izolated real point on the Landau surface does not
become a real curve since for a real curve the derivative would have
to be real.

An alternative argument can be based on the fact that a complex
part of the Landau surface is singular and is attached to the acnode.
If the aenode were to become a small real closed curve under a small
mass variation, all this curve would have to be singular in the same
limit (from opposite half planes in s and #). This would imply the
existence of another singular part of the Landau surface attached to
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the other side of the closed curve. From this one can readily derive a
contradiction by varying the masses to a situation where the argu-
ments used for Fig. 2.6.3 would show that there is no complex
singularity on the physical sheet.

What goes wrong with the analysis associated with Fig, 2.6.3 when
there are acnodes is that here the two complex-conjugate portions of
surface are not connected by a path through the real curve such that
the o change continuously on this path. Here the arcs BAD and BAD/
in Fig. 2.8.3 share common values of the o neither at 4 nor at B.

To sum up, in this example complex singularities ate absent only
for M* < 4+2,/2. The general analysis of §2.6 cannot deal with
acntodes and cusps, 20 it is not known whether or not all Feynman
graphs are similarly free of complex singularities below this valueof M2,

The general problem of determining whether acnodes or cusps occur
on the boundary of the physical sheet zo that they are associated with
complex singularities has not yet been solved. 1t cannot he solved by
any of the majorisation methods such as we have presented in §2.5
because acnodes are always associated with a distortion of the «
hypercontour in the corresponding Feynman integral. This follows
from the fact that the derivative in the Landau surface must be
complex at an acnode {otherwise it would not be an isolated real point).
But the derivative ds/df is the ratio of two functions of & that would be
real unless the z variables themselves are complex. The study of
Feynman diagrams for undistorted contours nsed majorisation tech-
niques for which the real positive character of the Feynman para-
meters is vital. Their possible extension fo complex contours is an
important unsolved problem.

2.9 Discontinuities and generalised unitarity

In §2.1 we explained how to find the discontinuity associated with
a branch-point of a function given by a simple integral. A Feynman
integral is a multiple integral and so the corresponding analysis is
considerably more complicated. However, the resuits are of simple
appearance (Cutkosky, 1960; sce also Fowler, 1862}, and, when the
discontinuities for all the graphs containing a given singularity are
added together, take a form that it independent of the structure of the
individual terms of the perturbation expansion from which they are
derived. This encourages the hope that they are valid independently
of perturbation theory, which itself is not valid in a numerical sense.
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The discontinuity formula

Consider a general Feynman integral in the representation (2.2.1):

4 4 4
Iz) = Cﬂiikzd ..]9!, (2.9.1)
1 (gF —mi)

and suppose it Is required to find the discontinuity associated with the
singularity eorresponding to (¥ —r) contractions. If we label the ¢
suitably the relevant singularity conditions are

g=md (=197 (2.9.2)
ay=0 (i=r+1,r+2,... N}, (2.9.3)
> gy =90, {2.9.4)
each
loap

In the integral (2.9.1) there are 4l integration variables. Make a
traunsformation of integration variables so that the integration is over
the r variables ¢%,4%,...,¢%, together with 4l —r other, unspecified,
variables £ (We consider later what happens if it should he that
4l < r.} The transformation of wvariables will, of course, involve a
Jacobian J, so (2.9.1) now reads

by by by
1) = f dg%f da... f i T e
@ e e T (e
i=1

The limits (a;, b} for the ¢% integration are the extrema of ¢} with
respect to all values of the £ when ¢, for ¢ < 7, are fixed. These we may
find by introducing Lagrangian multipliers £ and solving the equations

S A= 0. (2.9.6)

each
loop
iy

Suppose now we write (2.9.5) as

b o highh )
= 2 1A T 2

I(Z} J‘a; dﬁq%—mi ' ( 9'7}
The singularity z = 2, of I that we are investigating depends in position
on the valuc of mi, but neither [(¢%) nor a,, b, explicitly contains m3.
Hence the singularity must arise in the integration in {2.9.7) as a
result of the contour of integration being trapped between the fixed
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singularity produced by the denominator of the integrand and a
singularity 42 of I, that approaches m§ when z-> 2z, So for z ncar z,
the situation in the ¢§ plane is as in Fig. 2.9.1a. We may split the
contour of integration in this figure into two parts, as in Fig. 2.9.15;
then only the closed part of the contour will be trapped as z-»z, and
so the infegral over the open part will not contain the singularity. Se
the latter part will give zero discontinuity and we may forget it. The
integral over the closed part is simple to evaluate; it is

—2mi [ (m?, ). (2.9.8)

2

a*
@, 'm% N @

(a &

Fig. 2.9.1. The method of splitting a contour of integration into two parts that is used
in obtaining the discontinuity formula.

But we may write Io= f dgs Qz,zz),
® g3~ mi

and so repeat the argument. So eventually we find that the part of I

that matters is f It o, (q,,z}

e 4 (2.9.9)

In the ¢2 integration the singularity of I comes about not from a
trapping of the integration contour between two singularities, but
becanse, when z-»z,, one of the end-points of the integration moves
towards the singularity ¢% = m2 arising from the denominator of the
integrand. This is because the end-points {(a;, b,) are given by (2.9.6),
which for j = r is equivalent to {2.9.3) together with (2.9.4), We may
now find the discontinuity of I by applying the discussion of Fig. 2.1 3.
If we revert to the variables of integration k the result is

(M) 80qE = k) 8 g — ) .. O0gs = )
(9542 —miiq) .. {‘17» myy)

dise [ = {— Qﬂi)"\"
(2.9.10)
A word must be said about the meaning of the é9-functions in

equation (2.9.10). They can only be taken literally in the case of
physical-region singularities, where, as we saw in §2.5, the critical
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values of the momenta g are real and physical. This will not usually be
the eage for singularities out of the physical region, and then the only
reliable way to interpret (2.9.10) is to make an analytic continuation
in some of the masses so that the singularities come into the physical
region; then evaluate (2.9.10), and continue the result baeck to the
desired values of the masses. This procedure is not simple in practice,
1t is because we were implicitly considering physical-region singulari-
ties that we drew m{ below the contour in Fig. 2.9.1a-—in the physical
region the contour of integration isreal and Feynman’s — i¢ depresses
the masses into the lower-half plane. Otherwise m¥ and # might be
interchanged, and a difference of sign would result in (2.9.8).

Generalised wnitarity

We know that a given singularity z = z, is shared by an infinite
number of Feynman graphs; any graph that can be contracted suitably
has that singularity. For example, the triangle singularity that we
discussed in §2.3 is contained in all graphs of the structure of Fig.
2.9.2a, where the three blobs in the figure have any structure. The

3
{a@)

®

Fig. 2.9.2. (a) The general triangle singularity from this disgram has the discon-
tinuity shown in equation (2.9.11). (6) A normal threshold singularisy.

discontinuity, for each graph, associated with the friangle singularity
takes the form (2.9.10), with §®-functions for the three internal lines
drawn explieitly in the fignre and propagators (¢%-m?*)-1 for the
others. If we sum over all graphs of this structure, we evidently
obtain for the total discontinuity

(= 2t [ @00309(g3 — ) S~ ) (g2 —mi) Ay Ax iy, (29.11)

where 4, A,, A, are the sams of all the subgraphs contributing to the
blobs, that is they are the complete scattering amplitudes represented
by the blobs. So the result (2.9.11) takes a form independent of the

8 EA
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perturbation theory from which it is derived, and we might expect to
be able to derive it without using Feynman graphs. This we do in
§4.11.

One point requires eare in this argument. If we go round the triangle
singularity with one of the variables, there is no necessity of simulta-
neously going round a singularity of one of the blobs. But consider the
example of Fig. 2.9.26, and suppose it is desired to find the total
discontinuity associated with the normal threshold corresponding to
the two internal lines g,, ¢, displayed explicitly in the figure. This
normal threghold will also be contained in each of the two blobs, so if
we go round it in the external variable s we must consider how the
blobs change as well as taking account of the contours of integration
agsociated with g2, ¢ (Olive 1963 5). We know, from the unitarity equa-
tion (1.3.5) what the result is for the discontinuity: the structure of
the bloba results in one of the scattering amplitudes cccurring in the
discontinuity formula being evaluated on a different Riemann sheet;
in this particular case this usually involves the complex-conjugate of
the physical amplitude, as in equation (1.3.5). These matters are
investigated further in §4.6. '

Simple examples

We give two examples of calculation of the discontinuity functions
for simple graphs. First consider the triangle graph of Fig. 2.9.3q,

Pa 93 P,
{a) (b}

Fig. 2.9.3. {a) The triangle graph used ag an example for evaluating a discontingity.
{t} The momentum-spaco diagram for the triangle graph.

To get the discontinuity corresponding to the leading singularity, we
have to evaluate (2.9.11), with 4,, 4,, 4, set equal to the coupling
counstants for the vertices. We transform to the variables

& B 4 &,
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where, in the momentum-space diagram of Fig. 2.9.35, the angle ¢
measures the position of X on the circle of radius A in four-dimensional
space ot which X can lie when the lengths 43, ¢, ¢4 are given. We have

hdg dgtdaldas
e (2.9.12)

d == hddBl =
where, since each g depen(is linearly on &, the Jacobian JJ is the three
by three determinant 8detq,. But detq, is six times the volume of
the tetrahedron in Fig. 2.9.3b, which is 34, where 4 is the area of
the base triangle. The integrations are trivial, so, apart from congtant
factors, the result is 1/,/K, where

K = pla+pu+ pe— 2paph — 20520} — 20807 (2.9.18)
One reason for particular interest in the triangle singularity is that,
according to (2.2.16) and (2.2.17), it is one of the few singularities that
is an infinity rather than just a finite branch-point. So when'it comes
close to the physical region it might be expected to make its presence
felt directly as a ‘bump’ in the amplitude (Landshoff & Treiman,
1962). The magnitude of this effect is estimated by using the dis-
continuity in a dispersion relation.
The other example we congider is that of Fig. 2.9.44. This is an
example where there are more internal momenta ¢ than integration

'3

(@ &)

Fig. 2.98.4. (o) A diagram whose leading singularity is a pole. () A diagram in which
there iz no ‘leading singularity’ because of the constraints of four-dimensional space-
time.

variables, so 41 < # when we are considering the leading singularity.
But in fact the result (2.9.10) is still valid. If we accept it, for the
Ieading singularity there are five d-functions in the integral but only
four integrations, so the result of the integration contains a d-function
as a factor. The singularity whose discontinuity is a §-function is a
pole, so we conclude that the leading singularity of the graph in
Fig. 2.9.44 is a pole, This is correborated by calculation of the dis-
continuity across the singunlarity corresponding to one contraction,
82
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say o = 0. For this singularity 41 = v and the derivation of (2.9.10)
is valid. It gives an integral over four variables whose integrand
contains four §%-functions, making the integrations trivial, and the
pole (g2~ mi)L. The 6 -functions, when integrated, require ¢% to be
expressed in terms of the external momenta and the other internal
masses. The pole is the leading singularity.

In conclusion, we note that if we were to apply {(2.9.10) to try and
find the discontinuity corresponding to the leading singularity of the
hexagon grapb of Fig. 2.9.45, we should get an integral over four
variables and containing six é-functions. The reason for this non-
sensical result is that the leading singularity does not in fact exist
{Landshoff, 1960). In four-dimensional Lorentz space the dual diagram
leads to hwo constraints on the external momenta instead of the usual
one. But a singularity of a function of several complex variables must
be given by one equation, not two shmultaneons equations. If Lorentz
space had five, or more, dimensions the singularity would exist.

2.10 Second-type singularities
Simple examples

We see from {2.9.13) that the discontinuity (2.9.11) associated
with the triangle diagram is singular when

S2 4884 52 — 25,95 — 28,8y — 28,5, = 0, (2.10.1)

where 8; = p3{ = 1,2, 3), p; being an external four-momentum. This
is not a singularity corresponding to any Landau curve associated with
a dual diagram for it does not depend upon the internal masses, Itisin
fact the condition for the three external momenta of the triangle to lie
along a line instead of in a plane. Since the discontinuity is just the
difference of the Feynman integral on two of its Riemann sheets, the
integral itself must also possess this singularity on at least one of the
two sheets. This was first noticed by Cutkosky (1960) who gave the
singularity the name ‘non-Landauian’, since it did not appear to be
associated with the Landan equations. In fact, however, it turms out
that this is an example of a wide class of singularities corresponding to
rather special solutions of the Landan equations (Fairlie, Landshoff,
Nuttall & Polkinghorne, 1962¢, b). Members of this class are called
second type singularities,

The reason that they do not appear among the dual diagram solu-
tions of the Landau equations is very simply illustrated by considering
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the diagram of Fig. 2.10.1, The Feynman integral is divergent for a
four-dimensional loop momentum & so we evaluate it with three-
dimensional momenta. The dual diagram {first type) singularities are
just the normal and pseudo thresholds

§ = p% == (Mg +my)E (2.10.2)
Pk
P
@w
P
)’1’22 'p
~Fk
Fig, 2.10.1. This solf-energy diagram gives rise t0 a second-type singularity
ats = 0.

The discontinuity of the three-dimensional integral around the
normal threshold is readily caleulated by methods similar to the
derivation of (2.9.11} and it is found to be proportional to

s, (2.10.8)

exhibiting a second-type singularity at s = 0.
Now the Landau equations for Fig. 2.10.1 are

(p+k)P—mi=0, FB—mi=0, (2.10.4)
ay(p+ k)~ gk == 0. (2.10.5)

A solution of these equations can be given by drawing two spheres in
momentum space, of radiim, and m,, whose centres are joined by the
vector p. Equation (2.10.5) then requires that the two spheres touch.
If the distance between their centres is either the sum or the difference
of their radii the two spheres touch at a finite point. This corresponds
to the first-type solution (2.10.2). If, however, the two spheres are
concentric (or more generally, in complex Fuclidean space, if their
centres are joined by a zero-length vector) then the spheres touch at
infinity. Thus the reason that second-type singularities were at first
overlooked lies int the fact that they correspond to pinch configurations
in which some of the components of the loop momenta are infinite,

Tigure 2.10.1 also serves to illustrate another interesting feature of
gecond-type singularities. Tf the diagram is evaluated with a two-
dimensional momentum & the second-type singularity is absent from
the discontinuity and, as it turns out, from the integral itself, Thus the
presence or absence of second-type singularities is dependent upon the
dimension of space.
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a-space analysis
The second-type singularitios we have encountered are all given by
equations of Gram-determinant type

detp,p; =0 (i,f=1,...,n); (2.10.6)

the two particular examyples discussed having corresponded to w = 2,
and n == 1 respectively. Equation (2.10.6) is the condition that there
be a linear combination of the vectors p, ... p, equal to zero or, more
generally, equal to a zero-length vector whose scalar produets with
Py ooy Py, AT ZETO,

If a diagram has F external lines there are E -1 independent
external momenta when account is taken of energy-momentum con-
servation. We might expect that there will be a second-type singu-
larity when equation (2.10.6) is applied to these independent momenta.
For E 2 6 the condition is always satisfied, since Lorentz-space is
four-dimensional and there must consequently be a linear relation
between any five vectors in it. Since the whole of space cannot be
gingular the second-type singularity must be absent in this cage. In
fact, for a reagon explained later, it is also absent for B = 5. However,
the singularities are found for £ < 4 and we proceed to give their
explanation.

We use the notation of §1.5 angmented by the convention that
matrix quantities which are also Lorentz vectors will have an arrow
suporseript to emphasise their status. The Landau equations include
the relation AR - Bp. (2.10.7)
If A is non-singular (2.10.7) will have a unique solution in terms of the
p’s which will exactly correspond to the dual diagram construction.
Hence second-type solutions will have to correspond to A being
singular, that is to the condition

C = detA =0, (2.10.8)

In this case X = adj A can be written in terms of a column matrix K,
X = K K7, (2.10.9)

where K¥ A=g0 (2.10.10}

If the equations (2.10.7) are to have a solution with € = 6, (2.10.10)
requires that K7 Bp = 0, (2.10.11)
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in which case there are an infinite number of solutions for k. The
equation {(2.10.11} just represents a linear relationship among the
vectors p, which leads to the Gram-determinant equation. However,
the most general way of satisfying the Gram-determinant relation
involves a zero-length vector. 'To obtain this possibility we replace

(2.10.7) by AK = Bp—AX, (2.10.12)
where A is any column vector and A is a Lorentz vector satisfying
2220, A.p=0foralp (2.10.13)
This leads in the case ¢ == 0 to
K7.Bp = KZ.AX, (2.10.14)

corresponding to the most general solution of the Gram-determinant
condition. The status of the somewhat curious equation (2.10.12) will
be made clear a little later in the argument.
Elementary manipulations now lead to the result that for ¢ = 0

we can write

2D - > a0

" —— P . + 1 5]

i, yrip, k, ) PP (2.10.15)
provided that the solutions K of (2.10.12) are chosen to be linear
combinations of the p’s so that

A K=o (2.10.16)

Equation (2.10.18) shows that for ' = 0 we can obtain a pinch
configuration corresponding to

an .

= P=1,2,... 2.10.17

o 0 (i=1,2,..., { )
by choosing the % as defined above and satisfying the single further
eondition == 0. (2.10.18)

There are many such sohutions possible.

Momentum space analysis

This result adequately explains the Gram-determinant singularities
hut it seems paradoxical that the A (which we have in fact simply used
as suxiliary variables to help in the calculation of I and its deriva.
tions) do not have to correspond to vectors of the diagram lying on
the maas shell, The paradox is resolved by the observation that the ¥
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do not correspond to the values of loop moments at which the pinch
takes place in the (Z, o) representation of the Feynman integral. To
see this, and to find out to what in fact they do correspond, it is
necessary to reconsider the singularity in the {ffg, o) representation.

We have already said that we expect that the pinch takes place ab
infinite values of the loop momenta. In order to make infinity acces-
sible fo our analysis we make the transformation

E =K/t (2.10.19)

so that infinity in k will be given by { = 0. In order to have the correct
numbers of new variables one of the components of one of the Lorentz
vectors in K must be taken constant to compensate for the presence
of the new variable {. We then consider

¥ = ) = K7 AK —2K7. Bpl+(p?. Tp—0) {2 (2.10.20)

The conditions for a pinch-type configuration aret

"
éii_; = 0, ar = 0, ar =0, {2.10.21)
K Fird 17
If £ = 0, these reduce to AK = 0,
K7.Bp=0, (2.10.22)
k7. 22% ~ o,
&xi

These equations have solutions for all choices of external vectors 55,
which arc obtained by writing

K = KA. (2.10.23)
The o’s are chosen to satisfy C' = 0 so that there is a vector K such that
AK =0, (2.10.24)
and A is & Lorentz vector chosen to sabisfy
AL (K2, BE} e e,} (2.10.25)
A2=10,

Then (2.10.23) provides a solation of (2.10.22),

1 Here we have differentiated with respect to all %, even the constant component.
The apparvently inadmissible equation corresponding to this constant component is
simply equivalent to the condition W = 0, which is also used. This iz because ¥ is

—r
homogeneous in K and £, {Cf. the treatinent of the o’s despite the §-function making
Ta = 1)
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A pinch which exigts for all values of the external invariants cannot
in fact give a singularity. Since the integral is not singular at all points
the hypercontour is not trapped at these points. 1t can then only
become trapped as one makes analytic continuation if the permanently
existing pinch configuration becomes yet more degenerate. Thus the
condition for a singularity is the existence of a ‘super pineh’, in the
formation of which the contour can become trapped. This will happen
if we can also find solutions of (2.10.21) ab the point

K+0K, 86 a+ox (2.10.26)

adjacent to the solution given by (2.10.28-25). The conditions for this
are

ASK = Bpst —sAKA,

_ J’T e —-»T ——)—m ——“ P “’=
OK™.Bp+ (pr.Tp-a) 8~ ART.0Bp = 0.1 o100

> A o v, B
7 YR e ST P -
AK .&xic?i( AK G, péf =0,
H we make the identification

K = 8K/, (2.10.28)

the content of (2.10.27) can be made identical with that of our a-space
discussion. The first equation of (2.10.27) is identified with (2.10.12).
The imposition of the conditions (2.10.13) on X reduces the second
equation of (2.10.27) to the condition (2.10.18), while the condition

that % are linear combinations of the ;, together with (2.10.13), satisfies
the third equation of (2.10.27). We are thus able to understand why

the % do not have to correspond to vectors of the diagram on the mass
shell, They simply represent the directions from which the super pinch
at infinity is formed.

We see that the zero-vector solutions of the Gram-determinant
conditions are vital in the disoussion of second-type singularities.
If & = 5 these solutions do not exist. There are four independent
momenta and the Gram-determinant condition simply makes them
Iie in a space of three dimensions. Since it requires two dimensions for
a zero-length vector it is not possible in four-dimensional space to
find a zero-length vector outside this three-dimensional subspace.
Thus the & = b singularities are absent.

The single-loop diagrams require special discussions sinee ' is just
the sum of the o’s, which is prevented from vanishing by the overall
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dfunction. Tt can be shown (Fairlie ef al. 1962a) that nevertheless
there is a second-type singularity for a loop diagram for £ < 3
corresponding to the o’s tending to infinity.

Miwed second-type singularities

The socond-type singularities diseussed so far all correspond to the
Gram-determinant ourve however complicated the Feynman diagram
may be. It the integration space they correspond to super pinches at
infinity in all the loop momenta and are called pure second-type
singularities. In a diagram with several loops, however, there may be
super pinches only for some of the loop momenta while the others have
ordinary pinches at finite points, These singularities are called mized
second-type singularities and their equations will depend upon the
internal magses of the lines round the loops with finite pinches.

Fig, 2.10.2. An example of & Feynman diagram that gives
a mixed second-type singularity.

Their existence can most readily be seen by considering a Feynman
integral as being built up by sueccessive integrals over single loops. For
example, in the diagram of Fig. 2.10.2, we can perform the k-integra-
tion over the two-particle loop, to obtain a function which will depend
on ik, and have a second-type singularity. In the ksintegration this
second-type singularity will give a singularity of the complete integral
by making a pinch with the poles at m} and m} in the remaining lines
of the k, loop. This is a mixed second-type singularity whose equation
can be obtained from the dual diagram of a triangle graph whose
internal masses are taken to be my, m, and 0. It has been investigated
in detail by Drummond (1963); seo also Fowler (1962).

Little is known about the Riemann-sheet properties of second-type
singularities and this remains an important subject for investigation.
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CHAPTER 3
ASYMPTOTIC BEHAVIOUR

3.1 Complex angular momentumt
Regge poles

It is a well-known faet that the bound states of the Schrodinger
equation for a spherically symmetric potential fall into families
characterised by increasing angular momentum and decreasing
binding energy. Such a family appears as a sequence of poles occurring
in the successive partial wave amplitudes gfs), =0, 1, 2,..., at
increasing values of ¢. The theory of complex angular momentum
introduced into potential theory by Regge (1959} picturesthis sequence
as due to the presence of a single pole whose position varies contin-
uously with ! and which is relevant to the physics of bound states only
when [ takes non-negative integral values. This idea is given meaning
by the construction of an inferpolating amplitude a(l, s), defined for
non-integral, and indeed complex, values of I, which coincides with
the physical amplitudes (s} when = 0, 1, 2, .... This function a(l, ¢)
is an analytic function of its arguments except for certain singulari-
ties. Among these singularities will be a pole corresponding to each of
the bound state families. The location or trajeciory of such a pole is
given by an eqguation of the form

I=a(s). (3.1.1)
Such a singularity is called & Regge pole. The bound-state energies will

correspond to values of s in {3.1.1) which make ! take the values
0,1,2,....

Watson—Sommerfeld transform
If one such interpolating function a(l, 8} can be found then there are
many, for we could always add a term
fils)sinad, (3.1.2)
without altering the properties at physical values of {. What makes the
idea of complex angular momentum more than an empty, if elegant,

t This seetion and the one following sumimarise results and ideas which will be
useful in the sequel but which sre not treated exhaustively here. For a fullor account
of these topics see Sguires (1963).
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notion is the fact that there is a particular definition of a(l, s} which
enableg the interpolating function to be used to derive further results
of physical importance.

This arises from the possibility of finding a representation of A(s, ),
the scattering amplitude regarded as a funetion of invariant energy ¢
and cosine of the scattering angle z, which is valid outside the ellipse
of convergence of the partial wave series. The technical trick which
makes this feasible is called the Watson—Soemmenrfeld transform. Let uy
suppose that a(l, s) is analytic in Rel » L for some given value of s.
If N is the first integer > L then we may rewrite the partial wave
series

Ms

(21+ 1) ayls) B(z)
=0

i

Nz ) 1 2+Lal,a)Bi~2) . ...
= 2 @ a b g [ FTREIH g, s

where € is the contour shown in Fig. 3.1.1 encircling the integers
greater than L. The residues of the integral at the zeros of sin#ljust

AT

C y y
N-1 kN N1 N2 = Rel

|
H
I
i
|
!
:
() i
|
i
|
t
i
|

|
f
H
i
Fig. 3.1.1. The contours €' and (" in: the complex I-plane,

reproduce the missing terms of the partial wave series. We use the
function F(—z) = ( ~ ¥ Bz} to take account of the alternating sign of
(7 coswl) !, the residue of (sinwl) at its poles.

The contour is now opened out to become (', a eontour running
parallel to the imaginary axis. If a(l, s} is bounded by a power of [ it
may be shown that the neglect of the contribution from the semi-
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circular are at infinity is justified for —1 < 2 < 1. Now the integral
along ¢ can be shown to be convergent for all z except possibly
z z 1, Thus

Da (314

gﬁ%+n%wﬂ) 1f(ﬂ+nmmu%

2z sinwl

is a representation of 4(s, 2) valid in the whole z-plane cut along z = 1
If a(l, s) has suitable analytic properties it will be possible to dis-
place ¢ further to the left in the complex I-plane. For example, sup-
pose a(l, s} is meromorphic in Iy < Rel < L so that its only singulari-
ties in this region are Regge poles. Then, as the contour ¢ is moved
over to a new position O] running through L,, additional contributions
will be obtained from the residues of the Regge poles that are crosged
over, togethor with residues from the poles of (sin#l)~1, These lattor
terms will just cancel some of the terms in the truncated partial wave
series in the right-hand side of (3.1.4). The resulting expression is

di (2l+1}a(£ s} B{—=)
sin 77/

M1
Z (@) ais) B (2)* f
p

_y GO DAO (=)

1 sin 7reey(s)

where N, is the first integer greater than Ii; and the sum in the third
term is taken over Regge poles of trajectory «,(s) and residue 714,(s)
which have been crossed in the displacement of the confour.

An important deduction can be made from {3.1.5). The Legendro
functions have the asymptotic behaviourt

Blw2)~(=2)* (@->w, Reaz-1). (3.1.6)

Therefore the dominant behaviour as z oo will be given by the term
in (3.1.5) with the largest value of Rea. The Regge pole terms will
therefore all be more important than eithor the truncated series or the
integral along €] in determining the behaviour as z--o and the
dominant term in this behaviour will correspond to the right-most
Regge pole.

"Thus the theory of complex angular momentum succeeds in forging
a remarkable connection betwecn the bound states of the theory and

t We are assuming that O] does not lie to the left of Rel = — . The theory can,
however, be modified to admit displacements into Re l < —} (Mandolstam, [962).
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the behaviour at large 2. As we shall see in the next section this
relationship is particularly important in a relativistic theory as the
large z behaviour at fixed s is simply the high energy behaviour in the
crossed chanmel, so that if s < 0 this is a physically observable
quantity.

We conclude thig section with two remarks. The first is that the
utility of complex angular momentum depends upon the feasibility of
the Watson-Sommerfeld transform, which in turn requires a bound
on the behaviour of a(l, s} as {-»c0 in the right half I-plane. If this
condition is satisfied the definition of a(l, 8) is in fact unigue and no
arbitrary terms like (3.1.2) can be added without spoiling the beha-
viour. This is guaranteed by Carlson’s theorem, This states that if
a(l, 8) is analytic in Rel = L and we require

afl,s) = Oy (A <7, [i|-+w, Rel = L), (3.1.7)

then a(l, s} is uniquely defined by its values at the integral values of L.

The second remark is that if singularities other than Regge poles are
encountered in displacing the contowy then of course they also provide
contributions to the high z behaviour. For example a cut ¢ trailed by
a singularity at [, and having discontinuity 8(l, s) gives an additional

term in (3.1.5)
: 1 jiﬂ 21+ 1) 38{, s} B{—2)
—=| di — .
24 sin i

(3.1.8)
{e}

3.2 Relativistic theories
The Pomeranchuk pole

In the scattering of particles of equal mass, m, the Mandelstam
invariants (2,1, %) are given in terms of k, the centre of mass momentum
and z, the cosine of the scattering angle, by the equations

S d(mPERY), fe —20F(1-2), ww—2kA1+z). (3.2.1)

Thus the limit |2} -+ oo at fixed ¢ corresponds to |f] 0 at fised s.
However, hecause of the crossing property, we interpret { - co as the
high-energy limit in the crossed channel provided that s is fixed at an
appropriate physical value < €. This, of course, requires analytic
continuation in s from the values given by (8.2.1) for real &.

Thus in a relativistic crossing-symmetric theory a Regge pole in
the s channel has dual physical significance. It gives the bound states
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in that channel and it also contributes to the high-energy behaviour
in the crossed channel.

The most striking thing about observed high-energy behaviouris the
high degree of constaney of total cross-sections for all gcabtering
processes above s few BeV, The total cross-section is related by the
optical theorem (1.4.15) to the imaginary parb of the forward elastic
scattering amplitude. The forward direction in the crossed channel is
given by s=0 and the proportionality factor appearing in the
optical theorem is a numerical factor times 1. Thus the constancy
of high-energy cross-sections will be explained if all scattering ampli-
tudes are asymptotic like ¢ at s = 0. This behaviour represents the
maximum permitted by Froissart’s result (1.4.13), disregarding a
possible logarithmic factor. It would be produced if there were a
Regge pole P, called the ‘Pomeranchukon’, which passed through
I=1 when & = 0.7 Because all high-energy total cross-sections are
effectively constant it is necessary that any pair of particles should be
able to exchange P. The intrinsic quantum numbers of P are therefore
the same as the vacuum (parity +, 1 = 0, § = 0, etc.).

The behaviour of the amplitude for values of s just below zero
determines the form of seattering near the forward direction, that is to
say in the high-energy limit it gives the shape of the diffraction peak.
If the Pomeranchukon is assumed to be the dominant singularity this
ghape turns out to be an exponential which shrinks logarithmically
with increasing energy. However this simple prediction is neither in
accord with experiment nor with more detailed theoretical investiga-
tions (see § 3.8). The important problem of determining the form of the
diffraction peak remains & complicated and unsolved question.

The Froissart-Gribov continuation

However complicated these questions may be, the way to their
answer is clearly in the cormplex angular momentum plane. Inattempt-
ing to extend the ideas discussed in §3.1 to a relativistic theory an
immediate difficulty is encountered. In potential theory we are able
to use the Schrodinger equation to construet an interpolating funetion
a{l, s) which can be used in a Watson—Sommerfeld transform. No such
equation is t0 hand In a relativistic theory so another method of
definition must be found. The answer was provided by the work of
Froissart (19614) and Gribov (1962).

1 This does not give a spin ! particle of zero mass if P has positive signature; see
boelow.
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We consider for simplicity the scattering of spinless particles of
equal mass. At fixed ¢ a digpersionrelation is assumed for the scattering

amplitude A(s,{) with the integrals taken over the f and « normal
threshold cuts:

Ay =—|"

1= ©
A(:’tldt +};f e G LU
4nt -

TSame W —u

We have assumed that no subtractions are necessary. What happens
when this is not true will be stated later.
The partial wave projection of (3.2.2) is

ay(s) = f dzU d' At(s 22z — 1))

ce P
+ffzu df;fgﬁu(s, 2k¥(—2 —1 ))] . (3.2.3)

2 2
where EREE | m}-m;': . (3.2.4)

For integral ! Neumann's formula, ¥
1t Bz , ;
2J‘—1dzmz";"_:—g = QI(Z ), (3.2‘5)
makes it possible fo rewrite (3.2.3) in the form

o) = 1 | " de o, 205 - 1)) Q)

s e -y Q). (320

%o

Aslosw Qfz) ~ I texpillog{z—(22~1)}}]. (3.2.7)

Therefore with £2 > 0 so that z, > 1, the first term in (3.2.6) gives
sufficient convergence in Rel > 0 to permit a Watson-Sommerfeld
transform, However, the second term does not have this property
owing to the presence of an additional ¢ factor which is unbounded
as [ o0 in the lower half plane.

This defect is remedied by defining two functions

at(l, s) = :r f QU As, 22 — 1)) £ A (s, 203z~ 1)), (3.2.8)

1 For propertics of Legendre fanciions see Erdelyi ef al. (1953).
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Both functions have an asymptotic behaviour which permits a
Watson—Sommerfeld transform, Because of the identity

Ofz) = (=P G{—z), [integral, (3.2.9)

a*(l, s) coincides with g(s) for even I and a~(l, s) coincides with gs)
for odd 1.

The need to use distinet continuations for the even and odd angular-
momentum states is not surprising. The invariants f and w are obtained
from each other by the interchange of the two particles in the final state
of the s-channel. Thus if the exchange of particles corresponding to
poles in ¢ generates a potential ¥ the exchange of particles corre-
sponding to the same poles in # will generate the corresponding
exchange potential ¥,.. In even angular-momentum states inter-
changing the two particles produces no change of sign, so the two
potentials combine to give an effective potential V 4-V,,. However, in
the odd angular momentum states the interchange produces a minus
sign and the effective potential in V'~ 1. It isnatural, then, that these
two different effective potentials will be associated with different
families of Regge poles. The label (+) is called the signature. Even-
signature Regge poles only correspond to particles of angular
momentum 0, 2, ..., and odd-signature Regge poles only correspond to
particles of angular momentum 1,3, ...,

Under the assumptions that lead to no subtractions in (3.2.2} the
integrals of (3.2.8) are convergent for Rel > 0 and so (3.2.8) defines
funetions a®(l, s} analytic in thisregion. Had it been necessary to make
n subtractions (see Squires, 1963) (3.2.8) would have again been
obtained as the appropriate continuation, but a*(l, s} would then only
be known to be analytic in Rel > n.

The Gribov—-Pomeranchuk phenomena

Two interesting deductions can be made from the Froissart-Gribov
definition (3.2.8). The first is called the Gribov-Pomeranchuk (GP)
phenomenon (Gribov & Pomeranchuk, 1962a). We shall outline the
essential steps in the argument.

