Quantum Field Theory 3

1.1 Ward-Takahashi identities

Symmetries are important in the study of physical theories for various
reasons. First of all, they lead to conserved quantities (charges and
currents) due to Noether theorem. Bur more importantly, they give
rise to relations between various Green’s functions and, thus, between
various transition amplitudes (i.e., S-matrix elements)

As an example let us consider the generating functional Z[J] for scalar
theory with a field multiplet ¢ = (¢, ..., ¢"), i.e.

2171 = N [ Doexpste ), (L.1)

where

N = ! )
[ Dpexp (iS [¢])

Do = D' ... D", (1.2)
and
ST g1 = S[el + / A d (1) o () . (13)

Since ¢ is a integration variable we can relabel it to ¢” and write

[peexpiste ) = [ Doepiste,n.  wd

Consider first a continuous transformation ¢(x) — @(x) + &(x, ¢)
where ¢ is considered to be infinitesimal. Strategy is to choose the
new integration variable ¢’ as ¢ + £. Under such a transformation the
integration measure transforms as

Dy’ = DpdetM, (1.5)
where
o@" (x) b 08 (x, )
M (x,y) = ———= = §P6™W (x—y) + =" (16)
oe” () op” ()
To rewrite (1.5) we can use the identity
detA = exp (TrlogA) , (1.7)

which is valid for any matrix A. It should be stressed that in our case
“Tr” denotes trace over both discrete indices a, b and integration trace
(or functional trace) over continuous indices x, y, i.e. (a,x) and (b, y)
are considered as matrix indices. For A =1+ ¢ with |g| << 1 we get

logA =~ g, (1.8)
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and so we can write

Dy’ = DpdetM ~ D (1 + 6J),

I3 (x,sO))
o = Tr[=——]. 1.9
r( 5 (v) (19
In addition, we also have
Sle’] = Sle+£] =~ S[ep] + ¢S, (1.10)

where §:5 denotes the part which is linear in ¢. With the help of
previous results we can write (1.4) up to first order in £ as

/ Dy exp (iS [, J])

z/2)<p(1+51)exp(i5[<p]+i5§S+i d*xJe+i d4xJ§)

Q

/Dgoexp(i5[¢]+i/d4xﬁp) (1+6J+i6§S+i d4xJ<p)

/1)<p exp (iS [@, J]) (1+6J+i6§S+i d4nga) , (1.11)
which after subtraction gives
J
<6J+i6§S+i d4x1a§“> =0, (1.12)
where
-y = N/Dgo---exp (iS[<p] + i/ d4xJ<p). (1.13)

We stress that (1.12) was derived using only transformation properties
of the functional integral measure. In particular, we did not use any
symmetry of the theory as yet. When & does not depend on ¢ then
6J = 0 and (1.13) represents the generating functional for the so-called
Schwinger—-Dyson equations that will be discussed in more detail in
Chapter 1.3.

Particularly important is the situation when ¢ corresponds to infinites-
imal symmetry transformation under which the action functional §
is invariant. In such a case (1.12) is the generating functional for the
so-called Ward-Takahashi (or simply Ward) identities. By expanding
(1.12) in powers of J, we get an infinite hierarchy of relations among
the Green functions. To illustrate the inner workings of this, let us
consider a theory of n scalar fields ¢%, a =1, 2, ...n that are described
with action

1 1
S = /d4x [EE)H(paB”goa - Engoagoa — A(p%M?]|, (1.14)

(summation over repeated indices is implicitly assumed). This action
is invariant under the global O(n) symmetry, i.e. under the transfor-
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mation b
a a
¢ = ¢’ = (ewATAy)) = (ewATA) (pb , (1.15)

or infinitesimally
ab
¢ > ¢ = % + wga (TA) ¢, (1.16)

Here T4 are generators of the group O (n) (i.e., real anti-symmetric
matrices), with A = 1,2, ... %n (n—1) and wx are constant group
parameters.

Similarly as in Noether’s theorem we now promote w4 to be space-time
dependent functions and consider the “localized” transformations

A b
P00 o ) 2 ) +ea @ (TY) e 1)
—
Ew‘”’(x)

Here clearly ¢4 (x, @) = 0w’ (x)¢”. Eq. (1.17) leads to
[ atslor?) e
- - / dx w0 (956"

= /d4xa) [ 17 é)ﬂtp - whﬁﬂgp“)], (1.18)

S¢S

(JP)y

where on the second line integration by parts was employed and other
terms vanished due to anti-symmetry of w®. We can recognize that
the currents (J?),, are conventional Noether’s currents but in this case
they do not generally satisfy continuity equations because we did not
employ in the process equations of motion for ¢“. The corresponding
matrix M (x,y) now reads

M (x,y) = (5“b + Wb (x)) 5@ (x—y) . (1.19)
The Jacobian is thus independent of ¢. In addition ¢6J = 0, since w“? (x)
is anti-symmetric (this is compatible with the fact that by going from

¢ to ¢’ we perform at each point x* the O(n) transformation, which
has Jacobian equal to 1).

Our identity (1.12) now reads

0 _< /d4xwabaﬂ a ”‘p /d4x] wab b>
/d4xw ( agr el — Py ) - Jb 4 gt a> (1.20)

Since this must be true for any infinitesimal w®” (x) we finally get

3
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that
Ay (@0 eb — QPaH ) — TP + JPy? ! =0. (1.21)
(9 ) )

Relations (1.20) and (1.21) as known as Ward-Takahashi identities for
O(n) global symmetry. These generating relations can now serve as
a starting point for finding various constraints among Green func-
tions by simply expanding (1.20) or (1.21) in J¢ and comparing coeffi-
cients.

For practical purposes it is often more convenient to rephrase (1.21)
in the language of connected Green functions. By using the fact that the
generating functional for connected Green functions W[J] = —ilog Z[J],
we have

S*WIJ]
6J% (x) 6J° (y)

(g™ (x) " ()Y €

i () " ()Y = i () (" (), (1.22)

where
| 0Z ow
(¢ (x))! = _%Ma[é]) = Ma[({cl). (1.23)
This allows to write
S ain by WL OW [J] W [J]
K @ ON" = s s o) T ety (Y
which implies that
O = S @0 By
oW [J] ,,0W [J]
o " o (1.25)
With this result we can equivalently rewrite (1.20) as
_d S*WJ] W], oWIJ]
T TN F s T T BT R (x)] e
ap W] _
+ I i (aeb) = 0. (1.26)

By expanding W [J] in powers of J¢ this becomes an infinite tower of
relations among the connected Green’s functions of the theory.

Apart from the differential version of Ward—-Takahashi identities (1.21)
(or equivalently (1.26)), one can also formulate the integral version that
is often easier to use but, at the same time, it is less general. The latter
can be obtained by considering v’ to be independent of x*. In such a
case then ¢S is automatically zero (due to presumed symmetry) and
from Eq. (1.20) we get

0 = / dix w®™ (gt — JP ey, (1.27)
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which implies that
0 = / dx [79 () () = I (x) ¢ ]

4 |a WL bO‘W[J]
/d [J (x) e | (1.28)

Eq. (1.28) represents the master equation from which we can derive

relations between various connected Green functions. For instance, we

can take functional derivative of (1.28) with respect to J¢ to obtain
SWLIL e WL

0 = g% -5
8J° (y) 574 (y)

i a S W(J]
+ / ) S e o)

4 b FWIJI
/dx] ()m (129)

If we now set J = 0 we get

54 (e” (MHC = (e (»HE = 0. (1.30)

However, this a trivial identity, since if we take a = ¢ # b we get
(¢? ())€ =0 for any b. We have already seen that this relation holds
also when no multiplet is present (i.e., n = 1) in ¢* theory a it is a simple
consequence of Wick’s theorem and Gell-Mann-Low formula.

Less trivial identity is obtained when we take a second variation of
Eq. (1.28). In this case we can write

6% Eq. (1.28)
oJ¢ (y1) 674 (y2)|,

B oW oW
54 (yp) | 5P (1) P8I ()

4 (SZ—W _ 4 —_—
+ [ a0 iy - [ 40 g (y1>]1 o
_ew
“C 54 (y2) 67 (v1)
o ew
8% (y2) 6J¢ (31) 1520

. 5w
—_ ()hc d—
J=0 0J4 (y2) 6J4 (y1)
52w B
4679 (y2) 67 (1) |0

J=0

+ Oqa

which implies
Sac(e® (12) " (VY = Spee? (v2) ¢ (y1))€
+ Saale” (32) 0° (V1))C = Spale® (v2) ¢ (11))© = 0. (1.31)

If we now take, for example, a = ¢ # d # b (which requires n > 3) we
get
! () ¢” () = 0. (1.32)
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Note that the Noether currents are not
conserved as we did not employed on
shell solutions.

This shows that 2-point connected Green'’s functions equal zero when-
ever two indices are different (as coordinates yi, y, are arbitrary).
Similarly for a = ¢ # d = b we get

(@ (32) ¢ (N = (@ (v2) ¢“ (1) =0,
& (7 (y2) ¢? (N = (¢ () ¢ ()€, (1.33)

which holds for all d # a.

One can derive yet another form of Ward-Takahashi identities that is
often used. To this end we start with the m-point full Green function

(QIT [@rix, (¥1) - - Prk, (vm) ] 1)
- N / ]_[ Deior (1) - gr, () S (134
By relabeling ¢; to ¢! we can rewrite (1.34) equivalently as
Eq. (1.34) = N / ]_[ D}y (1) ... @ (xm) ¥, (1.35)

Let ¢, (x) = ¢, (x) + ¢y (x), where 6¢;, (x) = €a(x)(Ta)ab g}, (x). With
this (1.34) can equivalently be written as

N/l%[i)«pl'-detM [t,o;q(x1)+6<p;q(x1)] X+

Lo X [(p;cm (Xm) +5‘p;cm (Xm)] eiS[tp’+6<p/]

n
N/l_li)wéw;](xl)...%m (xp) €S1¢']

+

m n
NZ/ [ [D¢i6h,01) - 00k, (x1) - oy (i) €519
=1 i

+

Vi [ty [ T] D626 0060, 1), (i) 5197

On the third line we used the fact that | det M| = 1 for usual symmetries
like SO (n) or SU(n). If we now employ the fact that

6L(p,09)() = ea(n)FuIi(¥), (1.36)

where J% are Noether currents and subtract the two expressions we
obtain (after removing primes)

25()’ —x)(TA)p QT [@rk, (x1) - .- @rp(x1) - - . GHkyy (Xm) | 1Q)
=1

+ (0, QIT [J4 (M@ (x1) - - . @rk, (xm) | 1Q) = 0. (1.37)

This is the type of Ward-Takahashi identity, which is used, for instance,
in Quantum Electrodynamics, gauge theories or theory of spontaneous
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1.2 Higher loop diagrams and dimensional
regularization

Let us recall that when computing loop diagrams we often encounter
infinities that are due to integration over large values of momenta. Such
divergences are known as ultra-violet (or shortly UV) divergences as
they are related to short-distance behavior (corresponding De Broglie
wavelength for particles with high momenta is short).

Let us look on a typical example that is provided by self-energy di-
agram in ¢* theory. To this end we recall that the full 2-point Green
function can be represented diagrammatically via Dyson equation

8 £ 2, £ B
- o
2 P P,
+ + -+, (1.38)

where the 1PI self-energy corresponds to sum of all Feynman diagrams
with external lines (that are cut), and cannot be separated in the two
pieces by cutting a single internal line (propagator), i.e.

@E_iz(l,z): O, & 8 3+ 0. (139)

Note that (1.38) can be formally summed as a geometrical series lead-
ing to

. i
(~Z(p)) 55— +
p=—mj+ie

i

+
2_ 2 4 2 _ 2
pT—my+ie  pTf—mg+ie

(1.38)

i
= . 1.40
p?—m}— X (p?) +ie (1.40)

Note on Dyson equation for 2-point Green function

Dyson equation (1.40) can be generalized also to fermionic Green
function. To that end one needs to take into account a matrix struc-
ture of the propagator. To find an appropriate generalization for
matrix base propagators, let us consider two non-singular matrices
(or operators) A and 1B, then the following relation holds:

1 1 1
Al " ApATB-B =1- 7258
This implies
1 _ -1 1 -1
A+B A A+]B]BA

A - AT'BA! + AT'BAT'BAT! + ...,
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where the second line follows from the first one by applying the
first line recursively.

In our case the one-loop contribution to = (p?) comes from the diagram

>@< (i.e., tadpole diagram) so that

, & Ag / d*q i
—ix(p? = —]— _ . 1.41
[==(7)] 2. @2n*q?-mj+ie (1.41)

This integral is clearly quadratically divergent.

In order to deal with such type of divergent integrals we need to
regularize them and hope that the observable quantities will be finite
when the regulator is removed at the end of calculation. Historically
there was a number of regulating methods, which are part of broader
context known as renormalization problem. We will now go through
some of the regulating methods used.

Pauli-Villars regularization

Until recently, this was one of the most widely used regularization
schemes. One assumes an extra fictitious massive particle, which mod-
ifies the propagator in the following way

i i i

-_ _
p?—m?+ie p2—m?+ie p2—-M? tie

—_———
original field ¢ original field ¢ fictitious field ¢,
i(m? - M?+1n.)
= . — ., (142
(p? — m? +ie€) (p? — M? £ ie)
where 7, = 0 and 57— = —2ie. The relative minus sign in the propagator

signifies that the new particle is a ghost particle. Presence of ghosts
(and hence negative norm states) typically signals that the unitarity of
theory is explicitly broken.

Note on ghost states

Ghost particles correspond to states of negative norm. In this case

d*g i
(2n)* 4> —M?* +ie !

(62 () 62 (1)) = — /

Both mg and Ay are parameters in La-
grangian, and the symmetry factor of the
diagram is 2.
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is negative [see, e.g., Eq. (1.48)]. On the other hand we can write

($2(x) 62 (1) = [Ze*womq} A
q P
= e (qlp)
P4 —
6pq<‘1|q>

D ala)-
q

Since the total sum must be negative, there must exist negative
norm states in the sum over g.

The modified propagator (1.42) now behaves as 1/¢* which is typi-
cally enough to make all Feynman diagrams finite. At the end of the
calculations we take the limit M? — oo so that the unphysical particle
decouples from the theory. This regularization scheme is particularly
convenient in QED where it preserves local gauge invariance and
hence also corresponding Ward identities.

Momentum cutoff regularization

Since the divergence is produced by the UV momentum values, the
simplest regularization strategy is to impose a hard cutoff. This is
easiest done in the Euclidean regime where the 4-momentum gets
Euclidean rather than Minkowski metric (see Dimensional regulariza-
tion for further explanation). In such a case one does not integrate the
ensuing Euclidean gg over the full momentum range but only up to
a cutoff g2 < A?. For instance, in case of tadpole diagram we should
compute the integral

Ao diqr 1 @/ dqrp 1

—_—
2 Jre (27)4 q% +m% 2

2 <A\2 (271')4 qZE +m(2)

A g
F(Z) 2n)4 r2 4+ m%

= or’m 2/A/’"° dz_ 2
0 (2m)* 22+1

- 2 _ 2
- 32ﬂ2 A% - ndin(1+A%/m3)| . (143)
Here we see explicitly the quadratic divergence with sub-dominant
logarithmic divergence.

Apart from the fact that cutoff regularization is not Lorentz invariant it
also breaks gauge invariance. In fact, in the context of quantum electro-
dynamics (QED) we will see later how explicitly cutoff regularization
breaks gauge invariance.
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Lattice regularization

This is the most widely used regularization scheme in QCD for non-
perturbative calculations. Here it is assumed that space-time is actually
a set of discrete points arranged in the form of hyper-cubical array.
The lattice spacing serves as the natural cutoff for space-time (and
momentum) integrals. For QCD the lattice is gauge invariant, but
Lorentz invariance is manifestly broken. The great advantage is that
with numerical Monte-Carlo techniques, one can extract qualitative
(and sometimes even quantitative) information from QCD. Disadvan-
tage is that the lattice is defined in Euclidean space, which means that
the computations are limited to calculations of only static properties
of QCD (e.g. masses of particles/resonance etc.). The lattice also has
difficulty describing Minkowski space quantities, such as scattering
amplitudes.

Dimensional regularization

Dimensional regularization is the most often used type of regulariza-
tion in present day. It involves generalizing the action (in functional
integral) to arbitrary dimension d, where there are regions in complex
d space in which the Feynman integrals are all finite. Then, as we
analytically continue d to 4, the Feynman diagrams pick up poles in d
space, allowing us to absorb the divergences of the theory into physical
parameters.

We illustrate the inner workings of this regulating scheme by consider-
ing the ¢* theory. Corresponding Lagrangian in ¢ dimensions reads
2 4-d
_ 1 2 _ My, H 4
L = E (6;4([0) - 7900 - T/lotpo. (144)
Here u is an arbitrary parameter with dimension of mass, introduced
so that 4¢ is dimensionless parameter. In this setting the self-energy

reads - A gt dip i
—lZ(p) = = / . (1.45)
(2n)¢ p*—mj +ie

To compute integral of this type or more general form like

/ d’p ! , (1.46)

@m? (p2 =} +ic)"

(m > 0) we first assume that d is integer (d > 1) and perform Wick
rotation in the po-plane into the so-called Euclidean regime where 4-
momenta are defined with Euclidean metric. To see how this works we
first observe that in the pg— complex plane the poles of the integrand

Note: Dimensional regularization pre-
serves all properties of the thoery that
are independent of the dimension of
space-time, e.g. Ward-Takahashi identi-
ties.

