Problem 21

Employ the Cauchy integral formula to calculate the integral
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Check your result by direct (real) integration.

Solution

Real variable

Let’s start with ordinary integration, assuming that = € R:
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Complex variable

We are supposed to solve
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which can be done by using Cauchy integral formula while having
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The first integral is along line on real axis and the second integral is along an
arc in complex plane from R back to —R, where R > 1, as in the following
picture.




Now let’s rename x — z
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and such function thus has 2 poles: zp =4 and z{ = —i.

We can use
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where 29 =i and g(z) = —.
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From this we know, that equation (4) must be equal to m so we may write
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The next step we will be to show that integral ﬁ, Z%_H dz =0as R — oo.
Let’s use triangle inequality
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Length of « is easy to be seen, it is half length of circumference 27 R, so ||
is 7R. Then we must find max of our function f(z) and we do that by using
triangle inequality again.
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Now we can extend R to oo
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Recalling eqaution (14):
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as it was shown in direct (real) case (2).
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