The amplitudes ax(l, s) have a number of singularities in & which
arise from the singularities of ¢ at 2 = & 1 and the singularities of
4, and A, producing pinches or end-point singuvlaritics in the 2’
integration. One of these singularities is generated by the singularity
possessed by both 4, and 4, which corresponds to the boundary of the

9 LA
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third Mandelstam spectral function p,,. This is a characteristically
relativistic phenomenon since the third spectral function is zero in
potential theory, where the ¢ and w channels do not correspond to
physical processes. The diseontinuity associated with this singularity
can be caloulated and it is found to consist of an integral over a finite
range of an integrand involving @,

Now suppose that it is possible to continue a+(, 8) to the ne].ghhour-
hood of I = — 1. If singularities in [ exist to the right of { = — 1 we shall
encounter convergence problems in (3.2.8), so that even though the
analytic continuation may be possible we cannot expect that the
representation (3.2.8) will be valid for all the continuation. However,
the expression for the particular discontinuity we are discussing must
remain valid, for there are no convergence problems in the finite-range
integral. Therefore thig discontinuity, and hence the whaole function,
can be expected to have a pole at ] = — I due to the pole there of the Q,
funetion appearing in the integrand. In fact more careful investigation
show that this pole is cancelled in a*(l,s) but that it is inescapably
present in a (1, 8) for all values of ¢,

An immediate paradox is encountered if this result is applied to
values of s chosen to lie in the region of elastic unitarity, Flastic
unitarity for physical I may be written in the form (see (1.3.38))

88— 4m?

at(l, 8) — aH (¥, ) = é; J at(l, s) at* (%, 5).  (8.2.10)
We have inserted the stars, denoting complex conjugation, in such a
way as to make (3.2.10) an analytic function of I. Carlson’s theorem
will then imply that the equation can be uniquely continued away
from integral I. However, if there is a pole at | = — 1 the left-hand side
of (3.2.10) would have a simple pole there, while the right-hand side
would have a double pole. This paradox can be resolved in two ways.
In the first way there is a cut in ! intervening to sereen off [ = —1
from the analytic continuation of (3.2.10) from the non-negative
integers. F this cut is erossed a corresponding extra discontinuity must
be added so that (3.2.10) must be modified. Alternatively, instead of a
pole there is an essential singularity at ] = — 1. We shall return to the
discussion of this question in § 3.8,

The second deduction which ean be made from (3.2.8) we shall
simply state. Gribov & Pomeranchuk (196256} deduced from a con-
sideration of the threshold behaviour of the Froissart—Gribov ampli-
tude that there must be an accumulation of an infinite number of
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Regge poles along Rel = —} at the two-particle threshold s = 4m?.
We shall encounter this result from a somewhat different point of view
in §3.6.

3.3 High-energy behaviour in perturbation theory
Bound states and the Bethe-Salpeter equation

The region of known analyticity of the Froissart—CGribov {FG} con-
tinnation is determined by the subtraction constants, If n subtractions
are needed we can only assert that a(l, s) is analytic in Rel > n. (The
GP phenomenon can then only be deduced on the assumption that
continuation to the neighbourhood ofl = — 1 is possible). The singulari-
ties in I of the F'G continuation to the right of Rel == — 1 arise from
divergences of the 2’ integration at infinity. Their nature could be
determined from a knowledge of the high 2’ behaviour of 4, and A,,
but it was precizely in the attempt to determine such behaviour that
we had recourse to the notion of complex angttlar momenturm ! Thus,
while the T continuation strongly suggests that the complex angular
momentum plane is the right place to be, it does not help us to deter-
mine what we shall {ind there.

In such a situation the study of appropriate models is a fruitful way
of proceeding. The only model which formally reproduces all the
properties of an analytic, crossing-symmetric, relativistic theory is
that provided by perturbation theory. Of course, the study of per-
turbation theory is a heuristic method since it could only be made
rigorous if the series were uniformly convergent, which is certainly
not expected to be the case in strong interaction physics. Gell-Mann &
Goldberger (1962} have spoken of the ‘laboratory’ of Feynman
integrals in which we can test the consistency of ideas about the
structure of relativigtic theories and this has proved a valusble role
for perturbation theory. As we shall see, we are sneouraged to aceept
the utility of the method for the study of questions relating to complex
angular momentum by the natural way in which Regge poles are found
to ocour.

Tt is most convenient to look for complex angular momentum
properties in terms of their consequences for high-energy behaviour,
This leads then to the study of the high-energy behavionr of Feynman
integrals. We shall find it possible to give rigorous procedures for
determining the high-energy behaviour of any specific Feynman
integral. However, we expect that the properties which are of interest
to us will be associated not with single integrals but with infinite sets

9-2
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of Feynman integrals. The reason for this is that Regge poles are
connected with the bound states of the theory. In quantum field
theory bound states are described by the Bethe-Salpeter equation
{Bethe & Salpeter, 1951). Symbolically, this is an integral equation
for the amplitude f, describing the bound state, of the formt

Oy - O ROu@) (3.3.1)

where V is some set of diagrams describing the ‘potential’ causing
binding. ¥ must be irreducible in the sense that none of its diagrams
can be decomposed into two parts joined only by two lines. A formal
series solution of (3.3.1) gives

Gr - - I - (3.3.2)

This is physically plausible. In order to maintain the binding of the
particles in the bound state ¥V must keep on acting and so f must
contain terms corresponding to any number of Herations of V. If V¥
is the ‘potential’ generated by the exchange of a single particle then
(3.3.2) corresponds to the complete set of ladder diagrams illustrated
in Fig. 3.3.1. It is from sets of diagrams like these that we expect to

Fig. 3.3.1. A iadder diagram.

extract Rogge pole behaviour, Our method will consist in determining
the leading asymptotic behaviour for each diagram in the set and then
performing a sum, There is no mathematical neccssity for the leading
agymptotic behaviour of an infinite sum to be the sum of the leading
behaviour of its terms, but the answers we shall obtain are heuristic-
ally compelling.

Asymptotic behaviour of integrals

First, however, we must consider the asymptotic behavicur of a
single Feynman integral (Polkinghorne, 196356; Federbush & Grisaru,
1963). The integral will have the form (see §1.5) l

J g, S~ N}
“lgla) t+dis, )"’

+ In contrast with the bubble equations of chapter 4 the internal lines here ro-

prosent propagators.

(3.3.3)
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where { is the variable which is to tend to infinity, s is fixed, and the a;
are the Feynman parameters. For the moment we restrict ourselves to
similar particles interacting through ¢3 interaction, so that the
nurmerator funetion & is independent of s and £, being just & power of

C(x} as in (1.5.22). The extremely interesting features which arise in
theories of particles with spin are discussed in § 3.9,

At first sight one might expect from the lmeal dependenee of the
denominator function upon ¢ that (3.3.3) would have asymptotie
behaviour £ as {— oo, This would indeed be so if g(a) did not vanish
anywhere in the region of integration. However, as we shall see, an
enhanced asymptotic behaviour can be obtained from those parts of
the hypercontour of a-integration which are in the neighbourhood of
points giving ¢ = 0. In order for these points to be really significant it
is obvicusly necessary that the vanishing of g is inescapable and can-
not be avoided by the freedom provided by Cauchy’s theorem to
digtort the hypercontour. This means that they must either correspond
1o g vanishing at the edge of the hypercontour where a number of «’s
are zero, or they must correspond to g vanishing in a region which is
trapped by a pinch as {->co. The two different contributions to
agymptotic behaviour obtained in these ways are called end-point
contributions and pineh contributions, respectively. In their caleulation
it is & tremendous simplification that it is only the part of the hyper-
contour in the neighbourhood of g = 0 which need be considered
explicitly.

Ag a very simple example we consider the integral associated with
the square diagram of Fig. 3.3.2, where the o’s and #'s are the Feynman
parameters associated with each line. The integral is

gt ( " ) fldazdc‘gﬁmdﬂz (0 + 4Byt fy— L , (3.3.4)

1672 [ot, gt + e, #, s}

where we exhibit explicitly the dependence of the denominator upon
the asymptotic variable t. The coeflicient of ¢ vanishes it o; = 0 or
&y = 0, both of which correspond to edges of the integration region.
Since it is only the integration region in the neighbourhood of these
edges which will contribute to the dominant term in the high ¢
behaviour we can calculate the leading behaviour by considering
instead of (3.3.4) the integral

(B + P n
#(zem) |, d“ldc‘ﬂf PG gy B9
where d'(8,8) = d{0,8,3). (3.3.6)
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Equation (3.3.5) has the same leading behaviour as (3.3.4) which will
be found to be independent of the value of € in (3.3.5). We now
perform the o, and «, integrations explicitly:

£ 1 € €
Jo sty [ iy
_ 1 Io € 4-d’
STEE T
1
NE,twllogt ag t—oo. (3.3.7)

A

3 o ay 2,

£

-

TFig. 3.3.2. The squere diagram.

Thus the leading behaviour of (3.3.4) is

g2 K(s}t1logt, (3.3.8)
oo Ko A [Ny

The effect of putting an « equal to zero is simply to contract the
corresponding line. Therefore the function d' in (3.3.9) is just the
Feynman denominator function associated with the contracted
diagram, Fig. 3.3.3. The fact that it appears with exponent one shows
that the loop momentum associated with Fig. 3.8.3 is to be taken as
being two-dimensional rather than four-dimensional, T

1 For a four-dimensional loop momentum the diagram is, of course, divergent!
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Ladder diagrams
This procedure is easily extended to the n-runged ladderof Fig. 3.3.4.
The Feynman integral is of the form

— g\ Hdadpa{zam,@—l)i( ) ;
#lm) oo R GR eso

A
Fig. 3.3.3. The contracted disgram associated with Fig. 5.3.2,

%y L IR By

IT

Fig, 3.8.4. The ladder with »n rungs.

The o’s are the parameters of the rungs of the ladder and the f’s are
the parameters of the sides; (' iz the discriminant function of the
diagran, as in (1.5.30), The coefficient of ¢ is zero if

2, =0 (i=1,..,n),
corresponding to end-points. Onee again, in order to determine the
leading behaviour we make the approximation of putting all o's zero
except in the vital term involving 7, and so consider the integral

g2(1692)n l( mz)zf doty .. dccf I ﬁ o Lﬂ_ﬁ%@]n - , (3.3.11)

where e(f) = C(0,f), &'(f, s} = 8(0,5,5). (3.3.12)
In (3.3.11) the x-integrations can again be done explicitly and yield
for the leading asymptotic behaviour

gzt_lﬂog?)_”:l[( 92)’”*1(7@—2)! f 10 O~ DA™ 2} (3.3.13)
G

1672 (&4, s)jnt
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The functions ¢ and &' are the correct Feynman numerator and
denominator functions for the contracted diagram, Fig. 3.3.5, and the
fact that their powers in (3.3.13) differ by one shows that two-dimen-
sional loop momenta must be used in the contracted diagram. Since
the diagrar iz just the product of {n—1) closed loops of the same
structure as Fig. 3.3.3 the integral in square brackets must just

reduce to
[K ()] (3.3.14)

Fig. 3.3.5. The contracted diagram associated with Fig. 3.3.4.

A direct analytic proof of this result exhibits some features of interest
and is given as an appendix to this section.

The series obtained by summing the leading behaviours of the
ladder diagrams is

g1 S, [K(s)log £1=/(n — 1)! = g~ exp [K(s)log]
Ly
= gHae), (3.3.15)
with a(s) = 1+ K(s). (3.3.16)

The result {3.3.15) is just the behaviow associated with a Regge pole
of trajectory (3.3.16}. It was first obtained by Lee & Sawyer (1962)
by direct consideration of the Bethe-Balpeter equation.

In the next section we shall generalise the method used here
for obtaining the leading end-point contribution associated with
a Feynman diagram. In §3.5 we shall show how these results lead
to Regge pole behaviour. Then in §3.6 we shall give a different
method of analysis based on the use of Mellin transforms. This
has the great merit that it can be used to derive the lower order
terms (-1 (log )2, ete., for the n-runged ladder) as well as the
leading term {#*(logi}*1). All these terms can be summed for the
set of ladder diagrams and shown to correspond to Regge poles.
This is a welcome confirmation of the hewristic value of the leading
approximation.
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Appendiz to §3.3
We consider the integral
/j‘ ﬁ ]n %
e D1 A9
(m— 23! f Hdﬁ’ B {ﬁ é)}“_l (A3.3.7)

appearing in (3.3.13), where ¢ and 4" are associated with Fig. 3.3.5.
The rules for forming ¢ (§ 1.5) immediately imply that it factorises and
can be written in the form

=%ﬁ%+ﬁ)mflp (A3.3.2)

where §; and f7 are the Feynman parameters of the jth loop. However
4’ has a more complicated structure given by

8 = 3 11 epdyl B} B} 5), (A3.3.3)
§ Jeskj

where d; is the denominator function associated with the jth loop

consgidered by iself.
We now make a set of changes of variables to p; and 5 defined by
=By B =0 =F)). (4 3.3.4)

The Jacobian of this transformation is p;, so that

a8} = pydp,f;
This is a particular example of what is called a scale transformation, a
device which will often be used in subsequent sections. Tt is convenient
formally to rewrite (A 3.3.4) in the form
Bi= oy i = pibs }
Apiap; — p;dp; AR AR} 8B} + B — 1)-
Also we note that the structure of d; is such that d;—pid,.
The result of these substitutions in (A3.3.1) produces

(A3.3.5)

S(Ep— I}H B+~ 1)
2yt Hdpl Tid e — . (AB.3.8
=2 09p [ 10— Wedgpap 80
Using the Feynman identity

n—1 1

(n— z)%f djlz)d]nd 1) (A3.3.7)



138 PERTURBATION THEORY 3.3
{A 3.3.6) reduces to

L N R 1 ) .
an.ag I N A3.3,
IS RCLER 7 T

34 End-point contributions
d-lines
In this section we shall extend the ideas on end-point contributions

which were illustrated in § 3.3 by consideration of the ladder diagrams.
There is an important class of diagrams, called planar disgrams

23 Py Py 21
Fig. 3.4.1, A diagram that is non.planar in one limit but not in snother.
Py X Py

i P2

Fig. 3.4.2. A diagram that is non-planar in svery limit.

whose pliysical high-energy behaviour is entirely determined by end-
point contributions. The class is defined in the following way. If
Py -, Py re the external momenta of a diagram and

s=(p+p)* = (e +p) and = (pp+p) = (By+21)%

then for the limit t— co at fixed s the diagram is called planar if it can
be drawn in & plane without either internal or external lnes crossing,
the external lines being attached round the diagram in the order
P Py Pas Pg- Otherwise it is called non-planar. Notice that the defini-
tion depends upon the limit being considered, since this defines the
order in which the external lines are attached. For example, the
diagram of Fig. 3.4.1 is non-planar for the limit {->co at fixed s, but
planar if we consider {— co at fixed u. However diagrams like Fig. 3.4.2
which have all three Mandelstam spectral functions non-zero are non-
planar for every limit.
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For planar diagrams it follows from the rules of §1.5 that the
coeffictent of ¢, the asymyptotic variable, is composed of the sum of
products of &’s. For the positive o's relevant to physical-region high-
energy behaviour such an expression can only vanish if a number of
«’s are zero and so we are restricted to end-point contributions, For
non-planar diagrams, however, the coefficient of ¢ may contain
products of a’s appearing with either sign and such expressions ean
then vanish in the interior of the region of integration, even for
positive «’s, This leads to the pinch contributions associated with
non-planar diagrams, which we discuss in §§3.7 and 3.8.

#

L3 x
A 1
5 i

o2

£
[

iy

A

Fig. 3.4.3. A diagram congidered in the toxt,

As our first more complicated example of an end-point contribution
we consider the leading behuviour associated with the planar diagram
of Fig. 3.4.3. The coefficient of ¢ is

g = oty oty (0ty + oty By + ) + agota(cty + ay + B+ )

tayfaostasfacy.  (3.4.1)
In order to make g vanish, the least number of parameters it is neces-
sary to put equal to zero is two, and there are two possible pairs for
the purpose, oy, @, or o, o,

In order to investigate the consequent high-energy behaviour it is
convenient to use the scaling techniques introduced by Federbush &
Girisaru (1963). Instead of the variables oy, o, we use the new variables
P and &1 defined by oy = P&p oy = p(i—ﬁl), (3‘4.2}
the Jacobian of the transformation being p. In fact it is convenient to
introduce formally the further variable &, = (I —2,) and then write

dee, doty — pdp iy di, 8(3, +Ey, — 1) (3.4.3)
The merit of this transformation is that the effect of putting «, and «,
simultaneously zero is now reproduced by setting the single scaling
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parameter p equal to zero. A similar scaling parameter o’ is introduced
for o and «). The coefficient of ¢ may be written

9= po'd. (3.44)

In order to extract the leading high-energy behaviour it is sufficient
to make the approximation of putting p = p’ = 0 everywhere in the
integrand except in ¢, but even here we can put p = p’ = 0in §. This
produces a new effective coefficient of ¢ of the form

= =

pe'G = pp'la@y(Bs+ Ba) + Bala(B + o) 40, 80 fo + Ty ;] (3-4.5)

The construction of § from § is called linearization.
The high-energy behaviour now follows from the formula

€ £ 1 l
do| pdp ——— o ~ 2log b, t—o0, (3.4
Lp pfop Plppgredp ™2 8l 28t (346)
which is easily proved by direct integration. Applied to the diagram,
Fig. 3.4.3, this yields an agymptotic behaviour
K'(syi-2logt, (3.4.7)
where .

1 1 1
K’(3)=f Hdﬁa(zp—x)f d&ldaza(&1+&2—l}f a4, 8@, + &~ 1)
(1] Q ]

- TT R RR— A — e g (54.8)
(&, 83 ( By + Ba) + o By + o) + T @5 fp + T Fu]P (B, 5)
with ¢ and d are the Feynman functions of the contracted diagram,
Fig. 3.4.4.

Ay

Ky

s
/\E}/\

Fig. 3.4.4. The contracted diagram associated with Fig. 3.4.3.

Notice that sets of Feynman parameters that, when zero, muake g
vanish do not have any effect on the leading behaviour of Fig. 3.4.3 if
they contain more than the minimum two parameters. For example,
g is zero if o, = f, = aj = 0. However, the fact that the integral in
(3.4.8) is convergent in the neighbourhood of &, = f, = &, = 0 shows
that scaling their variables would not further enbance the leading
behaviour.
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The expression {3.4.6) van be generalised to give

€ Tl-—id ¢ ’n-—Id 1

oo [ty

Lo Dipon=nt 1, (logfyn

(p— 1)1 grde=n’ (m— 1)

If p = n the leading asymptotic behaviour of (3.4.9) ~ 1% (logf)™,
and # p < n the leading bohaviour ~ 7.

The scaling procedure also generalises. If we wish to set oy, ..., a,
simultaneously zero we introduce the variables p, &; and make the
transformation S

oy = pi; (1=1,..,n), }

doy ... da, = pvMpdd, ... dZ, S(Za—1).

(t—o0, p > n). (3.4.9)

(3.4.10)

These expressions suggest the following approach to determining
end-point contributions. We look in the diagram under consideration
for connected open arcs of lines which when they are contracted
reduce the diagram into two vertex parts in ¢ joined through the
single point corresponding to the contracted arc. These ares corre-
spond to sets of a’s which make the coefficient of £ vanish when they
are set equal to zero. Moreover, we only consider those ares which are
of minimum length, that is they are composed of the least possible
number of lines. Such sets of lines are called d-lines (Halliday, 1963)
or ¢-paths (Tiktopoulos, 1963a). For example, the diagram figure
{3.4.3) has two d-lines, each of length 2, corresponding to the sets of
paramebers o, &y; &1, & If one associates a scaling parameter p, with
each d-line then {3.4.9) suggests that the leading behaviour will have
a power of £ (") given by the length of the d-lines, and a power of the
logarithm {[logt]* 1) one less than their number. This is indeed
correct if the residual integral obtained after performing thesc scalings
is convergent. However, this is not always the case and we shall go on
to iflustrate the circumstances in which more complicated calculations
are necessary. T

Singular configurations

Tilktopoulos {1963 a) pointed out that in addition to d-lines it is also
neecessary to consider certain other sets of lines called singular con-
figurations. They are distinguished from d-lines by the fact that some

T Woe need not, however, give a complote set of codified rules for leading behaviour,
a8 these are rather complicated to state and in all casos of interest i1 i easier to apply
the ideas directly to the diagrams being considered. Rules wero given by Tiktopouios
(1963 a) but, as we shall see, they need soms amendment.
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of the lines comyposing them form closed loops. Their importance arises
in the following way,

In a theory of spinless particles interacting through a ¢3 term in the
Lagrangian, the powers of the Feynman funections C(x) and D(x;s,t)
always differ by two, giving an integrand of the form

G

Dioes iy (3.4.11)

%)

L ot

4

Fig. 3.4.5. A singular configuration.

If the o’s round a loop are all made to vanish like p (the appropriate
scaling parsmeter) then € and D both vanish linearly like p also. The
resulting net power of p~* reduces the effective length of scalings
containing a single closed loop by two. For example, consider
Fig. 3.4.5 considered as an insertion ocenrring in a more complicated
diagram. Suppose we scale with p over the whole sot of parameters
Cpy --v5 0y The resulting integral has the form

Yo EYID-2
fpdpd&...i%%;?}; 3EE-1), (3.4.12)

where the net power of p is obtained from a combination of p® in the
Jacobian with the p-? extracted from numerator and denominator.
This sealing will be as effective in producing an enhanced asymptotic
behaviour as are the d-line scalings over the sets ay, ay; @, o, More
generally, if we have a d-line of length n and by adding to it 2m further
lines we can form m closed loops then scaling over this augmented set
is as important as scaling over the original d-line, whilst if m clased
loops could be formed by the addition of 2m — 1 (or less) lines then the
sealing over the angmented set would give an asymptotic behaviour
with one {or more) fewer powers of £ than the original d-line scaling.

In fact the singular configurations which are possible in a ¢2 theory
can be classified into the three groups of Fig. 3.4.6. Those of class (a)
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give an asymptotic behaviour with one less inverse power of ¢ than is
given by scaling the two d-lines of the insertion. Those of class (b)
{formed by adding a line to class (), and those of class (¢), give
scalings comparable to the d-lno scalings and so enliance the power
of the logarithm obtained.

(ﬂ) s PIET

® L

() ,

Fig. 3.4.6. The types of singular configuration in a ¢ theory.

Disconnected scalings
It is instructive to consider in greater detail the singular con-
figuration given by the second diagram of elass {¢). Fig. 3.4.7 labels
the Feynman parameters. The factor in the coefficient of f correspond-
ing to this insertion is
g = aq[fy{cty + o+ 83) + 0o fy] + gl faloey + By + 6y + 8a) + 8551
Y + B 0y) et + P+ 8y 00) =03, (3.4.13)

There are two d-lines of length three and two loops forming singular
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configurations with them. Therefore we might expect that a complete
sequence of scalings would be given by

Pyt oy, Sy, By, Bes Opa 8 s
Pa7 @y, ooy By, Sa, Vs }
Pat dy, Oy 3 J
Pat Pr fa -

(3.4.14)

4y i

Fig. 3.4.7. A singular configuration having & disconnected scaling.

However, after (3.4.14) has been performed the linearized residual
factor § is given by

G = Gy, By + [ 8,0, + 6, P + 78,85, {3.4.15)

where the parameters are required to satisfy the constraints imposed
by the scaling d-functions:

80— 1), — 1) 8(&, +Fp— D) 8B, + Bu+5 1) (3.4.16)

Menke {1964) pointed out that in § a further scaling is permitted by
(3.4.16), which is given by
Ps ey Br 7 {3.4.17)

This sealing corresponds to a disconnected set of lines in the original
diagram which have become a possible scaling set because of the
linearization in forming §. The possibility of this occurring was first
pointed out by Greenman (1965) in the context of fixed angle high-
energy limits. '

Independent scaling sets

One further point must be made about the evaluation of end-point
contributions. It concerns not the type of asymptotic behaviour
obtained but the numerical coefficient which multiplies the powers of {
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and log#. It may most simply be illustrated by considering the non-
planar insertion of Fig. 3.4.8.1 The factor in the coefficient of ¢
asgociated with this insertion is

g = ayay—fy f. (8.4.18)
We may begin a sequence of scaling with, say,
iy, By (3.4.19)
with its associated 8-function
8z, + By — 1), (3.4.20)

Fig. 3.4.8. A non-planar insertion.

If we take as our second sealing

Pt By fa (3.4.21)
then linearization in (3.4.20) will produce a J~function requiring
=1 {3.4.22)
The sealing sequence ean then be completed by
Ps Bas - (3.4.23)
However we might have taken as our second sealing
pa: B o, (3.4.24)
which would then have produced from (3.4.20) the condition
& =1, (3.4.25)

and the sequence would be completed by

ph: Eyr P (3.4.26)
It is clear from the equations (3.4.22) and {3.4.25) that these two
scaling sequences are independent altornatives, and in caleulating the
leading asymptotic behaviour both must be taken into account. This

1 The effoct ia-also pregent in the insersion of Fig. 3.4.7, but in a somewhat more
comptlicated form.

1G EA
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fact was first pointed out in the context of production proeesses
(Polkinghorne, 1065 ¢; ace § 3.10). A systematic account has been given
by Hamprecht (1965). He has also pointed out that linearization may
lead to erroneous calculation of numerical coefficients. A very gimple
example of this is provided by the integral

J Y dwdy (3.4.27)
o [y +a*yi 1

The coefficient of t vanishes if « = 0, and if the 2* term iz neglected,
according to the linearization idea, the linearised coefficient also
vanishes when y = 0. This would seem to lead to an asymptotic
behaviour i-tlogt. In fact explicit integration readily shows that the
correch asymptotic behaviour is $#-1logt. Care is necessary about the
numerical factor only in cases, like (3.4.27), when linearization
produces scalings not present in the original coefficient of ¢,

The ideas of this section have also been applied to high-energy
behaviour at fixed angle (when both the energy and the momentum
transfer become infinite}. Halliday (1964) has discussed the scattering
amplitude and Greenman (1965) produetion processes, both in a ¢*
theory.

3.5 Regge poles in perturbation theory
Generalised ladders

I this section we shall show how the application of the idea of the
preceding section to simple sets of diagrams leads to end point contri-
butions corresponding to Regge poles. We shall also obtain some
propertics of the resulting trajectory functions.

As a first Hhustration we consider the set of diagrams generated by
making more complicated insertions between some, but not neces-
sarily all, of the rungs of ladder diagrams (Polkinghorne, 196356). An
example of this type of diagram is given in Fig. 3.5.1. The new inser-
tions do not provide any further d-lines of length 1 so that the leading
end-point high-energy behaviour is gtill obtained by integrating, in the
neighbourhood of the origin, the parameters corresponding to the
single-tine rungs of the ladder. If there are n such rungs the high-energy
behaviour will ~ ¢ (log#)*Y(n—1)! and the coefficient will be a
Feynman integral associated with a diagram formed by contracting
the » rungs. Fig. 3.5.2 shows the contracted diagram associated with
Fig. 8.5.1. Because these contracted diagrams correspond to a
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sequence of subdiagrams joined only at common vertices, the corre-
sponding integrals can be decomposed into a product of infegrals
associated with each subdiagram (cf. the appendix to § 3.3). Thus each
possible insertion (Jabelled by ¢) will give an integral K, associated
with a self-energy diagram obtained by joining together both rungs

Fig. 3.6.1, A diagram belonging to the class considersd.

Fig. 3.5.2. The contracted diagram eysociated with Fig. 8.5.1.

adjacent to the insertion, if it is an internal insertion; and integrals
¥, and V7, associated with vertex diagrams obtained by joining
together one or other pair of its external lines, if it appears at one or
other end of the ladder. When no insertion is made the corresponding
contributions ure K{s) (eguation (3.3.9)) in the interior, and g at
efther end. For a given set of insertions, the number of distinet orders
ir which they can be ingerted within the # rungs of the ladder is just a
multinomial coefficient, Thus if one sums on all possible insertions in
the n-rung ladder the total asymptotic behaviour is given by

(7 TV() (K (5)+ ZE ()~ (g + BV i(s) - {log £y~ {m ~ 1)1, (3.5.1)
the sums being taken over all possible insertions 4. When (3.5.1) is
snmmed over » it gives a Regge pole behaviour of the form

B(s) 59, (3.5.2)
where etfs) = — 1+ K{s)+2ZK,(s), (3.5.3)
and L(s) = {g+ ZV)) (g + 2TV i(s). {3.5.4)

Jo-2
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The terms in the sum in the trajectory (3.5.3) clearly correspond to
higher-order corrections in g to the trajectory (3.3.9) which was
calculated only to order ¢ However (3.5.3) does not contain all such
contributions. Others are associated with the less-than-leading terms,
For the simple ladders we shall evaluate these in §3.6.

Fig. 3.5.3. The itoration of H-ingertiona.

Another instructive example is provided by the iteration of the
H-insertion of Fig. 3,5.3 (Federbush & Grisaru, 1963). If there are n H’s
there are 2n d-lines of length 2 formed by the sides of the H's. The
resulting leading asymptotie behaviour is easily found to be

[P LK (s} 2 (log )21 /{20 — 1)1, (3.5.5)

with K'{s} defined by (3.4.8). When (3.5.8) is sumrmed over » only odd
powers of log § are obtained. This means that the asymptotic behaviour
is that associated with a pair of Regge poles:

$LE () K ()]} [0, {3.5.6)
with xy = —2+[K'(s) Kisih. (3.5.7)

If a general discussion of Regge pole generation is attempted it isin
the first instance natural to think of diagrams with sets of d-lines not
having a line in common. Then, if these d-lines are scaled over, the
contracted diagram will reduce to a set of subdiagrams joined only at
common vertices. It will then be necessary to show that the corre-
sponding residual integral can be factorised into a product of
integrals, each corresponding to one of the subdiagrams. The factors
¢ and D appearing in the residual integrals can be dealt with by
scaling over the parameters of the subdiagrams in the way described
in the appendix to §3.3. The difficult part of the proof is to establish
in the general ease a corresponding factorisation for the linearized
coefficient 7 which remains after scaling. This has been trivial in the
examples we have discussed but it is far from obvious in the general
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case. This factorisation has been established by Halliday (1963) for the
case of d-lines and extended to the singular configurations of ¢ theory
by Menke (1964). For details of the argument reference should be made
to these papers,

Fized cuts

H end-point behaviour is discussed in a ¢* theory the singular con-
figurations are much more numerous than in ¢® theory and in some
cases they lead to asymptotic behaviour different from that associated
with Regge poles. Bjorken & Wu (1963) have discussed the series of
diagrams illustrated in Fig. 3.5.4. In order to extract the leading
behaviour it is necessary to scale over the trisngular loops as well as
the individual rungs.t The resulting series is found to sum to a

Fig. 3.5.4. The truss-bridgo diagrams.

behaviour corresponding in the angular momentum plane to a fixed
cut running to the left from I = — 1 + 2 /&, where ¢ is the ¢* coupling
constant. Such cuts are also familiar in potential theory where they are
associated with the singular nature of the potential (Oehme, 1062;
Challifour & Eden, 1963).

Stngularities of trajectory functions

We have seen in equation {3.5.3) that when trajectory functions are
caleulated in perturbation theory the resulting integrals are very
similar to those associated with sel{-energy parts. They will, therefore,
have the singularities in 5 corresponding to normal thresholds. This is
to be expected on general grounds since the Froissart-Gribov con-
tinnation o;f(s) has these singularities. However, the trajectory
integrals are more complicated than self-energy integrals, owing to
the appearance in their integrands of extra factors associated with §
(ef. equation (3.4.8)). These extra terms will produce additional
singularities in & {Polkinghorne, 1963¢).

The general theory may be illustrated by the example of the pair of
poles generated by the iteration of ¥ig. 3.5.5. To avoid divergence

1 Of course the overall é-function requires one loop bo remain unscaled.
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difficulties we shall take two-dimensional loop momenta. The tra-
jectory functions of the pair of poles then contains the integral

Iy 02y — 1) [e(x)*
f o Fnlds,yE (3.5.8)
where FY) = Y1ve— Vs ¥ (3.5.9)

and ¢ and d are the Feynman functions associated with the self-energy
part obtained by contracting the lines with parameters o; and «, in
Fig. 3.5.5. In addition to the normal-threshold and second-type

4

73 ¥a

o o,

Y2

Fig. 3.5.5. A diagram associztod with a singularity of a Regge trajectory,

singularities associated with pinches generated by the vanishing of d
alone, there is also a singularity generated by 7 and d whose loeation is
determined by the equations

d = 0 = Q‘-,
ad a7 .
LAY o =1,..4, 3.5.10
&y oYy ( ) ( )

{of. §2.1). It can be shown that these equations give a value of s
identical with a singularity of the Regge amplitude discovered by
Islam, Landshoff & Taylor (1963) by considering the asymptotes
of the leading Landau curve for Fig. 3.5.5. Notice that in our dis-
cussion this singularity is associated with a definite pair of trajectories.

The connection between singularities of trajectories associated with
the vanishing of g and asymptotes to Lundau curves is gquite general
{Polkinghorne, 1963¢). It can be easily understood in terms of the
Froissart-Gribov continuation. Singularities of 4, and 4, ovourring at
z = o0 give end-point singularities in (3.2.8). Indeed this is how &
normal thresholds appear in at(l, s}, since 4, and 4, do not have the s
normal thresholds themselves,
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These new singularities of trajectories will only be present in
physical-region behaviour if we can have g = 0 for positive a’s. They
are, therefore, a special feature of non-planar diagrams. They consti-
tute the firat of several properties we shall encounter associated with
non-planar diagrams which have no analogue in potential theory.

3.6 Mellin transforms and ladder diagrams

General ideas

In this section we introduce the sxtremely useful Mellin transform
technique (Bjorken & Wu, 1963; Trueman & Yao, 1963; Polkinghorne,
1864 a) for calculating high-energy behaviour. Its merit, as we shall see,
lies in the faet that it provides a method powerful enough to caleulate
all terms in the asymptotic behaviour. The approximation methods
we have used so far are only capable of caleulating the leading
behaviour.

We shall then go on to use the method to caleulate and sum all the
terms of the form t~*{logf)® associated with ladder diagrams. The
argument necessarily involves some combinatorial complexities and
it may be omitted by the less dedicated reader. However, the result
that the final sum corresponds to Regge pole behaviour is immportant,
for it strongly confirms the heuristic value of the methods we use in the
perturbation-theory model of high-energy behaviour.

The Mellin transform £{#) of a function f(t) is defined by the relation

F(g) = f:f(t) A=y, (3.6.1)

Tt possesses an inversion formula

0= f R (3.6.2)

where the contour (' is parallel to the imaginary f-axis and F(f) is
analytic along €. Particularly important examples of these relation-
ships are provided by functions of the form

) = *_"7__.12%{;’:“ , (3.6.3)

whose Mellin transforms are mul’mple poles

F(p) = (3.6.4)

- [5’ ™
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Mellin transforms may be used in a way similar to the use of the
Watson—Sommerfeld transformation discussed in §3.1. I F(§) is
analytic except for multiple poles in some region then we may displace
the contour C to the left and obtain a series of contributions from the
multiple poles which have been erossed over. The asymptotic beha-
viour asgociated with these multiple poles, and also with tho integral
over the displaced contour, will depend upon the corresponding values
of Re . The dominant contributions will come from the rightmost
singularity in the fS-plane.