In units 2 = ¢ = 1 we have that [mass]| =
[length| ™" In particular in mass units we
have

d-2

[d4x (3;1900)2] =0 = [eol=——,

[d4x;4y/lggag] =0 = y=4-d.
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in (1.46) are as depicted on figure

—wp t+i€
[

Wp —I€

To calculate the integral we can use the Cauchy’s integral theorem in
Here the integrals over the arcs, i.e.

the following way:
[ao... wa [ ao o= ]
& < $ — N l x

vanish, since for very large |pg| = R ico tico

thleTrgumentoffdzpl...|behavesas = /:_/ :_/ :/ (1.47)
PO which goes to zero as R — co. Hico —ioo

lpol™ — l

From (1.47) follows that by setting pg = ipg, we can write

/ dp 1 _ / dp 1
7 @m? [p2-mi+ie|™ s em? [p2-m2|"

./*"" dpyd®'p 1
—~  (2n)¢

+00 ddIJE 1
i(=H" _, 1.48
o @ (L end]” (1:48)

where in the last expression p? is evaluated with respect to the usual
Euclidean scalar product. The advantage of this expression is that we
no longer need ie prescription, as no poles are located on imaginary
axis in the complex pg plane.

To proceed further, we notice that integral (1.48) is of the form f d9pef( sz ),
so we can introduce polar coordinates in d dimensions, i.e.

(pg,pf,...,pfl_l) — (L, ¢,01,...,04-2)

with pE pEH = Zlflzo sz pl’.s = p% = L. Spherical transformation in d
dimensions reads

pg = Lcos¢,
pf = Lsin¢cosfy,
p‘; = Lsin¢sinf;cos6,,

d-2

pg_l = Lsing 1_[ sin; . (1.49)
i=1
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By induction one can prove that the Jacobian

6(pg,pf,...,p§_1) d-2
J = det = L4 |sinfe;, 1.50
a(L/¢1911~-~19d—2) !:1[ ( )
which implies
d-1 ) d-2
]_[ dp'E = |J|dLd¢ ]_[ de
i=0 i=1
= L*4Ldo,
d-2 )
= 1ardg | [sin’ ,d0;, (1.51)

i=1

with0 <L <o0;0<¢<2m;0<6; <m;i=1,...,d-2.Inspherical
coordinates we can thus write

d-2 n )
/ dipef(pr) = 27r]_[ /0 sin 0;d6); /0 dLLA7 F(L%) . (1.52)
i=1

The integrals foﬂ sin’ 6;d6; can be calculated by using following for-
mula

Recall the integral representation of beta

n /2 .
/ sinf 6do = 2/ sink 040 function:
’ 0 B (x,y)
k+1 1 k+1 22
F(%) . (E) r (%) = 2/ sin®*7D g cos®V gdo
= —F———=Vr (1.53) A
r(k_+2) r(k_+2)
? 2 rre
T o T(x+y)
With this we can rewrite (1.52) as
d=2 .p -
/ d'pef(ry) = 2ﬂ]_[ / sin’ 6;d6; / dLLY (L2
i=1 Y0 0
) (-
2n | | Vr—+ / dLLA F(L2)
i=1 F(%) 0
Zﬂd/2 o0
= dLLIT f(L%). 1.54
T (d/2) Jo f (1.54)

Another look at [ dQ, term

Laplace (or cofactor) expansion of the Jacobian (1.50) with respect to
first row immediately implies that J factorizes as L4 'g(6;) (actual
form of g(...) is immaterial). This observation allows compute
f dQyg, i.e., a surface of unit d dimensional sphere quickly without
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using beta function. In fact, we can write
/ dxe ™ = \r
= (\/;)d = /dxl...dxde_zilx?

= /drrd_ldee_r2

= /de/ drrd-le?
0

= / de% /000 dxx@2 e~
T ram
which implies that
2712
[ w0 -
which agrees with (1.54).

When f(L?) is of the form [cf. Eq. (1.48)]
f(LY = (K*+a®>™;, A=1,2,..., (1.55)
then we can write
o d-1 o0 (d-2)/2
I e Y A e
1

= E(az)—*“d/2 / dyy@=212(1 4 y)74. (1.56)
0

If we compare this with the integral representation of beta function

B(d/2,A-d/2) I'(d/2)T"(A-d/2)

I'(A)
= /0 N dyy?? 1 (1+y)74, (1.57)
we finally arrive at the result
/ ddpf 1 _ 72 T (m=dJ2) 1 . (158)
R (27)¢ [p% +m%]m @2mnd T (m) (m%)m_d/2

Note that we have derived this expression for d integer assuming
that Re(m — d/2) > 0 and Re(d/2) > 0. Now we take ti to be true for
non-integer d by means of analytic continuation of expression (1.58).
Since the RHS can be analytically continued to complex d it defines
(or provides) the meaning to the LHS for complex d.

Further important Feynman loop integrals that will be needed are
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those that include non-loop momenta, e.g.

! . / dpr . (1.59)
27)¢ Jre [pZE +2pEqE +b2]

Integral (1.59) can be easily evaluated by taking in (1.58) substitution
PE = p} +qg and relabeling b= m% + q%, ie.

(1.58)

1 / ddpE
(27r)d R4 [p}:_2 +2pqE + qu +m2]m
~———
b2
12 (m-d/2) 1 (1,60
= (Zﬂ)d F(I?’l) [b2 2 ]m—d/2 . . )
9k

Next, we differentiate (1.60) with respect to ¢*., to get another useful
integral

/ dpE P
re (2m)? [p% +2peqE +b2]"

1 190 d4pi 1

— ) 2 A M d -1
(1=m) 20q7 Jre 2m)? [p2 +2ppqp +b2]"

_ 1 10 |72 T (m-1-4d/2) 1
m-12 6q’é (27T)d I (m — 1) [b2 _ qu]m—l—d/Z

22T (m-1-d/2) 1+d/2-m ;
- _(ZJT)d I' (m) [bz_qu]m—d/z (—a%)
742 T (m—-df2) (—q%)

) : 1.
@md T [g2-g2]" (1.61)

Given these results we can obtain the one-loop contribution to the
self-energy in ¢* theory in the form

[—iZ(pz)]<1) _ _i/lo,ud_4/ dp i
2 2m)? p?—ml+ie

Aot fdlpe i
( l)( l) 2 / (27T)d [p2E+m%]

_idop* x?2 T(1-4/2) 1
2 emd Q@)

1-d)2
[m3]

idom? (4,”,2

2-d)2
ey ) r(1-df2) . (162

2

m 0

N— ———
dimensionless

We can expand around d = 4 by using Laurent expansion for gamma

In practical computations we first take
q — qg then perform Wick rotation in
p’ variable and in the final result again
transform gg back to gq.

We keep m[z] in front because the diagram
has dimension of mass squared.
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function (n =0,1,2,... and0 < e < 1)

I(-n+e) = (_1,) L une)
n! |e
e [n?
e 2 (n+1) - w'(n+1)] + 0(62)], (1.63)
where ¢ (s) = M is the digamma function (i.e., the logarithmic

derivative of the gamma function) and

zp(n+1):1+—+~~+%—'y,
, 72 1 , n?
yrn+l) = = - ek v =& (1.64)

k=1
Here y = —y (1) =0,5772.. .. is the Euler—Mascheroni constant.

To understand more formally how the expansion (1.63) comes about
we might start with the simple Tylor expansion of I' (1 + €), namely

F'(l+e) = T +el” (1) +0(?) =1+ el (Dy' (1) + 0(?)
= 1+e(—y) +0(?) = el (e)
= I'(e) = % -y +0(e), (1.65)

and similarly

(-1+e)

—(1+E+62+"')[% —y+0(e)]

_(% 1o+ o<e)) . (1.6)

Using the above expressions we get (by setting 2 — d/2 =€)

. 2 5 2—-d /2
. (1) idom 4rpu
-2 = - | r(1-d/2)
T mO —_———
~—————— TI'(-1+€) = —[1/e+1-y+0(€)]

(2-d/2) In 4222

e "

~—_—————

2
1+ ZE%lnL::‘T +0(e2)
0

i/lomé 1 1- v In 471.#2

1
= Ten2 [4—d+ 2 2 2

+ 0(e)|. (1.67)

Note that the O(€”) part does not depend on external momenta.

In order to get some confidence with the explained formalism of di-
mensional regularization, let us now evaluate some key diagrams in
¢* theory.
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“Fish” diagram

Another UV divergent diagram in ¢* theory is a “fish” diagram

[p1+p2—q+z=0]

q—PpP1—P2=2

The corresponding loop integral is

( 2)d—4( 1/10) / i )
(2n)* % = mg +i€ (g = p1 = p2)* —mf +ie

(1.68)

At this stage we analytically continue the external momenta p; and p»

to the euclidean domain and perform Wick’s rotation in the integral.

This gives

12 d
—i(/lz)d_4( l;o) / d qE 1 1 S (169)

2m)? ¢3 +m3 (ge — pLE — p2,E)? +m3

It is clear that the UV degree of divergence of the integralis3 -4 =1,

i.e. the diagram is logarithmically divergent.

How can we employ dimensional regularization to such a hybrid loop
integral? In fact, when there are more than one propagator taking part
in a loop integration, it is convenient to introduce the so-called Feynman
parametrization which is based on Schwinger trick. The Schwinger trick
employs a simple property of the integral representation of Gamma
function, namely that for any a > 0

[(a) = / drt® e
N / dtt® 1 —ta — / dra= %t 1 e T = a—rtl—\((l)
0

d”a—l —ta
= r(a)/

1 " -1 am=1,-3" tia;
:m/o dry ... diy "™ . gm e i li4 - (1.70)

Now we introduce new variables B; € [0,1], set t; = B;t where t €
[0, ) and substitute this into the previous integrals.

Some technical preliminaries

Let us have a function f(z1,...,1,) of m variables where #; € [0, ),

Again 1/2 is a symmetry factor of the dia-
gram.

Because of the Lorentz invariance, the in-
tegral is only a function of (p1,E + PZ,E)Z
and hence the physics in Minkowski
space may be recovered by analytically
continuing (p1,g + p2, £)? from posi-
tive (i.e. Euclidean) value to negative
(Minkowski) value.
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foralli=1,...,m. We can then write

L dll...dtmf(ll,...,tm)

= dt/ dty...dty 6 ti—t) f(t1,..., tm) -
[raf anamo( S e

Now we take the substitution #; = 8;# and ¢ = ¢, which gives

© e o) m i_]-
/ dt/ dBi . .. dBm thf(l‘ﬂlpurtﬂm)~
0 0 z

So, in particular, we have

(&9
/0 dy ... dty g X i

_ /Omdtfomdﬁl...dﬁma(gﬁi_l)

X 2im @il =t Ty aifi ﬁfl‘l am=1

Technical preliminary allows us we rewrite the integral (1.70) as

1

(o5 Y,
all a"nm

1 /w /1 m S il ST a
= = =, < dt d d m(s i_l i @ e i al,BL,
[1: T (a:) Jo 0 fr...dB (Zﬁ )

and if we now integrate out r we get

1
a;’l a::lm
ENON? N Y
" T, F(a),/ dg;...dBm s (§ Bi 1) o )Z,m' (1.71)

Formula (1.71) is known as Feynman formula a parameters g; are so-
called Feynman parameters.

It looks a bit complicated but it is not difficult to use it. For example,
take a1 =ax =1; a1 =x, @y = y then

I'x+y) ! _ By _1ﬁ§_1
R el A R RN v e
[
1
_ F(X"'Y) _ y-1
- A s a-mr 172)

which is the familiar beta function identity.

Feynman formula is tailor made for solving the “fish” diagram. To this



1.2 Higher loop diagrams and dimensional regularization 19

end we consider the integral (k = p1,£ + p2.E)

dd 1 1
I1(k) = ,/ (271)‘1 (p? +m2) (p- k)2+m0 (1.73)

and apply the Feynman formula (a1 =a2 =1,a1 =x,a2 = y)

Xy

1 .
:/0 dp1dp SPrtp-1D)  T'(2) (1.74)

(B1+yB2)* THT D)’

1

to the integral /(k). This allows to write

1
1(k)
/ /(2ﬂ) [B(p—k)*+m2] +(1-p)(p2 +n12)]

1
/ /(277) (p2 —2ﬁpk+ﬁk2+m2)2

/1d 22 T2-d/2) 1
o 2n? T@ [m2+k2p(B-1)]>42’

(1.75)

where on the 3rd line we used Eq. (1.60). Note that the first two lines
of (1.75) imply that /(k) diverges when d > 4. Again as before, we
regard (1.75) as an analytic function in d and explicitly exhibit the pole
structure together with a finite part. The divergence manifests itself in
the factor I' (2 — d/2) which diverges for integer dimensions d > 4. So,
(1.69) can be written as

12
A4

S f gt

@) @2 +mf (g - p1 - p2)* +m?

Ui e 1 1 [m§ - k2B (B-1)]
=/O 5 () l@(z—d/z_y_ln 4712

_ (2 L [mg —kzb’(ﬁ vl
= 15 (+7) m[m‘y fasm =

(1.76)

To complete the mission it remains to integrate over the Feynman
parameter B. Since —B (8 —1) is always positive over the range of
integration, integral can be easily evaluated. To this end we use the
formula

1 A/
/dxln[1+éx(1—x)] - 24 Vizam 2L g
0 a a>0 Vi+a-1

Observe that the finite part depends not
only on u? (which is arbitrary), but also
on external momenta k. This arbitrari-
ness in the finite part is generic to the
method because the separation of a di-
vergent expression into a divergent plus
a finite part is not unique.
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proof of which is left to an exercises. Using allows us to write

%(#2)4-" dlg 1 1
2 2m)? g% +m§ (g - p1 — p2)* +m?
1 1 drp?
= iA2(u2)2d2 — v+ 2 + In 22
M 5 (aap T "2
4m%
4”12 1+?+1
- 1+k—201n - |[+002-4/2)|. (1.78)

4m§
1+—"-1
k2

What are we supposed to do with this expression? We will shortly see
how to absorb the pole part into renormalization of the couplings.

Note that in the evaluation of the 4-point function there will be 3 such
contributions with k = pj + p2 (s-channel), k = —p1 + p3 (t-channel)
and k = —p1 + p4 (u-channel). So, the corresponding contribution of
the order A3 can be diagrammatically denoted as

P1

P1 \‘ "

~ _P3
q+p1—p3
-k
q+p1—p4
P2 —7 ™S P4 ——— \
[72/‘ -k P4

“Setting sun” diagram

Finally we show how to compute the “setting sun” diagram in ¢*
theory. The ensuing Feynman diagram is
q’

P,

q

r,
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For self-energy we get (after Wick rotation)
—iX

2 ’
) i/l_o(#z)4_d/ g alqg 1 1 1 .
6 @ @n)? g2 +m3 g2 +m3 (p+q—q")* +m>
(1.79)

Before introducing Feynman parameters we will lower the degree
of divergence of this two-loop computation by using the following
trick.

We first use the identity

1 [9g,  dq,
e [ 1.
2d [aq’” * agr |’ (1.80)
and insert it into —i%, obtaining after the integration by parts
14 dlg’ diq ) 9
iy = =0 24—d/ , o
i 12d6(ﬂ) (27r)d (271’)d qﬂaqm+61;taq,l
1 1 1
(1.81)

G2 +mi q'2+mg (p+q—q')+md

In the expression we have discarded the surface terms. To proceed let
us recall Euler’s theorem for homogeneous functions.

Euler’s Homogeneous Function Theorem

Let f(x1,...,Xn,) be a homogeneous function of order &, i.e.

FAx1, . Axm) = AKF (1, xm) .

Let us define x/ = Ax; fori =1,...,m. Then

et = 20 pr )
- 7o MAm Xiree s Xy
ar’ ! ax ax;’
dx;ﬂ a ’ ’
+ N ax;nf()cl,...,xm).

By setting A = 1, we finally obtain

m

Dt f o1 xm) = K51 xm),
Xi

=1

which is the sought Euler’s theorem.

Surface grows as lg1971 while integral
decreases on larger surfaces as 1/|g |41,
Since d < 4 the surface term can be ne-
glected.
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We this we can write (1.81) as

143, \4d [ ddq diq o d
-y = =0 (,2 ’ -
! 246 (ﬂ ) / m? 2n)? (q" g™ T u dgH

B
omy p‘“@pl‘ Oi)mo

+

pﬂﬁ +my

add subtract

1
(q2 + mé) (q’2 + m%) ((p +q-q)+ m%)

£ (A9, A, Apy, Amo) = A7 £ (Gu, Ghus P mo)

-1 1 A3 ,\4-d
o (5] - i3 2 ()

hom. funct.