The utility of the method lies in the fact that simple formulae can
easily be found for the Mellin transforms of planar Feynman diagrams.
Such diagrams have cuts only in s and  and if we choose the fixed
value of ¢ to be below the lowest s cut then the limit > oo will be a
limit taken in a region free from singularity. (We cannot take ¢ -+ + o0
since we would then encounter the # normal thresholds.) This is
important for the purpose of Mellin tvansforms since (3.6.1) requires
for its validity that the integral shounld not encounter a singularity.

Our Feynman integral can be written in the form (see (1.5.22))

GT(m) f de ‘S(E"fmwl&)i_ﬁ(iy : (3.6.5)

where @ is a coupling constant factor; I'(m) is the Gamma function,
which for integral m equals (m - 1}1. The value of m is related to the
number of lines, p, and the number of independent loops, L, in the
diagram by the formula m = p—2L, (3.6.6)

while ¢ and D are homogenous functions of degrees L and L+1
respectively in the a’s. We write D in the form

D = —glayr —J(e, 8) Cla), (3.6.7)
where T=—1 (3.6.8)

is the variable with respect to which we wish to take our Mellin
transform. The fact that the limit 7 oo with s below its cuts takes
place in a singularity-free region finds its reflection in the fact that,
for positive o’s, I is negative-definite in this reglon. € is, of course,
positive definite for positive a’s. It is then possible to replace (3.6.5)
by the expression

e f : MazZ[C@)] exp Dids s, 7)/C@E)].  (3.6.9)
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The equivalence between (3.6.5) and (3.6.9) may be shown by making
the seale transformation

& =pa; (1=1,2,...,p), (3.6.10)

and performing the p integration with the aid of the formuls
o
T {m) =f P lePdp. {3.6.11)
i

The negative definite property of I} makes the p integral well-defined.
The Mellin transform of (3.6.9) is given by

Lif,s) = (- ”’“Gf: dff: Tdé +51 exp | — g(@) 7/C(&)]
xexp[—J(& )] (3.6.12)

Interchange of the order of integration and the use again of (3.6.11)
enables the t-integration to be performed to give

L(B,5) = T(~ )i~y @ j THA@Y C@F e, (3.6.13)

The asymptotic behaviour will be given by a knowledge of the
gingularities of L(f,s) in the left half f-plane. The exponential
goarantees convergence at mfinity so that the singularities of (8.6.13)
will be given by divergences of the integral at the lower Himits of
intogration. These will correspond to the region where some o's
vanish: that is, they correspond to the expected end-point behaviour.

Ladder diagrams

We shall illustrate how they can be analysed by considering the
ladder diagram with n-rungs. If the parameters of the rungs are
Z, ... %, and the parameters of the sides are y; then (8.6.13) becomes

-1

. o —F\" ,
L) =T=Ae(5) (-1
x f Tty .. de, Uy (2, ... 2,)0 [0z, y)] FF e, (3.6.14)
0
This is defined for Ref > ~1 but becomes divergent at f= —1

because each of the #; integrations then diverges at zero. The singu-
larity corresponding to these divergent integrations can be exhibited
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by integrating by parts with Re f > — 1, This gives as equivalent to
(3.6.14)

Lo(f) = T(~B)g? ({bfrz)* f " ey, Tidy

(2. m )P o

i axl...aEL(O 2F g7}, (3.6.15)
The integral here is convergent for Re § > — 2 and so (3.6.15) provides
a continuation below Ref = — 1. The multiple pole at § = — I has
been explicitly exhibited. The highest order singularity at § = ~ 1 ig
the pole of order n and its residue is obtained by putting f = —1
elsewhere in the integral. Thex,, ..., #, integrals can then be performed,
with the effect of substituting #; = 0. Thisis the leading approximation
and the remaining integral over the ¥, is easily identified with the
coefficient, already calculated in (3.8.14). We, however, are also
interested in the lower order poles at f = — 1 as we wish to do better
than the leading order approximation. To calculate these coefficients
we expand the f-dependence of the remainder of the integrand.y
This gives for the coefficient of (8+ 1)—#

e 2N W o )
L(p) = (- p)g* (iainz) L da, ... da, Idy,

e (E,;: log o

o (n—p—q)! @, b,

n T { e Jog (NG
g [e(olgfﬂp)] . (3.6.16)
In order to determine the structure of (3.6.16) we expand the first

term in its integrand by the multinomial theorem to give a sum of
terms of the form

L s = n—p—y. (3.6.17)
! i

In this term any x; for which s; = 0 corresponds to an integration
which can immediately be performed since the only «; dependence is
then inside the differential operator. Performing the integration has
the effect of putting x; zero inside the square brackets. Since this
eorresponds to contracting a rung of the ladder, and thus producing
a contracted diagram which consists of two subdiagrams joined
through a single vertex, the functions e~ and (' correspondingly
factorise into two parts. When € factorises, the logarithm in the
square brackets can also be expanded by the multinomial theorem.

t It is technicelly convenient not to expand the I'{— #) factor. If we sam oll the
terrog it makes no difference whether P(—g) is expanded or not.
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These factorisations and expansions lead to a series of terms which
can be summed. The details are in the appendix to this section. The
final form obtained is

2 L. =90 2500, @es)

where # and % are defined by (A3.6.8, 9).
The Regge poles of the thecry will be given by the roots of

F(f,5) = 0, (3.6.19)

If fy{s) 18 a root of this equation it gives a term in the amplitude
calculated from (3.6.2) and (3.6.18) of the form

~ D= Bo(s)) G2(Bols), ) (— )t (3.6.20)

The poles of I'(x) at the non-positive integers will give poles of (3.6.20)
when g, takes non-negative integral values. Thus (3.6.20) exemplifies
in a direct way the connection between poles in tlhe s-channel at
integral angniar momentum and the bigh energy behaviour in the
t-channel.

The form of the equation (3.6.19) resuliing from {A 3.6.8) iz very
similar to that obtained by Cassandro, Cini, Jona-Lasinio & Sertorio
(1963), for scattering by Yukawa potentials. In particular, it may be
shown to give the Gribov—-Pomeranchuk (19625} threshold behaviour

near Ref = — 4, discussed in §3.2. To see this it is sufficient to
consider the firat approximation to (A 3.6.8), given by
B+1—F(B,s) = 0. (3.6.21)

The integral corresponding to (A 3.6.10) may be written in the more
familiar Feynman form as

7 .7 T oA (3.6.22)

Folbos) = 1gm TP | i ra smye G52
where for unit masses &= 435 {3.6.23)
The form of (3.6.22) near ¢ = 0 may be evaluated by elementary means
and is found to be

F Ks F(__ﬁ) ?T]-‘V?}F/}"'z)(%g)ﬂJréJ_ (3.6.24)

T16m 28+1  Zeinm(f+4

The pole of (3.6.24) at f§ = — § leads to an infinite number of salutions
of the transcendental equation (3.6.21) which have Ref = —{ as
e->0 (see Cassandro ef al. 1963).
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The Mellin transform method has also been used by Swift {1965) to
investigate the behavionr of ladder diagrams near § = — 2, He finds
a term representing the next-to-leading term in the expansion of the
Legendre function associated with the f = — 1 trajectory, together

with another term corresponding to a new irajectory associated
with f = — 2.

Appendix to §3.6

In this appendix we show how the expansions and factorisations
discussed in the paragraph foilowing (3.6.17) lead to terms which can
be completely summed {Polkinghorne, 1964q). Their effect is to
produce expressions built up out of the following basic units:

§ X, X o %

Fig. 3.6.}. A contracted interior sabdiagram.
__92 k41 froo
Flsy, sy ¥) =— (167?2) fo da, ... dx, Idy,
« 17 ogayy 88 [(ﬂ%)ﬁzﬂf

- y1C,

. y 3.6.1
j=1 Sj! g ... oz, ]’ (A3.6.1)

with s; > 0 and C; and J; corresponding to Fig, 3.6.1;

Ay AR Xy Xn X

Fig. 3.6.2, A contracted end subdiagram,

__gz %
Golsy, a8y V) = mg(l wa)fo dx, ... dx, Hdy

5 ﬁ (logay)s o [( —log Oy )t eV
j=1 6“.’-2

A36.2
dary ... Bay, ]’ (A3.6.2)

y1 0
with §; > 0 and (', and J, corresponding to Fig. 3.6.2. It is formally
convenient to allow % also to take the value zero in F, to correspond
to the simple bubble diagram contribution, K(s). Similarly, we
define G = g. Both F, and @ are, of course, functions of s.
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The terms that appear in the expansion are all of the form of a
produet of a & times a certain nuwmber of s times another . These
terms are formed by contracting ladder diagrams of appropriate
length. In this way a given set of F-factors will appear in a number
of distinet ways which is just given by a multinomial coefficient
eorresponding to the number of distinct orders in which they can he
arranged along a line. If the corresponding power of (#+ 1)1 were
just given by the number of these F-factors then swmmation would be
immediate. However, this is not the case. In fact the power of (8 + 1)
asgociated with a given (. I1F . & product is 1+ Xn, where the =
agsociated with an F factor is

#=1=-2X(5,—1)—7, (A3.6.3)
and the n associated with a G-facior is

n=—Sg-1)—y. (A3.6.4)
These equations make it convenient to define new functions

}‘.
Fufs o109 7) = TLA+A (14 Blon, 43 7), (A3.65)

and &, similarly defined. Then the sutn over all terms has the form

L=S(3% &) S FRY( S OB+~ (A3.66)

F=0 k,8,7 k. 85,y k55,
1
This sums to give L=% .y.fé, {A3.6.7)
where F(B,8)=p+1— X Fp, (A3.6.8)
Jo=d}
G(B,8) = 3 F,. (A3.6.9)
k=0

The functions ¥, and ;. are obtained by performing the sums over
the s, and y to give

_gz fedl roo
F, = "(Ni“é;}é) fo diy ... dz, Hdy

k {;rﬁ+1-1) ok
) PR el A3.6.10
o e e Fa GO R )

together with a similar definition of G,



158 PINCH CONTRIBUTIONS [3.7

37 Pinch contributions and the Gribov-Pomeranchuk
phenomenon

(teneral ideas

In addition to the end-point contributions already considered there
will be confributions to the high-energy behaviour from internal
regions of the hypercontour where ¢ is zero, which are trapped by a
pinch as £-»00 (Polkinghorne, 1963d; Tiktopoulos, 19635}, The rules
for the strocture of D (§1.5) make it clear that in the physically
relevant case of positive o’s this can only happen for corntributions
from non-planar diagrams. Planar diagrams correspond to expressions
for g which are just sums of products of o’s, and when the o’s are non-
negative these can only vanish by some of the o’s actually being zero.
All diagrams with a third Mandelstam spectral function, p,, are non-
planar and these are the diagrams which do not have an analogue in
potential theory. Thus the study of pinch contributions is of particular
interest in that they correspond to the new features of a fully relati-
vistic crossing-symmetric theory which eannot be reproduced in a
potential-theory model.

We have already encountered one such relativistic effect in the GP
phenomenon of §3.2. We recall that this predicts the existence of an
essential singularity at { = — 1 and that this iz due to: () & non-zero
third spectral function p,,; (b) a region of two-particle unitarity in the
s-channel. In this section we ghall find the same phenomenon asso-
ciated with a definite sequence of Feynman diagrams. First, however,
it will be instructive to consider a model integral which llustrates the
main features of pinch contributions. 1t is

&3 e 1
I = fwx dﬂ:f% dy @{;ﬁfﬂ“ﬁ . (3,7.1)

The integrations are easily performed to give

— ! o (w3t +4d) @2?/2“—@] ; 470
(n+ 1ede 8 {(xaygt+d)(x2y1t+d) RO, (3.72)

where R(f) iz a rational funetion of f whose explicit form need not be
given.

As t->co the logarithm in (3.7.2) tends to log 1. If the principal
branch of the logarithm is chosen, then eancellations between the two
terms in (3.7.2) produce & net asymptotic behaviour of #%-2 ag { = c0,
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provided that z,,...,y, are all non-zero. However, if we choose the
branch of the logarithm in which log 1 = 2mmi (m an integer) then
Zmri
I~ -—(mn”—'wl_ ])dn+k1tﬁ1 (373)
If @, ..., y, are all positive the prineipal branch is the correct choice.
However, if w;, y; < 0; w5y, > 0; then ast-» o0 + is, the top two factors
in the logarithmn tend to -+ oo+ ie, while the bottom two factors each
tend to —co—ie. The correct branch is then given by m = —1 and
L~
Behaviour which depends upon the branch of the functions con-
sidered is typical of pinch mechanisms, since on some sheets the
contour will be actually trapped by the pinch, whilst on others it will
not. It is easy to see how (8.7.3) results from a pinch. In order to
be able to discuss ¢ = co, it is convenient to make the change of
variable
£ b2, (8.7.4)

and consider the limit 290, at fixed {;,. A pineh will oceur when

ity +dz = 0,
Yo =10, (3.7.5)
xhy = 0,

These equations have a solution @ =y = 0 and 2z = 4. Thus if the
contours of integration pass through the origin they will be trapped as
t->00, and give the behaviour (3.7.3).

Iterated orosses

The simple result {3.7.3) provides an analytic tool which can be put
toimmediate use. The diagram of Fig. 8.7.1 is the least complicated one
which might be expected to show some trace of the G/F phenomenon.
It contains the first two-particle iteration in the s-channel of the cross-
diagram, the simplest diagram with a p, spectral function, We have
already seen in § 3.4, that a single eross has three independent scalings
of length 2, Thus Fig. 3.7.1 will have six scalings of length 2 giving it
an end-point confribution of % (log {)%. However the /P phenomenon
is first expected at I = — 1, not [ = — 2. It muat therefore come from a
pincl: contribution. The coefficient of ¢ in the Feynman denominator is

of the form L, .
wy = (o Oty by 0ty) (6 0t — Oty 0y)- {8.7.6)
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The integration over positive «’s will include points in its interior
which correspond to x = y = 0. In the neighbourhood of these points
the integral may be approximated by an expression of the form (3.7.1)
in order to calculate the leading behaviour. Thus an asymptotic
behaviour of -1 is obtained.

o '
-4 2y

Fig. 3.7.1. A diagram associated with the GP phenomenon.

Fig. 3.7.2. A typical member of a set of diagrams giving an
essential singuiarity at I = —1.

The singularity at { = —1 thus oblained from Fig. 3.7.1 is just a
simple pole. In order to see that in reality an essential singularity
exists there, it is necessary to consider the complete two particle
iteration, that is the set of diagrams containing all numbers of crosses
ingerted (Fig. 3.7.2). The proof that this set loads to essential singu-
larity was fivst given by Contogouris (1965) and Kaschlun & Zoellner
(1965) using the Bethe-Salpeter equation. Here we use a somewhat
different approach.

The coefficient of ¢ in a diagram like Fig. 3.7.2 is of the form H Tg
where each x; has the form

@ = ook — ok atf, (3.7.7)
the «? being the Feynman parameters of the ith cross. Consequently
our model integra,l must be a generalisation of {(3.7.1) of the form

1 l " - ) 4
11 dmz iﬁ“‘ﬁidjn+2 (x,l < O, Ty > G, T == }., ...T). (5.7.8)
In order to evaluate the leading contribution from the pinch at 2, = 0
it is convenient to express the pinch contribution as a difference of
end-point contributions.
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Each integration is decomposed into two parts

4 i 0
f (Zx,i—->f dx, ~§~j dz,, (3.7.9)
E 0 o

and the integrations over negative ranges of x; are transformed into
integrations over positive ranges by the substitution a;—-—=x; All
terms in the sum of integrals obtained via (3.7.9) which had an even
number of negative range integrations will now have an identical form
and so give identical leading behaviour, There are 21 such integrals
and each gives an end-point contribution

I R (log ty—t
(D@’ oLy

(3.7.10)

Similarly, the 2" integrals which had an odd number of negative
range integrations also have identical forms and give an agymptotic
behaviour which is just obtained from (8.7.10) by the substitution
t——1; logt—logt—mi. Thus the leading behaviour of the sum is just

2o (g
(nr1ydit’ -2)l

(3.7.11)

Notice that if d depended on the x; then we would get a similar result
except that all the 2; must be put zero in the d which appearsin (3.7.11).

When this result is applied to Fig. 3.7.2 with r-crosses we imme-
diately obtain for the leading behaviour a singularity in the I-plane

of the form o H 8(mg) 8(Zax~ 1) 2
@y 2r—2. 0 f o
(l + 1)1' -1
where ¢ and D are the Feynman functions of the diagram, x; is
defined by (3.7.7), and &, and & are coupling constant factors.

The expression (3.7.12) does not factorize. We do not, indeed, expect
that it should, for then it would give a Regge pole and not an essential
singularity. It may, however, be cast into a more perspicuous form by
sealing over the parameters of each cross. To avoid the purely formal
complications of the general case we shall in fact be content to
illustrate the procedure by applying it fo Fig. 3.7.1. If A and A’ are
the scaling parameters of the two crosses then (3.7.12) becomes

G,.2. ’TE«G fdAdA'da da,ded da” () S(F') $(5F,~ 1)

[0
[DF

Ir EA

D , (3.7.12)

® G(R&; 1) ¢(A + Ay + ' +a” - 1) (3.7.13)
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where T oo A% o (O, &g~ T dy),
T o= (A2 = (E 3, — 8y, {3.7.14)
0= @QXy10; D= (AX)1D.

The expression (3.7.13) may be rewritten

A+1) (&2~ m*] {(k —p)* —m*]
where the momenta are defined by Fig. 3.7.3, the integration is over

& two-dimensional loop momentum k, and f is a function associated
with a single cross diagram and given by

3 L P . — bk .
GOG T dzkﬂ?l’?g’ k: k'*'p)f(k: L+:p7 p&pfi)} (3715}

s fldcxl d%c?(an 1) &{eey oty — azgcé)
0

T 2 : (3.7.16)

d is the Feynman denominator associated with the single cross
disgram (Fig. 3.4.8). Notice that because of the second é-funetion in
(3.7.16) d is effectively independent of ¢.

—kxp

Fig. 3.7.3. A symbolic representation of the coefficient of the &P
singularity associated with Fig. 3.7.1.

The proof of the equivalence of (3.7.13) and (3.7.15) is most easily
given by considering the identities which must exist between the
funetions C, D and d resulting from the fact that Fig. 3.7.1 can be
thought of as being built up out of two single crosses and an integral
over the loop joining them.

The general result is just the iteration of (3.7.15), each additional
crogs providing a factor f/(I-+ 1) which is joined on by a two-dimen-
sional loop momentum. Symbolically we get for the sum

1L - z:@:@ L TIL @ (3.7.17)

[n-factors]

which may be rewritten in integral equation form

TFEL - T+ gk ED. e
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A trivial manipulation enables us to write the kernel in symmetric
form. It is bounded, except at I = ~ 1. Theorems on the limit points of
the eigenvalues of such integral equations (Courant & Hilbert, 1953),
establish a condensation of poles at (1+1)! = o0, Le. I = —1,
Heuristically we can see this as follows. If we expand fin terms of

its eigenvectors;
f= A e, (3.7.19)
&

the boundedness of the trace implies A, -0 as a->o0. However, F is
also now diagonal and can be written

o Ay
F oo %J i&> ;:’/,(a/(z_‘}_l) <CC,, (3.7.29)
giving a sequence of poles I = — 1+ A, which accumulate at | = — 1,

3.8 Regge cuts
Introduction

The proposal that in a relativistic theory there might be cuts in the
angnlar momentum plane was first made by Amati, Fubini &
Stanghellini (1962). The diagram they considered was essentiaily
Fig. 3.8.1. The discontinuity of this diagram across its two-particle
normal threshold in the ¢-channel is given by (Drummond 1963},

dsydsy _F) AT O (3.8.1}
2

Ab(s, t; 81,85, m2,m

Fig. 3.8.1. The 4AF3 diagram,

where f; and f, are scattering amplitudes corresponding to the two
Regge poles in the two halves of the figure and A is proportional to the
left-hand side of (2.4.10). Notice that such an expression is only

II-2
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possible in a crossing-symmetric theory, where there must be unitarity
in the t-channel as well as in the s-channel. Since

At <t Ad(s, s, 5,) as f-ap, (3.8.2)
where A8, 5y, 85) = 8%+ 83 + 85— 285, — 288, 25, 8, (3.8.3)

the high ¢ behaviour of (3.8.1) will be given by

fdsldszﬁ 31}16 32 folspalsy—1, (3.8.4)
Af (8, 8y, 32)

Since (3.8.4) gives a continuous range of values of the exponent of £,
it must correspond to a out in the complex angular momentum plane
(cf. (3.1.8)). The location of the singularity trailing the cut will depend
on 8. It is therefore called a moving cut.

Nevertheless, the complete contribution assoclated with Fig. 3.8.1
cannot have this cut in the physical limit (Polkinghorne, 1963«;
Mandelstam, 1963 a) since it is a planar diagram whose behaviour is
completely given by end-point contributions. However many rungs
there may bein the two ladders, the diagram never has more than two
d-lines of length 3 and so its asymptotic behaviour is simply —2logt.
It can be shown (Polkinghorne, 1962¢) that the discontinuities of
Fig. 3.8.1 across its higher normal thresholds (such as the three particle
threshold given by the dotted line in the figure) also have cuts of
identical form to (3.8.4). In the complete contribution all these cut
terms must just caneel. The cut (3.8.4) iz in fact present only on
unphysical sheets (Polkinghorne, 1863d).

Physical sheet moving cuts

It is clear that we can only expect moving cuts on the physical sheot
from non-planar diagrams, Mandelstam (1963 b) has given arguments,
to which we shall return later, that the diagram of Fig. 3.8.2 should
be expected to give a cutb on the physical sheet. In order to simplify the
discussion one of the Regge poles has been replaced by an elementary
pole. The occurrence of the cut for Fig. 3.8.2 ean be shown explicitly
(Polkinghorne, 19634d).

The coefficient of ¢ in the diagram has the form

g =ayC(Ly ... L)+ P+ Py + @, (3.8.5)
where x = aicz:jm “faf’} (3.8.6)
Y o= g Gy,
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and O(L;...L;) is the C-function associated with the snbdiagram
formed by combining the loops L; ... L;.T The remaining coeflicients
in (3.8.5) are given by

il
Pm 3 O L) o~ T f (8T)
i= =
k(3
By = 2 (e = vppata) Ollyyy oo L) 11 B (3.8.8)
21 kst

@ = fy... BpaloaqCL) + oo O ) + oy oy 6+ oy 0, 8]
+ 2 Hﬁk ClLigpg - Ljy) H_f(f!(“l'}’i" Oy Vi) (“;7’3‘ - O‘i"/m»f)-
i ki =3
(3.8.9)

et

=z
]

k2

4

Fig. 3.8.2. A disgram giving a Reggo cut on the physical shoet.

The loop L iz formed by the lines corresponding to o, 6,7y ... ¥, 52416,
and the loop I by the lines corresponding to oy a7y, g -« Yan 2521 5.

In order to extract the pinch behavionr of the diagram a generalisa-
tion of the simple standard form (3.7.1) is required. We consider the
integral

f dxf de - ﬂnﬂ[ -ll;:'*'ﬂl ﬂnﬂ)t*d]p*z)
¥,y < 0,2y >0 (3.810)

A simple computation shows that its leading asymptotic behaviour is

Dary )
(p+1)pdr nl "

1 It will be conveniont in what follows to define € = 1#j < 4.

(3.8.11)
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This results from the combination of a pinch in @ and y with end-
points in the fs.

To apply (3.8.10) to the Feynman integral of Fig. 3.8.2 we rewrite
{3.8.5) in the form

g = O+ B0Y y+ PO+ Q—(BRCY. (3812
Examination of @ — (£, F,C-%) shows that it vanishes if any one of the
£’s is set equal to zero. In the first instance, therefore, we look at the

effect of a pinch at & = — B0, y = — P, together with end-points
at f; = 0 {i = 1, .., %+ 1). The pinch produces factors in the integrand

Sl + P01 8y + P,CY). (3.8.13)

These enable the , and a; integrations to be performed with the effect
of producing the substitutions

oty = Ay azag -+ O{f}, }

, s . (3.8.14}
oy = ajogs(og) 1+ O(f),

together with the multiplication of the integrand by {xyog)* +O(H).
When the f’s are set equal to zero after scaling, the substitutions
(8.8.14) have the effect of making - (P, F,C~*) also vanish if , or o}
is set equal to zero so that the integrations over these variables also
contribute to the asymptotic behaviour. The final expression is
therefore

;2 1
2mg {a (Ieiwz) (n+ 1)3]6 oty docy docy docl dy, 28
et o8+ By — 1) [o(a, y, 5)}%4“2} -2 (log #)+2 (3.6.15)
fla, v, 83 1d(s; o, y, )12 b

where ¢ and d refer to the contracted diagram in Fig. 8.8.8, and the
function f is defined by

f = limit
@yl
oy

Al
where the substitutions (§.8.14) have been made in @C — P F,. From
equations (3.8.7-9) f may be evaluated and a somewhat tedious
enumeration of the terms occurring shows that

flee, v, 6) = e(a,y, 8). (3.8.17)

This identification has the effect of making the integral in curly
brackets in (3.8.15) just the correct Feynman integral associated with

[f00=n ) (3.5.16)

oy fy e P
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Fig. 3.8.3 evaluated with two-dimensional loop momenta. If this two-
dimensional integral is written in terms of invariants (Drummond,
1863), (3.8.15} appears in the form

dsyds, {K(81)3n+2 (10gt)“ """ :

2yt bl T il £2 R 3.8.18
/\ 83’51: 82) Sz~ m2 (n%ﬁ)! ( )

Fig. 3.8.3. The contracted dingram associated with Tig. 3.8.2,

R I

Fig. 3.8.4. Another diagram giving a Rogge cut on the physical sheet.

where A is defined by (3.8.3) and K(s) is the function associated with
the ladder trajectory given by (3.3.9), When (3.8.18) is sammed over
# it gives a eut contribution of the form
dsydsy 3
2mygt f A 2. (3.8.19)

EN Sl, 5» ,3

AL

The possibility of scaling a; and «; is a peculiarity of the diagram,
Fig. 3.8.2, with its single ladder insertion. If the diagram of ¥ig, 3.8.4
is considered, its leading singularity is associated with a pinch due to
the two crosses together with end-points corresponding to putting a
parameter from each ladder equal to zervo. In evaluating the latter
effect care must be taken to count all the independent scaling proce-
dures ag explained at the end of §3.4 (cf. also the discussion in § 3.10).
The resulting asymptotic behaviour is found to be

J‘{f{s,sl, o)*dsy s, 2K (s )]’“[I{(az}]”(?nﬁt%-) " s log#y»in (3.8.20)

(s, 31,32) ! (m+n)l’
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where m and »n arc the number of loops in the two ladders respectively,
and fis the function associated with the cross-diagram and defined by
{3.7.16), When this is summed over m and » it gives an expression

[f(s, 31, 89) P ds ds, ploatsy) 1 (3.8.21)
AB(s, 84, 85)

which eorresponds to a cut with the same trajectory as that given by
(3.8.4).

1t is now possible to see the connection between the expressions we
have obtained and the way in which Mandelstam (19635) has dis-
cussed Regge cuts, We do so heuristically since a full discussion
involves techmical complexities which cloud the simplicity of the
bagie ides.

In terms of I (3.8.21) corresponds to a singularity

J‘fzdsidsz 1
A T—als)—a(s)+ 1

(3.8.22)

This is, of course, just the expression given by the leading order
approximation. If we used the methods of §3.6, suitably generalised,
to take further lower order terms into account, it would have two
effects. One would be to produce more complicated expressions for the
trajectories. This is not specially interesting for our present purpose
which uses perturbation theory as a model, since we do not want to
take very specific details seriously. The second effect would be to
produce terms, analogous to I'(—«) in §3.6, which give poles when
o(8) takes non-negative integral values. This is an important feature
which is clearly more general than the specific model. The poles at
a(s) = 0 give a gingularity in (3.8.22) at [ = 1, which is connected with
the singularity (3.7.15) associated with Fig. 3.7.1, the figure obtained
from Fig. 3.8.4 by replacing the two ladders by similar particles.
Mandelstam (19636) was able to show that the cut (3.8.22) switches
on and off the corresponding G'P singularity. e used this to argue that
the cut could not be cancelled by other contributions. The lack of
ecancellation is confirmed in perturbation theory by the fact that other
possible pinch contributions correspond to more elaborate insertions
involving higher powers of the coupling constant.

Clonseguences

The existence of cuts considerably complicates the phenomenology
of high-energy scattering, The exact position of the singularity trailing
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the cut is given by the maximum value of c{s,) + a(s,) — 1 in the region
of integration. This depends on the nature of the trajectory fanction.
If we make the simple assumption that (s) depends linearly on s then
we obtain a singularity, given by s, = s, on the boundary A = 0, that
is 8; = 8, = (1/4) ¢, and so
l= 2« (2) —1. (3.8.23)

X/
L T
1] B _

Fig. 8.8.6, A disgram compounding a cut and a pole,

If the eonstancy of high cnergy cross-sections (cf. §3.2) is attributed
to a Pomeranchukon whose trajectory passes through =1 when
s =0, then (3.8.28) implies that the cut also passes through [ = |
when s = 0. Moreover, instead of compounding two Regge poles to
form a eut we can compound any pair of singularities, for example a
out and a pole, as in Fig. 3.8.5, or a pair of cuts. In this way asequence
of gingularities is generated at positions

5 ) < b
l=na (:n‘é) -—(’i’b-— }.), = 1, 2:, 3. (5824)

All pass through ! = 1 when ¢ = 0,

An attempt to determine the form of the diffraction peak from the
superposition of the effect of these and other singularities, which are
near [ = 1 when s is near 0, has been made by Gribov, Pomeranchuk &
Ter-Martirosyan (1965}, Their analysis is based on & heuristic expres-
gion for the total discontinuity around the cut formed by combining
two Regge poles. Fhis has the form

fﬁ%@ip{zJ(s, 81, 89; o) F®{s, 8., 857 o) 8(0— cr(s;) — ce(sg} -+ 1),
AR (s, 8, 8,) (3.8.25)

where F®& and F® are the amplitudes for the emission and absorption
of the two Reggeons and the superscripts indicate that they are to be
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evalnated on opposite sides of the cut. This relation has a persuasive
similarity to unitarity and its general form has been confirmed by a
discussion of the Froissart—Gribov continuation (Polkinghorne,
1965b). However, a perturbation theory model discussed by Swift
(1963) shows that the #”s have properties vather different from those
which simple intuition might have postulated.

The sequence of singularities (3.8.24) has a further disagreeable
consequence. The Pomeranchukon must eoutinue above [ = | when
s > 0. Let us suppose that for ¢ = s, a(s) = 1+e.

For any finite s, (s/n?)—0 as n-=co, and since a(s) ~ 1+a'(0)s for
& gufficiently small, we see that the singolarities (3.8.24) cannot
extend more than a finite distance to the right for any fixed s. How-
ever, for s = n%, the nth singularity is at I = 1 +ne. Thus as s—>c0
there is no uniform bound limiting the extension of singularities to the
right in the I-plane. Such a bound is necessary if double dispersion
relations with a finite number of subtractions are to be possible. This
bar to the existence of the Mandelstam representation was pointed out
by Mandelstam (19635).

3.9 Particles with spin: Reggeisationt

Gleneral ideas

Itis clear that in congsidering complex angular momentum there will
be differences between the behaviours of spinless particles and of
particles with spin. The most obvious differences will simply be asso-
ciated with the possibility of adding the spin angular momentum to
the orbital angular momentum. However we shall also encounter
some unexpected and highly interesting features.

In principle, since the effect of spin is simply to make the numerator
function N(a) in (3.3.3) different from unity without altering the
structare of the denominator function, the methods we have developed
for the spinless case are immediately applicable to the more general
cage of particles with spin. In practice, however, the resulting expros-
siong are extremely complicated. As a rvesult all that has proved
possible so far has been to investigate low-order diagrams without
giving complete summations corresponding to infinite sequences of
diagrams. Even for the diagrams which have been considered the

t In this section, in contrast with elsewhere in this book, wo need a number of

simple results on the propagetors and inieractions of particles of sping } and L.
A convenient account may be found in the book by Umezawa (1956).



3.9] REGGEISATION 171

details are very involved. For a complete account of them reference
must be made to the original papers. In this section we shall be
content to survey the main ideas, methods and results.

The nuemerator factors are due to the presence of terms yg+m, or
b, —4.9.,/m* associated with the propagators of particles of spins §
and 1 respectively, together with possible momentum factors at the
verticesif there are derivative terms in theinteractions, The presence of
these factors affects the asymptotic behaviour in three principal ways:

{) They may cause explicit powers of #, the asymptotic variable, to
appear in the numerator. These powers may arise either directly from
external momenta present in the ¢'s or they may be due to the dis-
placements of the origin of the internal momenta (see § 1.5) which are
necessary for symmetric integration over the loop momenta.

This effect is of great importance. Since the denominator functions
in the case of particles with spin have the same structure as those
obtained in the spinless case they can by themselves give an asymp-
totiec behaviour of at most ¢! (log#)™. However, the numerator factors
can then transform this into (logf)”; f (logf)”; ete. In the complex
angular mornentum plane thiz means that singularities which in the
gpinless amplitudes are associated with I = ~ 1 can be shifted to the
right to I== 0, I = 1, ete. This translational effect of spin was first
noted in a general way by Azimov (1863). It corresponds simply to the
addition of angular momenta.

(i1} The internal loop momenta factors in the numerator will
produce a decreasc in the power of the denominator obtained after
symmetric integration compared with the case where they are absent.
If this power becomes equal to, or less than, the length of the d-lines
then an enhanced agymptotic behaviour is obtained (see the remarks
following equation (3.4.9)).

(iif} The class of singular configurations may be enlarged by the
effect of numerator factors. We recall that the singular configurations
discussed i § 3.4 were produced by adding one or two lines to a d-line
get to form a closed loop. The limit of two extra lines arose because this
represented the difference in the powers of € and D,

If there is a factor k. k; in the numerator, where &, and k; are
the loop momenta of the 4th and jth loops respectively, then, instead
of producing {(3.4.11), symmetric integration gives (Chisholm, 1852):

[Adj 4], O~

Lo (3.9.1)
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where, as usual, 4 is the matrix of the quadratic form of the ¥’s
appearing in the denominator. If ¢ = j and we scale with p round the
tth loop {3.9.1) gives a net factor of p~3. Thus (3.9.1) with i = j would
have a singular configuration if three lines could be added to a d-line
to complete the ith loop.

Reggeisation

The most interesting phenomenon which has been discovered for
particles with spin is the Reggeisation effect suggested by Gell-Mann &
Goldberger (1862; ses also Gell-Mann, Goldberger, Low & Zachariasen,
1963; Gell-Mann, CGoldberger, Low, Marx & Zachariasen, 1964;
Gell-Mann, Goldherger, Low, Singh & Zachariasen, 1964; Polking-
horne, 19645).

£ —— ~ 7

Fig. 3.9.1. The Born approximation disgram.

The theory considered is that of particles of spin § (which we shall
call nucleons) in interaction with neutral vector mesons through a
conserved current. Because of the conserved current the g, g, term in
the vector meson propagator may be neglected and the theory is free
from the unlimited divergence problems which otherwise afflict vector
particles, There are still some divergences but the theory is re-
normalizable (Schweber, 1961).

The simplest diagram is the Born approximation term of Fig. 3.9.1
corresponding to the contribution

i
Yp—m
where [ is the coupling to the external particles. It is in fact possible
to consider the external particles as being pseudoscalar mesons: the
essential role of the vector particles will be as internal particles
generating 2 Regge pole from higher order diagrams. In this caset
| AT

r

T, (3.9.2)

t I the external particles are also taken as vector particles then & particular
choice of gange for I" simplifies the ealeulation {see Gell-Mann, Goldberger, Low,
Marx & Zachariason 1964).



3.9] REGGEISATION 173

The asymptotic behaviour of (3.9.2) ag f-»00 is constant, i.e. 10
behaviour. In a theory with spinless particles this behaviour would
make the term guite isolated as all other diagrams can at most behave
like -1 (log £} so that a 1 term cannot be combined with anything else.
This corresponds to the non-analytic behaviour of elementary
particles in such a theory. A single particle pole of fixed angular
momentum will only have an effect in the appropriate partial wave
in which it can occur as an intermediate state. This is expressed by
saying that it corresponds to a non-analytic behaviour in the Regge
plane, such as that given by &, if it only affects the s-state.

Fig. 3.9.2. A diugram to combine with Fig. 3.9.1,

However, in a theory with vector mesons we expect that the
translational effect of spin will produce terms behaving like (log#)
which might then combine with # to give an entirely new type of
behaviour. Gell-Mann & Goldberger (1962) suggested that this would
happen in such a way that the nucleon actually lay on a Regge
trajectory which had to pass through the nucleon pole when

_ s= p?=mi
In such a theory the nucleon then corresponds to a Regge pole and not
to a non-analytic term, so the effect is called Reggeisation.

In order to find out if this can indeed happen the first diagram one
must consider is that shown in Fig, 3.9.2, where the wavy line denotes
the vector particle. One immediate complication is that in fact the
appropriate asymptotic variable for Fig. 3.9.2 is clearly w (~ —f at
fixed s). We shall see how to deal with this shortly. The leading
asymptotic behaviour of Fig. 3.9.2 is straightforward to caloulate and
has the form [fis)logu, (3.9.3)
where f(s) is a known function, involving y-matrices, whose precisc
definition is not very interesting,

TIf one goes on to consider higher ladders formed out of nucleons and
vector mesons then their asymptotic variables will alternate between
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¢t and % according to whether they have an odd or even number of
rungs. Such behaviour cannot correspond fo a single Regge pole, but
it must be associated with a pair of Regge poles, one of trajectory o«

and even signature, the other of trajectory —o and odd signature.
Together they correspond to

p . %[{ta(&) + ucc(s)) e (t_i‘fg)"""* e I
Yp—m

, (3.9.4)

which has an expansion in terms of log? and log u of the form

I'. (1 +a(s)logu-+a?(s) log§)*/2+...) T
YP—m .

(3.9.5)

If we identify (3.9.2) and (3.9.3) with the first two terms of the series
this tells us that .
afs) = (yp—m) fs). (3.9.6)

The presence of the (yp-—m) factor constrains a(s) to pass through
zero when s = p? = m? for all values of the eoupling constant. Thus
the nucleon always lies on the Regge trajectory.

So far we have just conjectured that (8.9.4) represents the effect of
summing up all relevant contributions. It is desirable to test this by
at least looking for the next term in the series (3.9.5). The obvious
diagram to consider is Fig. 3.9.3¢. However, it turns out that by itself
this diagram has an asymptotic bebaviour ~ (logf)®. It is also
necesgary to consider the contributions from the crossed Hine diagrams,
Figs. 3.9.3b, ¢. After many caneellations (Polkinghorne, 19645)1 the
net contribution from all the diagrams of Fig. 3.8.2 is found to be

Lf(s) (yp —m)fis) I Q?gi)z , (3.9.7)

as (3.9.5) and (3.9.6) together require.

Further diagrams

The translational effects of spin make it necessary to consider more
diagrams than just the ladders and their associated crossed line
diagram {Polkinghorne, 1964%). For example, the diagram of Fig,
3.9.4, which in the spinless case would be associated with a pair of
poles near [ == — 2, can have an effect at I = 0 becanse of the presence

t Noie added in progf. A term was omitted. The cancellation requires also the
renormalization disgrams associated with Fig. 3.9.2 {Cheng & Wu, 1965).
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of two vector particlesin the intermediate state. It gives a confribution

of the form I'f(s) T log u, (3.9.8)

with f'(¢) a known funection. There are two possible interpretations of
{3.9.8). Either it represents a higher order term in the coupling constant

-
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¥Fig. 3.8.3. Diagram related to Regpeisation in sixth order,

in the expansion of the trajectory «{s) that we have already considered,
or it represents the trajectory of a new pole. The latter possibility would
spoil Reggeisation, for, to provide the missing zero order term in the
expansion of this new Regge pole, we should have to re-introduce a
Born approximation term, giving non-analytic behaviour. Thus it is
essential for Reggeisation that the fivst alternative should hold. The
matter can only be decided by looking at the structure of higher
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order terms, such as those corresponding to the diagrams of Fig. 3.9.5.
An ocutline discussion eonfirmg that the behaviour of these diagrams
corresponds to the alternative which preserves Reggeisation.

If a similar analysis is applied to a sealar particle interacting with a
neutral vector meson through a conserved current (Gell-Mann,
Goldberger, Low, Singh & Zachariasen, 1964) it iz found that the
scalar particle does not lie on the trajectory associated with I == 0.

VNN AA

NAVAVAVAVAVAVAVAVAVAVAVE

— —
— -
- o
- —

Fig. 3.9.4. Another diagram related to Reggeization.

{a) &)
Fig. 3.9.5. Diagrams related to Fig. 3.9.4.

Thus Reggeisation shows a remarkable difference of behaviour
hetween particles of spin 0 and particles of spin 4. It also provides a
counter-example to the otherwise plausible conjecture that particles
which have fundamental fields associated with them must correspond
to non-analytic behaviour in complex angular momentam.

3.10 Production processes
Introduction

Bo far we have considered two-particle scattering without the
production of further particles. However, both for phenomenological
purposes, and also for the determination of subtractions in possible
eventual dispersion representations, it is desirable to know about the
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high energy behaviour of production processes. These amplitudes are
even more difficult than scattering amplitudes to discuss by rigorous
methods, but the methods developed for the study of perturbation
theory models are readily applicable (Halliday & Polkinghorne, 1963;
Polkinghome, 1965a),

‘z\ | zj/

Pl YA R, Tyt
5 5
——
%in Wy fx A A /M e
Yam -z Y 4y Tn Van—z

Fig. 3.10.1. A two-fold Regge pole.

It is clearly easy to obtain single Regge pole and eut contributions
of the forms discussed in the preceding seotions simply by attaching
appropriate external lines to the ladder and other diagrams considered.
In this section therefore we shall restrict our explicit discussion to
diagrams which are characteristic of production processes and which
do not have analogues in the case of scattering amplitudes. A typical
example is provided by Fig. 3.10.1 which illustrates a two-fold pole
occurring in a two-particle to three-particle seattering amplitude.

Two simple limits

The behavicour associated with Fig. 3.10.1 will depend upon which
limit is being evaluated; that is to say, how the subenergies {, and ¢,
behave as the total energy £-»oo. We shall first consider two special
cages by means of the approximation technique and then give a dis-
cussion of a third case by the use of an appropriate generalisation of
the Mellin transform method.

{i} £—>00; 1y, b, 84, 85, all fixed. The contribution of Fig. 3.10.1is of

the form 24 r—2 M1 1
—¢ 77z LCENS(2E—1)
Soripl |
¢ () [ e e (100
where r = m+n, and £ is a collective symbol for the Feynman para-
meters of the figure.

iz HA
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The coefficient of £ in D is simply

By oo B (3.10.2)

and so the leading behaviour is associated with the neighbourhood of
oy = ... B, == 0. A straightforward leading approximation caleula-
tion then gives
2 a - _y(logty—
GELE (s) 1 LE{sg) " filsy, 89) £ =ni’ (3.10.3)
with K{s), the ladder function, defined by (3.3.9), and
Y8, dS,ddg (8 + 8, + 65— 1)

—1
NN ke G0 03 2T 03 :
sy sa) = m*q fo (6,050, 7 5,0,0, 4 0,0, 137 (o104)

with the masses of the particles all taken equal to unity. Summing
(3.10.3) over m and » for fixed » yields

g0y, 8) [K(‘?}}J{:I; : E’}éi‘:ﬁ)’)]rd 1 (}‘)g??"wl ’ (3.10.5)

which in turn summed over r gives as asymptotic behaviour

faelsy) .. faksy)
a2 (s,, [ 3.10.6
IB( E 2) (8 ) 05(32) ( )
As usual, afs) = — 1+ K{s). (3.10.7)
The behaviour {3.10.6) is just what iz obtained as the leading behaviour
assoclated via the Watson-Sommerfeld transform with the two-fold

pole GBS
B—a(sp][l—alss)]’
(i) £y = kyt; by == kot; t->00; 8y, &, fixed. The coefficient of the
agymptotic variable f is now

OBy Bty @y ALY ) By By BrDylen Y 89) Ky,

(3.10.9)
alAn(ﬁsy)“l“lBiAn(ﬁs’Y)a} (31010)
Aa = 62Am{a‘s '}') + CCIA;H(Q"W ,}’)

(3.10.8)

it

where A,

The functions A, ... A, can be written down explicitly but all that
is relevant for our analysis is that they have the properties (a) A,
does not vanish when one of the £'s is zero, (6) when all the f’s are
ZET0

n—3

Ay =0y T 5+ Yign-a); (3.10.11)

together with analogous properties for A,.
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The coefficient (3.10.9) possesses a number of distinet equivalent
scaling sets in the way discussed in §3.4. Thoy can be enamerated in
the following way:

We first scale 8,, 8,; 8, ay; @, f1- The é-functions associated with
these scalings put 8y = &, = 1, &+ 3, = 1. Subsequent scalings can
then be determined by a rule. Suppoese that the immediately previous
scaling involved &; and ;. (We start, of course, with ¢ = j = 1.) If
i <m, j<n we cither scale &, with f#,,,, so that linearisation in
8(@;+ ;1) forces §; = 1, or we scale £y with ., forcing &, = 1.
If4 = m,j < nwescale @, with £, , forcing 3, = 1. If{ < m,j = n we
scale fi; with a;,,, forcing &; = 1. If i = m, j = », no further scaling
is possible.

The alternatives given in this rule enumerate and exhaust the
independent gealings which are possible and each particular set of
choices is found to lead to the same contributions to the asymptotic
behaviour. The number of these distinet sealings is clearly the
number of different orders in which one sets

By = e = Oy = 1, ﬁ}. o mﬁnﬁl =1,

with the condition that #; must not be put equal to 1 before &, if
? > i', and similarly 8; must not be put equal to 1 before £, if § > j.
This number is just the binomial coeficient

(e +m—2)! .
=T (3.10.12)
Thus the leading behaviour is found to be
o (mtn-—2) (log fyntm
1 -k #i~1 _ 2
h gskl lk [K(‘Si)] [K(82)} ( })g (n 1) (ﬂ"’%’"m}z .
(3.10.13)

When (3.10.13) is summed over m and » it gives a leading behaviour

g | (3.10.14)
kykey (K (sy) + K(sp) P
Physical region limit

Neither of the limits (i) and (i1) i3 possible in the physical region of
the production process although, of course, they would be relevant to
the question of subtractions in a possible spectral theory. Ivanter,
Popova & Ter-Martirosyan (1964) showed that in the physics] region

T2-2
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for fixed s, and s, the subenergies ¢, and £, must tend to infinity in such
a way that their product is of the order of {. We thus consider the
third limit

(iii) & ~ 1515 by ~ %2 @+ 2y = 1; E>00; 8y, 8, fixed. The method of
approximation used for (i) and {ii) is not easily adaptable to this case
where fractional exponents oceur. Instead we use Mellin transforms
{Polkinghorne, 1965a). If the transform of (3.1(1) iz taken with
respect to —1¥, —#;, — &y, with transform variables o, a,, a, respectively,
we obtain

__gz r—2
L@, ay,a9) = 74° (fg,,a) (= 1y 0~ a) D(~ ) T~ ap)

X f . défay ... a,]o0s, [:81 e Bl AT AG O 20—ty oxp (] ),
(3.10.15)

with —JC equal to D evaluated with { = #; = [, = 0. The inversion
formula gives

(2_—6)3f dafol da?j dity Li{@, ay, aq) (—1)° (—§)%( — §5)™.

(3.10.16)
In (3.10.16) the effective exponent in the limit (ii) is

@ = a+a,xy+ a2, (3.10.17)

and we shall obtain the leading behaviour by distorting the contours
€, ¢4, Gy 50 as to obtain the minimum value of d. The extent to which
this can be done will, of course, be limited by the singularities of L,
These singularities arise in the usual way from the I' functions in
{8.10.15) and divergences of the integral at its lower limits of integra-
tion, In particular the o; integration diverges at a; = 0 if

atay = —1

and as in §3.6 integration by parts can be used to exhibit the con-
sequent m-fold pole in I at @ + a; = — 1. There is a similar n-fold pole
at @ +a, = — 1 due to the §; integrations,

The locations of these poles are given by

O=ogta+1 md»i*(lwmx)(al_az)-i_i’} {3.10.18)

O=a+day+1=a—u(a;~ay+1.

If (3.10.15) is regarded as a function of a, a,, a, the rightmost singu-
larity in the left-half a-plane will oceur at @ = — 1 due to the pinch of
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the multiple poles (3.10.18) in the (@; —a,) integration. In order to
evaluate the nature of this singularity it is sufficient to evaluate the
residue at one of the rultiple poles. This is because the pinched
integral clearly differs from an integral which has been drawn back
across one of the multiple poles {(and so is not pinched hetween thern)
by just this residue. The resulting expression is found to be

Bl e K (1 ) Ko 5 B g ymims,

where (8.10.19)

ﬂ@JQ:n%ﬂ;ﬂmu+mr%-m

% J.m iy ddydog(8) + 85 4 8) 10 88 dh exp (— ). (3.10.20)
0

The funetion 4 is
— (850,883 8,85+ 8, 8,) () + 85+ 85T 8+ 8, + 85 (3.10.21)

The variable b is just }(a; + a,) and its contour B runs parallel to the
imaginary axis in the left half plane.

The asymptotic behaviour obtained by summing (3.10.19) over m
and n is gzﬂ(tl, tz) (- t)xla(slh‘»zﬁoe(sa}_ {3.10.22)
Such a form was proposed heuristically by Kibhle (1963) and Ter-
Martirosyan (1963).

The Mellin transform method can also be used to obtain the
asymptotic behaviour in a wide wvariety of limits (Polkinghorne,
1965a).
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CHAPTER 4
S-MATRIX THEORY

4.1 Introductory survey

We have given in §1.1 reasons for wanting to develop a theory of
the S-matrix that does not necessarily requive an underlying field
theory. We have listed there some of the basic principles on which
the theory is to be based and this chapter is devoted to a develop-
ment of the theory on these lines. Apart from the first paper on the
subject by Heisenberg (1943}, much of the stimulus for the work
has been given by Chew, for example in his book (1962). The fizst
full-scale attempts to carry through such a programme were made
by Stapp (1962a, b) and Gunson (19651), We shall follow the develop-
ment due to Olive (1964} which made essential use of Gunson’s
ideas.

In the second, third and fourth sections of the chapter we present
the assumptions in defail, elucidating their physical basis as far as we
can and deriving their immediate consequences. First, in §4.2, we
define the S-matrix in terms of asymptotic states, which we require to
obey the superposition principle. We find that the S-matrix is unitary
0 that, as we saw in § 1.2, its elements are interpreted as probability
amplitudes, probability is conserved. In this section we also introduce
the connectedness structure of the matrix elements, which arises from
the faet that, because of the assumed short-range nature of the funda-
mental forces, particles ean interact among themselves in clusters.

§ 4.3 13 mainly devoted to the consequences of Lorentz invariance.
We show how the matrix elements may be expressed as functions of
Lorentz scalars, rather than of the four-momenta in terms of which
they are initially defined. We discuss the various constraints and in-
equalities placed upon the scalars by the requirement that the
momenta be physical.

As we noted in § 1.1, an important physical ingredient of the theory
is believed to be that of causality. This is usually supposed to result in
analyticity properties, but exactly how is not at present ¢lear. So in
§ 4.4 we present the property of analyticity as a postulate. We formu-
late it in as weak a way as possible and try to interpret its consequences

1 This paper was aveilable in preprint form in 1963.



4.1] INTRODUCTORY SURVEY 183

ir terms of physics wherever we can in later work. The basic idea is
that the physical amplitudes are boundary values of analytic functions
whose only singularities are those required by unitarity, the simplest
such singularities being, as we saw in § 1.3, the normal thresholds. An
important part of the analyticity postulate is the “de-preseription’,
whieh tells us from which side we must approach the cuts attached to
the normal-threshold singularities in order to achieve the physical
values of the matrix elements; we examine this in some detail and
conciude that we must adopt the same prescription as operates in
perturbation theory.

§4.5 deals with the physical-region singunlarities eorresponding to
single stable particles. The existence of these singularities in the
multiparticle amplitudes may, similarly to the ease of normal
thresholds, be deduced directly from unitarity. Their nature is closely
connected with causality and we show that, as in perturbation theory,
they are poles whose residues are the products of lower ampli-
tudes.

In §4.6 we show how the unitarity equations give formulae for the
discontinuities associated with the physical-region normal-threshold
singularities. To obtain the discontinuities associated with branch-
points outside (or on the edge of) the physical region, we need to have
formulae analogous to the unitarity equations but operating outside
the physical region. How such equations may be proved is indicated
by detailed discussion of a particular example, the hermitian analyti-
city eguation for the two-particle »two-partiele amplitude. (The
importunce of this equation has already been explained in §1.3).
The equation is proved by embedding the amplitude under study in
a higher amplitude, through its occurrence as a factor in the residue
of a single-particle pole in that amplitude, and analysing the physical
unitarity equation for the higher amplitude,

§4.7 is designed to give greater insight into the structure of the
normal-threshold singularities ocourring in the several wvariables
associated with a multiparticle amplitude. We show that the two-
particle normal thresholds are square-root in nature, and give, withous
proof, some discontinuity formulae and examine their properties.
By seeing how to add formulae for various individual discontinuities
we verify that the unitarity equations for multiparticle amplitudes
give the simultaneous discontinuitios associated wmh several singulari-
ties in several variables.

Tn §4.8 we deduce that the ingredients mtroduced into the theory
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so far require that to every particle thore correspond an antiparticle
with equal mass and opposite additive guantum numbers. We also
prove the crossing property described in §1.3, and the TCP theorem.
This is dore again by embedding the amplitude under study in a higher
amplitude through its oecurrence as a factor in the residue of a
pole.

So far mention has been made only of stable particles. In §4.9
unstable particles are introduced and it is shown that, mathematically,
they enter the theory in a very similar way. Their properties are most
gimply discovered by means of a model, which is discussed in some
detail. An example is given of how the predictions of the modelmay be
verified rigorously.

The work of §§4.6-4.0 explicitly considers only the normal
thresholds. 1n § 4.10 weshow that unitarity generates further singulari-
ties and leads to an analytic structure very similar to that of finite-
order perturbation theory. Thus the work of chapter 2 now provides
importantinsight. In § 4.11 a particular example, a triangle singularity
oceurring in the plysical region of the three-particle » three-particle
armplitude, is shown from unitarity alone to display the same physieal-
region properties that were discovered in the perturbation-theory
analysis of §2.3.

Onee the presence of the extra singularities i3 established, it is
necessary to verify that they do not interfere with the results earlier
deduced, such as crossing and hermitian analyticity. This cannot be
done without more knowledge of the structure of the singularities, so
here {in §4.11) we only consider the effect of the triangle singularity
on the derivation of hermitian analyticity.t More work on this will
presumably be done in the future; we are optimistic about its resulis
because of the similarity of the singularity structure with that of
perturbation theory in which, as far as perturbation theory has a
meaning, the theorems are believed to be true. An encouraging feature
of perturbation-theory singularities, which we made use of in the
general digcussion of §2.6, is that successively more complicated
singularities may be discussed one by one. The status of this “hier-
archical principle’ in S-matrix theory is not clear except, as we
indicate in §4.11, in the physical region, but one might hope that
it is possible to justify the procedure of starting with the normal
thresholds and then generating successively more eomplicated singu-
larities.

T Ita effect on the proof of crossing hes been considered by Stapp (1865).
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4.2 Unitarity and connectedness-structure
The asymptotic states and the S-malriz

In a scattering experiment, one first observes particles moving
towards each other and later one observes them moving apart. If these
observations are made, respectively, sufficiently early and sufficiently
late, the particles will be far apart. So if the forces between the
particles are smtably weak at large distances, the particles behave
essentially as free particles during the observations, apart rom the
disturbances they suffer as a result of interaction with the measuring
apparatus. We are therefore able to make use of the familiar quantam-
mechanical description of free particles in terms of state vectors |)
(Dirae, 1958),

Accordingly we assume that in the extreme past (f-»—oo) the
particles may be described by states [in) with the following properties:

(1) The superposition principle. If |, in) and |¢,in) are physically
oceurring states, so is Ajyr,in)+pld,ind, where A and g are any
complex numbers. (We shall not discuss the modifications resulting
from the operation of a superselection rule.)

(il) The set of physical states is normalizable and complete, so that
a subset may be chosen that satisfies the orthonormality conditions

{m,in|n,ind = &, (4.2.1a)
and the compleleness relation
Y fm, i) Om,in| = 1, (4.2.15)
e

where m and n are labels describing particular configurations of free
particles.

Similarly, we assume that in the infinite future (i o0} the
particles may be described by states |out), bearing corresponding
labels and with exactly similar properties.

We define an operator § by

8 = 3 |m,in) (m, out, {4.2.2a)
so that 8t = ¥ |m, out) {m, in|. (4.2.2D)
[

Because of the orthonormality and completeness conditions (4.2.1)
on the states |m,in}, and the analogous conditions on the states
}m, out), the matrix elements of S satisfy

{p,in] S|yr,in) = (P, out| ¥, in) = (P, out| S|4, out), (4.2.3)
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where the labels ¢, ¥ refer to any physical state, Further, the ortho-
normality and completeness conditions imply that S is unitary:

S8 e 1, (4.2.4a)
and §t8 == 1. (4.2.4b)

We saw in §1.2 that, if we make the assamption that the matrix
element (4.2.3) is a probability amplitude for transition from the
state labelled by i to that labelled by ¢, that is if the squazre of the
modulus of the matrix element is the probability for the oecurrence
of the transition, the unitarity condition corresponds to the physical
requirement of probability conservation.

Momentwm eigenstates

A complete set of physical states that is of particular interest is the
set of momentum eigenstates. It was pointed out by Helsenberg (1943},
in his original paper on the S-matrix, that the energy-momentum of a
particle may, in principle, be measured to arbitrary accuracy. This is
because a measurement of the time of flight 7' between two detectors
a distance X apart yields for the veloeity of a particle the expression

X+EX
T+ &T

Here £X and &7 are the errors in the messurement of X and T
arising from the uncertainty prineiple, which does not allow precise
measurement of these quantities if the momentum is not to be
altered by tho measurement. The errors X and €T need not depend
o X and T, so if we make X and T very large the errors become
negligible by comparison and we obtain the velocity to arbitrary
accuracy. If the mass of the particle is precisely known {which is open
to some doubt; see Kden & Landshoff, 1966), knowledge of the
velocity implies knowledge of the energy-momentum.

Because the momentum cigenstates are accessible to experiment,
and because the corresponding S-matrix elements have particularly
interesting properties, we concentrate our attention on these states.
For simplicity we consider the theory of a single type of spin-zero
particle obeying Bose statistics.t

Using the standard annihilation-creation operator formalism, we

1 Note added in proof. The conneection betweon spin and statistios has been dorived
by Lu & Olive (1966} using the general-spin analysis of J. R. Taylor {1968).
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write the single particle state | p) describing a particle with momentum
p and energy p® = +./(p*+4%), as
|p) = a'(p)|0},
where [0) is the vacuum state with no particles, ie.
a(p)|0y =0, allp.

We shall choose the relativistie normalisation

@'y = a'(p}] = A(p’, p}, (4.2.5)
where Alp’ ,p) = (%)32190 "~ p). {4.2.6a)

We note that there is an arbitrary phase in a(p) since its properties
are invariant under the phase transformation a(p)— e¥a(p), with ¢
independent of p.

When previously we had discrete states with unit normalisation we
used the summation property

?fb aab = fu'
The integration yielding the corresponding property with A(p’, p),
SJp) AMp'p) = fip'),

.. 1 [d%%
b 8= — (2mr)y3 [dipdto
is given by ; (27r)3f2p, (27r) jd pdt I (p? — u?), (4.2.65)
We define the state of » particles with momenta p;, pa. ..., p, 28
IPvPaa s Py = AP AP} - 0N (D) |0 (4.2.7)

Becanse of (4.2.5) the normalisation of this state is
(PLPo - P D1 Do v D) = Z) {AlPLP,,) - Alpy.D,,),  (4.2.8)
v

while states containing different numbers of particles are orthogonal.
In (4.2.8) the summation iz over the n! ways of pairing off the momenta
in the two states. The corresponding n-particle phase integral is

8 mlS...S (4.2.9)

1
PiBr D P

80 that the completeness relation reads

© ] .
= (Bl fd4q1 o i, 8D (gt - p?) L 0D — )
= Iql:"'!qn><{j13‘“3 gui =1 (4")“10)
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Bubble notation

We are concerned with matrix elements

<P;:"-:P;IL'QSEPD""pqn) (4211)

that describe transitions of a configuration of m particles, each with
definite momentum, into one of m' particles, Because of (4.2.3) the
state vectors in (4.2.11) may be either of “in’ type or of ‘out’ type, so
henceforth we do not write in these labels.

A bagic assumption of the theory is that the total energy-momentum
is conserved in the interaction; the matrix-element vanishes unless

Zp = Zp'. (4.2.12)

This has an important simplifying effect when the completeness
relation (4.2.10) is used to express the upitarity relations (4.2.4) in
terms of the matrix elements of the type {4.2.11). The relations derived
from (4.2.4a) read

%(gﬁj'gamn, f 11 diq,800gs — %) (P, s Pl S 15 w5 )

= <QI’ "‘:ani‘g?!pi’ ""pm> = @iv '-'929;;1"2]1; -'-’_'pm>, (45213)

while those derived from (4.2.45) have the oporators 8§, 8" inter-

changed. Becanse of energy-momentum conservation only the states
ith

b Tp=2g=2Xp {4.2.14)

survive in the integration-summation. In particular, the summation
is restricted to values of n that satisfy

(mu)® < (Zp)®. {4.2.15)

It is convenient to introduce & diagrammatic notation for the
eguations (4.2.13). We write, for the matrix elements of 8,

3
2

(Pi,'-'st"Spr---:Pm>E 3:H~ § -
m'i E

and similazly for the matrix-elements of §'. Also,we write

Lo (4.2.16)

3 wrae

T I B ———— {(4.2.17)
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where there are m lines {which, according to (4.2.9), denote a sum of
m! terms in which the momenta are paired off in different ways}.

Also we write 1
S IS

I e

There will be no confusion between {4.2.17) and (4.2.18), since the lines
in the latter will always join two bubbles.

In this notation the unitarity equations.(4,2.18) read, when aceount
is taken of (4.2.15), as follows:

(2)® < (Zp)® < (3p)™
Grisy - = 4.2.19a)
(3:)% < (Ep)? < ()™
GIEr - CEf - =

(407 < (Zp < (Bp)%:

(4.2.195)

OEEEE ¢ TEEEE - 0, (4.2.19¢)

i
i
i

b

and so an for larger values of (Zp)® The equations corresponding to
the other form (4.2.40) of the unitarity condition are obfained by
interchanging the lahels S, S in (4.2.19).

Notice that nowhere have bubbles of the form =(7)- appeared.
This is because the particles wo have so far introduced into the theory

@
;
ﬁ
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are supposed to be stable (otherwise they would not exist in the
infinite fature and so would not appear in the asymptotic states), so
that the process that would be represented by such a bubble is not
permitted by energy-momentum conservation.

Connectedness structure

An important assumption that must now be introduced into the
theory is that of the connectedness-strueture, or custer-decomposi-
tion, of the matrix elements. Although it is believed to be a secure
assumption, we must emphasize that its precise basis is not fully
understood.

We have already displayed part of the connectedness-structurs in
(1.2.13). For two-particle+two-particle scattering this equation

takes the form
akes tie fo Gr -~ T+ Y. (4.2.204a)

This structure arises from the short-range nature of the forces; the
term T corresponds to the particles ‘missing’ each other. For a
three-particle —+ three-particle interaction the particles may all miss
one another, or it may be that two of the particles interact, while the
third misses them. This leads to the structure

{5y = =+ === + Lk, (4.2.208)
For a four-particle-»four-particle interaction there is the further

possibility of the particles interacting in pairs, and we have the

structure 5F = 24 5ZE o+ nEEE 4+ pEEE ¢ L0E (4.2.200)

In these equations the summations are over the different possibie
choices of particles that collide and miss. Matrix elements for different
numbers of particles in injtial and final states can be similarly de-
composed, though for these there is no part corresponding to complete
absence of interaction:

G - Tx
O
- Tk,
- ¥+ OE,
- 35m2 L -

:  (4.2.20d)

POEOC
o
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In the equations (4.2.20) we have introduced the ‘connected parts’
of the matrix-elements of S:

v 1
Phovons B |8 P ecotude = "H - e (42210)

These amplitudes are supposed to be free of the §-functions explicitly
displayed in (4.2.20), We define corresponding connected parts of the
matrix-elements of §7

; ; I'r 1
(B oo B | S| P oes Prade = iﬁz (4.2.215)

For reasons that appear below, we have chosen to introduce a factor
{—1} in this definition. To obtain the connectednoss-gtructure for
matrix-elements of 8% we replace the labels 8 in (4.2.20) by &, the
labels {+) by (~), and include a factor { — 1) each time a { —)-bubble
appears.

We have said that the precize basis of the connectedness-structure
is not clear, though it is easy to undetstand intuitively. 1ts importance
in S-matrix theory was first noted by Heisenberg {1943), who con-
sidered the situation in potential theory. Perhaps the eastest way to
understand that it should be valid is to consider perturbation theory,
where it may be seen from the Feynman rules of §1.5 that a given
Feynman graph is either connected or consists of two or more dis-
connected parts. An analysis independent of both potential theory
and perturbation theory has been given by Wichmann & Crichton
{1963), who study a wave-packet formulation of scattering theory and
formulate a cluster-decomposition postulate by considering two
scattering experiments separated in space-time. In the limit of the
soparation being infinite the two experiments should not interfere with
each other, and so, they asstume, the overall §-matrix sloment that
describes them should factorise into the produet of the matrix-
elements for the individual experiments. This is obviously an im-
portant requirement since, in practice, we arc not able to cinpty the
universe in order to conduct an experiment in complete isolation,

The extent to which the connectedness-struecture is not understood
is that it is not known just how wide is its validity. It is thought to
break down, atleast in the form we have given, for a Coulomb potential
1/r. This vanishes at r = co much less rapidly that a Yukawa potential
e~#[r, for which the connectedness-structure is thought to be valid.
The reason for the brealdown is that in a theory that contains zero-
mass particles, such as photons, the particles can never be separated
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sufficiently to be effectively free of each other’s interaction. We have
gaid in §1.1 that we do not even know how to define the S-matrix
elements for such a theory.
The unitarity equations

If we insert into the unitarity equation (4.2.19a) for the two-
particle - two-particle S-matrix element the connectedness-structure
{4.2.20a) for that elemont, we obtain

(v ) (=) - . (4.2.22)

Multiplying out and collecting together terms of like connectedness-
structure, we have

=S - Oy
The first bracket vanishes trivially, leaving the relation
Ty - aCr =1y (4.2.23)

Similarly, consider the last equation in (4.2.195). If we insert the
connectedness-structure of {4.2.20) we obtain

ez ) (Eem - - =,

The product (2:‘@‘:) (z':@:‘) includes terms (ﬁ) (@) and
(=) (ﬁ) which we shall distinguish since the first is disconnected
and the second connected. Thus we write

(}:E} (z“:é?:) - rEEE + IneEE.

On multiplying out and rearranging to colleet together terms of like
connectedness-structure we find

=-=) 2= - oo
S tOSEOTEOROEO=0 Bt = OBt 0==:
- 3EE2) 0. o (s224

The expressions in each bracket must vanish individually, being of
different connectedness-structure and so containing different sets of
d-functions. The first again vanishes frivialy; to see that the second
vanishes we divide out the factor represented by the upper line and
uge (4.2.23). The vanishing of the third bracket gives a new equation.
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It is not by accident that the second bracket vanishes antomatically.
1t happens because of the specific form of our connectedness-structure
assumptions. If we had introduced different phases in (4,2.20), for

example
@ﬁf + % M ImE @,

so that FE =2 - seEEE - ) ,
we should have obtained for the second bracket in (4.2.24)
(e*TF~ o 7%E ~ T=F N

In order that the vanishing of this be consistent with (£.2.23), we
require that e = 1 (Stapp, 19625).

We may treat in a similar manner all the equations {4.2.19), and
obtain the following set of equations:

(2u)* < (Ep)* < (3p)*:
OB OR N OO (4.2.25a)
(8p)% < (Zp)® < (4u)™:
ox - Ox - rer » GECE
@sn:@m@:@ + (OECE + (DR,
EQ SO N + LoECx -+ zmE(Cr,
L - - 00 + OFCF + s BF 2 S + s

(4.2.25b)

—

4p)t < (Ep)? < (B
IOTEOEEO=O RN O=02ENEC =0
T - TF ~ GrCr « TECE+ s (O + OECE + s TEE,
S OTE O=OREC=C RN o NIFG=o = 03
EOTEO=OREO=0 TRt ORI EQ=c I F-o=—0x
+ TOECE + - F + 2 PR+ 1,
O ORO N O =0T RO=IENC— O L =
DiTEE - 3 (e,

13 BA

SRR
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EOREOTE OO EO=CREt=OMIE-O=C R Fo=C!
+ L@:é E%:

00010 00N 0. O E—
OB OFE0OTL OO FTT - ON-O-IE ==
F- O 00+ OFC > R T v B2

wx_-w-vz $72ﬁ~2 gz: ;

(4.2.25¢)

and so on for higher values of (Zp)2

These equations are the fundamental equations of our theory. They
have been grouped according to the different energy ranges to
emphasis that as (Lp)? is Inereased the equations become both more
numerous and more complicated.