[ & ( )
(27) (2 2o \ P apr " 8mg

g v v e M

We can resolve this with respect to (—iX) as

)3

———

3

U

N

2

2\4—d ddfl'
) / (2m)¢ (Zﬂ)d

(=2)p*(p+q-q"),
(24 m2) (a2 +m23) [0+ = a2 +md]’

o I

1
i5d

X

(=mo) 5 (a2 +m3) (4724 m3) [(p+q =g +m?]

(1.83)
(q2 +m(2))2 (‘1'2+m5)2 [(p+a-q') +m3]2 -~

When the derivative aimo is performed in the last term, we get 3 terms
that are equal after a suitable change of variables and yield the inte-
grand

—6mg

(1.84)
(g2+m2) (72 +m2) (1p+q -2 wm2)’
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With this the RHS of (1.83) reads

1/12 2N\4—-d
) /(2>d (2n>d

3md + p(p+q-q'),

(1.85)
(a2 +m2) (a2 +m2) (1p+a =g+ mi]

Finally we can reduce the expression for —iX to

1 A2 4-d [ gdg’
I NI
d-36 (2m) (27r)
3mi+pH(p+q-q'),
(q2+m%) (q’2+m3) [(p+q—q’)2+m%

—i /12
= 3o WD PBmGK (p) + pUKu(p)] . (186)

In this expression for “setting sun” diagram we have defined two
function: scalar function K (p) and 4-vector function K, (p). Let us
first take a look at the function K (p). This is defined as

K (p)

ddq/ ddq 1
_ . (1.87)
/ @0 en* (qz+m5)2 (72 +m2) [(p+a -2+ m]

where we have shifted the second power to the term (g2 + mé by a
change of variables. Note that integral involving ¢’ is logarithmically
divergent (¢ integration is convergent).

Similarly, the second function, K, (p) can be written as

Ky (p)
B / dlq’ d'q (r+a-d'),
- d d 2
(27) (2m) (q2+m%) (q’2+m%) [(p+q —q’)2+mé]
d ./ d ’
- / d7q” d%q T , (1.88)

(@m)? (2m)* (a2 +m3) (a2+ m%)z [(p+q-q)*+m?]

where we have again changed variables to shift the second power to
the (q’2 + mé) term. In this case the part involving integration over
q diverges diverges logarithmicaly while part with ¢’ integration is
convergent.

We can again use Feynman parametrization to rewrite both K (p) and
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Finite part is difficult, it cannot be
obtained in closed form. One must
introduce di-logarithm (or Spencer)
function

1
Lip (x) = —/U %mu-m.

K, (p), respectively. In particular, for K (p) we can write

/ diq’ diq 1 r(2)

K (p) @2m)? 2n)¢ (q2 +mé)2 rr

1 dprdpa 6 (1-B1—p2) BB
[ﬁl (4’2 + m%) + 2 ((p +q-q)*+ m%)]z

B /ddq' d4q 1 r()
- ()4 (27r)d 2)2 r(1H)r(1)
0

b o

(1 ﬁ) q'2+m )+,8((q’—q—17) +m§)]
_ / dq/ dd 1

(27r) (27r) q2 N m%)z
X . (1.89)
/0 [42=2(q+p) q'xB+(q +p)*m2]?

By integrating over ¢’ and using the formula (1.60) for m = 2 we get

1 T'(2-4d/2)
(4m4? 1)

/ / i ! — (1%0)

(24 m3) [m2+B=p) (a+ )]

K(p)=

Now ,one would use once more Feynman parametrization and would
arrive at (e =2—d/2)
I'(2e) 1

TPT - [1+ e - 2elnm} + O(H)] . (1.91)

K(p) =

Similarly we could find for K, (p)

»? I" (2¢)
(4 )4 —2€

1

p”Kﬂ (p) =

+0(e )] (1.92)

Both O (€) and O (€?) terms have very complicated forms, and so we
will not be writen here.

Expanding I'(2¢) and putting previous results together, we get a regu-
larized expression for —iX

—-iZ(p)

i22 [3m§ +3m§ (3 dny? )

Y ——y+In——
6 (167‘1’2)2 2¢? e \2 m%

1
+ 4—p + fmlte] (1.93)

We now have arbitrariness (i.e., scale y) at the level of the simple pole
(as well as at the level of finite part).
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Exercises: Multiloop diagrams and dimensional regular-
ization

Dimensional regularization

Exercise 1.6 Show that formula

1 A/
/ dxln[l+éx(1—x)] = 24 Vizam Aratl
0 a a0 Vita-1

holds.
[Hint: Take substitution z = %x (1-x) and then apply integration by parts.]

Exercise 1.7 Compute the “double scoop ” (or “cacta”) 1PI diagram

"ol

with external momenta p and show that the corresponding contribution to —iX is

2.2
Ay
1024 74

1 4ru?
+ = (21n ”I; + ¢y (2) - 7) + finite part
€ mo

1
€2

’

where € =2 —d/2 and “finite part” is momentum p independent.
Exercise 1.8 Finalize the computations leading to formula (1.91).

Exercise 1.9 Verify the result (1.92).

DR with fermions

Let us now briefly discuss the dimensional regularization with fermions.
We might start our discussion with the Yukawa theory (which we know
from 2nd semester course), i.e. theory described with the Lagrangian

1 1 _ _
L = 3 P00 do — §m§¢% + o (id — Mo) o — godbovodo,  (1.94)

or
1 1 _ _
L = 5000 o — Emﬁrﬁé + o (id — Mo) wo — igodoy ok, (1.95)

accordingly whether ¢ is scalar or pseudoscalar field, respectively.

For a future convenience, we will, however, consider theory that cou-
ples fermions with electromagnetic gauge field (we will discuss this
situation more intensively in chapter on gauge theories). Such a the-
ory is known as quantum electrodynamics (QED). The corresponding
Lagrangian reads

_ _ 1 Note that at this stage we do not consider
_ ; H 2 &g
L = Yo (“3 - MO) '700 - eOAOWOV;t'/’O - ZFOHV' (196) gauge fixing term.
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Before we start to discuss the issue of renormalization let us intro-
duce the concept of effective action and ensuing proper (or one-particle
irreducible, 1PI) vertices.

Effective Action

As in thermodynamics, it is often convenient to make a Legendre
transformation which interchanges the role of (¢ (x)) and J (x).

We derive the new functional

Fled = Wil - [ s @ec, (1130)
where ¢. = (¢n), and W [J] is the generator of connected diagrams,
ie.

zZ] ="Vl o w[J] = <ilogZ[J] . (1.131)

I' [¢.] is regarded as a functional of ¢, analogously as free energy
F(T,V) =U(S,V)-TS is considered as a function of T (and V) and
not S, or H = pq — L is considered as a function of p and not 4.

T and S are not unrelated, in fact

AU (S,V) _OF(T,V)

T = , S = , 1.132
s |, as |, (1.132)
and similarly p and ¢ satisfy
9L (4,9) . _ 9H(p,q)
= —, = —. 1.133
dq ap ( )

Consequently, in our case the source J (x) can be recovered from I' (¢.)
by noticing that

6T SW [J] .
= - |4
5¢e () ¢ (v) / !

6J (x)
0pc ()

¢e (x)

- /d4xJ(x)6(x—y)

B o, W 87 (2) 4 0J(x)
- [ GG e ] gy
-J(y). (1.134)
Using the fact that % =(¢n (2)) = ¢c(2) we get
ol
Spe (v) O (1159

So we have again a pair of identities that are analogues of 1st Maxwell
series in thermodynamics

oW /] or [¢c]

ICE ¢c(2), b0e () - =J(y).

(1.136)
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Recall that
(@m (%)) = (Qlen (x) 1),
where

(Q@len (x)1Q)7
:N/DWP(x)ei[S[¢]+/1<y)¢<y)d4y]

Here the vacuum state is related to
Hamiltonian with an external Schwinger
source fields.

Note that
/d4z W] 87 (z) _ sW /]
8J(2) S¢pc(y) S (y)’

is variational analog of the chain rule in
the derivatives of composite functions.
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The quantity I' [¢.] is called effective action. This is because it plays
exactly the same role in determining the exact ¢.(x), via the equation

ST [pc]

O (x)
as the classical action does in determining the classical value of ¢ (x)
through the action principle

+J(x) =0, (1.137)

oS [¢]
S (x)

+J(x) = 0. (1.138)

Actually, I" has even closer connection with §. Consider partition func-
tion

Z[J] N/ Dyexp [iS [¢] +i/ d4xJ(x)go(x)]

N / Dy’ exp [is [¢'] +i / dx T ()¢’ (x)

. (1.139)

where we have relabeled the field in the functional integral from to ¢’.
We now assume that ¢’ = ¢ + ¢ f for some arbitrary function, which
disappears at spacetime infinity (so that it does not change boundary
conditions in the functional integral). This also implies that D¢ = D¢’
We also assume that |e] << 1. With this we can further write that

Z[J]

N/ D¢e[i5[1p+ef]+i/ d*x J(X)tp(x)+i€/ d*x J(x)f (x)]

N/zm (1+i/dzgi[(gef(z)+0(ez))

x (1+ie/ J(z)f(z)d4z+0(€2))

X exp [ism +i / d*x J(x)go(x)]

N/Dgp

Comparing this with the first line in (1.139) we get to the first order in
€

1+ie (/ dZ(SS[('O] + J(z)) f(2)+ 0(62)] (5[ 7¢)
5 (2)

0= N/z)<p [/ dz(‘;i[(";] +J(z)) f(z)] G5+ [7e) (1140

Since this works for an arbitrary function f, we have

_ [851¢] A S N
°‘<5¢(Z)+“Z>> =70 (w(z) 5

+J (z)) Z[J]. (1.141)

Let us now use the fact that

1 6 B .
mF [—la] VA [j] = F [(pc —l—] 1, (1142)
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where F is an arbitrary polynomial or Taylor expansion of a function.
We can prove this statement as follows. we consider first that F is a
simple monomial function x¥, then we may write

1 s \k 1 P 1 s\t
m(‘w) 20 = )7 7 (‘15) U]
1
= %(—1%)2-«& = (%—16—5])90,

where we have defined

1 5\
= |0—|-i= 1.14
v zm( 5,) /] (1.143)
If we iterate this procedure k — 1 times we get
1 k k
7 (—i%) zZ = (t,Dc —i(%) 1. (1.144)

Obviously since this holds for arbitrary k, the linearity of (1.144) im-
plies that it holds also for an arbitrary polynomial function F.

If we now apply this formula to (1.141) we get

68 .0
Pe— 127

_[oS[e]
0= < 50 () i 1+J(z), (1145)

J
S¢ (2) +/ (Z)> B

which can be equivalently written as

-J(2) o3 [soc(’)—i/d“y G0 ) 8 1

op (2) oJ()  dpe (¥)
N——
5*W
6J(y)6J(-)
oS / 4 002) F) ]
= ——|ecO)—i [ dyW , 1, (1.146
50 @ |° ) yWH=(y )6<pc(y) (1.146)
This is known as a Schwinger-Dyson equation. It can be rewritten as Note that
2w
ol [¢c] 68 4 ; 0 7"
= () + /d o) 1. (1.147 87 (y) 87 ()
Spc @ o) ' 6pc () :

= iG(y,1) = iy ).

is connected 2-point Green’s function.

If the functional derivative inside [...] could be dropped then the
effective action I" would produce the same result (e.g., equations of the
motion) as the classical action S. The role of the functional derivatives
is to take into account quantum fluctuations, since (x W = 0(n).

Let us now illustrate the explicit connection between S and I" on some
examples. For instance, consider the Schwinger-Dyson equation for
the A¢* theory.

By using the conventional form for the Lagrange density

_ 1 2 A 4
L= 7 (D+m )go 0¥ (1.148)
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we have
68

op(z)
The Schwinger-Dyson equation in this case reads

- (D+m2) 0(2) - %903 (2) . (1.149)

S .0
-J(z) = ) %_lé_J]l

1l

0
_(D+m2) Ye (Z)_§ 7900 (Z)_I(SJ(Z), !

i 12
= —(D+mz)<pc(z)—§ ¢e (2) =1

.0
5](2)_ QDC(Z)

= =[O+ (Z)_% ve (Z)_ich(S(z) [ e(@)- ?JC((Z))

0pc (Z)

=iG° (g, d writ
57 () (z,z) and write

Now we use

-J(2)

~(O4m?) e (- 5 [0 () - 20 (G (2,9)

—ipe (2)iG° (z,2) —iG (2,2,2)]

(D) e (- 516 () - S (D G (0

A
+ glG (2,2,2) - (1.150)
As we can see, this connects 1,2 and 3 point connected Green’s func-
tions in presence of a source.

The same can also be equivalently represented as

r [‘Pc] oS

@ =50 T e

¢L(>+/d4yGC<y,->ﬁ]1

- _(D+m2)¢c(z)—%[%(ZH/‘ﬂch(y'Z)ﬁrl
(). (Z)_i(% (z)+/d4yGC (y,Z)ﬁ)

% (¢ (2) + d4yGC »,2) %) ¢ (2)

= —(Om? )%(Z) 4 (sﬂc(z)+/d4ch(y’Z)ﬁ)

x (wi(z)+G”(z,Z))

- _(m+m ) e (z)——(cpc(z) 3¢c(2)G(2,2)

+ / v G (y,2) G (2, z)). (1.151)

5
S ()

To proceed, we need to know how the expression ﬁG ¢(z,z) can
be further simplified. To do so, we will need to go through two steps,



the first being the following simple identity

6J (x) oy = [ a9 () ¢ (2)
oI (y) ola=y) /dzésvc(z) oJ (y)

/ e [_ 6T ] 4
6¢c (x) bgc (2) | 67 (2) 67 (y)
-1
= W@y =-[r?] @, (1.152)
The second step is base on the identity

dA™! dA
= A7t %A‘l , (1.153)

where A is some a-dependent operator. Putting both of these relations
together, we can write

5
S (¥)

-1
WP (z,2) = - F(z)] (z,2)

5
dpc (v) [

'@ (x1,x7)

s
= / d*x1dxtxa W (z,x1) W (x1,2) . (1.154)
S ()

o]

Now we can return back to alternative expression for —J (z) = FSocls)

and write it as

ol ] _ 2 _i 3
o = (0 e -5 R0

-J(2) =
w D (z) [W<1)(z)]3

A
- 5% (WP (z,2)

A
ol / dxydxadxs WP (x1,2) WP (x2,2) WP (x3,2)

x T® (x1,x2,x3) . (1.155)
We assign now a graph to I' M) (x1,-+ ,xn), namely

X

or _
e (x1) - 0pe (xn)

£ . (1.156)

Xn

Notice that unlike the graph associated with W™ this graphs assigned
to I'™ has no external legs. In this way we can diagrammatically
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Recall also that
X1
X2
S"W .
Sxy Oy
Xn

where lines are free propagators and the
circle is connected n-point Green func-
tion.
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represent the Schwinger-Dyson equation as

A

AN

A 3838 1.157
-2 % - (1.157)

To understand the meaning of

X1

l"('l) (xll e /xn) =

) (1.158)

Xn

let us look at a relationship between 3rd derivative of the functionals
W and I'. To this end we recall that

@ W Spe (x) e (v)
W) = ST ) T e ) - el
%) - -
P oy o OTleed 6 aIG)
) = S oee ) - e () - ge )
= / d*yW® (x, )P (y,2) = =6*(x-2). (1.159)

If we functionally differentiate the last relation with respect to J (u)
we find that

Y ST ()67 () 07 (u) 69 () 09c (2)

W §r
+ d4 —/d4 'W(z) u,y’ =0
/ YT ) Y Y S e e O

Here we have used that

o _ 40 00c0) 0 40 (2) ,
57 () / Y ST 39 (0) / 4y W= W,y

Spc(y)’



So, we see that
/ d*y w® (x,u,y) @ (y,z)

- - / dty W (x,y) / dty W2 (u,y) T (y,2,') . (1.160)

From this we can isolate the W term by multiplying (1.160) by
[F(z)]_l (z,7’) and integrating over z. This gives

W (x,u,7) = —/ d*zdtyd*y’ [F(Z)]_l (2, 2) WP (x,y)
X W (u,y) T (y,2,5) (1.161)
which is equivalent to (relabel z” back to z)
w® (x,y,2) = / dtx/dty’d*z w® (x, x ) WP (y,y)
x W@ ()T ',y 7). (1.162)

This can be diagrammatically represented as

(1.163)

We could proceed by taking repeated derivatives to find functional
relationship between various higher-order W@ and T™ . For instance,
by functionally differentiating (1.162) once more with respect to J(w)
we get

5w

@ (4 =
W (w,x,y,2) 6J (w)6J (x)6J (y) 6J (2)

= / diw'd*x’dty'd* 2w @ (w, w)w® , x) W2 (y', y)
x W (2, r® (w', ¥, 7))
+ /d4x'd4y'd4z'W(3) (w,x", x) WP (v, y) WP (', 2)
xT® (x',y",2)
+ / dix'dty’d*zw® (7, x) W (w,y, y) WP (Z, 2)
xT® (x',y",2)
+ / didty'd*zw® () WP (v, ) W (w, 7', 2)

xI'® ',y 7). (1.164)
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By using further (1.162)-(1.163) and Einstein summation formula we
can rewrite (1.164) in the form

WS (w,x,y,2) = W2 WO WD w2 T® (w,x,y, )
+ WL WL WATS (27,2 W W T (0, 2)
+{x >y x>y}
+{x-oz, x>}, (1.165)

This can be diagrammatically represented as follows

e
N

X

=

Y z VIR o
y z
w X
VV' &yu y/ @ )C/
+ ~
X i Gl
y z
w X
.\
WI
+ & 532 (1.166)
y yyll y @ ZI
y z
Recall that we already used amputated Let us now introduce amputated functional

Green functions in connection with the
LSZ formalism and S matrices

. = -1
W Gt = [ [ W) i W 1) (1167)
i=1

This relation has a simple meaning, W is just connected part of
connected n-point Green function without external legs. With this we



can write that
2 2 -1
WP (x1,x) = - [F( ) (Xl,xz)] ,

W (x1,x2,x3) = TP (x1,x2,%3) ,

W (x1,x2,x3,x4) = TW (x1,x2,x3,x4) ,
b [ adtar® ) W (0,910 Gas)
+ 2terms. (1.168)

One can find recursively to any order the relationship between the
amputated Green functions for connected diagrams and I'™. The T'(")
functions are known as the proper (n-point) vertices or n-point vertex
functions. On the diagrammatic level, the diagrams that contribute to
'™ are known as n-point 1PI diagrams.