Notice that the terms on the right-hand side are preceded by a
minus sign if the number of bubbles labelled by (-} is even. Similar
cquatians, derived from (4.2.4b) instead of (4.2.4a), hold with the {+)
and ( — ) labels interchanged on the right-hand side (though not on the
left), provided sign adjustmonts are made to conform with the above
rule,

A-matriz elements

We have not yet extracted all the é-functions from the matrix
elements. It is a familiar conseguence of the Feynman rules in
perturbation theory (§1.5) that over-all energy-momentum con-
servation {4.2.12) leads to a factor 8®(Ep’ — Zp) in the connected part
(4.2.21) of the S-matrix element. Since energy-momentum con-
servation is believed to result from the translational invariance of the
theory in space-time, the presence of this §#-function outside the
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frame-work of perturbation theory could presumably be deduced
from an analysis that introduces space-time into the theory, by
consideration of states that correspond to wave-packets rather than
to the plane waves (momentum cigenstates) we are using. However,
this raises considerable difficulties (Eden & Landshoff, 1965), and here
we shall be content to assume the presence of the d¥-funection.
Accordingly we write the matrix-element (4.2.21a) as

Bhe = —i2m) 69(Zp —Zp') {4), (4.2.260)

and assume that the matrix 4 is free of all §-functions. In §4.3 we
shall introduce the further assumption that the matrix-elements of 4
are actually analytic functions.

By hermitian conjugation of (4.2,.264) we have

(ST, = i(2m)A6W(Sp — Tp') (A" (4.2.26b)

The reason for introducing the factor ¢ in (4.2.26) will become clear
later when we develop the discontinuity content of the unitarity
equations. Given that it is nseful to insert this factor, we see now why
we introduced the factor {—1) in {4.2.215): the (+)-bubbles now
correspond directly to matrix elements of 4, and the (—)-bubbles to
matrix-elements of 47, Bxplicitly, this correspondence is

WL = —i(27) 30(Sp - Sp') A, (4.2.27)
where AR = {py, o el A Py o P (4.2.28a)
A = (B | AT pry e, P = (AL T*. (4.2.28D)

We also recall from (4.2.18) the rules for integration:

sach internal line-» (2#)*3fd4g S (g2 — pe%), (4.2.29)

each n-particle intermediate state — a factor (n?}*l.

Each term in any of the unitarity equations {4.2.25) contains a
factor —¢{2m)*¢¥@(Ep —Lp"), which we may cancel throughout the
equation. It is also convenient to redistribute certain other factors.
Consider a particular term on the right-hand side of any of the
equations {4.2.25). Suppose that this term containg r bubbles and »
internal lines. The term then contains n integrations d*g and » §%-
functions. We may integrate out (r—1) of these é¥-functions by

13-2
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replacing the g-integrations by integrations over (n—7+1) = I loop-
momenta %, ag we did in § 1.5 for Feynman diagrams. The remaining
S®-function refers to over-all energy-momentum conservation and is
the one we have decided to cancel out, together with its —4(2ur)t
factor. After this cancellation the powers of ¢ and 27 remaining are

T

e Y71 4r—1) -3 = { A 4
(= 2y (2m) {21) {— 2m) [(2@4 .
This makes it convenient to redistribute the factors ¢ and 27 such that
(- Zr1) is associated with each of the n internal lines and i/(27)* with
each of the I loop integrations. We therefore replace {4.2.27) and
(4.2.29) by the new rules (Olive, 1064}

QN |
each internal line -» — &7 §8H (g% — u®),

e B  (4.2.30)
each loop 9(277}4 fd k,

i . L i
each n-particle intermediate state joining two bubbles»m

4.3 Lorentz invariance and kinematics

The A-matrix element (4.2.28) is a funetion of the four-momenta of
the particles in the initial and final states,

A5 = AP - P P11 P} (4.3.1)

Let A be any proper orthochronous Lorentz transformation, so that
it satisfies det A =1, (4.3.24)
Al > 0, (4.3.2b)

ATgA = g, (4.3.2¢)

where g is the metric tensor, which we are taking to have the diagonal
elements (1, —1, — 1, —1}. Then our Lorentz-invariance assumption
{1.2.8) reads

AL ADL oes B Ay oer M) = AGELDY, o Bls Prs s D) (4:3.3)

This has the consequence that 4%}, is actually a function of the
Lorentz invariants that can be formed from the momenta, and in this
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section we investigate this in some detail. The eszential result of the
section is {4.3.9) below, which expresses the Lorentz-invariance
property in tractable form. The equation expresses 4%5), in terms of
funetions of variables similar to the s, f, u introduced in (1.2.10) to
desecribe simple scattering. The treatment here follows that of Olive
(1965); see also Asribekov (1962), and Byers & Yang (1964).

Lorentz invariants

We list three types of quantifies invariant under the Lorentsz

transformations of (4.3.2):

(i} inner products p,.w,,

{ii) signs of time components, e(p"} = sign {p?),

{iii} determinants e(py,p;, Pro) = Eppp o} pEpLpf, where Enpmp

i3 the antisymmetric fourth-order tensor.

Here we are extending the meaning of the symbols p to cover the
momenta in both the initial and the final states, so that (i) includes
produets of the momenta in the different states.

The invariance of (i) follows immediately from (4.8.2¢), that of
(i) from {4.3.2b) and the fact that the p are timelike, p? = u2 > 0.
The invariance of (iil) follows from (4.3.2a) and the rules of determi-
nant multiplication; since

‘ PPt opt PP
¢ ¢ ¢ ¢
apare=| 5 4 5% (4:3.4)
g0 gl g2 48
we have e(Ap, Ag, Ar, As) = det A . e(p,q, 7, 8). (4.3.5)
From (4.3.4) it is easy to show that
(P P Prs Py) €001 G20 @y Ta) = =~ deb (p;.q)), (4.3.6)
so that, in particular,
G(?i:?ﬁ!?iﬁ?&} =& J{—det (pi'pj)}' (4'3'7)

Hence knowledge of the guantities of type (i) implies knowledge of
those of type (iii), except for an ambiguity of sign. The significance of
this ambiguity is that if we make a space reflection {p%, p}->(p®, —p)
of all the momenta, the quantities (i) and (i) are unchanged, but
(i) change sign. The only reason we need consider (iii} is for the
information these gquantities give us about the sign. Their absolute
numerical values are determined by knowledge of the set {i}.
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Tn fact, for any set of momenta, we get sufficient information from
just one of the quantities (iii). For (4.3.6) tells us that if we know the
values of the set (i) and also the sign of any one given e(p,, Py, Pa, Pa)s
we also know the signs of all other e(qy, ¢4, 95, 44)-

Stmilarly, knowledge of just one member of the set (ii) is sufficient,.
For, if the momenta are real and on the mass shell,

Pi- P52 Ml {4.3.8)

and the Z applies according as the zeroth components of p,, p; have
like or unlike signs. So if we know the values of the set (i) and the sign
of any one of the p%, we know the signs of all the others. In fact, if the
momenta are to be physical, it must be that all the p* > 0, so that none
of the set (ii} appears explicitly in the functions that give the physical
matrix-elements.

We show below that the sets (i), (ii) and (iii} are a complete set of
invariants, in the sense that knowledge of them implies knowledge of
the momenta, to within an over-all proper orthochronous Lorentz
transformation. So we see that, for physical momenta, we may write
the amplitude (£.3.1) as

A(p) = APy, - Pu) +6Pis Py Pis 21 A (B - P s (4.3.9)

where v, Dj P, Py ave any set of four of the momenta and we are still
using the symbols p to cover the momenta in both initial and final
states. Notice that this decomposition relies on the fact that all §®-
functions have been extracted from A(p). For example, §9(p) cannot
be expressed as a function of p2. The first term in the decomposition,
A,, remains unchanged under space-reflection, and so is the "parity-
conserving’ part of 4. The other term changes sign under space-
reflection and so is absent in strong-interaction theory, where parity is
conserved. It is alzso absent in the two-particle - two-particle ampli-
tude, whether or not parity is eonserved in the theory, because energy-
momentum conservation allows only three independent momenta.
We stress that our discussion assumes that the particles have no
spin.

Reconstruction of the momenta and the physical region

We now show how knowledge of the sets (i), (ii) and (iii) of invariants
enables us to construct the four-momenta, to within a Lorentz trans-
formation (4.3.2).
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Since each vector is on the mass-shell any one, p, say, may be
transformed by such a Lorentz transformation so as to become

PN(P), 0,0,0). Then from knowledge of (p;.p;) we know the
zeroth component of p,, namely p} = (p,.p)/Jp. Hence we know
also |p,|, since p3 = (pf)*—p,2. By a space rotation we can make p,
take the form (pd, |p,}, 0,0), and then we know p, completely. [Such
a rotation is a Lorentz transformation of the type (4.3.2) and it does
not affect the form we have achieved for p,.] We may similarly con-
struch 5y, using arotation to make its fourth component vanish, When
we come to construct py, its first three cormponents are obtained from
PyPr Py-P. and py. pa. The last component satisfies

(0 = (p* (1) — (PR~ ps"

which determines it up to a sign, which cannot be varied by a trans-
formation (4.3.2), This sign is fixed by the sign of e(p,, Pa. D5, 04)-
Further vectors may be constructed similarly.

In order that all the components of the momenta so constructed be
real, there are certain restrictions on the values of the inner products
;. 5. These restrictions, togother with the requirement that the
zeroth components of the momenta be positive, determine what is the
physical region in the space of the invariants. It is convenicnt to
express these restrictions in terms of Gram determinants, which are
defined by

¢ (*;1 ) dot (p;.q) (65 =1,2,..,N).  (4.3.10)
1-

If we use the shorthand notation
¢ (PPi ) 2 gV (4.3.11)
Dy v m...J’

the results of our construction of the vectors py, p,, ps. P, may be
written, after a lengthy caleulation, as

= (/ii({}), 0, 0, 0),

Py = (,JZ,‘E(Z) MG{I_%_ .0, 0) ,

_ {66 —(x(}g O |, (4.3.12)
%“(ﬁ?‘ JSemem N o )
P =( Gl _ —-6GEH -GG

TG VEEEEE) Yoo e
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Henee the restrictions are

(1 {12 (123 L (1934 .
G(l)>0, G(12)<9, (;(123)>0, (1(1234)<0. {(4.3.13)

These restrictions are unsymmoetrical in the labels 1, 2, 3, 4 because of
the order in which we chose to construct the momenta. If we had
chosen a different order the labels would have appeared differently in
the restrictions. But sinece the set {4.3.13) is evidently both necessary
and sufficient, its validity implies also that of the other possible sets,
since each vector is on the mass-shell. The truth of this may also be
seen by using the Jacobi identity (see, for example, Aitken, 1954,
p- 97): DiDf— Di D} = D¥D. (4.3.14)
Here Di denotes the (4,5) algebraic minor of any determinant 13, and
D3 is the algebraic minor (ik,j1).

When we construet firther veetors a new type of restriction enters,
that arising from the dimensionality of space. Any five or more four-
vectors must be linearly related. (However, because of energy-momen-
tum conservation, the linear relation is trivial unless the sum of the
numbers of particles in initial and final states is at least six). By using
the scalar produet of the linear relation in turn with each of the
vectors involved, we obtained a set of homogenous simultaneous
hinear equations for the coefficients in the relation, The determinants
of these equations must vanish, and this determinant is a Gram
determinant. So we obtain the conditions

Dg4R
o (1.2.34.9) - 0;

12345
12346 123456
= " — - F‘
¢ (12346) ¢ (123456) o (4.3.15)
12347 L (123457 1234587 '
C?(12347) “‘G'(123457) —'(;(1234567) =0

and so on as more vectors are constructed. Another way to obtain these
relations is to construct the vectors with the dimensionality condition
relaxed, and then require that their superfluous components should
vanish. This method shows the sufficiency of the conditions (4.8.15).

Choice of variables

Our construction of the vectors py, Py, Py, Py M (£.3.12) results in ten
non-zero components. If we construct further vectors they will not, in
general, have any zero components. Hence, for N > 4, N four-vectors
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involve (4 — 6) non-zero components. So, taking into account the N
on-mass-shell conditivns p? = g% and the four energy-momentum
congservation conditions {4.2.12), we see that an m-particle-»m'-
particle process invelves [3(m + m”) — 10] independent variables.

This number is rather legs than the number of inner products in the
set (1), for two reagons, First, the energy-momentum conservation law
(4.2.12} leads to a number of inear relations among the inner products,
of which a typical example is that connecting s, ¢, w in (1.2.12),
Seeondly, the dimensionality constraints of the type (4.3.15) lead to
quadratic relations among the inner products. The fact that the latter
relations are quadratic means that, if we select [3{m +m'} ~ 10] of the
inner products for use ag the independent variables, when we solve the
relations to obtain the other inner products in terms of our indepen-
dent get we find ambiguities of sign, Difforent choices of these signs
correspond to different configurations of the momenta, not related by
Lorentz transformations. To avoid this difficulty it is best not to make
any choice of independent variables, but fo think of the amplitudes as
functions of all the variables, with the constraints on the variables
operating as auxiliary conditions.

In place of the inner products themselves, i is convenient to use the
closely related vartables of which s, £, » of (1.2.10) are examples. We

define .
Seit = Pagre.. )% (4.3.16a)

where Pegp., = EPixPtpp .. GFEJFE L) (4.3.166}

Here the symbols p again refer to the momenta of both the initial and
final states, each being preceded by a (+ ) sign if it refers to an initial-
state momentum and by a (~} sign for a final-state momentum.

For a given physical process we classify the variables (4.3.16a) into
four categories:

{1} Total energy, referring to that variable which is the square of the
total energy in the over-all centre-of-mass system.

{(2) Subenergy, referring to those variables which are the square of
the energy of a subset of particles in either initial or final state (in their
centre-of-mass system).

(3) Momentum transfer, composed of one initial-state and one
final-state momentum,

(4) Cross-energy, composed of a mixture of initial-state and final-
gtate momenta, but not (3).

A variable in one category that, because of energy-momentum
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conservation, is directly equal to one in another category is usually
referred to by the classification that comes higher in the list.
As an example, for the amplitude

4 1
==
6 3

we have one total energy 8,54 = 845, SiX stubenergies sy, 845, 813, 845
S46> 55, Dine momentum transfers 8,5, S5, S4a: Sors S5 Soer Sug> S350 83g
and nine Cross-eNCrEies Sys = S S1s = Sozpr Siae = Sa34s Sads = Syam
S208 = %135, Sa56 = S13w Saas = S1160 Snas = S1z5 Sase = S1ag

Sp

ANARNNNN

Fig. 4.3.1. The shaded region represents the physical region for the two variables g4
and sy, as given by equation (4.3.20}

Cuayley determinants

The Gram-determinant restrictions (4.3.13) and (4.3.15) involve
directly the inner-product variables, and it is convenient to change
them to forms that directly involve the variables s of (4.3.16a).
Following Regge & Barucchi (1964), we do this by introducing
Cayley determinants, which are related to the Gram determinants
(£.3.10} by the identity 0 1

1 1 i !
1 dy ‘.irz. o ‘e 4y, naa
G (’P1 ~--PN) s (“ 1_)N+1 Doodyy dyp . ety v
Py Pw 2N e . .
!
: i
U odyygq oo oo Qyain o |
{4.3.17)

where, for ,j = 1,2... N,dy = (p;—p;)* and d; g = dy,y s = pi
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The Cayley determinant on the right-hand side of (4.8.17) is not
directly useful beeause the signs in front of p,, p; in the definition of d,;
are not necessarily in agreement with those in the definition (4.3.18)
of 5,;. However, it follows from elementary properties of determinants

that
G(pl ...pr) — 0 (Pzplz-'-Pzz...N). (4.3.18)

Py Pw Pibre PN
Since, from the definition {4.3.16b),
Pigg ot Piig ity = Pirde oo i (4.3.19)

o

Fig. 4.3.2. The shaded regions are those givon by eguation {4.3.22), The lower right-
nand region is the physical region for the process 142 — 3+ 4. The central region
corresponds to the decay of one of the particles into the other three, when tho masses
arte suitablo. As wo see in §4-8, Lthe romaining regions are physicsl regions for crossed
pi’DQGESBS.

we zee that application of the identity (4.3.17) fo the right-hand side
of (4.3.18) yields a Cayley determinant whose elements are the
variables s of (4.3.18).

We give an ilfustration of the physical-region condition (4.3.13).
Write, for brevity, the set of suffices ¢;...7, as 4, i,,4... 4, as B and
g1 --- ip a8 ¢, 80 that 4B denotes iy ... 4,4,.; ... 9, and so on. Then the
condition G{p . pg) < 0 becomes, according to (4.3.17) and (4.3.18),

0 1 1 1
1 0 35 84
osy O sup
1 sy &4 0

> 0. (4.3.20a)
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Multiphed cut, this is
sty -2, 85— 26,85~ 2858, > 0,  (4£3.205)
which for s, fixed gives the shaded region outside the parabola in
Fig. 4.3.1.
Bimilarly, the condition {(p,, 5, Po) > 0 becomes

0 1 1 1 1 1

10 8}3 Spe 84 l
} 1 sp So 84p | >0 (4.3.21)
LD spe sg 0 SamBo

|1 sy sS4 Supe 0

Applying this to the amplitude for the process 142> 3+ 4, letting
A=1,B=2,C=3and putting s = 8y, { = 89y, M} = 359, (4.3.21)
becomes lo 1 1 1 1
10 mi ot m
Eomi 0 mE 3 E
1 & mi 0 mi
L1 omE s mi 0 l
This describes the shaded regions in Fig. 4.3.2, first digcussed by
Kibble (1960).

> 0, (4.3.22)

4.4 Analyticity

The properties that we have introduced so far, unitarity, conneeted-
ness, energy-momentum conservation, Lorentz invariance and the
connection between spin and statistics, were all discussed by Heisen-
berg (1943) in his original paper on the S-matrix. But a further crucial
property is needed to give a complete theory, that of analyticity. The
importance of this was first noted by Kramers [unpublished, see also
Heisenberg (1944) and Meller (1946)] but even now, as we noted in
§1.1, its precise physical basis is not yet understood.

Por this reason we must here present analyticity as a postulate.
The erude form of the postulate is that the physical 4A-matrix elements,
or more properly their separate scalar and pseudo-scalar components
4,, 4, as defined in {4.3.9), are boundary values of analytic functions
of all the variables s of (4.3.16), these variables now being promoted
into complex variables. (The masses of the particles remain fixed at
their physical values, and are not regarded as variables.) The state-
ment of the postulate must, however, be refined somewhat to be
complete, and that is the main task of this section.
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Kinematic singularities

We have seen in §4.3 that the 4-matrix elements may be regarded
cither as functions of four-momenta or of the scalar variables & of
(4.3.16). Equivalent formulations of the analyticity postulate may be
given Int terms of either set of variables, though we prefer the latter.

In fact, ag has been emphasized by Stapp (1963), the equivalence of
the two formulations is not transparent owing to technical difficulties
concerning points where lower order Gram determinants vanish, This
seemns related to the possible presence of kinematical singularities in
the function 4, of (4.3.9). Which four-momenta should appear in the
determinant € in (4.3.9) is a matter of choice, 80 it would appear that
the complete pseudoscalar part ed, of 4 should generally not vanish
for those values of the variables that make ¢ vanish for a particular
choice. If this is the case, 4, must have an infinity that cancels the
zero of its accompanying e, the position of the infinity depending on
the particular choice of momenta included in ¢.

We must therefore modify the analyticity postulate to allow the
possibility of such kinematical singularities. When particles with spin
are included in the theory their occurrence may be more widespread
(Hearn, 1961); for example the amplitude B in (1.2.21) may be
expected to have an infinity that cancels the zero of the spin-factors
multiplying it.

Physical region singularitics

The A-matrix elements are originally defined in the physical region
and can only be continued away from the physical region in an
unambiguous way if they are analytic there. We now sec that stngulari-
ties may well oceur in the physical region, so that our analyticity
assumption must be augmented.

In §1.3 we saw that ‘normal threshold’ singularities are likely to
arige at points where the physical unitarity equations acquire new
terms. This can happen because of new intermediate states in the
subenergies and cross-energies as well as the total energy. Examyples of
terms in equations {4.2.25) which give rise to normal thresholds are

In perturbation theory more complicated physical-region singulari-
ties also arise (see §2.5) and arguments to be given in §4.10 will
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suggest that unitarity implies a very similar structure. To illustrate
this we outline how this might come about for the triangle singularity
{deferring the rigorous discussion until §4.11).

The presence of the last term

g“@%, (4.4.1)

in the unitarity equation in (4.2.25b) for the amplitude T
indicates that this amplitude possesses a singularity in the physical
region corresponding to the single particle that is common to the two
bubbles. We analyse this single-particle singularity in some detail in
the next section, where we conclude that, as in perturbation theory,
it iz actually a pole. Another term in the same unitarity equation takes

the form
=== (+.4.2)

and if we insert the single-particle pole in the left-hand bubble we
obtain a structure

ﬁ ) ;Kx as

Here -—o—— represents the pole factor; according to the rules in
(4.2.30) the other internal lines represent é-functions, Other terms in
the unitarity equation are similarly analysed:

SR S

(4.4.3D)

(4.4.3¢)
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The diagrammatic notation we have adopted suggests that each of
the terms in (4.4.3) contains a singularity that coincides in position
with that of the triangle Feynman graph in perturbation theory. That
our notation does have this interpretation we show generally in §4.10,
The Riemann-sheet properties of the separate terms do not, however,
generally agree because Feynman graphs contain poles for all their
internal lines.

The presence of the terms (4.4.3) in the unitarity equation for
ZF indicates that the amplitude itself has some sort of triangle
singularity in the physical region; in §4.11 we show that its structure
is exactly that of the Feynman graph.

The ie-prescription _

The physical-region singularities will divide the physical region into
pieces, such that in each piece the amplitudes are analytic. Part of our
analyticity postulate will be that, by going round the singularities on
paths that go, at least infinitesimally, into the complex s-space, we
may analytically continue from any one piece to a neighbouring piece.
Tquivalently, the physical values of a given amplitede in all the
pieces are real-boundary values of the same analytic funetion.

This immediately raises the guestion which way round the singu-
larities we must take the paths that link the pieces, or equivalently
from which direction in the complex space the real boundsary is to be
approached. In perturbation theory thiz question is answered by
means of Feynman’s rule of attaching a small negative imaginary part
{—1¢} to each internal mass, so that the physical-region singularities
are displaced out of the real physical region and the pieces are no
longer divided from one another.

A normal threshold at the point (ng)? in one of the variables s (with
n an integer) is depressed by Feynman's rule into the lower-half plane
of that variable, Hence pieces of the physical region to either side of the
branch-peint are linked by a path passing above the branch-point; the
path must be slightly distorted into the upper-half plane to uvoid the
singularity if now ¢— 0. This leads to the rule that we llustrated in
Fig, 1.3.4, that normal-threshold cuts are to be approached from
above to give the physical boundary value,

We follow convention and adopt the same prescription, called the
-+ ig-preseription, for the normal thresholds outside the context of
perturbation theory. The alternatives to so doing would be either to
adopt the opposite preseription throughout, or a mixed prescription,
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one for some of the normal thresholds and the other for the rest. The
first of these alternatives would lead to a theory similar to the con-
ventional one, except that conventional amplitudes would be replaced
by their complex conjugates. As we indicate in § 4.5, the only physical
effect of this would be to introduce a minus sign in the definition of
time. The mixed preseription is believed to lead to internal incon-
sistencies in the theory, as we see below.

We have sketched above, and describe more fally in §4.10, how the
more complicated physical-region singularities are generated from
unitaritty. The unitarity equations explicitly display the normal
thresholds, so that in a sense the more complicated singularities are
dependent on the normal thresholds. In partieular, our choice of ie-
prescription for the normal thresholds fixes that to be adopted for at
least some of the more complicated physical-region singularities.
Thiz we now show (Olive, 1964; Landshoff & Olive, 18686},

Let such a singularity be given locally by the real equation

Lis) = 0; [L(sh* = Lis)} (4.4.4)

Suppose that we wish to decide to which side of some point P on
L = 0 our path Hrking pieces of the physieal region should pass. [t is
convenient to confine the part of the path in the neighbourhood of P
to the hyperplane (in the multidimensional complex space of the
variables s;) that is normal to L = 0 at P. That is, the displacement
from P of points on the path takes the form

da; == »a—f'd?;r, each i, {4.4.5)

the derivatives being evaluated at £, The singularity L = 0 ocours at
the origin in the complex plane of the variable 9 so defined-—the origin
corresponds to the point P. Our problem is to decide whether our path
linking the positive and negative real axes in the y-plane should pass
above or below the origin,

Once a decision is made one way or the other it is evident that for
congistency the same choice must be retained if now the point P is
allowed to move around on L = 0. In particular, if L = 0 touches some
other singularity L’ = 0 we must retain the same prescription at the
contact. If we define a variable %' for £, just s 4 is defined for L in
(4.4.5), so that the definitions of 7, ° coincide at the contact, the
prescription for avoiding L’ in the #'-plane is determined at the
contact and hence everywhere on L'
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Hence the prescription for any singularity that touches a normal
threshold is fixed by our choice of prescription for the normal
thresholds, and this in turn fixes the preseription for any other
singularity that touches the first one, and so on. While it is not clear
that such arguments, and developments of them, cover all physical-
region singularities, this may well turn out to be the caze. Notice that
very often we may find a sequence of singularities, touching one
another and including two different normal thresholds. In this case the
prescription for one of the normal thresholds fixes that for the other.
This is the basis of our eatlier statement that a mixed preseription for
the normal thresholds, in disagreement with that of perturbation
theory, is unlikely to be self-consistent. It may be shown that the
perturbation-theory prescription is self-consistent and so, provided
S-matrix theory has a physical-region singularity structure similar to
that of perturbation theory, no such difficulties arise.t

So far we have only introduced the preseriptions for the physical
amplitudes 4™, However, if the amplitude 4%} for a transition from
state b to state a is a boundary value of an analytic function, so also
presumably the amplitude A} that describes the reverse transition
is a similar boundary value, though not necessarily of the same
analytic function. Then A5} = [44:1F is the opposite boundary value
of an analytic function, because of the elementary theorem that if
J(z) is analytic 80 also is g(2) = [f(2*}]* (with g(z) in general different
from f(2)).

Hence A, A% are opposite boundary values of two apparently
distinet analytic funetions, In § 4.6 we show, however, that these two
analytic functions are actually the same. This is the property known
as ‘hermitian analyticity .

Normal-threshold structure

As we have suggested in our brief review of the generation of the
triangle singularity, the more complicated physical-region singulari-
ties may be built up by an iteration procedure, Although this iteration
procedure ean, in prineiple, be carried out at this stage of the argument,
our description of the subsequent development will be considerably
simplified if we ignore all the singularities but the normal thiresholds,

1 Similar relations between Ze-proscriptions follow from any intersections of
singularity surfaces with linearly dependent normels, but no such interssclions other
than the above are known. Qur boundary-vaelue postulate alvo forbids the existence
in the physical region of points lying on curves whose local equations do not ebey the
reality property L{s¥}*=1{s;), e.g. Landau curves for diagrams involving unsteble
particios.

7 EA
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At present this procedure does, indeed, seem to be in part necessary,
for we shall in subsequent sections have to make arguments concerning
certain unphysical regions lying at real points outside the physical
region. Amongst the singularities expected to lie in such regions are
those corresponding to diagrams with three-line vertices. Buch a
vertex is ‘unphysical’ when it involves only stable particles and so
cannot possibly be analysed at the present stage of the argument.
An example of a singularity in which such vertices occur is the triangle
anomalous threshold in two-particle - two-particle scattering (see
Fig. 2.4 3a). So the procedure that apparently must be adopted is to
start with the normal thresholds, prove the fundamental theorems
of subsequent sections, and then use the results of these to generate
the ‘unphysical’ singularities by iteration (Polkinghorne, 19624,b;
Olive, 1964). As cach new such singularity is discovered in the iteration
procedure, it should be checked that its presence does not upset any
of the fundamental theorems,

The structure of the normal thresholds itself is quite complicated,
in that for a multiparticle amplitude physical-region normal thresholds
8 = (nu)® may be associated with many variables s. In fact, with the
terminclogy of the classification in §4.3, they will occur in all the
variables s except the momentum transfers, that is in the total cnergy,
the subenergies and the cross-energies.

Now we saw in § 4.3 that various constraints relate the variables s.
If we were to apply these constraints and so work with an independent
subset of the variables, the normal thresholds corresponding to the
redundant variables would, in a complicated way and with compli-
cated {e-prescriptions, appear in the space of the independent
variables. We therefore prefer to retain all the variables and rather
regard the constraints as auxiliary conditions that restrict the variables
to lie on certain surfaces in the larger space. By so doing we retain an
important piece of information, whose truth would not otherwise be
so evident. This is that normal thresholds corresponding to different
variables s are independent. By this we mean that if we go from a
point P round a normal threshold corresponding to a variable ¢;, then
round one corresponding to s,, and back te P, we get the same result
for the final value of the function as if we encircled the two thresholds
in the reverse order {though in the same sense as before). If we allow
the presence of other singularities this statement must, of course, be
interpreted with some care. Its truth may be established by showing
that the two paths may be continuously distorted into each other; the
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eastest way to convinee oneself of this is to realise that their projections
on to the complex s, and s, planes are identical for the two cases. In
thig argument it is crucial that the two singularities in question do not
touch each other,

4.5 Physical-region poles

We here analyse the simplest singularities, those associated with
single stable particles. In perturbation theory these singularities are
simple poles, as represented for example by the Feynman graph of
Fig. 1.5.3. We now show that this is the case also outside the framework
of perturbation theory (Olive, 1964).

The argument iz simplest for the poles that oceur in the physical
region of an amplitude, for therc we may make use directly of the
physical unitarity equations. The simplest case arises from the three-
particle unitarity equation of (4.2.250):

¥ -~ TOCF + LOECE ¢ s el r+ 210D+ » o

(4.5.1)

According to the rules (4.2.30) for interpreting diagrammatic equa-
tions, each of the terms in the last sum in {¢.5.1) contains a §-lunction;

for example
e
_ = A -2mid(—p)] A5, (45.2)
=,

Herc ¢ is the four-momentum carried by the internal Hne,

¢ = (P1+Pa—)s

so that by the classification of §4.3 ¢* is a cross-energy variable.
AL and 4% are the amplitudes for the two bubbles contained in
(4.5.2).

Fvidently (4.5.2) is infinite at ¢? = 42, and so some other term or
terms in (4.5.1) must also be infinite to balance this. As will become
clearer from the analysis of § 4.10, none of the infegrations in the other
terms of (4.5.1) can produce an infinity at a value of ¢* independent
of the other variables, and it must be the amplitude =ZF= that
contains the infinity. This is evident if it is accepted that all singulari-

142



212 PHYSICAL-REGION POLES {4.5

ties are assoclated with diagrams and have properties at least remini-
scent of those in the corresponding Feynman graphs.

An infinity of an amplitude in the physical region must surely be
capable of physical interpretation, and here such an interpretation is
not difficult to find. Our theory is formulated in terms of momentum
eigenstates, which contain no information as to the positions of the
particles, Thus the lines of flight of the particles are overwhelmingly
likely to be such that that particles ‘miss’ one another, or at most
interact in groups. This idea led to the connectedness stroucture of
§4.2. The next most likely possibility is that first one set of particles
interacts, and that one of the particles emerging from this interaction
at a later time interacts with another set of particles. This is exactly
what happens in an experimental situation; particles are produced in
an accelerator and then at a later time and in a distant place (distant
compared with the range of the fundamental forces) are made to
suffer the interaction that is the object of the experiment. The
existence of the infinity in the amplitude that describes the combined
events imples that when one sets up the apparatus to try and achieve
the two successive events, the likelihood of their happening is infinite
compared with that of all the particles involved interacting simulta-
neously.

These considerations lead us to suppose that the amplitude _'—_'@E
contains a part

= AGH D(g?) A5, {4.5.3a)

g0 that 39; contains the hermitian-conjugate part

= AR DU AR, (4.5.3b)
Here o = DY), (4.5.4)
and O = DAHg?y = [ D), . (4.5.4b)

The function £4(g?) represents the propagation of the particle in the
free flight between successive scatterings and is infinite when that
particle is on the mass shell. We aim to show that, as in perturbation
theory, the function D{g?) i a simple pole.
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We ingert the behaviour (4.5.3) into the unitarity equation (4.5.1)
and pick out those terms that are infinite at g2 == x®. This gives

- m‘m + ;G)/H: . (4.5.5)

To arrive at this equation we have again used the ideas described more
fully in §4.10 to deduce that the first two terms on the right-hand
side of {4.5.1) involve Integrations in such a way that these terms do
not contain a singularity at a fixed value of ¢% The equation (4.5.5)
may be simplified by use of the two-particle unitarity equation
(4.2.23). Thus

with similar manipulations for the second term on the right-hand side
of (4.5.5). In this way we obtain

0 © &
o - e - E . (4.5.7a)
) € off

or A DPAR - AWPDOAG = AL - 2mid(g - p2)] Aip

. . (4.5.7D)
A trivial cancellation then gives
D D) = — 270 §(g% - ®). (4.5.8)
The general solution of (4.5.8) and (4.5.43) is
D) = A 14 (4.5.9)

where A is any real number. (We could add in to this general solution
a fanction regular at ¢° = ¥, but this would merely have the effect of
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changing the definition of the background term remaining when
{4.5.3a) is sublracted from E@E)

Choice of A

It remains to determine the value of A in (4.5.9), and thers is more
than one way in which we may do this. First we notice that any value
of A other than 0 or 1 would make D{(¢?) non-analytic, and so can
be excluded by the simple assumption that = is to be analytic.
This assumption was part of our analyticity postulate. We then fix
the conventional value A ==1 by saying that the single-particle poles
are to be included in the +i¢-prescription introduced in §4.4.

This approach makes no direct mention why physics should require
A = 1. Presumably it is physics that requires X = to be analytic,
but we have said that, as yet, we have no satisfactory way of demon-
strating this. We should therefore prefer to understand directly why
A= 1,

Our physical interpretation of the single-particle singularity is, as
we have said, that of two successive seatterings. To show that this
Tequires A = 1 we must somehow introduce into the theory the notion
of the direction of time. The crude way to do this (Branson, 1964) is
to define, in terms of an A-matrix element, a function

L ~iEr A -
Ary = W(QTT);J‘—GOC%EB Er A (K. (4.5.10}

Here E is the total energy and other variables are suppressed. We want
to interpret | A(7)|2 dr as a relative probability that the time duration
of the interaction described by 4 lies between 7 and 7 +dr.

Two things make this interpretation plausible. One is that time and
energy are conjugate variables in the sense of Fourier transformation,
in ordinary quantum mechanics. The other is the convolution property

of Fourier integrals, which says that the Fourier transform of (4.5.3a)
is

A7) = i° dﬁd”fzdﬁa(f—'fl"‘*72"‘73)522(71)-5(72)522(73): (4.5.11}

where Dhas a definition similar to (4.5.10). Because of the §-function
we interpret this as saying that the probability amplitude for the
overall time of interaction being r is the integral over the amplitudes
for the individual seatterings, together with the intermediate free
flight, taking a total time 7.
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If we accept this interpretation, the requirement that the free-flight
time be positiveis i) = 0 for 7 < 0. (4.5.12)

Because of the inversion property of Fourier integrals
DRy = L J- e () dr, (4.5.13)
T — o

this means that D{E) is analytic in the upper kalf E-plane. (If the
integral (4.5.13) converges for real K, the exponential factor will
enhance the convergence for Im £ > 0 if the integration only involves
7 > 0.) By taking a Lorentz frame in which F is simply related to ¢? we
see that 1) must also be analytic in the upper half ¢%-plane, so that
A=1

Normal thresholds may be treated similarly (Branson, 1864), thus
giving a simple physical interpretation of the ie-preseription for them.
Notice that we might well have chosen the opposite sign in the expo-
nential in the definition (4.5.10), that is we might have defined time
te ocour with the opposite sign. The result then would be A = 0 and
the opposite ie-preseription for the normal thresholds.

The above discussion has many unsatisfactory features. For
example, the integral in (4.5.10} extends to nogative encrgies, and it
surely cannot be that the definition of physical time involves un-
physical energies. This means that a precise localisation in time is not
really possible and, contrary to the implication of the requirement
{4.5.12), time is at best a macroscopic quantity. The microscopic
condition (4.5.12) must cssentially be replaced by the requircment that
the amplitude for the time of flight —» 0 as 7 -+ — 0. For a discussion of
how this still results in the value A = 1, the reader is referred to papers
by Wanders (1965), Stapp (19645), Tagolnitzer (1965), Peres (1963).
The physics behind the idea of macroscopic time is discussed by Eden
& Landshoff {1965).

There is another way of incorporating the requirement of positive
flight times (Landshoff & Olive, 1966}, We saw in §4.4 that when
the single-particle singularities are inserted in unitarity they gencrate
more complicated physical-region singularities. We show in §4.11
that, if we suppose that the single-particle singularity does indeed
have A = I, the triangle singularity has exactly the same physical-
region structure as in perturbation theory; this is probably alsc the
cage for the other singularities. But in § 2.5 we saw that the physical-
region singularities of perturbation theory can be given the physical
interpretation of representing a succession of interactions having
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physical momenta and physical (that is positive) intermediate flight
times. Any other value of A would certainly result in some of the more
complicated singularities eccurring in parts of the physical region
where they cannot be given this interpretation; one would have to say
that some of the internal particles were moving backwards in time,

The single—pdrticte descontinuily

We gave a physical argument for the factorisation (4.5.3} of the
single-particle singularity into a product of scattering amplitudes and
a ‘propagator’ D for the intermediate particle. We then showed that
this is consistent with unitarity. We now show that it is actually
uniguely demanded by unitarity. This may be done by an extension
of our previous methods, but we present instead an argument that
mmvolves caleulating the ‘discontinuity’ across the single-particle
singularity.

This new argument eliminates one inelegance of the previous one.
This i3 that the amplitudes 4,, appearing in (4.5.3) are cnly defined
ab g% = 42 Away from this value of ¢% the theory provides no unique
definition of 4,,, and we may use any one that is analytic. Different
definitions merely lead to different definitions of the background term
remaining when (4.5.3) is subtracted from the amplitude =,

In the unitarity equation (4.5.1) the term (4.5.2) contributes only
ab ¢* = y? Hence the equation changes non-analytically at this value
of 42, Tf we take the form of the equation that is valid for ¢® < u? and
eontinue it analytically to ¢® = x4, the extra term {4.5.2) does not
appear. Hence we have two equations valid at ¢% = 42, one containing
{4.5.2) and one not.

Suppose that the continuation we choose to make is that which
takes ¢? just below p?, g%y —ie. Because of our ic-prescription of

§4.4, this resultsin ﬁ 95@, but for E(DE we have gone

to the wrong side of the singunlarity, s0 we write @E—> ﬂ )
Ag for the other terms in (4.5.1) that contain the singularity

F — T and JIPEEE — TEEE
(4.5.14)

because in the latter term ¢* is not being integrated over. So as a whole
the continuation of (4.5.1) reads

TiE-9-F = Frl-F o+ m; R, (4.5.15)
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where B does not contain the onc-particle singularity. Subtracting
this from (4.5.1), that is from

-z - o Z

or, rearr d;ngmm,

we obfain

S B
) ;;21; (4.5.20)

and this is the diseontinuity we are seeking. To show that this again
implies the existence of a pole in = E we must make arguments
similar to those following (4.5.8).

Notice that this analysis shows that the pole must be simple:T a pole
of order » would require a discontinuity proportional to

d 71 2 5
(E@) 8(y® — p?).

T This argumnent only applies to real physical region poles. A mechanism for the
possible existence of complex higher-order poles has been described by Hden &
Landshoff (1964). See also Goldberger & Watson (19645).
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Further, its existence depends on the existence of a corresponding
physical stable particle. If there were no such particle the term (4.5.2)
would be totally absent and the caleulation of the discontinuity would
just yield the result zero. So there is a one-one correspondence between
physical-region poles and stable particles.

Generalisations

So far we have only considered the poles of the amplitude ==
in that part of the physical region where the unitarity equation (4.5.1)
applies. At higher energies more terms enter the unitarity equation,
but the same result (4.5.3) must apply, as may be seen by writing it
in the form [(g% %) Ao = A AL,
and continuing analytically along ¢ = 42 up to higher energies. We
also oxpect similar properties for the higher amplitudes, that is those
invelving more particles. For example

&
]
(H
&
(+]
2. (4.5.21)

In fact the extension of the validity of (4.5.3) to higher energies and
the generalisations to higher amplitudes are inter-related, because of
the way the amplitudes are coupled by unitarity., This we now
demonstrate, by considering the energies at which the unitarity
equations (4.2.25¢) apply, that is (4x)* < (Zp)® < (54)%. In this range
of energy the unitarity equation for =F= reads

cORFOTEOROREO=-O-F OB O -FUPE
+ {PECF + s ECE + 2 VED + 3 e
T (4.5.22)

Noting that the term {4.5.2) in this equation only contributes ab
g* == p?, and proceeding exactly as before we obtain

:—f@?_*@f = w+ﬁu§_~+ﬁ:}+m+ﬁﬂ

(4.5.23)
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Subtraction of this from (4.5.22) and rearrangement yields

e il o LR

¥

(4.5.24)
The same treatment for the corresponding unitarity equation for

— gives

The equations {4.5.24) and (4.5.25) are two simultaneous equations
for the discontinuities of == and E(} To golve for the former,
postmultiply {4.5.24) by (4.5.18) and (4.5.25) by

The unitarity equations
T - IO - O o+ TEEGT ) (45.260)
EE - GE - IEIGE + TEREE
¥ TSR (45.26h)

then lead to the same result as in (4.5.20). Similarly, post-multiplica-

tion of (4.5.24) by

and of (4.5.25) by

 ITEE + =X0E

leads to the result

LE-LE - .

which is in agreement with the structure in (4.5.21).
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This example leads us to expect that the physical-region pole
factorisation can, in principle, be proved for all multi-particle ampli-
tudes. But it is evident that the argument becorses enormously
complicated at higher energies, as more and more amplitudes become
coupled.

With the higher amplitudes a new feature appears, that of twofold
poles (or more). For example, inserting (4.5.3) into the structure

B O

we obtain

(4.5.28)

4.6 Hermitian analyticity and extended unitarity

Having analysed the single-particle discontinuity, we now study
the discontinuities associated with the normal thresholds in the
physical region (Olive, 1963 ¢, b; Gunson, 1965).

According to the unitarity equations (4.2.25) the amplitude Z{ 1~
satisfies, in the energy range (2u)* < (Zp)®* < (3p)?,

SO = O ng i O S A O= O =y (LS

and in (3u)% < (Tp)? < (4p)®
O S == o= =
= TEOrEL o+ o, (4.6.2)

Later in this section we prove a property known as ‘hermitian
analyticity’, & consequence of which is that (4.6.1) actually represents
the discontinuity of I associated with the two-particle normal
threshold, while {4.6.2) represents that associated with the two-
particle and three-particle thresholds combined. Even without
knowing this, however, we may use (4.6.1} and (4.6.2) to determine
the discontinuity associated with the three-particle threshold alone.
We continue the equation {4.6.1) analytically in the variable
s = (Zp)? into the region where (4.6.2) operates, and then compare the
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two equations. In the continuation we must take a detour round the
branch-point at s = {(3¢)?% and it must be the same deiour for every
term in the equation. We choose a detour that goes below the branch-
point. Then according to the ie-prescription of §4.4,

O afgun

(see Fig. 4.6.1a), but for ~IFI™ we are going to the ‘wrong’ side of
the (3x)® threshold, and so we write

o ) mal s €
(see Fig. 4.6.1b). So the continuation of (4.6.1) into (34)? < s < (4)?

T o - Ser - e - SO )

2 (B 3Ba)”

@0 @ L g
ot ad]
(@) ®

Fig. 4.6.1. The path of continuation applied to squation (4.6.1.}, {o) shows the path
for the (—) amplitude, and (b} tho corresponding path for the {4} amnplitude.

Introduce now a new amplitude (7=, defined by the equation
i ) =S G == ) = ) =¥ (4.6.4)

If we ‘premultiply’ (4.6.4) by —(5r— and use (4.6.3) we see that

(D= also satisfies
(e - = = D= (4.6.5)

Now we can say that the following expression vanishes, because each
bracket vanishes

(o= - =e= - oo Jmas (m:ozw)w
- == (mE= - O - e - SCET )

Several terms here cancel, so that

“OEr + <O - (SO=EE + 200 - 0
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Using (4.6.3) and (4.6.2) we finally obtain from this

e € i € sl s € == C) Il (4.6.6)

which is the desired discontinuity of —X3I across the three-particle
et expressed as a single integral involving the three-particle inter-
mediate state. Note that it does not take the form of the extra term in
(4.6.2) as compared with (4.6.1), because of the label (i) replacing the
{ ). The important featurc of the argument, which can be generalised
to subenergy and cross-energy variables, is that the discontinuity
around a normal threshold occwrring inside the physical region is
derived from a comparison of the physical unitarity equation operating
on either side of the threshold.

Notice that, although we have defined (= by (4.6.4), the
resemblance of (4.6.4) to (4.6.3) suggests that (= may he
obtained as a continuation of “{TE=, just as ZTZYT is a con-
tinuation of T7(¥I==. If this is the case, the equations {4.6.4) and
(4.8.5), valid in (3x)? € 5 < (4¢)% will have ag continuations into
(2uP < s < (Bu)

= - TC= - “OEE - TOEE= @)

Here the energy iz such that the intermediate two-particle stato is
physical, thongh for the initial state both the total energy and the
three subenergies are below their physical thresholds. Such a relation
cannot be a physical unitarity relation sinee it relates continuations
of the amplitude to points ontside the physical region. It is known as
an ‘extended unitarity ’ relation and its proof is discussed later in this
section. Further examples of extended unitarity relations, valid in the
same energy range (2u)? € s < (3u)%, are

== - =& - =rCE - SOSGE, (ese

t

i

== - =0= - 0= - =@ W68

Just as hermitian snalyticity will result in (4.6.1) being the dis-

continuity of :O: across the two-particle cut in the total-energy
variable s, so are (4.6.7) and (4.6.8) the corresponding discontinuitics

of k=, == and =E.
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Hermition onalyticity

When the energy increases, the physical unitarity equations acquire
extra terms. When it decreases they shed terms; this is illustrated by
equations (4.6.1) and {4.6.2). Likewise we have said that, when s is
taken below (3u)%, we expect that the physical unitarity equation

(0F - 108 = ooy + Toer + 2 (e (4.6.9)

tareplaced by the extended unitarity equation (4.6.7). In the same way
we might expect that, for s < (2u)%, the physical anitarity cquation

(4.6.1) isreplaced by
- == - . (4.6.10)

This relation, if true, states that specific continnations out of ike
physical region of the amplitndes 1= and TI{-I—, indicated in
Fig, 4.6.2, are egual. So while in §4.4 we said that, in the physical
region, —{+I— and (=1 are boundary valucs of analytic functions
that are apparently unrelated, we now say that they are actually
opposite boundary vahies of the same analytic function, This property
ig known as ‘hermitian analyticity’.

(2 +
+ e T
— e - o

Fig. 4.6.2. The path of continuation applied to the {4} and (—) amplitudes respes-
tively to achieve the hormitian analyticity condition {4.6.10).

An immediate and vital consequence of hermitian analyticity is that
unitarity equations evaluate discontinuities (Olive, 1962; Stapp,
18620). For example (4.6.1) gives the discontinuity of :O: across
the two-particle cut.

Proofs of the hermitian analyticity property have been given in
perturbation theory (Olive, 1962} and in potential theory (J.R.
Taylor, 1964). The proof we outline here is based on S-matrix theory
alone. It was first given by Olive (1964) and diseussed in greater detail
by Boyling {1964 ). Although we give the proof for the particular case
of the equation {4.6.10) we expect that very similar arguments could
be applied to give the extended unitarity relations, for example (4.6.7)
and (4.6,8}. This is because both hermitian analyticity and extended
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unitarity can be regarded as illustrations of a more general principle,
which we might call ‘unphysical unitarity’, whereby unitarity-like
formulae operates outside the physical region with the intermediate
states still determined by the energy range.

Four-particle unitarity

The derivation of the hermitian analyticity property (4.6.10) makes
use of the single-particle pole structure analysed in §4.5 and of the
physical unitarity equations for the amplitude %

According to (4.5.28) this amplitude contains a twofold pole in the
physical region:

— |

4, (4811a)

(4.6.116)
In §4.5 we deduced the structure (4.6.11) by an indireet argument;
here it is useful to check it directly by means of the unitarity equation

for {E that operates below the five-particle threshold. From
{4.2.25¢) this reads

s ; + ;% + R, (‘.1:612)

Here, us a result of the ideas of §4.10 that all singularities are repre-
sented by diagrams and have properties something like those of the
corresponding Feynman graphs, the function R is free of the twofold
singularity under examination. We insert (4.6.11), together with the
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single-pole structure (4.5.3) for the amplitude =¥, into (4.6.12)
and pick out the structure of the twofold singularity in each
Herm:

Contained within the first and second terms of this equation is the
part ~{37 (= ., which may be reduced by means of the unitarity
equation (4.6.1). If we also use the relation (4.5.8),

(4.6.153

The outside bubbles and the propagators are eommon factors of each
term in this equation. If we cancel them, we are left with (4.6.1) and
50 have verified the consistency of (4.6.11).

The point of the analysis above is that it now suggests how to
obtain the hermitian analyticity (4.6.10), which is simply (4.6.1) with
zero right-hand side.

15 EA
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Dertwation of hermitian analyticity

If we trace back through the foregoing argument, we find that it is

the term
5 1
32
6 % (4.6.16)
'1'8 e

in (4.6.12) that results in the right-hand side of (4.6.15). This term does
not contribute to the unitarity equation (4.6.12) when

(P14 Dot Py— P5)® = 81955 < (2)% (4.6.17)
We shall only be interested in positive values of
8195 = (Py + Pa—Py)*
and it then follows from (4.3.8) that

(P14 02— 5) - 05 2 J(s125) (4.6.18}
Or rearranging S19a5 = (195 + )2
Taking the square root  fSaq = \/3125% . (4.6.19a)
Likewise AB1235 2 B+ fh (4.6.195)

where Spg = (py— P — D)%
When (4.6.17} holds it follows from (4.6.19) that

S105 < H%, Sgm < pR (4.6.20)

The third and fourth terms on the right-hand side of (4.6.12)
contribute only when 8,4 = p% and sgg = p¥. Hence when (4.6.17)
holds the unitarity relation (4.6.12) is replaced by

T+E-S-E - H+E=E +« SHCE +Rr (#02)

Of the many variables the most important ones for the present
argument are Sypus, Sy a0 Sy Spp5 and sy play equivalent roles,
and we can equate them and picture the situation two-dimensionally
by plotting this joint variable against s;5,; 08 in Fig. 4.6.3.

According to (4.6.19) the physical region in terms of these variables
is given by an arc of a parabola passing through the intersection of
Spas = (2% and 8355 = 84y = % (Rationalising (4.6.19a) and putting
A =125, B = 3 we have in fact (4.3.20), plotted in Fig. 4.3.1.) We
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shall call the regions in which (4.6.12) and (4.6.21) operate I, and £,
respectively, adding the extra labels + aceording to whether we have
in mind the physical regions for the + or — amplitudes.

BHguation (4.6.20) means that the pole structures (4.6.11} do not
ocour in R, so that if we are to use (4.6.21) in the same way as (4.6.12)
we must continue it out of K,. According to our analyticity postulate

the (—) amplitude can be continued from Ry to Ry by a path within

Si 235

(2 -

Fig. 4.6.3. The parts of the physical region for the four-particle - four-particle
amplitade. Fn B, the terra (4.6.16) is present in the unitariby equation; in R, it is not.
The diagram shows the section of the space of the variables on which s, == 8, The
hatehed region is the physical region.

the physical reglon. If we continue eguation (4.6.21) so that the
(—)-amplitude follows this path the (+)-amplitude will follow a
related path leading not to B but to a new region which we call BZ.

We know that the (— }-amplitude possesses the physical region pole
structure {4.6.118} in A7, but only know that the (+ )-amplitude
possesses the structure (4.6.11a) in B} but not necessarily in B If
we can find a path of continuation relating B} to B and lying on the
mass shell section 85 = §p = 42, we can continue the relation
(4.6.11 ) to Rt Such a path can be found if the path we niready have,
from B to Rf to Ri, can be distorted {o lie on the mass shell section
without cutting any singular surfaces,

This guestion cannot be answered finally without complete know-
ledge of the singularity structure but in terms of the ‘approximation’

15-2
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explained in §4.4 whereby we retain only normal thresholds the
question is easily settled. The situation can be pictured asin Fig. 4.6.4
where we have drawn the known path from Ry to Ry to R running
over the sy = (212 threshold with a -+ {e-distortion and returning
with the opposite distortion. This path car obviously be distorted to
lie on the mass shell section sy = 844 = #2, as indicated by the
arrows. (Note that, since it is only a neighbourhood of the peint of

(2uf

e

= &

§ 478

125

I

Fig, 4.6.4. The path with arrows runs from B to B to BL. The large arrows indieate
the deformation of this path through the unphysical region bounded by the parshecla
to the mass-shell section 84 = 8gy = 12

intersection of 845 = (20)* and $y,5 = 54 = #* that matters, the
argument would be rigorous i we knew no other singularity curves
passed through this point. In fact no such Landau curves are known
{Boyling, 19645).) -

Thus continuing {4.6.11a) from B} to B! by a path looping just the
815 = (2p)* threshold we find

= = &
-~ -
6
. .
@ , (4.6.22)

The label (¢) on the middle bubble indicates that it is evaluated in the
region reached when its energy variable ¢, encireles (2p)% in an
anticlockwise sense,
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Inserting (4.6.22) and (4.6.118) into the continuation of (4.6.21)
and picking out the parts with the twofold pole structure we have

+iC R O o *f}})@"

o

— i

Notice that there is no need to label —0— with a (+) or & (—)
because the continuation is being made to the poles rather than above
or below them. Using (4.6.1) to rewrite the terms on the right-hand
side as we did before we find, on cancelling,

Cancelling off the outer bubbles and —o— we see that

This is the desired hermitian analyticity relation stating that the
(— }-amplitude equals the continuation of the {4 }-amplitade around
the (2x)* threshold.

The modification of the above argument required when anomalous
thresholds are present is dizcussed in §4.11,

4.7 Normal-threshold discontinuities

We have been eonsidering a singularity scheme in which we diseuss
only normal thresholds and this must be supplemented by expressions
for the discontinuities across the associated cuts. The discontinuities
corresponding to intermediate states explicitly appearing in the
physical unitarity relation (i.e. those in energy, subenergy and cross-
energy variables, but not momentum transfer variables) could, in



230 NORMAL-THRESHOLD DISCONTINUITIES 4.7

principle, be deduced by the methods of the previous section, but this
ig likely to be tedious. {A start has been made by Boyling {1964).)
Instead we shall temporarily work backwards by suggesting formulae
for such discontinuities and showing that they are consistent with the
ideas so far developed (Olive, 1865; see also Stapp, 1865). First,
however, we discuss the nature of the two-particle thresholds.

Nature of the normal threshold branch-points

We saw that the discontinuity across the {2)2 cut is given by the
two-particle unitarity equation

E= - TOT - TEECE - SOSGE, @

(3
T

Fig. 4.7.1. (+) and {~) boundary values in the region (2u)* < s < (3u)2.

where + and — now refer to the boundary values in Fig. 4.7.1.
According to the rule (4.2.30) this can be written
AP 4 e ("; ;‘;( 2ri)2 3“‘)(11 3 ) 3‘“(9}2 2) A4

- & (2[.& - o
- "2/8{?7)2 : } de‘AH}A( ) (47.2)

when worked out in the centre-of-mass gystem, where j al' is the
angular integration for the centre-of-mass momentum of the particles
in the intermediale state.

If we continue {4.7.2) around s = (2z)? through an angle 27 in an
anticlockwise sense

AN A by hermitian analyticity,
A5 AR {409 i some new guantity),
Vs = (2} = — yls - (20)%,

so that we have, on rearranging,
A A = “/{‘9\{,2-”) } f AT A A6,

or, returning to bubble notation,

T - AR = TR {4.7.3)
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Subtracting from two particle unitarity {4.7.1) we find

(:::: ~ ﬁ“) (”—@T - ::.:@;:) .
‘Postmultiplying’ by —__ + “{+]_ and using (4.7.1) we have
g €5 i €y il

Thus if 7+ is continued around s = (2u)? through an angle 47 in
an anticlockwise sense it reproduces itself. So the two particle
singularity is two sheeted (Oehme, 1961; Blankenbecler, (Goldberger,
MacDowell & Treiman, 1961).

Fhe result can be extended to any two-particle threshold in any
variable in any amplitude. The treatment of higher thresholds is
more difficult because there are singularities touching the integration
region of the discontinuity integral, e.g. in a three-particle integral
{see (4¢.7.7) below) the integration range for the internal subenergies
o is

(2u) < o < (s} —p)

Hence as s is continued around (3x)? the o contour rotates through a
similar angle about (24)? thereby moving on to a new sheet with
respect to the o = (24)® normal eut. This feature seems to preclude
any simple behaviour of the higher thresholds, which are all thought
to have an infinite nurmber of sheets.

The K-matriz
The two-particle K-matrix is defined by the equation (Zimmermann,

1961
| o - =@ - . G

Because of the Fredholm nature of the kernel L ZTHI - thisalso equals

1R (4.7.4D)

The K-matrix automatically satisfies another equation relating it to
the (~—)-amplitude. Premultiplying (4.7.4a) by —Z=X~ and using
(4.7.1) and (4.7.4a) to simplify we find

R - o = oORE, (47.5a)
V®ECE, (47.60)

]
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also, If we continue (4.7.4¢) around s = (2p)? so that K continues
into K’, we find, following the argument leading from (4.7.2) to

B e - o - o

Thus, comparing with (4.7.58a), K and K’ satisfy the same equation.
Repeating the argument following (4.7.3) we find that K and K’ are
actually equal. This means that the K-matrix is analytic at s = (2u)2

Gunson (1965) and Branson (1965) have pointed out that this
result cannot be generalised to three-particle thresholds in a straight-
forward way, though Branson (1964, 1965) has suggested an alter-
native method in which some of the intermediate particles in the
defining equation are off the mass shell,

Normal thresholds in subenergies

We now suppose that the two-particle discontinuity in a subenergy

is given byt
EQREQ =R e (4.7.60)

Here the labels (+) on the amplitude =5 refer only to the sub-
energy in which the discontinuity is being taken. The labels on the
other variables in this amplitude must be the same in both terms on
the left of this equation; in (4.7.6a4) we suppose them all to be
{+) but by analytically continuing the equation as a whole we may
arrive at other combinations. The corresponding labels for the
amplitude oocurring in the term on the right will agree with those on
the left in the case of variables for which no integration is implied in
the term. Thus the left-hand subenergies will agree, but the two sub-
energies on the right which are not explicitly indicated are integration
variables and their label is determined by 8 more complicated pre-
seription mentioned later (§4.11).

Postmultiplying (4.7.64) by S(B=  we obtain

Using (4.7.1) to simplify the right-hand side we {ind that it becomes

(g - g

1 This was suggested by many authors, o.g. Ball, Frazer & Nauenberg (19625,
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On cancellation we see that an alternative to (4.7.6a) is

3@; - @ - (g@ (4.7.6b)

Thus it is possible to interchange the labels (+) and (—) on the
integral in {4.7.6a) (just as in {4.7.1)). Similar results hold for the two
particle discontinuity in any variable or amplitude (Olive, 1965). We
stress that we are neglecting singularities other than normal thresholds
in writing these equations,

Three-particle thresholdst
Kquation (4.6.6) for the three-particle discontinuity can be written

in the form
e G=0N (4.7.7)

In ZUE the left and right entries refer respectively to the total
energy and to the right subenergies taken collectively, with the labels
{++), (=) and (i) defined by Fig. 4.7.2. In =T the left entry refers
to the left subenergies and the remaining entry to the total energy.

G’ 3y
e —— Qup | R
() ®

Fig. £7.2. (@) Boundary vahzes in the total-energy variable. {®) Boundary
velues in the subenergy variables.

We shall suppose that the same digcontinuity in == is given by

- E{HE = ]E (4.7.8)

Reading from left to right the three entries in each bubble refer to left
subenergies, the total energy and the right subenergies respectively.
Later we shall find, by adding formulae like (4.7.6), that

T The rerainder of this section is intended to give further ingight into the strueture
of the theory and may be omitted at a first roading.
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Using this to substitute for the right-hand bubble in (4.7.8) we find that
the right-hand side of that equation becomes

GPEtEE + = PR

Using another formula obtained similarly and continued around

§ = (3u)? :v“ﬂ% - ﬂAfEE“‘ x qm
we find - (== (4.7.9)

Comparing (4.7.8) and (4.7.9) we see that the internal subenergy
boundary values can be interchanged. Continuing (4.7.8) around
{2p)* in each right subenergy we find

=HFE - - YEHE. e

This has the form of a Fredholm integral equation (Smithies, 1958)
H—-K = HK, According to the supposed analytic properties the
kernel is square integrable and hence KH = HK, that is

- = 4’54’ : (4.7.11)

Coraparing (4.7.10) and (4.7.11) we see it is possible to interchange the
label specifying the energy boundary values also. Thus there are four
different forms for the three-particle discontinuity in (4.7.8), arising
from the possibility of interchanging energy or internal subenergy
boundary values independently. Similar results can be derived for any
variable or amplitude by the methods already illustrated.

Equation (4.7.6) was originally considered valid in the region
of the discontinuity variable o: (2¢)? € ¢ < (3¢)%, but it can be
continued to higher values of o following an (ie)-prescription in o
It then gives the discontinmity across the (24)% cut arvanged asin
Fig. 4.7.1.

Similarly, equation {4.7.7) for the (3u)* discontinuity was originally
considered valid between the three- and four-particle thresholds in the
total energy s. The continuation to bigher values of s is slightly more
complicated than in the two-particle case because the internal sub-

i
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energies, which are integration variables, have as an upper cnd-point
(s —u)®. This coincides with the singularity (nu)* whenever

5= ((n-+1) ).

Since { /(s +6)— p)? = (s — p)+i€’, the s-distortion determines the
end-point distortion to be of like kind. Thus it is essential to arrange
all normal cuts in the plane of each variable in & similar way.

More complicated singularities than normal thresholds can also be
generated in the continuations. Just as in the ahove case the way the
integral as a whole is continued around the singularity determines the
way in which the end-points in the integration variable avoids the
singularities of the integrand. This cannot be considered before the
more complicated singularities themselves are discussed, and the
matter will not be dealt with here (but see §4.11).

Addition of discontinuities

It is thought that hermitian analyticity relates the physical 4.
amplitude to the 4= amplitude by a path encircling all the normal
thresholds corresponding to all open channels in all variables. The
unitarity equations (4.2.25) give the total discontinuity, 4% — 40,
across all the normal threshold ents as o sum of integrals. We now want
to see how the formulae we have considered add up to give this total
discontinuity. In doing so we shall try to construct integrals with (4)
and (—) labels on the left- and right-hand bubbles respectively.

} Ul F ffi (Ti [ } l‘fz
bo .
(a) ) (e}

Tig, 4.7.3. Definitione of varigbles used in the text,

We shall deduce expressions for the compound discontinuities
across cuts, in two different variables, and verify that the regult is
independent of the order in which the singularities are encircled to
get the new boundary values. This confirms our earlier conclusion that
paths encircling normal thresholds in different variables commute.

The representative examples we consider are shown m Fig. 4.7.3.

We shall specify only the boundary values in the two subenergies of
interest, oy and o, in Fig. 4.7.34, using the notation of Fig. 4.7.1 for
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the labels, According to (4.7.6) the discontinuitiest in o, and o; across
the (2p)? cut are

i& - - @& (4.7.12)
E(& - E{& - % (£.7.13)

Continuing (4.7.12} around &, = (24)® we find

Adding (4.7.13) and (4.7.14} gives the desired compound discontinuity

3@ - = XEE:_@E + @_:A.?: (4.7.15)

The symmetry of this result in ¢; and o, shows that we would have
obtained the same resalt if we had interchanged their roles in the
argument, and encircled their normal thresholds in the reverse order,

The argument above is partieularly simple because the variables oy
and o, ‘overlap’, in the sense that according to their definition (4.3.16)
they involve a common momentum. Consider now the non-overlap-
ping variable oy and o, of Fig. 4.7.3b. In a similar notation the (2u)?
discontinuities are

- i% - , (4.7.16)
B . (4117)

In this case the o, variable has nothing to do with the integration
and if we continue (4.7.16} around o, = (24)® we see that the o,
boundary-value on the right-hand side is affected:

:C% - ﬁ = _ (4.7.18)

Adding {4.7.17) and (4.7.18) we find the result :

i% - IE - %+%,(4.7.19}

§ Wo have teft blanlk the label for the ¢, internal subenergy on the right-hand side
of {(4.7.8) and {4.7.9) for reasons stated earlier. A diseussion of the correet assignment
has heen given by Hwa (1964). See also Landshoff, Olive & Polkinghorne (19684).

(4.7.14)
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which is not manifestly symmetrical in o, and o,. But if we substitute

for the _‘\(:E amplitude in the last term, by (4.7.17}, we have

which does have the desived symmetry. (4.7.20}
Similar arguments give {see Olive, 1965)

ﬂ B - e

Such analyses can obviously be extended. The addition of discon-
tinuities acrogs singularities in the same variable can be treated by
reversing the argument given at the beginning of §4.6,

Three particle unitarity, (4.2.258), states

C.(47.21)

Terms resembling the right-hand side of (4.7.15) arc included under
the sum in the third term on the right-hand side. Similarly, the third
and fourth terms of the equation resemble the right-hand side of

(4.7.21). The unitarity equation (4.2,25¢) for @ has appearing

on its right-hand side the following terms (amongst others)

and these resemble the right-hand side of (4.7.20).

Each time, the terms mentioned are the only ones on the right-hand
stde of the unitarity equations involving just the relevant intermediate
states. The boundary values are similar but not quite the same. As
more normal threshold discontinuities are added we can expect 1o
reproduce progressively more terms of the unitarity equation together
with a better agreement in terms of boundary values until the total
discontinuity is found.

The conclusion is that the extremely complicated-looking unitarity
equations can be understood as a sum of the relatively simple formulae
for the discontinuities across the individual normal thresholds.
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4.8 Antiparticles, crossing and the TGP theorem

We saw, in §4.5, that there is a one-one correspondence between
stable particles and physical-region poles of multiparticle amplitudes.
We now show that the presence in one part of the physical region of a
pole corresponding to a stable particle P demands the presence of an
accompanying pole in another part of the physical region. From the
results of §4.5, this pole must also correspond to a stable particle, This
particle has the same mass as P, but the opposite intrinsic quantum
numbers; it is the antiparticle of P. The argument, which is based on
an iden of Gunson (1965}, was developed by Olive (1964}

According to the results of §4.5, the four-particle -> four-particle
amplitude possesses a physical-region pole,

: ; )
==k - O i
8 4 (4.8.1)

that is a pole at (py+ Py — P5— 25)° = S4u56 = 4% This pole is inter-
preted as corresponding to the two successive interactions

P4 Pys P4 Py+ P, (4.8.24)

P+ P 4+P->F+F, {4.8.25)

where F, denotes the external particle whose momentum is p, and P

denotes the internal particle, whose momentum is (p, + pg ~ p; — P}

Consider now the physical region for the amplitude — . From

eguation (4.3.8) the variables sy,5, 8,5 = (Py+ 2,)% and s;5 = (P5+Pg)?
mugt satisfy, in the physical region,

S1058 < (4812 WB56)% ' {4.8.3a)

S50 2 (s + e S1a = (g + o) (4.8.30}

If we fix s at a value greater than (s + g.)° we may draw, in the
real (815, 812} Plane, the part of the boundary of the physical region
derived from the constraints (4.8.3). When the fixed value of 5,4 is also
larger than (uy + g, + p4)® the part of the boundary in question is the
heavy linein Fig. 4.8.1.% Inequalities similar to (4.8.3) are also applic-
able to the variables 8., S;3 = (0, +2:)? 8and 83, = (py+p4)% and can
be represented similarly.

t Compare with {4.3.20) and Fig. 4.3.1.
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In the physical regions for the processes (4.5. 2a) and (4.8.26) we

must have, respectively
N1y 2 /(5) + 11, (4.8.4a)

Nigg 2 (830) + 1. (4.8.40)

This cotresponds to the part of L (the line s, = #% in Fig. 4.8.1)
above 4. Bo only on this purt of I do we get » pole in the physical
region of $ that may be interpreted as being due to the

strecessive interactions (4.8.2).

‘12
(o) A Z

Physical
region
T2 7% S5
(375 = 934)

31;5 = (.}11 + ."33)2 B
Csgn = G = sig)’) \5

Ep— S1250
L

Fig. 4.8.1. The line I/ represents the pole {4.8.1) and passos through two different parts
of the physical region for the four-parsicle -» foar-particle wmplitude. The boundary
of the physical region is drawn in heavy line.