Since I'™ are by construction connected and a single line diagrams
are pulled out from them (single line diagrams are full 2-point Green

functions) what remains inside @ are diagrams connected with mini-

mally 2 lines. That is, the 1PI diagrams are diagrams that do not split
into two halves by cutting any single line. So, that '™ for general n
is the sum of all n-point amputated 1PI Feynman diagrams. Take for
instance ¢° + ¢* theory. The corresponding two-loop diagrams that
contribute to I'® read

Clear advantage of relationships (1.163) and (1.166) and more generally
relationships between W and TV, Jj =2,...,nis in that they are
non-perturbative (i.e., independent on perturbation theory). In fact,
theory are even independent on a particular form of the Lagrangian.

At this stage it should be noted that the generator of n-point vertex
functions I'" [¢.] contains the complete set of physical predictions of
QFT:

(a) The ground state (vacuum state) of QFT is identified as a mini-
mum of the so-called effective potential [for connection between I
and Veg [¢c] see (1.187)]

Wegt [¢c] _

. 1.1
™ 0 (1.169)
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(b) The location of the minimum determines whether the symmetry
of Lagrangian is preserved or spontaneously broken.

(c) The poles of full propagator or zeroes of I'? give the value of
particle masses (in momentum representation).

(d) Higher derivatives of I are 1PI diagrams. These together with full
propagator ([I'?] _1) serve as building blocks for construction
of higher-point connected Green functions, which give among
other S-matrix.

All this implies that from I" we can reconstruct qualitative behavior of
QFT, in particular

» Pattern of symmetry breaking (i.e. vacuum structure)
» Quantitative details of particles (zeros of I'?))
» Particle interactions (S-matrix)

Perturbation theory for I' [¢]

So far we have seen how to compute perturbatively vertex functions
T'® [p.]. It is interesting that one can find the explicit form of T [¢..]
to order 7 which is equivalent to considering contributions to order 7
from each T'® [¢.].

Here we set N = — L Let us start from the identity
Zy[J]
oW = GilTlecl+(,e0))
- N / Doexpli(Slel+ o)l . (L170)
This implies
elle] = N / Doexpli (S [¢] + (U, o - g))]

{¢ = o—vc}

N / Dpexp[i (S [p+pel + (I, )]

=
0¢c

N/ Dypexp

i(S [o+¢c] = <%,¢>)] . (1.171)

We wish to use WKB approximation (i.e. approximation that allows us
to deal with 7 expansion of functional integral contributions). To this
end we expand S [¢ + ¢.] around ¢, i.e.

Sle+ec]l = Slec] + /dz

— (3)
+ /dd p —— 090(21)050(22) . ¢(z1) ¢ (z2) + O (S ) (1.172)



This implies

eTlecl = LiSlee]l +iTelec]

N/Dgoexp [i (S [¢C]+/dzs<1) (2) ¢ (2)

1
+E/dZ1dzzS(2)(Z1,Z2)90(Z1)90(12)

- <s<1>,¢> - <§Zf,¢> + 0(S<3>))]. (1.173)

C

Here we have used the fact that at 7 — 0, I'[¢.] — S[¢c], which in
turns allows to write I'[¢.] = S [¢c] +Telec] where T'e[¢.] denotes
“loop terms” as it they are of the order O (7).

Comparing the expressions we get for loop terms
il [pc]
1
= lnN/ Dy exp [i (E / dz1dz28@ (21, 22) ¢ (21) ¢ (22)

oy
- <$¢> + 0(S<3>)) | (1174)

If we reintroduce 7 we have 1/7 in front of all arguments in exponent.

By rescaling fields as ¢ — 7'/2¢ we get
» Term <%,tp> oc ,1—1\/%0 (h) (so at least Vh),
1
» Term @ ~ /(,Dtp(p SO is o< £\/ﬁ3 = Vh.

Wick’s theorem ensures that only terms of at least order 7 will survive
(apart from 1 of course). By neglecting all terms except the quadratic
one in the functional integral, we have

i
—T [¢e
5 1 [ec]

= 1nN/Z)<pexp [%/dzldzzSQ) (z1;22) ¢ (21) ¢ (22) |, (1.175)

where we have gotten rid of % on the right hand side by the field
rescaling. From this we can see that

Tt [¢c] = Ax(nohiterm) « 7, (1.176)

and so I'; is the source of 7 contributions. We can now express I'; as

-1/2
5@ (z1;z2
I [¢e] S (z2)

—ilndet
Iséz) (21;22)

N
|- (1.177)
So

|
5
a.
[¢°]

]

52 i
@ = E Tr log
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As an example consider scalar theory

1 1
/d4x [5 (u9)* - Fmet = V(w)]

STe]

1 1
—/ d*x [E‘”D‘” + Engpz +V (@] . (1.178)
For second variation contribution to S[¢. +d¢] — S[¢.] we get

/dz1dzz §@ (z1,22)

. 0¢(z1)0¢(z2)

= —/dz [6¢(Z)Dz6¢(z) + m*(6p(2)* + %‘; (5</»“(Z))2]
e
- / dz260(2) [0z + m? + V" ()] 6(2). (1.179)
Similarly for free action we get
/a’mdm S (21, 22) . 0¢(@)o¢(22)
S / dzo¢(2) |0, +m?] 6¢(2) . (1.180)

Hence we can write that

Recall that
(Dx+m2)AF (x=y)==6(x—-y) 5@ (x,%) = =6(x-y) [Dx+m2+VN (‘Pc)]
®c
SP @ = o= [De ]
-1
[S(()Z) (x, y):l = AF ()C —y) . (1181)
This means that
-1
(S<2> [Sé2>] ) =6t (x—y) = V/(0c)Ar (x—Y) . (1.182)
xy

Applying this to our expression for I' [¢.] we obtain

'] Slecl + Lilecl,

Miled = 5Trlog(1-ArV" (¢0) + OGR)

00

1
=i ) 5 Te[(ArV” (e))"] + O()

n=1

_i; zl_n f dizr - dzaite (1= 22) (V" [¢ (2)])

X XA (2o —21) (=iV" [@ (z)]) + O(R%).  (1.183)

This is the sought perturbation expression for effective action. From
(1.183) it can be seen that the contribution of the order 7 is basically the



sum of the contributions of one-loop diagrams made of n propagators
iAr (x —y) and n vertices —iV" (¢.). For example, for quartic theory
V = 4¢* we have V" = 11¢? and hence the contributions of the order
7 have diagrammatic representation

e Pc Pe. Pe Pe, Pe
12
+ + + - (1.184)
Pc
quadratically Y Pe Pc Pc
divergent logarithmically ~ convergent

divergent

Note that the factor % in front of each term is a correct (inverse)
symmetry factor of each respective diagram.

In momentum representation we can write

-1
Trlog [$@ |s? ):Trlo 1-V—
g( [ 0 ] & pz—mé+is
d v .
- /d4z/ 9D 1og[1- 8| (1185)
(2n)¢ p% - mé +ie

The extra integration over z is a consequence of translational invari-
ance, for example, take n = 3, then

Tr [(AFV”)3]

/ d*rd*d 23 Ar (1 - 22) V' Ar (22— 23) V' AF (23— 21)

d*py d*py d*ps
P14 p2 dps (,lpl(zl_22>AF (p) V"

d*z1d* 7 d* :
/ Qe 2B [ 2t 2t 20

X P A (py) V!PT AL (pa) V"

/d4Z1d4Z2d4Z3 @'pr d'p2 d'ps

(2n%) (2m)* (2m)*

Ap (p1) V" AR (p2) V"

X Ap (p3) V" ¢i71(P1=P3) giz2(P2=p1) 6i23 (P3—p2)

4 d4p 3
= ot [ Sharmvy.

This patter is clearly true for any n, which bring us back to the result
(1.185).

(1.186)

Effective potential

If the ¢ = const. one defines the so-called effective potential as

1
= ——= I'[@cllg. = const. - (1.187)

Vett [¢c] VT
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Note that only divergences come from
diagrams with one and two vertices.

The operator log (1 — Ar V") is diagonal
in momentum representation, provided
@ is constant.

Due to translational invariance only 2
S-functions out of 3 possible are used.

Constancy of ¢. ensures that the gra-
dient term drops out from the effective
action and what remains is only (space-
time-point independent) potential with
quantum corrections.
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The identity
a
lim
a—0 a

=logZ,

is also known as replica trick.

Effective potential is a particularly useful quantity, especially for inves-
tigating the issue of symmetries, since constant vacuum expectation
values are determined by minimizing it.

As an example of V¢ computation, we use the formula (1.185). After
factoring our the 4-volume factor VT we perform Wick’s rotation in
the pg plane. Since

/2 ) "
. ip A
lR‘/o dye'? log (1 oot ) Pl 0, (1.188)
N

(and similarly for \_ curve) we see that contributions over radial
boundaries are not contributing. With this we can that for —Veg [¢c]
reads

i/ (2n )4[ o (= = m§ = V" (¢0)) ~log (=} ~ )|

/(2) [log(pE+m0 V”(goc))—log(pE+mo)]
_i%/ ((i::)i [(p2E+mé+V" ((pc))_a]azo

vige [ o),

iza 0| 1 T(=dp2) 1
ba |42 T (@) 2 2r-d/2
a=0

my+ =

.0 1 I'(a-4d/2) 1
+l£ (4ﬂ)d /2 I'(a) [m%]a—dﬂ

(1.189)
a=0

While V¢ has dimension 4, our has dimension d (due to dimensional
regularization). For effective potential we get (recalling that e = 2 —



d/2)
. 2—€
_ I B I'(=2+€) ( 5, Ao >
eff = 2 H ( ) (47()2_5 mgy 9 Te
4. . (-2+¢) 2-6]
4-d 2
1 m
W) = )
11 [, A ,\° dmy
= - my+—¢e| [=—v+3+log
4 (4 2( 0" 2 ) € 2 » Ao 5
(47) ’"0"'?9%
11 ) 3 >
- = —v+=+lo
4(471)2( 0) l ’ 8 m% ]
11 ( , Ao L\ |3 2
= = 5 m0+—(pc) = +log
4 (47) 2 2 3+%¢%
11 2|3 A?
“iay (mo) I§+log%}, (1.190)

where A = Vire™/2el/2¢

Renormalization issue

We have encountered divergences in Feynman loop integrals. These are
inevitable consequences of a transition from finite number of degrees
of freedom to infinite number. Because of this we must continually
sum over an infinite number of internal modes (w; - wp = v/p? +m?)
that is exemplified by integration over p# in loop integrals.

Note

The ultra-violate divergencise in QFT basically reflect the fact that
the ultraviolet region (i.e. short distances or high momenta) is
sensitive to the infinite number of degrees of freedom of the theory.

Because almost nothing is known about the nature of physics at
extremely small distances, one is disguising its own ignorance
about this region by cutting off the integrals at small distances or
regulating them in some other appropriate way.

The theory of renormalization is a prescription which allows us to
consistently isolate and remove all those infinities from measurable
quantities. However, need for renormalization is not unique to rel-
ativistic QFT. Renormalization is a general scheme that has its own
physical basis, which goes beyond QFT and per se it is not about re-
moval of infinities.

Let us for example consider electron in solids. Due to interaction of
electron with the lattice, the effective mass of electron is m* (typical

1.3 Renormalization
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The renormalized quantities are phys-
ically measurable, while bare ones are
not.

notation in solid state physics), which determines its inertial mass in
crystal (i.e. response to external fields).

This mass m* is different from the bare mass m of electron outside of
crystal. In the case of electron both m and m* can be measured, and
Am = |m* — m| is finite and measurable.

By contrast, in relativistic QFT we have 2 key differences

» Renormalization due to interactions provides generally infinite
Am,i.e., Am = |mg —mg| = oo.

» There is no way to measure mg, because we cannot switch off
interactions with virtual particles in the vacuum.

The problem of removing infinities from physically measurable quanti-
ties in relativistic QFT — the renormalization program, involves shuffling
all divergences into bare quantities. In other words the bare, unrenormal-
ized, quantities are assumed to be appropriately divergent (to begin
with) and the infinities due to interaction than cancel these divergences
to produce finite renormalized quantities.

To illustrate the essence of renormalization we will use 1¢* theory.
Given a divergent theory that has been regularized we can perform
formal manipulations of Feynman diagrams to any order. There are at
least two equivalent ways in which one can renormalize the theory:

» Multiplicative renormalization, pioneered by Dyson and Ward in
QED, is quite intuitive. One formally sums over an infinite series
of Feynman diagrams with a fixed number of external lines. The
divergent sum is then absorbed into a redefinition of the cou-
pling constants, masses and fields in the theory.

» Counterterm or BPHZ renormalization was pioneered by Bogoli-
ubov, Parasiuk, Hepp and Zimmerman (BPHZ). Here one adds
new terms, so-called counterterms directly to the action to sub-
tract the divergent graphs. The coefficients of these counterterms
are chosen so that they precisely kill the divergent diagrams.

Multiplicative renormalization

Let us first discuss multiplicative renormalization. To this end we will
consider vertex functions I'? and I'® of 1¢* theory. The 1-loop result
forI'® (p) is

) = (W)

[iAfu“ (p)]_l = p2—mi-x(md) - $(p?). (1.191)
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The renormalized quantities are (at least
in principle) measurable, while bare ones
are not.

notation in solid state physics), which determines its inertial mass in
crystal (i.e. the way how electron responds to external fields).

This mass m* is different from the bare mass m of electron outside of
crystal. In the case of electron both m and m* can be measured, and
Am = |m* — m| is finite and measurable.

By contrast, in relativistic QFT we have 2 key differences

» Renormalization due to interactions provides generally infinite
Am,i.e., Am = |mg —mg| = oo.

» There is no way to measure mg, because we cannot switch off
interactions with virtual particles in the vacuum.

The problem of removing infinities from physically measurable quanti-
ties in relativistic QFT — the renormalization program, involves shuffling
all divergences into bare quantities. In other words the bare, unrenormal-
ized, quantities are assumed to be appropriately divergent (to begin
with) and the infinities due to interaction then cancel these divergences
to produce finite renormalized quantities.

To illustrate the essence of renormalization we will use 1¢* theory.
Given a divergent theory that has been regularized we can perform
formal manipulations of Feynman diagrams to any order and extract
observable quantities in terms of renormalized parameters. There are
at least two equivalent ways how to implement the renormalization
program (or in short, how to renormalize a theory):

» Multiplicative renormalization, pioneered by Dyson and Ward in
QED, is quite intuitive. One formally sums over an infinite series
of Feynman diagrams with a fixed number of external lines. The
divergent sum is then absorbed into a redefinition of the cou-
pling constants, masses and fields in the theory.

» Counterterm (or BPHZ) renormalization was pioneered by Bogoli-
ubov, Parasiuk, Hepp and Zimmerman (BPHZ). Here one adds
new terms, so-called counterterms directly to the action to sub-
tract the divergent graphs. The coefficients of these counterterms
are chosen so that they precisely kill the divergent diagrams.

Multiplicative renormalization

Let us first discuss multiplicative renormalization. To this end we will
consider vertex functions I'? and I'® of 1¢* theory. The 1-loop result
for '@ (p) is

) = (WO

[—Afuu (p)]_1 = - [pz - mé - Z(m%a) - i(pz)] . (1.191)



For the self-energy > we have

domi|1 1-y 1, 4nu?