Yet I enters the physical region of $ a second time, on the
segment BC, when

812 N ECWESN {4.8.5a)

Niszg < 4f(8a4) — s (4.8.56)

and since poles persist in functions of several complex variables this
will give another physical region pole, provided that in continuing
along L we have not been forced on to the wrong side of a branch-point
so that the pole is on a Riemann sheet different from the physical
sheet. If this proviso is satisfied the pole in this second part of the
physical region must correspond to a particle P which also has mass g.
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However, because of the inequalities (4.8.5) it now corresponds to two
successive interactions
Pa+11w>Pv+Ps+P,}

- {4.8.6)
P+ B+ P> F+F,

rather than (4.8.2). Diagrammatically we have

5 1

5 - 1 6 2

=)= ig )
] o3 (4.8.7)

The particle P, although it has the same mass g as P is generally
different from P. As may be seen by comparison of (4.8.2) and (4.8.6)
the additive quantum numbers of P and P (charge, strangeness, ete.)
must be opposite. Hence we identity P as the antiparticle of P and
sonclude that antiparticles must exist in the theory,

This establishes the existence of antiparticles except for the crucial
question as to whether L is actually a pole in the part of the physical
region satisfying (4.8.5). To prove this we want a path of continuation
joining the two parts of the physical region but lying always on the
section Sy = % Then we can use this to analytically continue the
function

[ {81955 — #%) A(81054: %30 ---}], Where A4 = ﬁiE

This is the residue of the pole (4.8.1) and if it is non-zero in (4.8.4) it
cannot be identically zero in (4.8.5).

Because the physical region is connected, our analyticity postulate
implies that there exists a path of analytic continuation joining the
two regions (4.8.4) and (4.8.5) of L and lying in the physical region
except for the infinitesimal detours around singularities. 1f this path
can be deformed to lie on the mass shell section 8,55 = * without
crossing any other singularity surfaces it will provide the desired
continuation of the residue, In terms of a singularity structure in-
volving just normal thresholds this is possible because normal thres-
holds either intersect L or are parallel to it. The physical region path T’
cannot encircle any of the parallel normal thresholds (8555, = (nu)®)
because of our -+ ie-prescription assumption. Hence it can be pulled
free of them, and can be slid along any of the others. However if is not
yet possible to make more general arguments because the theory does
not yet give definite information about the singularities in the un-
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physical region through which I must be deformed. There is reason to
be optimistic nevertheless, because if thesingularities in the unphysical
region have properties like those in the physical region the deformation
will be possible, sinee in the physical region the postulate that the
amplitude is the boundary vulue of an analytic function guarantees
that any path is freely deformable.

Crossing

Having deduced the existence of antiparticles, we must insert them
in the completeness relations and so they will appear in the unitarity
equations where their quantum numbers are appropriate. Hence
trangition amplitudes involving antiparticles play an important part
in the theory. From our derivation of the existence of antiparticles P
we see that these amplitudes are directly related to the corresponding
‘erossed’ amplitudes involving the particles P. Since (4.8.7) is
obtained by analytic continuation of (4.8.1), the product of the two
amplitudes in {4.8.2) continues analytically into the product of the
crossed amplitudes in {4.8.6). We obtained this result by considering

a particular multiparticle amplitude g}, but we would obtain

corresponding results for any multiparticle arplitnde containing a
pole corresponding to the particle P, Thus we conclude that, for any
amplitzde 4 having P as one of the external particles,

Acontinved o o 47 if P i incoming for 4,
} (4.8.8)

=ga™14 if P is outgoing for A,

where A is the corresponding crossed amplitude having P as an
external particle, and « is a constant number whose value depends
solely on the identity of the particle P. [z must be a constant, inde-
pendent of the variables s, since we may change the values of the
variables for one of the amplitudes in the product of amplitudes that
formas the residue of the pole, without changing them in the other. It
is independent of the particular amplitude, because any given ampli-
tude involving P in the initial state may be paired with any other
involving P in the final state, to form the residue of a P-pole in some
multiparticle amplitude.]

We next show that « is just a phase factor, that is |«| = 1. For
definiteness, let 4 be the amplitude for (4.8.24)

A P4 PB4+ R+ P,

I6 Ea
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so that A is the second amplitude in (4.8.6)

A: P+P+P-»P+F,
and, by (4.8.8), Aeont. o =14, (4.8.9a)
Define two further amplitudes

A =B+ P+ PP +F,

A" = B+ B> P+ P+ P
Then, again by (4.8.8),  Aeonb = g4’ (4.8.95)
We have said, in §1.2, that sometimes S-matrix elements ohey the
symmetry property {1.2.23), so that 4 = 4" and 4 = A", In this case
{4.8.90) and (4.8.9b) together give a® = 1. More generally, 4’ is
related to 4, and 4’ to 4, by hermitian analyticity. According to
§4.6, this property says that A'* and 4’* are respectively obtained

from A and A by analytic continuation. Hence we see that in two ways
we may obtain A™ by continuation from 4:

RE—CN oy N ——— c(,“lg'*,
Ccrossing hermition analybicity
[ A% [ o ® g Tk
aermitian snalyticisy crosaing

One might expect that if two different continuations of the same
function lead to functions that are proportional to one another, these
continuations are actually the same, so that o = a*. However, this
is not always true, so that it is necessary explcitly to verify that the
continuations are equivalent, that is that the two paths of continua-
tion may be continwously distorted into each other without crossing
any branch-point. Again this may be shown, as far as the normal
thresholds are concerned.

Having decided that ja] = 1, we may now actually define o =1,
This is because, in our initial construction in §4.2 of the momentum
gtates by means of creation operators, there was an arbitrariness of
phase. This phase could be defined independently for particles and
antiparticles, and chosing a = 1 merely links the two definitions. In
the case when a particle is its own antiparticle or it belongs to an
isotopic multiplet for whose members the relative phases are fixed by
other conventions, additional consideration must be given to the
matter, This has been discussed by J. R, Taylor (1966).

Thus we have the fundamental theorem known as crossing, that an
amplitude for a process obtained by “crossing over’ a particle into its
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antiparticle is analytically related to the amplitude for the original
process. Further, the path of continuation obeys & (+4€)-prescription
ab each normal threshold traversed, since the physical region path in
the large amplitude had this property and it is preserved in the distor-
tion to the mass shell section.

The TCP Theorem

So far we have only considered the effects of crossing one particle.
However, for the two-particle-»two-particle amplitude this would
lead to an unphysical amplitude, and we must simultaneously cross
two particles. The discussion is exactly parallel to the above, but now
involves a twofold pole of the five-particle amplitude:

Hence it is found that the amplitude for

P+ BB+ 1 {4.8.10)
may be continued analytically into that for
P+Py—+Py+ P, (4.8.11)

the path of continuation following a (4 fe)-prescription for all normal
thresholds traversed. Interms of the familiar s, and wvariables defined
by (1.2.10), the path in the s-plane (with ¢ fixed) is shown in Fig. 4.8.2.
Note that in order to maintain the ( -+ ie)-prescription at the  normal
thresholds the ﬁath in the s-plane must go under them because (1.2.12),
refating » to ¢ with { fixed {and real), implies that Im s = — Im«.
Similarly, the amplitude for (4.8.11) may be continued analytically

into that for Py Pyr Pyt P (4.8.12)

Hence the amplitudes for the processes {4.8.10) and {4.8.12) are
analytically related by a path obeying & { -+ de}-prescription at each
normal threshold.

Since particles and antiparticles have identical masses we can
choose the four-momenta of the corresponding particles in the
processes (4.3,10) and (4.8.12) to be equal 80 that the variables s, £, «
defined in the usual way take the same values for each process and the

b2
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path of continuation returns to its starting point. Since this path obeys
the same ( + ie)-preseription each time it encounters a normal threshold
it cannot encircle such a threshold, It can therefore be contracted to
zero i these are the only singularities it encounters. This is particularly
clear from Fig. 4.8.2 since the path relating the amplitude for the
process (4.8.11) to that for (4.8.12) is exactly the reverse of the path
drawn relating the amplitudes for processes (4.8.10) and (4.8.11).
Thus the amplitudes for the two processes (4.8.10) and (4.8.12) with
momenta related as deseribed are equal. This is the TCP theorem.

Onee again the complete proof requires a better knowledge of the
singularity structure.

s-plane Process {4.8. 10}

et

* 'y *

Process (4.8.11)

Fig. 4.8.2. The path of analytic continuation that gives crossing for n
two-particle —» two-pearbicle amnplitude.

The particular importance of the TCP theorem is that its proof is
one of the triumphs of axiomatie field theory. (See, for example, the
book by Streater & Wightman (1964)). If the present theory is to be
worthwhile it must at least accomplisk what field theory has achieved.

Complete normal threshold structure

In proving crossing we prove that amplitudes for certain processes
are continuations of each other. It follows that singularities of one
amplitude are singularities of the other and vice-versa. In this way we
learn of new singularities, for example, the left-hand cut of the two
particle > two particle amplitade, drawn in Pig. 1.3.4; diagram-
matically this rises from

4 = 3
Gy’ H
4 2 {rossing

[ 2 {4.8.13)

Likewise the existence of normal thresholds in those momentam
transfer variables of the uncrossed amplitude which cross into sub-
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energies follows from the unitarity and extended unitarity equations
for the crossed processes:

N 2

[- NN
b=
NP

3 Crossing

(4.8.14)
Similarly, physical-region poles (§ 4.5} imply the existence of un-
physical-region poles in crossed chanuels

4 1
w15 - N ;
2 S Crossing 6 "CX& , {4.8.15)

where the factors in the residue on the right-band side are continua-
tions of ZJ(XI= into an unphysical region. This argument, however,
only applies to the multiparticle amplitudes and not to the two
particle->two particle amplitude, bocause that amplitude has no
stable particle poles in the physieal region for any of its channcls.
By considering the system of unitarity cquations (4.2.265) coupling
=¥ to TIFET it is possible to show that, because of {4.8,15),
~T#= does have a pole on the ‘physical sheet’; this polet is repre-
sented by the point P in Fig. 1.3.4 (with F’ the corresponding
pole in the crossed channel). Furthermore, the residue of this pole
factorises {as it did in (4.8.158)) and we write diagrammatically

TR e T O— (4.8.16a)
T (+3 99*
corresponding to AGHs, ) ~ paiipme (4.8.16b)

where A,, represents the two particle seattering amplitude and g is
the coupling constant “(D—.

Adding these new results to those of the previous sections we find
that we have deduced the existence of all the normal threshold and
pole singularitics corresponding to stable particles. The derivations of
the fundamental theorems, hermitian analyticity, crossing, ete., can
be repeated in the presence of these singularities.

Crossing and writarity

The normal thresholds just mentioned occur in a similar fashion in
each of the variables (4.3.16) so that the sitnation appears to be highly

1 Notice that here we are discussing a particle of spin zere (see p. 253},
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crossing symmetric. Nevertheless, we must check that the associated
scheme of discontinuities for the normal thresholds is consistent with
crossing (Olive, 1965).

"The two-particle discontinuity in the subenergy s, of the amplitude

%@é has the form {4.7.6a):

Continuing this equation along the path of continnation corresponding
to crossing over line 6 we find

This is just like (4.7.16}, another of the normal threshold diseontinuity
formulae, and illustrates the general fact that the formulae for
normal threshold discontinuities that we discussed in §4.7 are ‘cros-
sing symmetrie’ in the sense that they eross into each other.

Consider two points 4 and B in the physical regions of two multi-
particle processes whick can be crossed into each other. Of the channels
open in the various variables ut the two points 4 and B there will be
a certain common subset. The total discontinuity across the corre-
sponding normal thresholds we shall call the ‘common discontinuity .
We saw in §4.7 that the expressions for this common discontinuity
in the two amplitudes will resemble those terms in the corresponding
unitarity relations which involve only the common intermediate
states, but will differ in the assignment of boundary values.

Since, as we saw in §4.7, the common discontinuity is the sum of
the individual discontinuities across the cuts attached to the common
thresholds and since we have just seen that these discontinuities ave
themselves ‘crossing symmetrie’, so must be the common discon-
tmmty itself. In this sense we can say the unitarity equations are

‘crossing symmetric’,
As an illustration consider the amplitudes

4 1 03 Te
>
EO= 0=
which can be related by crossing over lines 3, 4 and 5. The relevant

unitarity relations valid just above the physieal threshold appear in
{4.2,25), and the common normal thresholds are 8y, = (2u)* and
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845 = (2p)% Aecording to (4.7.21) and (4.7.20) the respective common
discontinuities are

(4.8.18)

Continuing (4.8,17) along the path corresponding to crossing lines 3
4 and 5 we obtain not (4.8.18) but

Nevertheless on applying the boundary value interchange (4.7.64a,b)
to the second term on the right-hand side wo obtain (4.7.19), which
reduces to (4.7.20), that is (4.8.18), on application of the discon-
tinuity formula (4.7.17), as we have already seen.

Thas, though at first sight the crossing symmetric property of the
unitarity equations looks unlikely, it is nevertheless true.

3

49 Unstable particles

Since the asymptotic states on which our theory is based are
required o be states that exist for an arbitrarily long time, they can
contain only stable particles. Hencc only stable particles enter directly
into the completeness relation and the unitarity equations, Apart
from these considerations, however, we shall see in this section that,
mathematically, the theory involves the unstable particles in a very
similar way to the stable ones. Thisis to be expected, from the fact that
it is very diffienlt to distinguish physically between an unstable
particle of long lifetime and a stable particle.

Sinee a basic property of an unstable particle is that it has a lifetime,
a full discussion of its properties must contain some mention of this.
However, as we explained in §4.5, the role of time in S-matrix theory
still requires considerable clarification, so here we only give a very
crude and very brief discussion. For a plane-wave state of energy &
the dependence on the time r of the Schridinger wave-function is
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given by the factor e~F7. In the rest frame of the particle this is e~447,
For an unstable particle the wave-function should decrease with
increasing time. This is most simply achieved by making M complex,
giving it a negative imaginary part which will then be proportional to
the inverse of the lifetime. As we shall see below, the assignment of a
complex mass to an unstable particle iz also required by other
congiderations.

Another basic property of an unstable particle of short lifetime, and
the one by means of which it is usually observed, is that it corresponds
to a resonance in interactions among the stable particles. For example,
if two stable particles 4 scatter at centre-of-mass energy /s near to the
‘mass’ of an unstable state with appropriate quantum numbers, they
can then form that state and remain in it for a time, roughly equal to
its ifetime, before it decays again. Hence the incoming wave-function
is greatly distorted and the transition amplitude for the scattering
A+ A4 -—+4+ A4 is enhanced, that is it has a bump at the appropriate
energy. The simplest way an analytic funetion can have a bump for
values of s on the real axis is for there to be an infinite singularity
nearby, off the real axis, The simplest such singolarity would be a
simple pole, that is a pole at the complex point s = M? in the lower-
half plane. The bumyp in the amplitude then oceurs around s = Re' (M?)
or, what is mueh the same thing if the lifetime is not too short and so
Im M not too large, around s = (Re M)2. So ws identify (Re M) as the
physical mass of the unstable particle, the vagueness in the identifica-
tion corresponding directly to the fact that the uncertainty principle
does not allow a particle having only a finite lifetime to have a definite
mass,

That unstable particles really are represented by complex poles was
suggested by Mpller (1946), and is shown to be the case in the analysis
below, The corresponding bumps in cross-sections are then given by
the Breit-Wigner resonance formula (1.6.1).

Variable-force model

The simplest way to discover what should be the properties of the
singularities corresponding to unstable particles is to make use of a
model {Landshoff, 1963). We shall show later in this section that the
simpler predictions of the model can be checked by more rigorous
methods.

Tt is supposed that the theory contains a parameter A that measures
the strength of the forces between the stable particles 4. It is further
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supposed that when A is varied the theory changes analytically, and
thatit can be varied in such a way that the forces become so strong that
the unstable particle becomes stable.

Under these reasonable, though unsubstantiated, ussumptions it
follows immediately that the unstable particle results in a pole. This
is becausze we know tha# it corresponds to a pole when the particle is
stable {see §4.5 and also (4.8.18)), and therefore likewise when it ig
unstable since the nature of singularities cannot changet during the
analytic continuation with respect to A. Further, when the particle is
stable we know that it gives rise to other singularities, the normal
thresholds and the more complicated singularities to be discussed in

Physical limit

SRS

2uF (3

.p

Fig. 4.9.1. The unstable-particle pole P ig reached from the physical
region by going down through the cut.

§4.10, and so in the same way it must generate similar singularities
when it is unstable. The corresponding discontinuities in the unstable
case will be obtained from those in the stable case by analytic con-
tinuation.

To determine on what Riemann sheets these singularities lie we
must consider what path the pole P takes when the particle that it
represents changes from being stable to being unstable, We have said
that, in the unstable case, the pole is in the lower-half of the complex
s-plane and, in order that it may produce a bump in the amplitude,
that it is near to the physical region. Hence it roust be on the unphysical
Riemann sheet that is reached from the physical region by burrowing
down through the normal-threshold cut. This we have indicated in
Fig. 4.9.1, where we have supposed that the ‘mass’ of the unstable
particle is below the (3¢)%-threshold. Otherwise, to reach the pole from
the physical region, it would be necessary to pass through both the
(2¢)* and (3x)% cuts and the subsequent analysis would require
corresponding changes.

1 Except possibly for diserete values of A; it would be an interesting and highly
powerful prineiple if physics were to choose just those values to represeus reality.
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Henee, since we know that in the stable case the pole Pats = M2 is
on the physical sheet, in the tramsition to instability it must pass
round the {2u)* branch-point and through the cut, as indicated in
Fig. 4.9.2¢. In this figure the part of the path on the physical sheet is
drawn with a dashed line, the part on the unphysical sheet with a
dotted line. Having decided that the point s = M? takes this path, we
see directly that the normal-threshold s = (M + 4)2, whose existence

P

o s
e
N
(a)
(- MP L
o -
(2 ED

Rl a0y
®

Fig. 4.9.2. (a} A possible path taken by the pole P in the transition from stable to
unetable state. (4) The corresponding path for the normal threghold.

in the stable case follows from unitarity, must take the path shown in
Fig. 4.9.2b. Because s = M* goes round the point (2p)%, s = (M + p)?
must go round (3x)%, and so the branch-point in the uustable case is
reached from the physical region by going straight down through the
cuts. As we saw in §4.7, this branch-point is of square root type and
does not give an infinity in the amplitude, so it will not preduce such
& noticeable effect in the physical amplitude as does the pole.}

For simplicity, we have glossed over certain points in drawing
Fig. 4.9.20. Hermitian analyticity demands that, when P is complex,
there be a ‘shadow’ pole P in the complex-conjugate position, on the
unphysieal sheet reached from the physical sheet by going upwards
through the (24)* cut.i The path that P’ takes in the transition,
corresponding to that of Fig. 4.9.2a taken by P, is drawnin Fig. 4.9.3¢;
while P is complex P’ must ocoupy the complex-eonjugate position,
but when P is real so is 7’. In the latter case P’ and P are on different
sheets, because otherwise a particle of the mass corresponding to P’

T The effect is to produce a “woolly cusp’; see Nauenberg & Pais (1962).

1 Since, as we saw in §4.7, this cut happens to be two-sheeted, in this particular
case P and P’ are actually on the same gheet.
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would have to appear in the completeness and unitarity relations; they
are also in different positions, as we see later, in §4.10.

Generally, our model theory could only be expected to be capable of
representing a physical situation for real values of the parameter A.
This is the case when, for example, A represents the width or the depth
of a potential, or when it is a coupling constant. Continuations to
complex values of A cannot be expected to satisfy unitarity or hermi-
tian analyticity. But if we vary A through real values to effect the
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Fig. 4.9.3. {a) The path taken by the shadow pole P’ when P tales that of Fig. 4£.9.24.
P remaing on the unphysical sheot. (5} An alternative path for P, obtained by giving
A a amell imaginary pert of opposite sign from before, (¢} The corregponding path
for P’.

transition from a stable to an unstable state, the pole P will pass
through the branch-point, instead of round it as we have drawn in
Fig. 4.9.2¢. In this case one cannot tell whether or not it has changed
its Riemann sheet, so to achieve the unambignous path of Fig. 4.9.24
we temporarily give A a small imaginary part (so temporarily aban-
doning a physically relevant configuration) to make the pole avoid the
branch-point, It is interesting to notice that if we had chosen to give A
an imaginary part of the opposite sign, the pole P would have gone to
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the other side of the branch-point, asin Fig. 4.9.35. Similarly, the path
for P, instead of being as in Fig. 4.9.2a, would be as in Fig. 4.9.3¢,
g0 now it is P’ instead of P that represents the unstable particle.

We have deduced that every pole is accompanied by at least one
shadow pole. In fact there is reason to believe that for & given pole
there are an infinite number of shadow poles, on different Riemann
sheets and in a different position on each sheet. [See Landshoff (1963},
also Eden & Taylor (1964).] It is thevefore something of a simplifica-
tion to talk about the pole corresponding to a given particle, though
generally one pole will be physically more significant than all the
others, in that it lies closer to the physical region. All the shadow poles
are to be expected to generate corresponding ‘normal thresholds’ and
higher singularities,

Finally, it should be mentioned that it is not always the case that,
when A is varied, the transition is directly from unstable to stable
state; it may take place via a ‘virtual’ state, that is the pole first meets
the real axis on the unphysical sheet, before encircling the threshold
and passing on to the physical sheet. This makes little difference to the
deductions concerning the further singularities; more details ave given
by Landshoff (1963).

Complex poles from unitarity

The model that we have described is useful for discovering what
results are expected to hold; to prove them we use unitarity. We first
examine how the vomplex poles arise (Gunson & Taylor, 1960).

Consider the unitarity equation

s € e S € s ) s ) st b ) i ) Y C X B

We wish to continue this equation as a whole in the total energy
variable s. We take a path of continuation corresponding to the arrow
in Fig. 4.9.1, so that for —{+IZ we are moving on to the unphysical
sheet but for Z{=JI are staying on the physical sheet. A proper
analysis involves the theory of Fredholm integral equations, but it
turns out that the properties of interest here may be understood by
replacing (4.9.1) by a similar equation involving finite matrices:

H(s)— K(s) = H{s) K{s} = K(s) H(s). (4.9.2)

The matrix product on the right-hand side of this equation is the
finite-dimensional analogue of the integration in the right-hand side
of (4.9.1).
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Solving for H in terms of K, we have
He=K1l-Kyl=(1-Ky'K
_Kadj(l~K) adj(l-K).K

T odet(1-K)  det(1-K) - (4.9.3)

The assumption that :O: is analytic on the physical sheet, exeept
for the cuts and poles on the real axis, produces similar analytic
properties for K. From (4.9.3) we see that H is similarly analytic,
except for poles arising from zeros of det (1 — K). Since H represents the
condinuation of :OZ on the unphysical sheet thesc are the poles
of interest.

By Jacobi’s identity (4.3.14), at a zero of det (I~ K) the matrix
adj (1 — K) factorises. Hence by (4.9.3) the residue matrix B, defined

by R= lim [(s—M2H],
s->I*
also factorises: By = by (4.9.4)

This confirms what we deduced from our model, that the residues of
the unstable-particle poles have properties exactly similar to those of
stable particles, in particular factorisation.

The corresponding results from Fredholm theory are not quite so
simple, One feature is that the matrix R, now of infinite dimension,
does not necessarily factorise and so have rank one; it may have finite
rank greater than one (Smithies, 1058). This rank is the number of
different gpin states of the unstable parsicle; we do not consider it
here, and confine the discussion to spin zero.

Corresponding to equation (4.8.16) for stable particle poles we write

T -~ IDANONAEL, (4.9.5a)
AL
or equivalently AL ~ ;’_Li;w (4.9.50)

where (4, and G are the coupling constants coupling the unstable
particle P to the two stable particles 4.

This analysis leaves open two questions. It does not tell us that the
complex pole must be on the anphysical sheet rather than the physical
shect {as potential theory and field theory suggest), for we assumed
that K had no complex poles. Neither does it tell us that the pole is
simple rather than multiple (sce Eden & Tandshoff, 1964),

The analogy between stable and unstable particle can be extended
by defining amplitudes for processes involving unstable partieles
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(Gunson, 1965; Stapp, 1964 ). Consider the discontinuity equation for
the (2u)* threshold in the variable s,, of the amplitude %:E%ﬁ

(see (4.7.6)), & _ ﬁ = {% (4.9.6a)
= % (4.9.65)

1f we continue (4.9.6b) into the lower half plane of the variable s,, we
shall axrive at a pole of the right-hand side, because of (4.9.5). We

expect that ﬁ, like 753, will not possess this pole because

81, moves on to its physical sheet. Then {% must have a pole at

8y, = M?, whose residue factorises becanse the residue of the pole on
tho right-hand side of {4.9.6b) factorizses, In fact, near s;, = M2 we

must have
{)ﬁ (4.9.7)

(4.9.8)

E -~

We saw in §4.5 that the factors in the residue of a stable particle
pole were themselves amplitudes involving this particle. This suggests

that we can treat the quantity gi}; as an amplitude describing a

process involving an unstable particle. Similarly, we can define

amplitudes ﬂ, SN Yoo, and so on.

The methods of §4.8 can be developed to prove crossing for these
unstable amplitudes. Furthermore, discontinuities in these amplitudes
are given by equations of the now familiar type (see §4.7). As an
example consider the continuation of (4.9.6), evaluated in the +
boundary value in sy, to the lower half plane in that variable. Bach
term has a pole with factorising residue and we obta,m, cancelling
common faetors

- Iz (4.9.9)
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Complex normal thresholds

Having seen how the presence of complex poles fits in with unitarity,
we now examine the corresponding normal thresholds and caleulate
the associated discontinuities (Gunson, 1965; Zwanziger, 1963). We
already know from our model that the discontinuity should turn out
1o be exactly similar to that for an ordinary stable particle normal
threshold.

The model predicted that the complex normal threshold ocenrred on
the unphysical sheet reached by burrowing through the three-particle
cut. Hence we must study equations for the discontinuity across this
cutb. The most convenient forms to consider are (4.7.10) and (4.7.11).

- EE woe
== - =(P=- =

In each bubble, the centre label refers to the houndary limit taken for
the total-energy variable s. As before, the label (i) denotes the
boundary value obtained by continuing from the physical limit (+)
round to the lower side of the three-particle cut, as is shown in Fig.
{4.7.2a). The other labels refer to the subenergies.

Wenow continue {4.9.9¢a) into the lower half of the comyplex s-plane.
¥f we label the internal lnes in the term on the right-hand side by
1, 2, 3 the extremurmn of the integration over the internal subenergy
87 18 (W8 — )%, so this also goes into the lower-half plane. (It is now
convenient to suppose that the masses g, of the internal particles are
all different.) So far as the internal subenergies s,; are concerned, we
are on the physical sheet in our continuation of the left-hand bubble of
the integrand, since the labels (—) mean that these variables started
underneath their cuts and so the continuation is not taking them
through the cuts. However, for the right-hand bubble these variables
started on the upper side of their cuts and so the continuation takes
them just on to that sheet which has the pole

(4.9.95)

- 4’ - ., (4.9.10)

ab sy, = M2 (of. (4.9.7) and Fig. 4.9.1). When the extremum (/8 pig)?
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of s, strikes this pole the multiple integral has a singularity.t This
oceurs at & = (M + u,)%

To caleulate the discontinuity associated with this complex normal
threshold, we continue {4.9.9¢) to either side of the corresponding cut
and corapare the results. We here aceept the prediction of our model,
that the normal threshold occurs on the Riemann sheet of § reached

by continuation straight down into the lower-half plane for
but not for KBE - This means that the two required continuations

of the latter are identical where it appears on the left-hand side of
(4.9.8q). They are also identical where it ap -ears on the right because
of the additional feature that the pole at s,, = M? that generates the

singularity oceurs only in the continuation of the factor 4’ in

the integral. So the two continuations of (4.9.9a) are

E{[@E N ’—%b , (4.9.11a)
e - =TT

Here U, L respectively denote the continuations in the total-energy
variable s from () to the upper and lower sides of the cut, while 4, B
respectively note that the s;, intepration -asses above and below
the pole on the sy, unphysical sheet. The other Jabels now represent
straightforward continuations from their previous meanings. {In the
case of the subenergies, continuation is only foreed on us in the case
of the internal ones, but we can choose to continue the others also.)

Subtraction of (4.9.11¢) from (4.9.115), and rearrangement, gives

r - 2 - T0x [ - ) (e - ) )

(4.9.12)

il

ik

The first bracket within the square bracket produces the difference
between integrations that pass to either side of the pole. This just gives
— 27 times the residue (4.9.10). We can write this term as

ﬂﬂ}";‘j@’ : (4.9.13)

t See §2.1 for a detailed discussion of singularities in multiple integrala.
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This is to be interpreted by the rules (4.2.30) with, loosely, the line
AV representing the factor — 2m10{81, — M?), in close analogy with
the meaning we attach to internal stable-particle lines, We S8y
‘loosely’, because M? is complex and so the wusual meaning of the
d-function must be extended, in practice by analytic continuation of
the ntegral from the case where M2 is taken as real.

By an identity analogous to (£.9.8), (4.9.13) is the same as

&

80, On rearranging (4.9.1%y, we have

(= -=x)(=W= - =@ - G

We premultiply this by P

==+ =
T ————— b

and use the ‘mate’ of {4.9.11b), obtained by continmation of (4.9.98)
instead of (4.9.94). This gives

=0E - = - (= W) D)

(4.9.14)

Now, just as we derived (4.9.9) from (4.9.6), so from the ‘mate’ of
(4.9.9b) we can immediately obtain

EE@V_‘~E@EE = . (4.9.15)

Then (4.9.14)and (4.9.15) give the final result

ﬁu]:){i - ZQH} = % (4.9.16)

which has the expected form, From this expression the corresponding
discontinuities in the amplitudes —{ Y= and L= can also be
dexived.

The parallels between the properties of the unstable and stable
particles suggest that they are likely to enter dynamical esleulations

17 BEA



258 UNSTABLE PARTICLES 4.9

on an equal footing. On the other hand, the ambiguity in the posttion
of the pole associsted with an unstable particle seems to make it
difficult to include them in any basic axioms.

4.10 Generation of singularities

In §§4.6 to 4.9 we have only taken into account a singularity scheme
involving the poles and normal thresholds associated with stable and
unstable particles, the relevant discontinuities being determined in a
crossing-symmetric way from the physical unitarity equations. Apart
from the notational problem of stating the argnments completely
generally rather than by means of illustrative examples, this work
seems $0 have been taken as far ag possible within the limitation of a
purely normal threshold discussion.

Certain questions remain to be asked:

{2) Are there other singularities? If so, how are they generated and
what are their discontinuities? _

(by Can the derivation of fundamental results like crossing,
hermitian analyticity, etc., be carried through in the presence of
higher singularities?

(¢) Can we justify the procedure of building up the theory in a
geries of stages, of which the normal threshold pieture is the first?

The first question was answered by Polkinghorne (1962a, 8). The
minimum singularity structure is determined by unitarity and cros-
sing. The way that unitarity immediately leads to normal thresholds
has already been described; however, the non-Huearity of the unitarity
relations generates further singularities.

In §4.7 we saw that the discontinuity of an amplitude across a cut
associated with an n-particle normal threshold has the form

Disc, %}; S (4.10.1a)

or more concisely, dise, 4 = IA Ay dLy . (4.10.15)

Here 4, and 4, represent certain boundary values of the amplitudes
for the process involved and dQ,, is the n-particle intermediate-state
phase-gpace integral. According to the rules of (4.2.30) the latter is

Lt U AN . 5
f 1 ((2n)i) L1 (2778 8% gh~ 1)), (4.10.2)

i=1
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where the (n—1) loop momenta are chosen as in Fig. 4.10.1. The
normal-threshold singularities in 4, and 4, will generate through the
integral (4.10.16) new singularities of dise, 4. Since the latter is just
the difference of 4 on two of its Riemann sheets these singularities
must be singularities of 4 itself. Applying the same argument fo
discontinuities of 4; and A4, will produce new singularities of 4, and
A, also. These new singularities will generate through (4.10.15)
further singularities of 4, and so on. In this way one can build up a
series of successively more ecomplicated stages in the singularity
structure of amplitudes, the first stage being just the poles and normal
thresholds. The minimum consistent singularity structure is the
smallest set closed under this iteration.

Fig. 4.10.1. The loop momente in the n-particle unitarity integral.

We shall prove the result that the positions of the singularities
generated m this way are given, just as In perturbation theory, by the
solutions of the Landan eguations corresponding to the set of Feyn-
man-like diagrams that have appropriate external lines. In this
context these diagrams are called Londou-Cutlosky diagrams, a name
which serves to emphasise their S-matrix status, though they are
identical in appearance to the set of Feynman disgrams of perturba-
tion theory.

The proof proceeds by induction. The starting-point of the induction
is provided by the normal thresholds, which certainly correspond to
solutions of the Landau equations. The argument is comploted by
showing that singularities of 4, and A, corresponding to solutions of
the Landau equations will give a singularity of (4£.10.15} also having
this property. We suppose therefore that 4, has a singularity 8
corresponrding to a diagram with lines with internal momenta ¢,
parameters ), masses 4, and with loop momenta k. The equation
of 8 is given by eliminating the of and &Y from

Yy = Do — i) = 0 (4.10.3)

72
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by means of the equations

oo Wn_ (4.10.4)

The resulting Landaun curve has among its variables quantities
depending on the loop momenta &, of the phase space integration
(4.10.2), We suppose that 4, has a singularity 8, defined in a similar
way in terms of variables ¢@, o, 4 and £P.

The singularity which results from combining 8, and 8, in the
integral {4¢.10.1) can be found by the methods of §2.1 with the aid of
a slight modification. In that section we congidered only integrands
which were analytic apart from certain singularities. It is necessary,
therefore, to replace the non-analytic 8-functions in (4.10.2) by factors
(gF —p3)~! together with the prescription that the hypercontour
encircles each pole g, = + /(4® + #*). By the residue theorvem this is an
equivalent integral. Since 4, and 4, are only defined af the poles the
hypercontour must be taken infinitesimally close o each pole.t

The singularities will be given by

A8 =0, A8, =0
adgi—~p) =0 (i=12,..,n), (4.10.5)
S Ay gt =) = 0 (1= 1,2,0m=1)

The %, dependence of 8 will arise in two distinet ways, Some of the
¢ in (4.10.3) will contain &, explicitly; these will be just the lines in the
diagram for 8, which lic round the %-loop when the diagrams for S
and &, are joined together. In addition, the «’and & are dependent on
the external variables of 4, and so, in particular, depend on &, How-
ever, equations (4.10.4) imply that

B8, _ o pon dad o opy G

By ok, ookl Ok T oKD ok

_
&k’
8o that the third set of equations (4.10.5) can be written
3 [ oPgP+ AaP 4+ oyq.] = 0. (4.10.6)

kriouy

T A more sophisticated way to derive the result is to consider (4.10.2} as an
integral defined in the manifold given by the equations gf —} = 0. The permissible
distortions of the hypercontour must always be within this manifold; compare the
discussion of boundaries in §2.1. This leads to {4.10.5) with the «; being Lagrange
mtiltipliers.
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Equations (4.10.4-6} together are just the Landau equations asso-
ciated with

$ == DEP(GP — ) + SAPP* - )+ Styfad - 43, (4.10.7)

where & = Ay and &2 = A,af. This substantiates the statement
that the singularity in a unitary integral generated by two singularities
of Landau type is itself of Landau type.

This mechanism for the generation of singularities finds a very
natural expression in graphical form since (4.10.7) just corresponds to
the diagram formed by joining together the diagrams associated with
8, and &,. For example, if we have the singularities

Sl R e

then the integral formed from the two amplitudes has the singularity

o= — (T)(7)-TT

and o on. Such a consideration provides the justification for the
argument in §4.4 inferring the existence of the triangle singularity
(4.4.3).

The conditions given for a singularity are necessary rvather than
sufficient. Sufficiency vequires an analysis of whether the hyper-
contour is actually trapped and a consideration of possible cancella-
tions. We shall go some way in a discussion of these points in the rest
of this section. However, the necessary conditions alone permit us to
make powerful negative statements that certain diagrams cannot have

certain singularities. Thus :®;m€ - E cannot have the pole (4.5.3)

since the insertion of diagrams into the bubbles, even allowing for
contraction of the §-function lines, cannot give rise to the pole. This
type of result was used extensively in §§4.5 and 4.6,

Riemann sheet structure

We have seen that the Landau equations provide the possible
loeations of the singularities both of perturbation theory and of a
unitary S-maftrix theory. We also need to know the Riemann sheet
structure of the singularities. In principle these are obtained by
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continuation from physical regions, singularities being found along
those paths of continuation which lead to the hypercontour actually
being trapped. In practice, however, this prescription is too difficult
to use directly and we have to have recourse to indirect arguments.
Tt is of interest to inquire to what extent we may expeet the Riemann
sheet properties of perturbation theory and a unitary S-matrix theory
to coincide. In §4.11 the explicit example of the triangle singularity
will be considered in S-matrix theory and its physical-region properties
are there found to be the same ag in perturbation theory. Here we shall
see to what extent the problem can be discussed in general.

‘We suppose that there is some limited region in the space of external
invariants of an amplitude for which its analytic properties are the
game in perturbation theory and S-matrix theory. That is to say the
two theories have identical singularities in this region and the dis-
continuities around these singularities have the same structure in
terms of other amplitudes. Then there will be an identical spectral
representation for the amplitude in this region in the two theories.
An example of this would be provided by the case where the two
theories were known to satisfy the same dispersion relation for a range
of fixed momentum transfer.

If now we continue from the region, new singularities may arise and
we are conwcerned with the extent to which this will happen in an
identical manner in the two theories. These singularities are generated
in each term of the spectral representation by singularities of the
discontinuities, which are themselves generated in the manner
described earlier in this seotion. If we assume that there are no subtle
cancellation mechanisms the presence or absence of singularities in
each term is due to the trapping or not of the hypercontour. The distor-
tions of the hypercontour are determined by the localion of singularities
intheintegrand, but not by their nature (squareroot, logarithmie, cte.).
To the extent therefore that the two theories have identical crossed
channel singulorities causing the distortions of the hypercontour they
should lead to identical pinching configurations and identically located
new singularities. If one considers the singularity structure of an
S-maftrix theory as being generated by successive iterations, starting
with the normal threshold pieture, then one could hope to use per-
turbation theory as a sort of mathematical probe to determine the
oceurrence of pinching configurations.

The utility of this notion is restricted by the fact that even at the
first stage, namely the pole and normal threshold structure, finite-
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order perturbation theory and unitary S-matrix theory do not have
identical singularity structures on unphysical sheets.

As an example of this consider the stable particle pole in the direct
channel of the amplitude (T 7. Suppose the unitarity relation

IOTROENOE0S (4.10.8)

is continued to the left of the normal threshold s == 44* in the total-
energy variable s, 20 as to reach the pole s = p? of —Z(3Y—. This is
the point F in Fig. 1.3.4, so that continuation must be taken to the
upper side of the branch-point at ¢ = 442; this continuation takes
=" on to a different Riemann sheet. On this sheet there cannot
be a pole at & = 4% because then the continuation of the term on the
right-hand side of (4.10.8) would have a double pole at s = u2. But if
the right-hand side of (4.10.8} has a double-pole, then so must at least
one of the terms on the left. But this in turn would imply that the
right-hand side had a pole of still higher order, and so on. Hence
unitarity forbids the occurrence of the poles in the same place on
different Riemann sheets, though in finite-order perturbation theory
the poles are indelibly present on all sheets. To show their absence on
some sheets requires the summation of an infinite set of Feynman
diagrams, Similar considerations apply to certain normal thresholds
(Landshoff, 1963; Olive, 19634).

Another possible infinite-summation effect that should be men-
tioned is the ocourrence of dense acecumulations of singularities on a
line, thatis of natural boundaries of the analytic functions across which
no continuation is possible (Freund & Karplus, 1861).

It is clear also that the continuation argument leaves unsettled
questions relating to which singularities are assumed in the initial
region. A famous problem here is the presence or absence of anomalous
thresholds in two-particle - two-particle scattering amplitudes. How-
ever, some particular arguments can sometimes be given by considering
consigtency requircments. [Polkinghorne (1862d); see also §4.11.]

Discontinuities

Since the Cutkosky formula (§2.9) can be written in a form which
makes no reference to its perturbation-theory origin we are en-
couraged to suppose that it has a more general S-matrix basis. This
we proceed to show in outline, using the picture of the generation of
singularities given above.
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We start with an amplitude in a given region which can be expressed
in terms of & spectral representation containing terms like

f ds 'd‘s‘zf _[_“igs s (4.10.9)

where §, is one of the singularities of 4 and discg 4] the correspond-
ing diseontinuity. As one continues from this region a new singularity,
8;, may arise in A4 from a pinch in (4.10.9) between the pole (s’ —s)~*
and the singularity 8, present in discg [A(s")]. If one encircles this

S,

Fig. 4.10.2. The distortion of C by §,.

singularity the contour C' will be distorted by the singularity 8, in
discg [A], as shown in Fig. 4.10.2. This has the effect of producing an
extra term in the spectral representation

J‘ ‘ s’ discg,[discg [A(s)]]

8 —g

, (4.10.10)

where the numerator in (4.10.10) is the discontinuity in discg [4(s")]
on encircling 8,, and " is a contour following the cut trailed by S,.
Equation (4.10.10}is clearly the extra term in the spectral representa-
tion due to the new singularity 8, and this enables us to make the

identification discs,[4(s)] = discg,{discs [A(s)]], {4.10.11)

a formula which was also given in perturbation theory by Cutkosky
(1960). The merit of (4.10.11} is that it reduces the problem of finding
discontinuities of amplitudes to the problem of finding discontinuities
of unitarity-like integrals. This pmves & simpler question,

It is simple to study discontinuities of one-dimensional integrals.
Suppose in such an integral a singularity 8 is generated by a pinch
between a singularity 8; of a factor 4, in the integrand and a singu-
larity 8, of a factor 4,. If we encircle § then in the integration complex
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plane 8, and 8, describe closed paths which impinge on the contour of
integration. In the eourse of this movement S, and 8, trail their cuts
behind them. The initial and final configurations are llustrated in
Fig. 4.10.3. The difference of these two integrals is an integral joining
8 to §; in whose integrand A4, is replaced by diseg [A,] and A, is
replaced by diseg,[4,]. For multiple integrals this generalises to

discs[ f A;Agdgn] = f discg [4,]discg [4,14Q,, (4.10.12)

the boundary of the region of integtation being given by parts of the
singularity curves 8, and S,.

— S

Xﬁ

* -
‘S?_

Initial

Final

Fig. 4.10.3. The distortion of the contour when & is encirclod.

It is clear from (4.10.12) that, if the discontinuities round §, and &,
are given by the Cutkosky formula, so will be the discontinuity round
8, since then the integral on the right-hand side will contain a mass
sheil d-funetion for each line in the Landau—Cutkosky diagram corre-
sponding to S. Bince the iterative procedure starts with normal thres-
holds whose discontinuities are of Cutkosky type, it will only build
up singularities whose discontinuities are also of this type.

This discussion is clearly an outline one, just as is the perturbation-
theory argument. Neither determines the subtle guestion of the
branches to be chosen for the amplitudes appearing in the Cutkosky
formula. This requires more detailed study, of which a particular
example is given in §4.11.

Further singularities

All the arguments we have given operate by iteration. If there are
other singularities in addition to those we used as our starting-point,
these will also participate in the iteration and so reproduce themselves
in a similar way.
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One such class of singularities which certainly exists is the set
corresponding to unstable particles. As we saw in §4.9, the only
mathematical difference between stable and unstable particles is that
the latter correspond to complexr poles. So by carrying through the
ieration starting with these poles, we see that we get an exactly
similar set of singularities, corresponding to Feynman-like diagrams
in which some or all of the internal lines are associated with complex
mass. The Riemann-sheet propertios of these singularities will differ
from ones just involving stable particles beocause the complex poles
do not oceur on the physical sheet. The variable-force model discussed

= Lk

(o) @

Fig. 4.10.4. (o} Ixamplo of a singularity involving an internal unstable particle.
(b} The singularity that (¢} passes round in the transision to instability of that perticle,

in § 4.9 prediets that in the transition from stability to instability of a
partiele of mass M the unstable particle singularity will pass round the
braneh-point obtained by replacing the M lines by pairs of m lines.
For example the singularity ropresented by the disgram in Fig.
4.10.4a passes round that of Fig. 4.10.45.

Tt is hoped that these, together with of course the second-type
singularities of §2.10, exhaust the set of singularities.

4.11 The triangle singularity in the physical region

Tu the previous section in the attempt to discuss Riemann sheet
properties a new assamption was introduced, to the effect that in
certain limited regions of its variables the amplitude obeys spectral
representations like those known from perturbation theory, It is
elearly highly desirable to be able, if possible, to do away with this
assumption. We shall now see from an example that the physical
unitarity equations, together with the relatively weak analyticity
agsumptions formulated in §4.4, can unambiguously control the
Riemann sheet structure, giving rise to the Cutkosky formulae of
{2.9.10) (Landshoff & Olive, 1966).
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We shall look first at singularities in the physical region, sinee it is
here that the unitarity equations initially operate, and are easiest to
analyse, and shall consider the simplest example, the singularity in the
three-particle - three-particle amplitude whose Landau diagram
takes the form of the triangle I'ig. 4.11.1. The masses will be treated as

Fig. 4.11.1, The Landau disgram under study labelled with the
variables used i the text.

7y = (g )h3)2

1 oy w7 (ay b mB)z

72

T——» 7y

Fig. 4.11.2. The part of aingularity curve Ii for the triangle diagram lying
in the physical region with ¢ fixed.

if unequal in order to keep track in subsequent manipulations (and
show that we can cope with general kinematics) even though we work
with equal-mass unitarity equations. If we fix ¢ at a physical value
{f < 0) the Landaun curve L in the plane of the variables o; and o,
is a hyperbola whose branch lying in the physical region is shown in
Fig. 4.11.2. L touches the o, and ¢, normal thresholds at 4 and B. Tt
is the are 4B which is singular in the physical limit according to the
criteria of perturbation theory (§2.3).

We mentioned in §4.4 that only three of the terms in the three-
particle unitarity equation were expected to generate this singularity
(see (4.4.3)). That no other terms in the equation have this property
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follows from the work of § 4.10, and so we can write the equation in the
form

+ (Ferms regular on I), {4.11.1)

The singularity L is also regenerating; it occurs in each of the firgt
two terms on the right-hand side of (4.11.1) as a direct result of its
oceurring in the amplitudes == appearing within those terms,

We shall examine in detail how the terms in (4.11.1) generate L by
the mechanismg (4.4.3) and use the results to caleulate from {4.11.1}
the discontinuity of E@__—_‘ across I by methods like those of
§84.5 and 4.6, The result is

Disc E@% = on AB,
{4.11.2}
0

on © 4 and B=,

The integral is to be interpreted by the rules (4.2.30). Thus we
confirm the perturbation-theory resuls that E@E is only singular
on AB, where its discontinuity is given by a Cutkosky formula. Note
that by stndying the physieal unitarity formula we have made a
return to first principles and that the result is hence rigorous, making
no use of crossing or hermitian analyticity.

Arnalysis of the integralst

Let us label the lines of the first term on the right-hand side of
(4.11.1} as shown in Fig. 4.11.3. This choice conforms with that in
Fig. 4.11.1. In order to treat the integral by standard methods we
integrate out the §-functions corresponding to each internal line and
to do this we transform to the invariant variables (4.3.16).

Py 7 / P
o © e (g

e

Fig. 4.11.3. The nmménm of the integral under study.

T Alternative methods of analysis, which do not make use of Cayley and Gram
determinants, are given by Landshoff, Olive & Polkinghorne (1966a) and Boyling
(1966).
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In the integral the p’s, being external vectors, are fixed, while the
two ¢’s vary over all possible real values subject to the energy-
momentum conservation and mass shell constraints. So the integration
regioninthe new variables (which is all we need for the present purpose)
can be found from the conditions {4.3.13) for the construction of the
sequence of vectors

Py Pr PetPs s
The first four conditions are physicalregion constraints for the
(— }-amplitude while the last, using the trick {4.3.18), can be written

Has ¢ — Py~ Py D P1—Po=Ps Q3+ Py~ P1—Pe—P3) < 0
or, by (4.3.17),
11 1 1 1
0 oy s o, pdi
2
‘;l ﬂ;’? I’gl zérq 7';1!>0, (4.11.3)
oy b M} 0 43

2

;
Muy,v) = {
’ Hiowy o ovoopg 0 .

[ T R R T R

where pf = M3, ¢f = 4, 8 = (py+ P+ 23)% 9y = (Qy— Py — Pa)?,
v=(py+ga)® and o = {py+ gl Oy = (B +Pe)t  F= (py—pa)?

as indicated in Fig. 4.11.1. The variables »; and v replace g, and ¢, as
integration variables, being integrated over the region {4.11.3).

The singularity of the integrand indicated by (4¢.4.30) is the pole
8 = uy~pf = 0. In this case the conditions for singularity reduce to
eM

=——=1{ A1.4

M=—=0, (4.11.4)

with %} = pf. This may be regarded as an end-point singularity of the
#y integration when the v integration has been carried out. From

(4.11.3), .

=2
o o2

where M7 is the (2,7) algebraic minor of the Cayley determinant M
{with rows and columns numbered 0,1, ..., 5 as indicated in (4.3.17)).
Jacobi’s theorem (4.3.14) takes the form

MIMF—MIME = M¥M. {4.11.5)

Putting i = j = 3 and k =1= 5, we sec that (4.11.4) implies that
either M3} = 0 or M3 = 0. The first possibility is the one of interest here
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since it involves u, (the other yields a second-type singularity (see
§2.10 and also (4.3.20)). It is

R(p3, gy = 0, (4.11.6)
where o1 11|
[ L 0 oy o0 43 |
RBluy p) =Mi= 1 o 0 ¢ uy| (4.11.7)
1 oa, &0 @
1o g g0

By (4.3.17), (4.11.6) can be written in the form G(—g¢qg,qy,q,) = 0,
which is indeed the Landau equation for L (see (2.3.6)).

We caleulate the discontinuity of the integral in Fig. 4.11.3, arising
from this mechanism of generating the triangle singularity, by fixing
t and taking o, and &, around L on a path lying close to L in a plane
normal to L in the four-dimensional complex {7, o,)-space. Thus on
the path the displacement of (o}, &;) from L is given by

& . J
doy = dn |50, B3], doy = dy |5 RUS)|, (@118)

with the derivatives evaluated on L. It may readily be ascertained
that a real positive dz corresponds to a displacement along the inward
normal to L. For a variation in u,, and in o, and o, of the type (4.11.8),

R = Qdy + [a—ilf{ul, ”’%)LM, du, (4.11.9)
¢ 2 é 2
where Q= [é;_;ff(ﬂi #E)-l + [3?“2 Ryi, #3)] -
The displacement of the integration end-point from %, = u? is given
by dB =0, so it is
du, = B, (4.11.10)
In terms of cofactors of the determinaﬁt (4.11.7)
OR[6u, = 2R3,
and Jacobi’s identity (4.11.5) applied to £ on L gives
(R})? = RiR}

Hence du,/dy changes sign when either R2 or R} vanishes. The latter
possibility does not oceur on the branch of L we are discussing (since
t < 0); the former oceurs at the normal threshold Gy = (fhy+ p1g)%, that
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is at B in Fig. (4.11.2). So du,/d7 takes different signs on the arcs c0A B
and Boo in the figure, and it is easy to see that it is positive on the
former and negative on the latter, by calculating it at 4 using the fact
that I always touches the o, normal threshold which ifself increases
with my. Using Jacobi’s theorem, and the fact that Cayley determi-
nants of real external vectors are positive in the physical region, it
follows that outside L in the real oy, o, plane, 3 < 0 when u, = pf,
50 that the point u, = ¥ les inside the integration region only for
points inside L. Hence the orientation of the contour in the u,-plane
for variations in 7 is as shown in Fig. 4.11.4.

Difference
hetween
dy == — 4§ | dp =& +dejdy = F—de) dp =& e
du, }
wAB (E‘};_>0) SV (R g WY . @
du -0
B (_dr;<) .x—)——g..\:f_;_x_f:\_a,__ _@

Fig. 4.11.4. Table representing the orientation of the u-integration contour in the
integral in Fig. 4.11.3 with respeet to the pole u; = m}. The column dy = —§ corre-
sponds to points {0y, &, outside L, the next two columms correspond $o continuadions
to points inside L by paths with Ty > 0, Im 4 < 0 respectively.

1t follows from thelast column that the discontinuity in the variable
7 of the integral, across I, is obtained by replacing the factor with the
pole by the residue of that pole times the factor + 27mi §(s; — p?), with
the sign corresponding to arcs Boo and cod B respectively. Trans.
forming back from the integration over invariants to the loop integra-
tion we see that the answer can be written according to the rules

(4.2.30) as
Dise, @3& -

with + on wwdB and — on Boo, The subscript 9 is to emphasgise that
the discontinuity is taken in the variable . This result shows that the
integral is singular all round L.

Similarly, we can analyse the process (4.4.3b) and find that

o, T+ P = % K (4.11.115)

- (4.11.11a)
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with + on ABoo and — on wd. In obtaining (4.11.11a, b) we have
ignored the regeneration effect mentioned earlier, whereby the
integrals are singular on I because == are. We take account of
this in the final stage of the argument.

The third term on the right-hand side of (4.11.1},

TICE

is more difficult to analyse since the process (4.4.3¢) involves two
singularities. It can be shown that this integral is singular only on the
arcs ood and Boo, and furthermore that its discontinuity is given by
(see Landshoff & Olive, 1966)

- T -
. +1 © A4
-1 B

(4.11.11¢)

Comparison of the unitarity terms on either side of L

Contrary to what one might expect at first sight, the two versions of
the unitarity equation (4.11.1} valid inside and outside L are inde-
pendent equations. As we shall now see, thisis because the terms on the
right-hand side of the two eqguations are not always continuations of
themselves. The comparison of the two equations will eventually
enable us to calculate the discontinuity of =+ ¥ across L, but first
we must compare each individual term of (4.11.1).

So far we do not know whether or not 5@'_—'_ is singular on the
whole of L, so that until we prove otherwise we shall suppose that all of
L is singular. According to our analyticity assumption there is to be
some way of continuing around L to analytically relate ﬁ as
defined on either side. Since the variable 3 of (4.11.8), being measured
along the inward normal, agrees in sense with o, and o, at 4 and B
respectively, the argument of §4.4 indicates that L must have an
7+ ie distortion (see T'ig. 4.11.5) since, by assumption, the ¢, and o,
normal thresholds have o, +4¢ and o,-ie distortions respectively.
Similarly {or just by complex conjugation) we would obiain an
(p—i¢) rule for the continuation linking the physical @E
amplitude.

‘When the first term on the right-hand side of {4.11.1) is evaluated
inside L (the region 7 > 0), the label (—) on the right-hand bubble
indicates that the integration eontour in the w,-plane is depressed
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below the pole u, = mi. From Fig. 4.11.4 we see that such a contour
can only be obt&:ned by continuing the integral defined outside
Lin < 0) with an (y + i) path when the arc Boo is traversed and with
an (7 —€) path when the arc co4 Bis traversed. We say that distortions
77— i€ and 1) + i€ are ‘natural” on c0A B and Bewo respectively. ‘Natural
distortions’ for the continuation of the other two terms can also be
determined {see La,ncishoff & Olive, 1966) and are tabulated in
Fig. 4.11.6. *

So far we have mentioned only the generation of the triangle
singularity I by the poles. We must also remember that 7 also occurs
in each of the first two terms on the right-hand side of (£.11.1) azs a
result of its oceurrence within the amplitudes “UE appearing in
those terms. Accordingly, in the eontinuation of either of $hese terms
across L the amplitudes within the integrals must be continued along
thie same path as the term as a whole,

Calculation of the discontinuity in 5& across L

We now have enough information to continue the unitarity equation
valid outside L into the region inside L. We shall follow an {1 —1i€)

path, so that EE:E is continued into 3’; while Z—]@E is

C i
omplex 7 plane (r-+4%) path

——————— N .
(=== NS 0
\ {y--1c) path

Fig. 4.11.5, Paths (714} connecting real puints outside L to those inside L.

continued into a new region (i) separated from the physical {+)
boundary-value by the cut whose discontinuity we seek (sce Fig.

4.11.5). This new equation will relate XE and gf

contradistinction to the physical unitarity equ‘xt:on operating inside

L, which relates =(+ = an E@E

We first suppose that the arc Boo is traversed. Fig. 4.11.6 shows that
the (77— ie} distortion is not the natural one for any of the terms on
the right-hand side of (4.11.1). We put this right by using the dis-

18 ia
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continuity formulae (4.11.11}, so finding for the continuation of
{4.11.1)

- [ 2 )

— [0

—e=|

e

+{terms regular on L), {411.12)
Using the two-particle unitarity equation

G e = C =C=NTRIR)

we find that the seeond, fourth and sixth terms on the right-hand side
of (4.11.12) cancel. Subtracting the result from the version of (4.11.1)
valid inside L, and rearranging, we have

(ZCE - CE)(=-=c=)- » e

‘Postmultiplying’ this equation by the expression

e € (4.11.15)

and again using (4.11.13) we obtain

EG)E . E@E - 0. (4.11.16)

Hence the are Boo is not a singularity of E@E

The {§ —ie) continuation across the arc 4.8 is unnatural only for the
second term on the right-hand side of (4.11.1) (according to Fig.
4.11.6), and so we find, using (411,115}

SOSEOE e 0 AVaAN o0

+{Terms regnlac on L),

Subtracting this from (4.11.1) and rearranging, we have

(- =) o
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Postmultiplying by expression (4.11.15) and using (4.11.13) as before,
we obtain finally

SOSEO-SIVAN

which iz the formula predicted by Cutkosky.
Repetition of the procedure on ood yields (4.11.14) and hence
{4.11.16), 80 that our final result van indeed be expressed in the form

(4.11.2). Corresponding results for i}; can be found by con-

sidering an (- i€) path of continuation instead.

Arcof L

Integeal A AB Bo

ﬁ} n—ie § - fe - fe
7 e ok e - €
% i Either 7+ie

Fig. 4.11.6. Table of paths of continuation from points outside L to points inside L
giving the ‘natural arrangement’ ol contours.

The analysis given applies only when (4.11.1) iz valid, and in
particular when o, and o, are each less than (3x)% so that at higher
energies more complicated equations must be studied. We could,
however, extend the result by analytic eontinuation of the above
formulae to higher energies. That the two mothods should agree
would be yet another consistency requirement.

That the amplitude was singular only on 4B was a special case of a
general eriterion for the singularity of Landau curves in the physical
region, the ‘positive-x criterion’ known from perturbation theory.
It is possible that the method above can be extended to prove this
regult in general, together with the associated discontinuity formulae.{
If so this would be important for the following three reasons.

+ Note added in preof. Further exsmples have been established by Bloxham {1966)
and Landshoff, Olive & Polkinghorne (19660).

18-z
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(o) 1t would show that the singularity structure in the physical
regions of the amplitudes is uniquely determined by nnitarity and the
requirement that the amplitudes be boundary values of analytic
funetions.

{6y Tt means that the amplitudes are only singular when there can
be a physical intermediate scattering process. Sinco the positive-a
criterion corresponds to the requirement that the intermediate
particles move forward in time (see §2.5}, it expresses an S-matrix
notion of causality, that signals cannot be received before transmission,

{¢} The physical region singularities would have the ‘hierarchical
property —any given singularity curve stops being singular only
when one (or more) of the ’s vanishes. Then the curve touches the
lower-order curve corresponding to the scattering process in which
one {or more) less particles participate (see §2.6).

Anomalous thresholds
By the arguments of §4.10, the two-particle unitarity integral has

the singularity

Thus by (4.11.13) either Z(FI™ or “J-L- possesses the singu-
larity, but the equation does not tell us which, We now outline how the

{+a) eriterion known in perturbation theory for the appearance of
this ‘anomalous threshold’ on the physical sheet (see §2.3) follows
from our previous results,

The factorisation in £ and &,

o= - 7

means that singularities of TX{*IT imply ones in E(«D_:_ But we
know the singular behaviour of the triangle singularity in the physieal
region of =(+ = and can determine it elsewhere by tracing paths
along the attached complex surfaces. In particular the methods of
§2.3 imply that for (2u)% > ¢ > 0 the singular arc A8 of L in the
(7, 7a)-plane is like that shown in Yig. 2.3.3a (though the variables
are different the picture is the same). Looking at the mass shell values
of t and ¢, we find the desired result.

To see how the presence of anomalous thresholds affects the deriva-
tion of hermitian analyticity in §4.6 we must consider a theory with
particles of different masses. Let particles of mass gy, m and M
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correspond to straight, dotted and dashed lines respectively and
suppose that the g+ p system is coupled to the lighter m +4-m system
(which is the only one of lower mass). To prove hermitian analyticity
for —1¥1 by means of the pole term (4.6.11), as before, we must
compare the unitarity equations for iag valid in the regions
3105 < (2m)2 and 8ypys > (2pY% These will have more intermediate
states than (4.6.12) and (4.6.21) and we shall not write them down.

R,

51235 4

(24 :

(2 3

i

/’/

, N Sizs = Sy
£ (Mim

Fig, 4.11."7. 'This refers to the four-particle — four-particle amplitude labelled as in
equation {4.8,k1). The parabola bounds the physical region and the ellipse is the
Landaa carve for the trisngle diagram in Fig. 4.11.8,

The argument goes as before until we consider the path 1" from R
to BY to B! and how it can be distorted to lie in the mass shell gection
Sy5 = 849 = #*. Instead of the situation in Fig. 4.6.4 we have that
in Fig. 4.11.7.

The singular arc 4B is found by the methods previousty described
and corresponds to the Landau diagrams in Iig. 4,11.8. If M is such
that —XFr~ has the anomalous threshold (YT on the
physical shoet then 4B will intersect )5, = 8474 = 2 at ¢ as shown.t

T Because of the equal masses this could net happen to any corresponding arc
ingerted into Fig. 4.6.4.
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Asthe path T is distorted to the mass-shell section it must not cut any
singular curves and so it will be ‘caught up’ and stretched by the arc
AB s0 that in the mass shell section it must encircle the singularity at
¢ as well ag the normal thresholds (2m)? and (243 In terms of the
middle bubble of (4.6.11) this means that the anomalous threshold
must be encircled as well as the normal thresholds in order to reach the
hermitian analytic boundary value.

w
e

W
L3 B

Fig. 4.11.8. Triangle diagrams whose Landau curves correspond
to the ellipse in Fig. 4.11.7.

To prove extended unitarity for —{¥;~ in the range
(2p)? > & > (2m)?

the unitarity equation for $ in the eorresponding range

of 8495 would also have to be eonsidered.

Boyling (196456) has presented these arguments in greater detail, and
ghown by majorisation technigues that no essentially new difficulties
arise from higher Landau curves.
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INDEX

Where o topic is discussed on several consecutive pages, reference s
wnade only to the first of those poges

acnode graph, 104

acnodes, 106

AFS cut, see Regge eut

A-makrix, 195

snalytic completion, 96

anslyticity: postulated form, 204; rela-
tion to causality, 3, 215

anomalous threshold, 58, 210, 276

antiparticles, 13, 238

basic postulptes, 3; see also analyticity,
comnecledness-struciice, Lorents in-
variance, superposition principle, unit-
anty

BetheSalpeter oquation, 27, 132

boundary value: see f¢ prescription

Breit~Wigner formula, 36, 248

bubble notation: J-mabrix elements,
196 ; S.maedrix elerments, 188

Carlson’s theorem, 126

eausality, 276; see also anslylicity

Cayley determinant, 202, 269

centre.of-mass, 13

C.funetion, 33

cluster docomposition: see connectedness
structire

ecompleteness relation, 185, 187

complox engular momentam, 24, 123

sonnectedness-gtructure, 190, 193

construction of rmomoenta from invariants,
108

eritical intersection, 91

cross-energy, 201

crossing, 13, 241, 246

cross-goction, §

crunods, 102, 106

cusp mechanism (multiple pinch), 47

cuaps, 106

Cuatkosky formuls, 112, 263, 275

cuts in complex {-piane: see Rogge cuts

D.fanction, 33

dingrammatic notation: see bubble nota-
tion

diffraction peak, 127, 16%

dimensionality of space-time, offects of,
1186, 117, 121, 200

diseontinuity: of simple integral, 43; of
Foynman integral, 110; of unitarity
integral, 263, 271

dise theorern, 96

dispersion Telation: partial-wave, 22, 86;
single variable, 17, 80, 84; double, 20,
80, 90, 170

d-line, 141

dual diagram, 60

effsctive intersvotion: sce eritical inter-
seetion

effective range, 37

electric cireuis analogy, 55, 81

electromagnetic: intoractions, 3; form
faetor, 37

snergy-momentum conservation,
194

end-point: eontributions to asympiotio
behavioar, 133, 141; singularities, 40

esgentisl sinpularity m Regge plane: see
Gribov—Pomeranchak phenomenor

oxtended unitarity, 222

188,

Foynman diagram or graph, 28

Feoynman mtegral, 29; asymptotic be-
hawviour, 132, 171; discoutinuity, 110;
represobiations, 51

Feaynmen identity, 31

fived-angle asymptotic behaviour, 146

form factor, 37, 81; physical region
singularitios, 89

Froissart bound, 25

Froigsart—Griboy formula, 127

goneralized unitarity, 113; see also exten-
ded unitarity end Cutkosky formuls

generation of singularities, 259

Gram determmant, 118, 199

Gribov-Porperanchuk phenomenon, 129,
158

hermitian analyticity, 17, 19, 209, 223,
276

hierarchieal principle, 276

high-energy: behaviour,
28

126; bounds,

ie-prescription, 16, 65, 207, 272; for
normsl thresholds, 207

isospin, 9

itersted cross diagromm, 159

daechi identity, 200
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kinematical singularitios, 205; see also
dimensionality of space
K-matrix, 231

ladder diagrams, 132, 135, 146, 153

Laadae-Cutlosky diagram, 259

Lendan eqguations, 53, 260

leading singularities, 54

Iinearization, 140, 146

loop momenta, 29, 195

Lorontz: invariance, 7, 196; invariants,
197

lower-order singularities, 54

majorization, 81

Mandelstam diagram, 14; variables g, ¢,
%, T

Meandelstam reprosentation: see disper-
sion relations, double

Mellirs transform, 151, 180

momentum eigenstates, §, 186

momentam transfer, 201

multiparticle amplitndes: asymptotic
behaviour, 176; choice of variables,
201; dispersion relations, 86

natural distortion, 278

non-Landauian: see second iype

non.planar diagram, 138, 151, 158, 184

normal thresheld singulavity, 12, 57, 67,
205; sddition of discontinuities, 235;
complex, 250, 255; critical intersec-
tioms, 91 discontinuities, 17, 18, 218,
220, 232; e prescription, 207; nature
of, 57, 230; structure, 209, 244

optical theorem, 26

partial wave smplitudes, 21

partial wave dispersion relaticns, 232, 85

parity, 198

physical limit: see ¢ prescription

physical region, 13, 200, 203; singulari-
ties, 87, 89, 205, 211, 220, 267; see also
ie preseription

physical sheet, 1F, 16, 87, 80, 245

pinch contribution to asymptotic be-
havicur, 133, 158

pinch, muléiple, 47

pinel: singularities, 41; see also super
pinch

planar diagrams, 138, 164

pole, single particle, 12, 31, 211, 245,
263; complex, 201; discontinuity of,
216; shedow, 251; twofold, 220, 224

poles, higher order, 217, 253

Pomeranchuk pole, 126

positive a’s, 72, 88, 275

INDEX

production amplitudes, see multipurticle
amplitudes

reality property, 17, 66

Rogge cuts, fixed, 149; moving, 163

Reogge poles, 25, 123; in perturbation
theory, 136, 146; threshold behevicur,
130, 155; twofold, 177

Reggeisation, 172

region I, 80

resonance, 36, 248

S-matrix: definition and uniterity prop-
erty, 6, 185; properties, 3

sealing, 137, 139; disconnected, 143;
independent seta, 144

seattering smplitude, 8; see 4 -madrix

searchlines, 63

second typo singularity, 116; pure and
mixod, 122

signature of Regge poles, 120

singular configuration, 141

singularities: nature of, 42, 55, 230; of
mailtiple integrals, 47; of simple
integrals, 39

singularity curves, ie prescription, 208

gingutarity suriace, 45; degenerascy of,
102, 109; division into singular and
non-singular parts, 46, 69, 91, 93

spectral functions, 21

spin, % and statistics, 186

sguare graph, 73; continuation in ex-
tornal masses, 99

square with diagonal graph, 104

subenergy variable, 201; discontinunity in,
232

subtractions, 23, 170; constanis, 24

super pinch, 121

superposition principle, 6, 185

Symanszik region: see region R,

gymmetry of matrix elements, 10

TOP theorem, 15, 243

t-paths; see d-lines

three particle thresholds, 231, 233

time duration of interaction, 214

tirne reversal invariance, 10

trajoctory function, 123, 147, 149

iriangle graph, b7; discontinuily, Fi4,
275; singularity, 206, 266

wnitariby, 10, 186, 189; elastie, 11, 22;
eguations, 192; integrals, 359, 269; of
the S-matzix and its refation to proba-
bility conservation, 6; relation to
singularity strueture, 11, 250; an-
physical, 224

unphysical sheet, 12, 249, 252



INDEX

unstable particles, 247; araplitudes, 254;
singularities, 253, 266

variable foree model, 248
vertex function; seg form factor
virtual singalarities, 95

Watson-Sommerfeld  transform,
123

woolly ausp, 250

Wa reglon: see region R,

zaro-mass particles, 3