Zl—loop 2 - _ _ 4+ -1
(P) o2 2772 *2'%8,2 1O
/lomé 2 e
= e + Aomy X finite, (1.192)
where the “finite” part is 4 (and more generally also p? dependent).
This implies that
¥ (m%) = O(e) — 0. (1.193)
So, to one loop we have
1
0 = = (1.194)
1-3%" (mg)
Similarly
= - 1 2
2\ _ 2\ _ - 2_ .2 ” 2 s
2() = 22 (r7) = 2o |3 (7 omk) = () ¢ 2,
N————
O(e)
(1.195)
which finally gives
-r?(p) = p>-m?|1 - Ao 1, Ao X finite |, (1.196)
0 1672 2¢

where in the last expression we have defined the finite physical mass

mp (recall that the full propagator should have pole at physical mass).

In turn we can write

2
Ay m
my = md - 16%2_60 + Agm3 x finite
2 2 Ao m% 2 G
< myg = mp + @2_6 - /10m0 X finite, (1.197)
which to order Ay is equivalent to
m2 o= md (14 2L Ao X finite (1.198)
0 R 1672 2¢ ' ‘

This physical mass, mg, is called renormalized mass and from (1.196) it
follows that it can be given by the renormalization condition

r@ (p2 - m%) - 0. (1.199)
Two comments are now in order. First, at higher loops Z, would
start to contribute and the condition (1.199) would need to be taken
for renormalized (i.e. finite) ['?'. While at one loop level T g) (p? =

l"g) (p?) =T (p?), athigher loop level we have Fg) (p? = Z‘;ll";e2> (P?.
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Note that the p? dependence is entirely
hidden in O(e€) part, which might be in
the limit € — 0 neglected.

Recall that
-1 -1
-1 () = (W )| = [t ()|

-1
. — 2
- [lZ‘pAigll (p)] =712 (p).
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Use the fact that
-1
M) = r |
and that
1

drgr(p?)
dp mp

Res (Aﬁgu(pz = m%e)) =

By requiring Res (Aﬁgu( p?= m%e)) =1

the renormalization condition (1.201) fol-

lows.

In such a case (1.199) should be changed to

r (p2 - m%) -0, (1.200)
with the extra emphasize that the residue of the renormalized full
Green'’s function Aﬁ;ﬂl( p) is one. The latter can be equivalently written
as

ary (p?)

P =1. (1.201)

—m2
pz—mR

Second, it is often convenient not to impose the on-shell renormaliza-
tion condition (1.199). In fact one can take advantage of the freedom
one has and Taylor expand 2(p?) around different reference point than
m%, cf. e.g., Eq. (1.102). By choosing another reference point, say £2, we
would obtain renormalization prescriptions in the form

re (2 =¢) = & - i@,

ary (p?)

P = 1. (1.202)

pr=¢£2

Note that m?(£?) is generally not the physical mass. But since we can
express all physical measurable quantities in terms of such m?(¢£2) (and
coupling constant), it is in this sense a physical parameter.

We now apply analogous treatment to ', We know that to one loop

s I3 u
31'/1(2);125 i/lépzf

322 32x2
+ F(t,mg,pu) + F(u,mog,p)] .

(p)

—idou®€ + [3y + F (s, mo, n)

(1.203)

We see that I'® is the relevant entity for characterizing the 4-field ¢
coupling strength, reducing to —ido in the 7 — 0 (no loop) and € (no
regulator) limits.

Rewriting (1.203) a bit we get

2263

AgH
0 Z - 37 - F(S,mo,,l.l)

T® (p) = Ao(u?)E -
i (pi) o)~

— F(t,mo,p) = F (u,mo, )] . (1.204)

Note that in F (e, m, ) the bare mass mg can be replaced by the renor-
malized mass mgr = m without creating additional terms of the order
/13 (see the explicit representation of F (e, mg, u) in Eq. (1.78)).

Whereas the physical mass mg was defined unambiguously, this is



not true for “physical” coupling strength Ag. Rather one defines a
renormalized coupling constant for a particular choice of Mandelstam
variables. For instance, we could define the renormalized vertex func-
tion I'® at the on-shell momenta p? = m% and the symmetric point
s =1 =u =4m%/3 or at symmetric momenta (i.e., s = 4m%, 1 = u = 0) or
at the non-physical point p; =0 (i.e., s =t = u = 0), etc.

We will now separate the divergent and finite parts of the unrenor-
malized vertex function (1.204) by making a Taylor expansion around
a chosen reference points, say around the non-physical point p; = 0,
then

/12#26 3
TG0 = ot = |7 -3y 3 0m)
+ i), (1.205)

where I'(p; = 0) = 0. Now one defines the vertex renormalization constant
Z) as

Z7' = A - i 3.3 — 3F (0, m, ) (1.206)
A 0 - 0 3271'2 € Y ,m, 7 .
so that
_ A (3
Z7l = 1- 222 =3y = 3F(0,m, )] . 1.207
3 32ﬂ2(6 Y ( mu)) ( )

Eq. (1.205) can be then rewritten as
T (p) = Zy'ao< + il(py), (1.208)
which at the point p; = 0 gives
T® (p;=0) = z7'au%c. (1.209)

The arbitrary bare Ay is chosen so that the divergence in Z;l is in
each order canceled in the product with 1y leaving behind the finite
renormalized coupling constant Ag. In particular

g = (de -

/12 2\ €
o) 13 _ 3y — 3F(O,m,u)| .  (1.210)
3272 e

This can be rearranged as

302 (12) 7 11
3 () " 11 _ y - F(O,m,,u)] . (1.211)
€

D = ARG+ —

where the error involved is at a 2-loop level.

With (1.211) we can now rephrase ir'® (p;) given by (1.204) in terms
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of renormalized quantities Ag. In particular we get

38 (52 |1
T@® () = RV (2,
) = g+ — |2 =Y F(O,m,#)]
/12 2\ € 3
- O(IJ ) ——3‘)/—F(s,m,,u)—F(t,m,,u)—F(u,m,u)
3272 e
/12 2\ "€
= Ag + Le i) [F (s,m,p) +F (t,m,p) + F (u,m, p)
3272
— 3FO,m ], (1.212)

where in the last equality we have used that to leading order 1y =
Ar (1#2)” €. This obviously implies that

ir® (p;=0) = Ag, (1.213)

since when all p; =0 thens=¢t=u =0.

Note

The A defined above thus corresponds to the value of the “mea-
sured” coupling constant in A¢* theory if the 1-loop approximation
was good enough to compare with experiment (otherwise higher
approximations would be needed), and if measurements were per-
formed at the (unphysical) point s = # = u = 0.

In fact, we can take Egs. (1.200), (1.201) and (1.213) as defining
relations, so-called renormalization prescriptions for the mass and
coupling constant in A¢* theory.

As it stands we took no account of the field renormalization (which is
fine at one loop level since Z,, = 1). At a higher-loop level

I (pa) = 2205 (). (1.214)

This is a simple consequence of the fact that iA%lu (p) = iZ‘pAgéﬂ1 (p)-
Indeed, let us split the Z, factor occurring with every renormalized
propagator in a Feynman diagram into two pieces \/Z_‘p \/Z_‘p . In this
diagram, move each factor of \/Z into the nearest vertex function.
Since each vertex function has four legs, it means that the renormalized
vertex function will receive the contribution of four of these factors,
or \/Z4 = Zi. So, the renormalization prescription for a coupling
constant (1.209) and (1.213) will at higher-loop level change to

@ (pi =0) > irg) (pi=0) = Z;zi]"g) (p;=0) = Z;z/lR. (1.215)

The renormalized and unrenormalized coupling constants are thus
related by the the relation (now the regulator e can be set to zero as
renormalized quantities are finite)

AR = Z'Z2 0. (1.216)



Counterterm (or BPHZ) renormalization

In high energy physics there is popular yet another renormalization
method. In this method one proceeds, in a sense, backwards in com-
parison with multiplicative renormalization, that is, one starts with the
Lagrangian defined with the physical fields, coupling constants and
masses, which, of course, are finite. Then, as one calculates Feynman
diagrams to each order, one finds the usual divergences. The key point
is that one can remove these divergences by adding counterterms to
the original action (which are proportional to terms in the original
action). The final action is then the original renormalized action plus
an infinite sequence of counterterms, to all orders. Theory is called
renormalizable if counterterms have the same structure (e.g., they are
the same field monomials) as the original action. Because in this case
all counterterms are proportional to terms in the original action, we
end up with the unrenormalized (bare) action defined in terms of un-
renormalized (bare) parameters, which was the starting point of the
multiplicative renormalization. This second renormalization method
is called the counterterm (or also BPHZ) renormalization.

To see the connection between multiplicative renormalization and
BPHZ renormalization more closely let us introduce the concept of
power counting

Power-counting method — 1st bite

The superficial degree of divergence D of Feynman’s loop integral is
defined as

D = number of loop momenta in numerator

—  number of loop momenta in denominator. (1.217)

For example the graph

q—p1—p2

d*qr 1 1
2m)* g% +m? (qE = prE = p2,E)* + m?’

(1.218)

has 4 loop momenta in numerator (from factor d*qr) and 4 loop mo-
menta in denominator which gives D = 0. In fact, the integral is
logarithmically divergent because at large g is behaves as

3
1

~ /quE||qE|4 = /dlqEI—. (1.219)
lgel lgEl
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Each propagator carries 2 loop momenta
in denominator via qi. and each loop
integration carries 4 loop momenta in
numerator via d*gg.

It should be stressed that now all masses
m as well a couplings A are supposed to
be renormalized, i.e. finite.

To calculate D for any graph in 1¢* theory one defines

E = number of external lines,
I = number of internal lines,

V = number of vertices.

Since in A¢* theory both ends of internal line (propagator) must termi-
nate on vertices we have that

4V = 21 + E. (1.220)

By using further the Euler formula for planar graphs (L =1 -V +1)
and the fact that for 1¢*

D =4L - 2], (1.221)
we might write that
D=4L -2 =4I -V +1) -2 =4 -E. (1.222)

Since A¢* theory has reflection symmetry ¢ — —¢, E must be an even
number, which means that the vertex functions

re - o 2

D=1 D =3,

must be identically zero (even if they have non-trivial D) and only
2-point (E = 2) an 4-point (E = 4) vertex functions are superficially
divergent, namely

re =

D =2 D =0,

Note that a diagram is superficially divergent if D > 0. In particular,
if D = 0 we have logarithmically divergent diagram, if D = 1 we have
linearly divergent diagram (integration at large momenta ~ f dlqEl),
if D = 2 we have quadratically divergent diagram (integration at large
momenta ~ fdlqE||qE|), etc.

Quite useful observation is that one can extract the the divergent parts
from I'® (p?) by Taylor expanding it around p? = 0. In fact, we can
write

r®p?) = () + p? (r<2>)’(0) + T (p?), (1.223)

where ' (0) = 0. Here I'® (0) is quadratically divergent, (I®)’ (0) is
logarithmically divergent and T'® (p?) is finite.



Since '@ (p?) = p? —m — 2(p?), we have that -I'? (0) = m? +2(0),
(C@)"(0) = 1-32/(0) and '@ (p?) = —£(p?). So, in order to analyze
diverges of I'? (p?) we can concentrate on X(p?). Now, it is not difficult
to see that each derivative with respect to the external momenta p,,
lowers the superficial degree of divergence by 1 (so, /dp* lowers D
by 2). To see this more explicitly we consider 2-loop contribution to
X(p?), i.e. the diagram

q/

2

i
\j ’ i=r+a-d
q

LN

Corresponding contribution reads (Euclidean momenta are implicitly
assumed)

d4 ’ d4 1 1 1
2(p) oc/ e ——, (1.229)
2n)* 2m)* g +m=q’=+m* (p+q —q’)" + m?

and thus

dYq’ d*q 1 1 1
2(0) oc/ PPy o s vy e S d (1.225)
2n)* 2r)*gc+m=q’c+m* (g—q’) +m

which has D = 8 — 6 = 2 as expected. Similarly

d*¢’ d94 1 1
ZI
© / 2n)* 2n)* g2 +m? q'2 +m?

x i[ ! ]
op* L(p-q-g)*+m?ll, -

B / d4g’ d¥q 1 1
- (27T)4 (27_()4 qZ + mZ qlz + ,712

y {_L (P+9-9")u }
2[7 _ 2 2 2
H[(p+q q’) +m] »

=0
1 / d4g’ d¥q 1 1
- 2 @n)* 2n)t ¢*+m? g’ +m?
1
o— (1.226)

[(g—g)2+m?]*

has D =8 -8 =0, i.e. it is logarithmically divergent. Higher derivative
terms have D < 0 and hence they are all convergent.

Analogously, the logarithmic divergence in T'® (p1, pa, p3, pa) is present
only in the I (0) term in the Taylor expansion T'® (p;) = T™®(0) +
'@ (p;). Term I'® (p;) is already finite.
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Exercises: Renormalization

Effective potential

Exercise 1.19 Show that in massless scalar theory with quartic potential, the one-loop
effective potential spontaneously develops non-zero VEV.

[Hint: Calculate the 1-loop effective potential and find its extremal value. To sum all
the one-loop diagrams, you will find knowledge of Taylor expansions useful.]

Exercise 1.20 Explain why the non-zero VEV in effective potential in previous exer-
cise is only an artifact of the expansion.

[Hint: Look at the regions of validity for perturbation expansion and loop expansion.]

Counterterm (BPHZ) renormalization

Exercise 1.21 Calculate superficial degree of divergence for a general diagram in real
scalar field theory with interaction

__83_ A
LI__§¢_I¢'

Exercise 1.22 Use power-counting technique to construct counterterms and draw all
one-loop divergent 1PI diagrams for the real scalar field theory with interaction

_ &8 3 _ A4
£1—‘§¢—I¢-

[Hint: Use result of the previous exercise.]

Exercise 1.23 Use power-counting technique to construct counterterms and draw all
one-loop divergent 1PI diagrams for QED Lagrangian

o _ 1 ,
L=y (Yo, —-m)y — edy YA, - ZFHVF'u .

[Hint: Remember that key feature of QED is its gauge invariance, counterterms must
also be gauge invariant.]

Callan-Symanzik equation

Consider the bare Lagrangian of ¢* theory

1 1 1
Lp = EagampB - E’"%‘P% - 5/1390% . (1.231)



In BPHZ renormalization Lz thus depends on m%, Ap and pp and is u
independent. We have seen that generically one

2 m ak (/l’%)
Ap = g = p°€ ao(/l,—;e)+ _
/1 Z

€
Ck /l,m
Zy = co (a,ﬂ;e) + ZM (1.232)
H o1 €

Relations (1.232) are valid in any renormalization prescription — dif-
ferent renormalization prescriptions only determine the actual form of
the functions q;, b; and c;.

Apart from various physical renormalization prescriptions that we dis-
cussed in the previous sections, there is one particularly convenient
non-physical renormalization prescription which is based on the simple
idea that counterterms necessary to ensure finitness should involve
contributions which are just poles in € (with no extra finite parts). This
renormalization prescription goes under various names — minimal
subtraction scheme (or simply MS scheme), mass independent renormal-
ization or 't Hooft-Weinberg renormalization scheme. In this scheme the
relations (1.232) acquire the following forms

A
u—26/102/1+ fkg()
o1 €
bi (A
m% = m2 1+ Z kg{ ):|
o1 €
ax ()
Z, =1+ ) (1.233)
4 kZZl Ek

with fi, bx and ay being dimensionless. There a simple heuristic argu-
ment for why these expansion coefficients must be mass (and hence
also y scale) independent. When the counterterms have no finite part,
they just have the “bare bones” structure needed to cancel the infinite
behavior at the very short distances (large momenta) and no more.
However in this region, i.e. at infinite momenta, all masses can be
presumably neglected.

The finite physical correlation functions depend on A, m* and also
1, which is more parameters than in the bare theory. In fact, u is
arbitrary but to show this more precisely it is necessary to consider the
relations between the bare theory results, which are independent of 4,
and the corresponding finite quantities obtained by the regularization
procedure. Correlation functions for the bare theory can be defined
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By their very formulation are the func-
tions a;, b; and ¢; dimensionless and
hence their prospective dependence on
m and p is give only via m/pu.
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Strictly speaking also G is finite
since non-perturbatively Z, is finite
(cf. Kéllen-Lehmann representation of
Green functions).

Since G, is finite, i.e. there are no poles
in €, the quantities 84, 8,2 and y,, must
also be finite and have no poles in €.

formally by a functional integral

G (Xl,. : .,xn;/lo;mé) (¢ (x1) ... @B (xn))

_ [ Denesn)pp el
- /DSDB eiSB[‘PB] ’ ’

7172

4 @, wehave

and since ¢p =
G, (X1,- N mz;,u) = (o (x1)...0(xn))
= 2,060 (xl,...,xn;/lo;m%). (1.235)

Crucially the renormalized Green function G, (x1, . . .,x,; 4; m?; p) is a

finite function of A and m? with non-singular limit at € — 0. Important
observation is that this also depends on g, since (as we have sen) it
survives in the € limit (and it cannot be avoided since it is a necessary
ingredient of the renormalization procedure). Because bare quantities
do not depend on the mass scale , it we can write

d
,u%G?l (xl,...,xn;/lo,'m%) =0, (1.236)
and so
d 1.4 e 2.
H [Z¢Gn (xl,...,x,,,/l,m ;1)] g = 0. (1.237)

By applying the chain rule the later can be equivalently rewritten as

1/2
dz n-1 n 0 n dd a9
¢
7z 7Z = 7z, 2
a du ¢ * ‘p'uﬁy ‘p'udpai
2 dm* 8 5
o g G (xl,...,xn;/l;m ;,1) - 0. (1.238)

We can now divide out a common factor ZZ/ ? to obtain the so-called
Callan—-Symanzik (renormalization group) equation (or simply CS equa-
tion)

0 0 0
(,um +ﬁ/15 +ﬂmzw +ny¢) Gn (xl,...,xn,'/l;mz;y) =0, (1.239)

where
1/2
da dm? dz 1
Ba=p o o B =n - s Yo = |H dw —1a| - (1.240)
H Ao H Ag,m(z) M Z‘p 2

It is also clear that the way how we arrived at the CS equation (1.239)
could be repeated, for instance, for generic n-point vertex function by
employing an n-point analogue of Eq. (1.218). Note also that the CS
equation as is stands is independent of any specific renormalization
prescription.

In order to be able to solve the CS equation we need to know first the



functions (1.240) in some renormalization scheme. Let us now show
how this can be done systematically in the MS scheme. By considering
the relation between Az = 1 and A we can on one side write

IJ% (#—26/10) — —26/1_26/10 — ( Zf (/1))

k>1

. (1.241)

Ao

while on the other we have

k>1 A k>1 A
_ 9 < S (D)
BatBagz ) mo| . (1242)
k>1 A
If we now define 3, as
Ba = —2ed + pa, (1.243)

then from (1.241)-(1.242) we have

B = Pa+2ed = —26(“25—2) - m%(z :—’;) + 2ed
k>1 k>1
S 0 fi
C a3t g (s
;6 1 0 Z;ek

(/1— - 1) Z ko p= o Z Jic | (1.244)

Here we have omitted for simplicity the the sub-index Ay.

Now, since 3, has no poles in € (as 8; does not have), Eq. (1.244) can
be consistent only if

Ba = 2(/1% —1) S (). (1.245)

Furthermore, the pole terms e~ with k > 1 on the RHS of (1.244) must
cancel each other, which leads to a recurrence relation

2(4%—1) fin = Bancfe. (1.246)

This relation enables us to compute fi (1) recursively in terms of f; (1)
and B, (1), which itself is determined by /i (41).

We can obtain similar relations for other functions in Eq. (1.240). For
instance, to find f,,2 we use the relation between m% and m?, A given
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in (1.233). By taking derivatives with respect to u we get

d d br (4
0 = ,u—m% = u— m2(1+ E ki))
du mg,/lo du = € 20
0 0 2 b (/l)
= — — 1 E
[ﬁ/l(?/l + 8,2 82] m ( +k>1 X

B, (1 £y bke_ff)) + m%% ; b () (1.247)

3
k=1 €

If we now define new function y,,> (1) by
Bz = m*y,2 (1), (1.248)

then the previous equation can be written as

0
Y2 (D) b"eiﬂ) = (-2ed+51) 57 kZl br(d) (1.249)

3
k=1 €

By the same argument as before, y,,2 (1) is finite (and so has to be
independent of €). By comparing coefficients in the Laurent series on
both sides of (1.249), we get

d
Ym2 (A) = 2/15171 \, (1.250)

and the iterative relation

2/1(;)—/1bk+1 ) = (sz (/l)*’ﬁ/l;_/l)bk ) . (1.251)

We again see that we can compute by recursively from by, B and V2,
where the latter two are obtained only from f; and b4, respectively.

Finally, a similar analysis can be done for y,. We can rewrite the
defining relation (1.240) for y,, as

d 1 d
Yo Zy = p—AZ = ypZlp = =u—2 (1.252)
N4 du Ve " vty Hauce

Ao

If we now set Z, = 1+ A (remember the starting definition of Z,, we

have A = Y ;51 “kg(k’l) ), we get

1 d 1 0
1+A = —u—Al == —A 1.253
(1+A)y, L LO 2ﬁ‘(a/1 )AD ( )
This in turn implies that
= 1(—26/1+[§ )iA — YA (1.254)
Yo =3 Vgat T et '

By comparing the O(€°) coefficient we obtain

Yo (A) = —A%al ), (1.255)



while the higher-order coefficients ay (1) satisfy the identity

0 dg (/l) 1, 0 dg (/l)
0=-1— —_— —Bi—= — , 1.256
oA Zﬁ 1 T (2[3”0/1 7“’)]; ek (1.256)

which implies that

0 1(, 0
/lﬁakﬂ =3 (,3/15 - 274:) ar . (1.257)
In order to see how this work in practice, let us consider ¢* theory. By

using MS renormalization scheme we recall that we have obtained (cf.
(1.201))

/10]112

S0P (p2) = w2 — md = ——= + Ao xfinite part.  (1.258
(r°) R 0 3072¢ 0 P ( )
In MS procedure m?% is taken so that only bare poles are compensated,

hence I
2 _ 2 Aomgn™"

"R =0T 6r0e
where y~>€ originates from BPHZ. Inverting the above expression, we

get to order Ay

+0 (/13) , (1.259)

—2e

bl —2e
m2 = m?, (1+ o +0(z§)). (1.260)

Similarly, for Ag in MS scheme we have

34
—2€ _ R 2
Ao~ "€ = AR (1 + o +0 (/IR)) . (1.261)

Taking the above equations together we obtain

a
m2 = m?, (1 + 40 (ai)) : (1.262)

Relations (1.262) and (1.261) give 8 functions to the lowest order of the
following form

. 0 0 3%
Ba _2(45—1)]01 ) _2(15—1) o
342
==K +0 (Ai) — (). (1.263)
Similarly g,,2 (1) = m?y,2 (1)
P 8 Ar
Y2 (4) /la/lbl (V) ﬁa/lR o
- % +0 (/12) ) (1.264)
and
9 2
Yo () = =d5za1 () =0+0 (/l ) (1.265)

as this is 0 on one-loop level.
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Method of characteristics

Before proceeding with discussion of evolution of coupling constants
under the running scale, let us recall a mathematical method we will
employ.

Consider linear PDE

0 17}
Al y) L4 B(x,y) 2 =0. (1.266)
0x ady

We look for solution of the form u (x,y) = f(p) where p is some
unknown combination of x and y. So

ou_df (p) op

= 1.267
Ox dp ox (1.267)
du df(p)dp
3" dp 3y (1.268)
This implies we can write equation 1.266 as
A L By | LD (1.269)
Ox dy| dp

This removes all reference to the actual form of f (p), since for a non-
trivial solution we must have

A LBy 2L =0 1.270)
ox dy
At the same time f (p) remains constant as x and y vary if
dp=0= a—pd.x + a—pdy. (1.271)
0x ay

The two conditions above have a non-trivial solution if

A B):OzAdy—de:O@%:d—y. (1.272)

det (cbc dy A B

By integrating the last condition p can be found, ¢ = f (p) where c is
the integration constant, such that x = x (y) or y = y (x), so that

Ux(»),y)=r(p). (1.273)

Evolution of coupling constants

Let us now discuss the solution of Callan-Symanzik equation. For
simplicity we consider a simple dimensionless coupling g with a cor-
responding g-function g (g). Let us set first m = 0. This gives CS in the
form

,Uai + ﬁ(g)ai +v(@|G{Hphgw =0, (1.274)
J g

for generic Green’s function with a set of momenta {p}, coupling g and
the regularization scale p. Note also that we work with momentum



representation of Green’s function.

If G is dimensionless, it can only depend on the quotient % for all

momenta, i.e.
G{phew=F{p/uk;e),

for some function F. The important point is then that the dependence
on p (which is physically interesting) is related to the dependence on
1. For the moment we drop y, and we will return to it later in the
discussion. So simplified, CS equation has the form

(1.275)

[+ 0) ) 6 5,00 =0, (1.276)
7 g

where the dependence on momenta is kept implicit. There exists a

standard procedure, the method of characteristics, to solve this equation.

To this end we define a quantity g (1) called the running coupling by
the requirement that it is the solution of the equation

d
pa 8w =p(). (1.277)
i
Solution can be found by integrating both sides, namely
&)
/ g g (1.278)
g(uo) IB (g) MO
Then the partial differential equation (1.276) is reduced to
d
ﬂd—G(g (w);p) =0, (1.279)
U
which requires that G (g (1) ; ) is independent of y, i.e. .
G(g(p);pm) = G(g(ko);po) - (1.280)

This is reflection of the arbitrariness of y, the direct dependence on p
is compensated by the dependence on g (u). To proceed further, let us
first consider the qualitative features of the solution for the running
coupling g (u). If B (g) > 0 then g increases with u. On the other hand,
when S (g) < 0 then g decreases with u. A graph for g (g) if 8(g) >0
for small g and also if 8 (g.) = 0 for some finite g, has the form
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It is always possible to ensure that G is
dimensionless by factorizing out suitable
momenta.

If there is only one momentum (e.g.
we have two-point Green function), so

P2

that F = F('u—z;g), then the solu-

tion eq. 1.280 shows that G (p; g; u) =
2

G(p;g(w;p) = F(%;g(ﬂ)) =

2
F (%;g (;10)). We may choose yg = p
0
2
and then F (%;g (.UU)) = F(Lg(p),
0
so that the dependence on p is given just
by g (p). This allows us to make state-
ments about the properties of the theory
which follow from analysing how it de-
pends on the coupling

Figure 1.1: ***
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Such a fixed point g. is called ultravio-
let (UV) stable because g approaches g.
asymptotically as u — co.

Figure 1.2: ***

For such a functional dependence g (1) — g. as u — +oo. This can be
understood as follows. We consider the behavior of g in the vicinity of
g+ In this case we have

,udig = (g-8)B (g) + ..., (1.281)
u

where B’ (g.) < 0 as can be seen from graph. Moving related terms to
the same side and integrating we get

8- dg’ A d,u, ,
_ ) 1.282
/g — /ﬂ L (5 (1.282)

where §. is approaching g. from below and /. is the associated scale.
Completing the integration we get

In& "8 878 _ (mﬁ)ﬁ’ (2.), (1.283)
8~ 8= 8+ — 8 M

as . — 8., fl« — .. In this case LHS — —co (as we would get log 0)
so the RHS must have

m (lrl %) (=18 (g:) ) = —co. (1.284)

li
A= p
This can be fulfilled only if u. = +c0. g, is called a fixed point because if

for some reason g would be originally at g. it would remain there.

In fact, let us see the behavior of g in the vicinity of g,. There we have
(as we already know)

d
pe,8 = (g—g) B (8:) + ..., (1.285)
yi)

d
If B’ (g+) < 0 (as in the figure) then r8 is positive for g just below g.,
u

which drives g to a larger value, i.e. towards the fixed point g., while

N

g<8. H

d . . . . .
He -8 is negative when g > g., which drive g to smaller value, again

towards the fixed point g.. We thus see that ¢ will approach the value
g+ asymptotically as y — oo, from above or below depending on the
starting point of g (which can be to either side of g.).

Let us now assumed that g, < 1 (so it can be used in perturbative
expansion). If we start our theory at small g < g, we never leave per-
turbation region, since higher order corrections (which probe shorter
distances) will only drive g closer to g.. Alternatively, if we started with



g > g. then g would be driven to perturbative region with increasing
1. Therefore, in such theories we do not get away from perturbation
theory when doing renormalization. Such theories are perturbatively
stable in UV region. This is the typical situation we usually expect to
be true in perturbative treatment of theory.

The point g = 0 is also a fixed point for which g’ (0) > 0.

This means that above g = 0, g is driven away from g = 0 as the
momentum increases. Such a fixed point is called infrared (IR) stable.

™~
e

> <<g

Quite interesting is a situation where S (g) has shape of one of the
following cases:

In the case I, B (g) starts negative for small g, decreasing its value
monotonically with growth of scale u. In this case the perturbative
approximation becomes better at larger momenta (shorter distances)
and g is driven to 0. Indeed,

g = (g 0F O ¢ (1.286)
u

which implies
dg d-
a < O, or d_g < 0. (1287)
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Figure 1.3: The fixed point at the origin is
IR stable, as the coupling is driven away
from it. The one at g, is UV stable.
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Figure 1.4: In this case it is the fixed
point at the g. that is IR stable, as the
coupling is driven away. The one at ori-
gin is now UV stable.

In addition 1.286 implies

dg du
& _ )
g K
g=cuf O, (1.288)

which shows that g — 0 as u — oo. In that case g = 0 becomes an
ultraviolet stable fixed point. This behavior implies that if we start at
some higher value of g it will inevitably flow to g = 0 (i.e. a free theory)
at short distances. Such behavior of coupling constant g is exhibited in
4D by gauge theories (like QCD) and is known as asymptotic freedom.

In the case II, B (g) start out negative and then turns over and becomes
positive by crossing the axis at g.. In this case 8 (g.) > 0 and g, is an
infrared fixed point. Indeed, for coupling constant g < g.

d ’
r =(g-8)B (g)+---, (1.289)
u
implies
& dg’ A dy’
[ [ s
g g _g* u M
= m&& - pgeym, (1.290)
8+~ 8 yoi

where g, approximates g. from below. As g, — g. (and i, — u.), the
LHS goes to —co which then suggests

lim ' (g.)In 2
Aot yii

=—c0o = niu, — 0. (1.291)

Similarly for g > g.

& do’ Hdu’ ,
/ ’ g = / lf ﬂ (gx) ’
Gs 8 — 8« fi. M

8 — 8« ’
. = - (g)In—y,
8+ — 8+ H

mu,

= In (1.292)

where §. approximates g. from above. Here the RHS goes to +co as
&« — 8+, and so again g, — 0.

Such a behavior of g as a function of momenta can then be illustrated
as ion Fig. 1.5



£>8

g<&.

so we see that for g < g. we approach free theory as 1 — oo, whereas
for g > g. the coupling blows up.

Let us now bring y back into the equation and see what modification
of the solution is required. For

(1586 55 +7 0)) G @0 =0, (1.29)
U 4

we introduce g (1) as before and the equation becomes

d
#EG (&), 1) ==y (8 (W) G(g(w),n. (1.294)
This can be integrated to get (denoting o = In u)
Gy =elo¥7G,, (1.295)

or in language of u

- Hd_'u’;: " ’ ’
G (g (), p)=e b TYEENG (g (1), ). (1.296)

Note that the exponent can also be written as (remembering that here
u=x)

" dx d xd xd
/ 77(8(@)=|g(x)=g:>dx: 8 _ § _ X9,
.

dg(x) ~  dg(x)
i A

(8)
- dg X282 1.297
L(Hr)g<u) gﬂ (g) ( )

Then, if there is a UV fixed point g.

H ds
[ -remiansn a2
w S Ho

When g is small, we may use perturbative results for beta functions (e.g.
2

for 1¢* we have 8, (1) = Ton? +--+). As an example let us suppose
s

B(g) =-bg>. (1.299)

If b > 0 there is asymptotic freedom and as g (u) — 0 for large u, per-
turbative results become a valid approximation. The running coupling
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Figure 1.5: UV stable fixed point in the
origin.



70

1 Quantum Field Theory 3

is then given by
g(u)
1/ d_§=1n£=> L1 owmf s
bJew) & Ho g (W™ g(po) Ho

Note that as ¢ — oo the RHS also goes to infinity and so on LHS
g (1) — 0 (if b > 0). By defining constant A so that

—% =2bln A, (1.301)
g (uo) Ho
we get for the running coupling
L o opm# (1.302)
8% (p) A '

Let us know suppose that y (g) = cg? as well, then

g(p) g(p) 2
/ g8 _ _/ dg<f = Cpp &) (1.303)
e  B(g) () bg b g(w)

This in turn then implies

g2 (p)
g% (o)

As p — o0, g (p) — 0 with asymptotic freedom, so that perturbative
results for B (g), ¥ (g) and also F (p?/u% g (1)) can be used to give a
precise, when justified, prediction for this limit. This illustrates how
asymptotic freedom can be used to find out about the behavior of
QFT such as QCD for large momenta when perturbative results show

B(g) <0.

As a final consideration, let us now introduce a mass term, assuming
that we have Callan-Symanzik equation

G(p,g(p),p)= ( ) v F(1;8(p)). (1.304)

0 0 o)
(u@ HB) 5o B (8) 554y (g)) G (gm?u) =0,  (1305)

where 8,2 (g) = 7,2 (¢) m* and the p dependence of G is implicit. As
before, we solve this by introducing a running coupling g (1) and also
running mass m (u) which is determined by analogous equation

d
u@mz = Y2 (8 () m*. (1.306)
This can be solved by
" vmz(g(S))
m? (1) = m? (o) o ¥, (1.307)

which can be simplified if we assume that the integral is dominated by
the large u range, leading to

Y2 (8<)
) . (1.308)

m? () = m? (o) (i
Ho



The solution of the RG equation now becomes

G (g sm? () ia) = o 570G (g (o) s (o) 1 p0) . (1:309)

This then reduces to the previous solution when m? = 0. For a function
of a single momentum p we let G — F (p?/u?;m?/u? g), and p = mug

Hods
F (P15 () g () = €0 570 E (1 () 1% (1)
(1.310)
This implies that property of the theory at momenta p follows from
analysis of how it depends on mass and coupling.

Now again consider the situation where we take the limit p — co and
we have an ultraviolet fixed point g, so that g (p) — g. for p = co.In
this case

“d
/ Tsymz (g(5) = V2 (g)Inp as p — oo, (1.311)
Ho
this then implies for the flow of mass as p — o
m? (p) = m? (o) p?n?(®"). (1.312)

So, as long as y,,2 (g.) then the dependence on m? (p) can be neglected
in

F(1:m? (p) p% 8 (1)) = F (105 ().

This then implies that we have scale invariance in the asymptotic
regime, provided that g is dimensionless. We can now take for example
A¢* theory. For it we have for beta function 8, (1) = % +0 (23).
Neglecting the O (13) term we can integrate the relation to obtain the
running coupling

/4 ar /”d,u’ 3
Apg) A w H16r?

(1.313)

= LI ! S In £

A Awo) 1672 po
- 1 = 34(“0) (1.314)

7

1—@1(%)1“”—0

It is clear that A increases with . Thus if we start with a small 1, <1
the coupling will increase with x and will therefore leave the domain
of validity of perturbation theory 1 <« 1. Thus at shorter distances we
have to add more and more contributions to 8 function. Implications
of this is that perturbation theory for 1¢* is more reliable for lower
energies (larger distances). If the perturbation theory could be still
trusted (or if 8 would even for larger A behave as o« 4%), then A would
blow up at a finite energy scale

16”2] . (1.315)

/1=uoe><p[31
Ho
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Note: For asymptotically free
theories typically v,2(g) =
O (g%) and the masses can also
be neglected in the UV limit.

Note: Note that whether or not
the masses decouple from the
theory at large momenta de-
pends essentially on the inte-
gral over the anomalous dimen-
5101 Y2.
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Since we only need to require
[P 1w5)l = [(Wlyn)| we might
introduce a phase factor on the RHS of
(1.316) and (1.317), or require that U (g)
is anti-unitary. If the transformations
are continuously contractible to the unit
element of G, U (g) can be only unitary.

Such a finite scale is called Landau pole, as Landau first recognized such
a behavior in QED. For 1, = 1 we get ﬁo ~ 10%, far beyond the Planck
scale.

1.4 Spontaneous Symmetry Breaking (SSB)

In this section we will discuss spontaneous symmetry breaking in
the context of the quantum field theory, including its application to
Standard Model via Higgs mechanism.

Reminder — Symmetries in quantum theory

In a quantum theory the action of symmetry transformations con-
ventionally corresponds to unitary (or anti-unitary) operators acting
on the space of states of a given theory. If G is a general symmetry
group, then for any g1, g» € G satisfying the group multiplication rule
g1 0 &2 € G we require the existence of unitary operator U (g) such that

U(g1)-U(g2) = U(g1og2), (1.316)

and the action on state |¢)

U@ ) = [v®), (1.317)

that defines the state corresponding to the transformed physical sys-
tem.

The requirement that U (g) is unitary follows from the fact that we wish
that scalar products are invariant under the symmetry transformations,
ie.

Wilyz) = Walya). (1.318)
Assumption of symmetry means, among others, that
U@'HU () =H = [HU()] =0. (1.319)

In these cases the states with a given energy must form a representation
space for G, i.e.

U@ = ) D@l (1.320)

where s labels all the states with the same energy, and D, (g) is a finite
dimensional representation of G. So, the state space of given energy
may be classified in terms of the representations of the group G.

Because the symmetry is supposed to be exact, the vacuum state must
be invariant, or form a trivial single representation of G, i.e.

U(g)10) = |0). (1.321)
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SSB — discrete symmetries

The aforementioned picture of how symmetries are realized in quan-
tum theory is a conventional wisdom, however it is not the only pos-
sibility. In fact, the ground state does not need to respect the basic
symmetry of the Lagrangian or Hamiltonian. To illustrate this in field
theory we consider a Lagrangian density for a scalar field

1
L= 50"¢0up - V(9), (1.322)

which is invariant under the Z, symmetry, ¢ < —¢, meaning that
V(¢) = V(-¢). Typical example is

la¢4, g>0. (1.323)

V(p) = %mzqﬁz *

For m? > 0 the potential has minimum at ¢ = 0, which is invariant
under Z;. In quantum theory we would expect that the symmetry Z,
is realized by a unitary operator U such that U? = 1. Assumption of
symmetry implies that

U'HU = H, U|0) = |0), (1.324)

and so energy level (say |, )) is degenerate, with degree of degen-
eracy of 2 (apart from vacuum). The states |y, ) and |y, -) are re-
spectively created by application of even and odd number of field
operators ¢ to the vacuum state |0) and it holds for them

Hl‘/’n,ﬁ:) = En|¢n,i>r
Ul'»[/n,i> = ill»[/n,i>~ (1325)

Situation with m? < 0 is very different. In this case it is convenient to
add a constant into a Lagrangian and write V(¢) in the form

1 2 1 2 1
V(@) = ;1 (62-v?) = A = R St (1326)
where we have defined
[m?| 1.,
5 = (1.327)

In the ground state there are now two possibilities on a classical level,
¢ = +v, and so in quantum field theory there are expected to be two
vacua |0.) such that

(04|10+) = +vg, (1.328)

where vg is renormalized value of v including quantum corrections.
For the two vacua it is possible to construct two independent Hilbert
spaces of states . by applying field operators to appropriate vacuum
state. These two Hilbert spaces have no overlap, because (0|0-) =0
(as we will see shortly). So, all states in H_ are entirely distinct from
those in H,. But they define two equivalent theories, so there is a
one-to-one mapping between states in the two spaces. However, there
is no unitary operator acting on the states which would realize such a

Condition g > 0 ensures that energy is
bounded from below.
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It is well known that in quantum me-
chanics the parity is always a good quan-
tum number, if the potential is invari-
ant under reflection, and that the energy
eigenstates can be classified in terms of
being of even or odd parity.

physical symmetry.
To set up a perturbative expansion for this theory we shift the field

¢ = v+ &, (1.329)

where £. describes the fluctuation around vacuum +v. In terms of &..
the Lagrangian reads

1 1 2
L = 50"60.0 - Eﬁ(&—&)

1 1 2
_ L, Lo, 2 2
= S0 4!/1(11 £ 26, + £ v)
= oo - L) (4§2v2+4§3v +§4)
5 +0u€+ 21 £V T, +
1 1 1
= F0MEuEs - BA( ivziv§3+Z§i) . (1.330)

We see that £, are massive fields (m? = % gv?) with a cubic and quartic
interaction terms. In perturbation theory then to the lowest order
(no interactions involved) we have (0.|£:]0.) = 0, however there
are corrections which will make this non-zero, for example due to

S o

v v
6 6

diagrams

= P

The scenario just described is valid in quantum field theory but it
fails in ordinary quantum mechanics. To see this we may consider the
above example where ¢ is replaced by x. The Hamiltonian for such a
system is

N YA
H = 5P + AE/I(X —v) . (1.331)
The Z; symmetry for x < —x is now the conventional parity sym-
metry. Near the minima of the potential the Hamiltonian may be
approximated by harmonic oscillators of the form

%pz + %wz (xFv)?, with w? = %M. (1.332)

This can be obtained from Taylor’s expansion of the original potential
around xg = +v, indeed

s = g

A (x(z) - v2)2 +24 (x(z) - v2) 2x0 (x — xp)

+ %/l (6x5 - 21)2) (x —x0)2 +0 ((x —xo)?’)]

1
= I4xlv2(xiv)2+~~

= %wz (xFv)? 4+ ---. (1.333)
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There are thus two apparent degenerate ground state wave functions,
each with energy %w

1/4
‘”) emtor’ (1.334)

boEv);  w) = (2
In perturbation theory these states remain degenerate, but there are
non-perturbative effects due to tunneling through the potential barrier
separating the two minima. The tunnelling amplitude is proportional
to

Ar e [udxlpl o [Ldx V2V _ - [ dx wlxFy
V8 3
_ 2 X8
= eV = ¢, (1.335)

and the two low lying states are now non-degenerate (as the tunnel-
ing removes the degeneracy) with approximate wave functions and
energies

valx) ~ %[l//o (= v) + o ()]
\/§3
1 —2.]=v
E: = ;w * Ke 3, K>0. (1.336)

It is important to stress that a similar tunnelling will not happen in
QFT. In fact, if the theory would be quantized in a finite volume V then
there would be a tunnelling amplitude such that

(0-]0,) « €Y, ¢>0. (1.337)

This then goes to zero, as also does the overlap between any states
formed by applying products of field operators to the state |0,) and
similarly to |0-) as the volume grows to infinity.

This description of spontaneous symmetry breakdown for Z, gener-
alises in a straightforward way to any discrete symmetry group of
order N. Any such QFT has a unique vacuum state chosen from N
equivalent possibilities.

SSB — continuous symmetries
Classical considerations
As a simple example we consider the Lagrangian
L= (3u8)-V(#), (1.338)

where ¢ = (¢1,¢2, ¢3)" is a field triplet. By assuming that V(¢) is a
function of ¢? then £ is invariant under SO (3) of internal rotations.

If the potential is given by

2
V(g) = %(452 - vz) , (1.339)

The form of the linear superposition is
dictated by the fact that energy eigen-
states should have a sharp parity — . is
parity odd state, while y_ is parity even.
The approximation is better the larger

Vgv3is.
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We can also ignore the discrete trans-
formations ¢ — —¢ and think of G C
SO (n) here.

Figure 1.6: Vacuum manifold for the po-
tential V (¢) in (1.339) with a field dou-
blet (abelian case) — so called Mexican
hat potential .

In our SO (3) example transitivity means
that any point of the sphere S? can be
obtained from any other point of it by a
rotation.

If the n-dimensional representation of G
provided by ¢ is irreducible, then if Mg
consists of a single point it would have
to be 0.

then the SO (3) symmetry is spontaneously broken, with minima of
the potential occurring on the 2- dimensional sphere S? of radius ¢
defined via ¢ = v2. Bearing this example in mind, let us discuss the
general case of the theory with Lagrangian

1 2
L= 5(0:9) -V, (1.340)
where ¢ is an n-component real scalar field, i.e. n-tuplet (¢1, -, ¢,)".
We suppose that £ is invariant under transformations ¢; — g;;¢; with
g € G, where G is a group of real n x n matrices.

In order that £ should be invariant, we need that the matrices g
be orthogonal, so that the kinetic term (Bﬂq))z is invariant and the
potential V (¢) must be invariant

(1.341)

V(g) = V(gd), VYVgeG.

We can think of G ¢ O (n). As before, we shall assume that the zero
level of energy has been arranged so that the minimum value of V(¢)
is zero. Thus the absolute minima of V occur on the set

Mo = {¢|V(¢) =0}, (1.342)

which is known as vacuum manifold. In the abelian case (i.e. for a field
doublet) Mg would a circle S! (|¢| = v), whereas in the case SO(3) it is
a two-sphere 2.

We shall assume that G acts transitively on My, that is the action of
G on M generates the whole of M from any fiducial point of it. So,
given a,b € My, thereisa y € G, such that

ya =b. (1.343)

This means that all of the degenerate minima are the result of the
symmetry G itself and not “accidental”. Thus the set of minima, which
we should represent the vacuum manifold is

Mo = {gao |g € G}, (1.344)

for any fixed ag € My. Clearly, Uy can consist of a single point, if and
only if, that point is invariant under the whole of G.

Another important concepts that plays an important role is the stability
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group or little group of a point a € M. This is the subgroup H, ¢ G
consisting of transformations leaving a invariant.

Hy = {heG |ha=a)}. (1.345)

Although H, varies with a € M, it does so in a relatively simple
way because of the assumption of transitivity. In particular, if ya = b
(a,b € My and y € G), then

yHay™' = Hy. (1.346)
This can be proved as follows:
ha =a = yha = b = yhy™'b = b = yH,y ' CH,. (1.347)

Converse inclusion ¥ ' Hypy c H, follows similarly.

Relation (1.346) states that H, and Hp are conjugate subgroups of G
and it implies that they are isomorphic. Since H, are isomorphic for
all a € My, we will use simply H to denote these groups in general.
For instance, in our example with SO(3), if a = (0,0, v) then H, is the
group of rotations around the third axis, i.e. SO(2) group, which is a
subgroup of SO(3). Similarly any other point on a sphere is invariant
under SO(2) rotation around axis going through that point and the
center of the sphere.

Let us now observe that the structure of the vacuum manifold Mg can
be related to groups G and H. In fact, given a fixed a € My, as g ranges
over G, ga ranges over the whole of Mj. However, in general each
point of My will be obtained many times by this procedure, that is
the map g — ga is not a bijection from G — My but merely surjection.
Two different elements g1, g, € G may yield the same point in Mo, i.e.
g1a = g,a. This happens precisely when g;l g1 € H,, that is when g,
and g, are in the same coset of H, in G.

Coset space — definition

Let H be a subgroup of G. Then (left) coset of H with respect
to g € G, denoted as gH is defined as the set of all elements
{gh|h € H}. An elementary theorem from group theory then as-
serts that two cosets g1 H and g, H are either identical or completely
disjoint. This then implies that G can be partitioned into disjoint
cosets. Collection of cosets of the subgroup H in the group G is
usually denoted as G/H and is called the coset (or quotient) space of
G modulo H.

Because distinct points on My correspond to all ga where g’s are from
distinct cosets of H, in G, we can identify My with the collection of al
cosets H, in G, i.e. with the coset space G/H,. Since the isomorphism
class of H, does not depend on a specific point & € My we can simply
write

Mo = G/H. (1.348)

The dimension of G/H is dim G — dim H and so this is the dimension

Conjugacy tells us more than isomorphisni,
in particular it tells that the subgroups
are placed in the same way within the
larger structure of G.

Note that the fact that My = G/H cru-
cially depends on the assumption of tran-
sitivity. In our SO (3) example we have
My =S0(3)/S0(2) = S?
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of the vacuum manifold M.

Coset space — representation

Let us write a generic g € G in a factorized form

g = exp(asT?) exp(B.Te),

with 7% € Ly and 7, being remaining dimG — dimH generators in
L. With this we can deduce that G/H can be identified with all
group elements of the form

g = exp(e.09).

To see this we consider g; and g, such that g; # g, (i-e., their
respective a’s are different) and we assume that there exist k1, h; €
H, such that

gih1 = ghy = '8 € H.

Since g; and g, have generators that are orthogonal to Ly, it is not
possible that g;' g, € H (apart from a trivial case when g, = &,). So,
all g must inevitably be elements of G/H. There cannot be any other
Lie group elements in G/H because we have exhausted already all
generators that are notin Ly.

Note that the dimension of G /H should be thus identified with the
number of independent generators 79, i.e. with dim G — dim H.

Let us now consider the possible consequences of the structure of My
in more detail. If 0 € Mg then My = {0} because of the assumption of
transitivity. If 0 ¢ Mo , let v € Mo, then Mo will contain more than just
a single point. Thus if 0 € My we have conventionally realized symmetry,
and if 0 ¢ Mo we have spontaneously broken symmetry or spontaneous
symmetry breaking (55B). In the latter case, we put

o(x) = v + &X). (1.349)

In terms of the shifted field the Lagrangian takes the form

L= 5 (0.8 - U@, (1.350)

NI

where U(€) = V(v +&). Then, if h € H,
UhE) = Vv+hé) = V(v +hE) = Viv+€) = UE), (1.351)

where the second-to-last equality comes from the fact that original
action was invariant under G and hence also under H. So, we see that
U(§) is invariant under H,, which is still an explicit residual symmetry
group of the (shifted) theory. In this case we say that the full symmetry
group G has been spontaneously broken to the subgroup H.



1.4 Spontaneous Symmetry Breaking (SSB) | 79

Goldstone bosons

We now wish to show that, in the case of spontaneously broken sym-
metry, there are massless particles — so-called Goldstone bosons and
we would like to count their number. Because v is a minimum of the
potential, we have that

V(v) = 0, vy, (1.352)

‘9¢i p=v

the Lagrangian can then be written as
1 2
L = 5 (9u€)" = V(v +£)

= ( 0u€) — SMi;&; + O(&), (1.353)

where )
oV
i = , (1.354)
Y a¢i a¢j p=v
is the so-called mass matrix. The squares of the masses are eigenstates of
M;;. Since v is a minimum, all these eigenvalues will be non-negative
(ensuing Hessian has to have a non-negative spectrum) yielding real

masses, i.e. no tachyonic fields are possible.

To see what the symmetry implies about the particle spectrum, con-
sider the invariance of V(¢), i.e. V(g@p) = V(¢) for g € G. If we consider
an element g € G near identity 1 we have

g =eT" =1+ €T + 0(6?), (1.355)

where 7% and a = 1,- - - ,dim G is a basis of the generators of G. Then

Vig) = V(g + T+ OD)
= V(¢) + e“T“¢, 30, +O(ez) (1.356)
So that av
6(15 IS¢ =0, (1.357)
for all ¢. Differentiating (1.357) with respect to ¢ gives
2
eaa—va‘-gb- + € a—VT“ =0. (1.358)

didgi U ag; 'k
Now we set ¢ = v, which leads to
€ Mk,T v = 0, (1.359)

so we see that €T} v is a zero eigenvector of the mass matrix for each
vector € for which it is non-zero. It will in general vanish for some
non-zero €. In fact, the condition for it to do so is

agay = Q. (1.360)

If we are dealing with a renormalizable
interaction in 4D space-time, the higher-
order terms will be only cubic and quar-
tic.
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Goldstone bosons are also often called
Nambu—Goldstone bosons.

This is, however, nothing (to order €2) but the condition that g =
€T ¢ H,, which is equivalent to the condition that e“T¢ is a gener-
ator of H, = H. This means that the 7}v; provide dim G zero eigen-
vectors of M labelled by a = 1,--- ,dim G between which there are
dim H independent relations that lead to zero-valued eigenvectors.
Consequently, we have dim G — dim H independent zero modes.

We can slightly rephrase the above argument as follows. First we define
a map
A: X — X,, where X = €77, (1.361)

from the Lie algebra L of G to zero eigenvectors of the mass matrix M.
The kernel of this map consists of those X for which X, = 0, that is those
X € Ly, the Lie algebra of H. The dimension of the image of this map,
which must be a subspace of the space of zero eigenvectors of M, is the
dimension of the range minus that of the kernel, i.e. dim G — dim H.
Schematically

These arguments show that there must be at least dim G —dim H =
dim My zero mass particles, so-called Goldstone bosons. There might
be more, but these would not be the result of spontaneous symmetry
breaking.

We can picture what is happening as follows: In direction tangential to
M the potential is flat so fluctuations in these directions correspond
to massless particles. In directions normal to My the potential curves
upwards as the second derivative is positive and these directions then
correspond to massive particles.

Note that the assumption of transitivity was essential in showing
that the structure of the spontaneously broken theory and its residual
symmetry are independent of the point around which we expand.

In the SO (3) example we set

¢ = (é1,é2,c+Y), (1.362)
giving Lagrangian in the form

1 2
L==

1 A
5 (0u)*+ 5 (0,67 - 57 (07 - )
1
2

1 A 2
(0u) + 5 (0,8)° - 37 (8 + 2 +2¢0) (1.363)
which has manifest SO (2) residual symmetry with £; massless fields
(see that the number of massless fields is dim SO (3) — dim SO (2)) and
¥ a massive field with mass m2 = %/102. The scalar massless SO (2)

doublet ¢; fields are the Goldstone bosons in this theory.

So far we have given a classical account of spontaneous symmetry
breakdown in scalar field theory. The results obtained here go over
into QFT in the form of Goldstone’s theorem. This states that in a system
with a continuous symmetry group G either the vacuum state |€2) is
invariant under G and the particles states form multiplets that are
representations of G, or |Q) is not invariant under G, particle states
do not form representations of G and there are massless particles,
Goldstone bosons.



From historical perspective, at first it was thought that spontaneous
symmetry breaking had little relevance to real physics of elementary
particles, as the Goldstone’s theorem implied existence of massless
scalar particles that were not observed in the nature. But the theorem
also implicitly assumed that the theory could be formulated in a way
which is at once both Lorentz covariant and positive definite. For gauge
theories such as QED, such formulations are not possible and the
Goldstone theorem must be reconsidered. We shall see in that massless
scalar bosons are no longer necessary, but the ensuing degrees of
freedom, which in the case of ordinary SSB would become Goldstone
bosons, instead go to provide extra degrees of freedom necessary to
have some of the vector gauge bosons massive.

1.5 Yang-Mills theories

Essentials of Y-M gauge theories
Gauge Invariance

In this part we will review the concept of gauge invariance, note that
the discussion will take into account only classical considerations. The
simplest to start with is the U (1) symmetry, which can be used to
illustrate many of the concepts.

Let use take complex Klein-Gordon field with action

S = / d*x [(3u0%) (9" 9) — m*¢*¢] (1.364)
This is invariant under following transformations
6 -y, ¢" ey, (1.365)

i.e. theory is invariant under rotation of the components of the field by
arigid (but arbitrary) angle. We can now demand that the action be
invariant under localized version, i.e. under

¢ — Mg, (1.366)

this is sometimes called ‘gauging’. This is similar to General Relativity,
where the demand is that Lorentz invariance holds locally, here we
demand that the invariance of the internal symmetry space holds
locally (in this example the internal symmetry is U (1) of the multiplet
(¢, ¢*). From GR we also know that gauging of the global symmetry
leads to appearance of new field, the connection field. We then expect
that similar situation will hold for gauge symmetry, there will be a
new field.

1.5 Yang-Mills theories
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Abelian Higgs Mechanism

The Higgs mechanism resolves two obstacles to physical relevance of
SSB, the masslessness of Goldstone bosons and of gauge vector mesons.
Let us consider this in simplified context of scalar electrodynamics.
The field content of theory is one gauge vector field A, coupled to
charged complex scalar field ¢. The Lagrangian density of this theory
is

1 n ¥
L= =7 Fuy P+ (Dug)” (DH$) =V (7¢), (1.367)

where D, = 9, +iA, is the covariant derivative and V (¢*¢) is the
potential of the scalar field. This theory is invariant under gauge trans-
formations for which the fields transform as follows

A () = Al () = Ay (x) + %a,, (x) € (1.368)
¢ (x) > ¢ (x) =¥V (x). (1.369)

The equations of motion of the theory are

DMD, ¢ =—¢V’ (¢*9) (1.370)
8, FHY = —jH = —ie¢p™ D ¢ —ie (D*¢) ¢. (1.371)

For constant gauge transformations we obtain a global symmetry
which implies (via Noether’s theorem) conservation of the current j,,,
and hence also time Independence of the charge O = f 7O (x, 1) d3x.

Let us now take the following form of the potential
A
V(67) = mPeto+ (¢*9)%, (1.372)

with m?2 > 0. The symmetry is then realized in the conventional fashion,
and in quantum theory we get for vacuum state

O[¢l) =0, (0lA,[0), Q0) =0. (1.373)

The theory then contains two massive scalar fields (which are conju-
gate) and a massless vector field which has effectively two components
(owing to gauge symmetry).s

If however the coefficient m? is negative, we obtain the case of SSB.
Then we can write the potential as

I 1,)\

V(g¥e) = 3 (¢+¢ - §c2) (1.374)
where m? = —ATfZ. This potential has classical minimum at ¢ = ¢ /2.
We shall assume that in the quantum theory then (0|¢|0) = ¢/sqrt2,
i.e. the field ¢ attains a non-zero vacuum expectation value (VEV).
The process of moving from (0|#|0) = 0 to state with non-zero VEV
is sometimes called tachyon condensation (as the original field ¢ seems
tachyonic, but after attaining non-zero VEV no longer is). We can



parameterize the field ¢ in polar coordinates
1
V2

shifted so that p = 0 = 6 corresponds to the choice of vacuum. The
fields p and 6 are real, and represent quantum fluctuations in the radial
and tangential directions respectively.

p=—(c+p)e?, (1.375)

The Lagrangian in terms of these variables becomes

1 1 1 > A 2
L= _ZFMVFW *3 (Oup)” + 3 (c+p)* (eA, +8,6)" - ] (p2 +2cp) )
(1.376)
Thus, if we introduce a new vector field B# defined as
1
By = Au+~0,0 (1.377)

so that it hold F,, = d,,B, — 9, B,,, because the transformation is of the
form of gauge transformation, with £ = . In terms of this new field
B, the Lagrangian becomes

1 1 2 € A 2
L= _ZF‘“VFW *3 (Oup)” + EBz (p+c)* - ] (p2 +2cp) , (1.378)
and we see that the field 6 has been completely eliminated from the
Lagrangian, in favour of the vector field B,,. The way we did so demon-
strates that its presence was merely a gauge artifact. The equation of
motion in this case are

By FHY = —jH = ¢2BH (¢ + p)? (1.379)

2 2 u Ao
0°p=e(c+p)B,B —g(p +2€p) (c+p), (1.380)
and they describe interaction vector meson B,, with mass mp = ec, and
a scalar meson p with mass m3 = 11c?. One might wonder if we did

not lose any degrees of freedom, after all we started with gauge vector
field and complex scalar field (or two real scalar fields) and ended up
with a vector field and a single real scalar field. However, massive
vector field has 3 degrees of freedom, so we still have a total of 4
degrees of freedom. What happend is that one scalar degree of freedom
combined with gauge vector field to form a massive vector field. This
is sometimes colloquially referred to as the degree of freedom being
‘eaten’ by the gauge field.
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do not form representations of G and there are massless particles,
Goldstone bosons.

From historical perspective, at first it was thought that spontaneous
symmetry breaking had little relevance to real physics of elementary
particles, as the Goldstone’s theorem implied existence of massless
scalar particles that were not observed in the nature. But the theorem
also implicitly assumed that the theory could be formulated in a way
which is at once both Lorentz covariant and positive definite. For gauge
theories such as QED, such formulations are not possible and the
Goldstone theorem must be reconsidered. We shall see in that massless
scalar bosons are no longer necessary, but the ensuing degrees of
freedom, which in the case of ordinary SSB would become Goldstone
bosons, instead go to provide extra degrees of freedom necessary to
have some of the vector gauge bosons massive.

1.5 Yang-Mills theories

Essentials of Y-M gauge theories
Gauge Invariance

In this part we will review the concept of gauge invariance, note that
the discussion will take into account only classical considerations. The
simplest to start with is the U (1) symmetry, which can be used to
illustrate many of the concepts.

Let use take complex Klein-Gordon field with action

S = / d*x [(9,07) (3% ¢) —m*¢"¢]| . (1.364)
This is invariant under following transformations
e A A (1.365)

i.e. theory is invariant under rotation of the components of the field by
arigid (but arbitrary) angle. We can now demand that the action be
invariant under localized version, i.e. under

¢ — NN, (1.366)

this is sometimes called gauging of the global group. This is similar to
General Relativity (GR), where the demand is that Lorentz invariance
holds locally, here we demand that the invariance of the internal sym-
metry space holds locally (in this example the internal symmetry is
U (1) of the multiplet (¢, ¢*). From GR we also know that gauging of
the global symmetry leads to appearance of a new field — the connec-
tion field. We then expect that similar situation will hold also for gauge
symmetry. As an ansatz we take

Oy — Dy = 0, —ieA,, (1.367)

1.5 Yang-Mills theories
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where A, is the postulated connection field and D, is the covariant
derivative. If the field A, transforms as

1
Au = Al = Au+ S0A (), (1.368)
then the following action is invariant under gauge transformation
S = / d*x [(D.¢") (DHo) - /n2¢*¢] . (1.369)
If we denote U(x) = ¢"*®) then we can rewrite (1.368) as
, 1 L
Au = Ay = UAUT + —UOUT, (1.370)
which implies that the covariant derivative itself transforms as
D,— D) =UD,U™, (1.371)

i.e. it transforms covariantly according to adjoint representation of the
group. With (1.371) we have

D¢ — (Dug)’ = D¢’ = U(Dug), (1.372)

i.e. the covariant derivative D, ¢ transforms in the same way as the
field itself, i.e. in the fundamental representation of the group.

Similar transformation also has the commutator of the covariant deriva-
tive, [Dy, D, | ¢

(D D] ¢ = ([Dy, D] #)" = [D},D}]¢

= D,D,¢ -D,D} ¢

= UD,U'UD,¢-UD,U'UD,¢
= UD,D,$-UD,D,¢

= U([DuDy]9¢). (1.373)

If we explicitly rewrite the commutator we get

[Du, D] e [0, —ieA,, 8, —icA,] e

[—ieAH,[‘)V] o — [8ﬂ,ieAv] °

—ie (0, Ay —0yAy)® = —ieF,, 0. (1.374)

Note that we have used the fact that we are considering abelian group,
so that [A wr AV] vanishes. Using the transformation of commutator
(1.373) we can easily see that

Fuy = F,, = UF U™ = Fpy. (1.375)

The gauge invariant action for ¢ now has also the connection field
Ay, however this field is so far non-dynamical — it lacks kinetic term.



Convenient choice of kinetic term is

—%FHVF’“’ (1.376)

as this is both Lorentz density and gauge invariant. The constant
is selected so that we have match with classical electrodynamics o
B? - f—zz We could also consider other candidates terms, e.g. F,, *F*”
where *F,,, is the Hodge dual

*® 1 C
Fuy = 56",3va B (1.377)

Note however that this term is in fact total derivative
F YFHY = ! B Ep F
uv = Ee uvlap
= 2e"PH9,A,00Ap
= 20, [e"P*A,0,Ap] = 20,K", (1.378)

where we used the total antisymmetry of the Levi-Civita symbol. As
the term is total derivative, it will not contribute to equations of motion.
Also note that K9 is known as the abelian Chern-Simons term. The
term is also odd under parity, so it would lead to parity violations if
included.

Utilizing everything we have derived so far we can now construct
Lagrangian describing interaction of a charged scalar field with the
electromagnetic field that is invariant under U (1) gauge transforma-
tion

1 .
L = —ZF,,VF’” + (Dug)" (D*¢) — V(¢*9). (1.379)

The invariance of the action follows from the transformation of the
covariant derivative and the invariance of the field strength tensor Fy, .
The equations of motion are given as usual by the Euler-Lagrange
equations

DED,¢ = —¢V'(¢7¢) ,
OuF"" = —j¥ = ie(¢"D"¢— (D" ¢") ¢)
= ie(¢*0" ¢ — (8" ¢") ) —2e* AV ¢* . (1.380)

If we denoted j* = (p, j) we would obtain the usual in-homogeneous
Maxwell equations. The homogeneous Maxwell equations are merely
the result of the definition of F** which implies Bianchi identities.

In the end we have derived the theory of scalar electrodynamics, with
its Lagrangian and its equations of motion.

Generalization to non-abelian groups

Historically the interest in non-abelian gauge groups started with
Heisenbergs postulate about duality of p* and n°. He considered them
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as part of a doublet (p*,n°) = N called nucleon. Yang and Mills required
that the theory of nucleon should invariant under local SU(2).

The invariance is of the form

N,- g N-’ = U,‘j (A)Nj, (1381)

L

where the symmetry acts only on the internal symmetry indices i, j
and does not affect spinorial indices. More explicitly

Uyj (A) = () (1382)
ij
where 7 = % (01, 02, 03) are SU(2) generators in the fundamental rep-

resentation.

First note that the Dirac Lagrangian

L = N(iy*d,-m)N, N = N'y°, (1.383)

is globally SU(2) invariant, i.e. group parameters A are constant. Note
also that y#d, should be understood as 8 x 8 matrix, namely loxo ® y#,
since the doublet has 8 components (4 for each field). In the same vein,
m should be understood as a shorthand for m - ligys.

Suppose now that A = A(x). Similarly as in the previous U(1) case d,,N
will transform “non-covariantly”, i.e. unlike N. To rectify it we modify
it to produce a covariant derivative D,. We can expect that 9, — D,
will introduce new gauge field. For this purpose we introduce a non-
abelian vector field Ay, a = 1,2,3 and form a 2 x 2 matrix

A, = AgTe, (1.384)

in other words we require that A, should be from SU(2) algebra. In
terms of this matrix A, the covariant derivative is written as

DuN = (8, —igAu) N, (1.385)

where g is a corresponding coupling constant. So, in particular (1.383)
can be written in the form

N[i(p-igA)-mIN, A = AH = AjtiyH, (1.386)
or with explicit indices as
N [i (aﬂyf;ﬂaif —igAd (r4) y¥ ﬁ) - m(s"fa(,,;] N (1.387)

Here p is the Lorentz vector index, @, 8 are spinorial indices and i, j
are internal SU (2) indices.



By transforming N — N’ = UN, resp. N — N’ = NU~! then
Ni(p—ig A)N — NiUT' (9 -ig A)UN
S (U—la,l —igU—lA;,) UN
= Ny (aﬂ +U19,U - igu-lA;U) N
= Niy" (8, —igAu) N, (1.388)
where we have set

= igU™ AU - U™'9,U,

=3

L
®
|

UTALU + éU—laﬂU,

g
tﬁ>
I

’ — i —
& A, =UAU - §(a,lU)U L

& A, = UAU™ + éuaﬂu—l . (1.389)
As a byproduct we see that the covariant derivative of the field multi-

plet N also transforms covariantly in the fundamental represenation
of SU(2), indeed

D,N — (D,N)" = D,UN

(a,, —igA;,) UN

= (u-iguA U = (@uU) U UN

U(8y—igAy) N
= UDyN. (1.390)
Note that (1.389) defines a consistent transformation law for A, as a

vector field taking values in the Lie algebra (in this case Lsy (2) algebra).
For, by the closure of the group, U(x + 6x)U “1(x) € SU(2), one has

1+ 6x*(3,U)U™! + O[(6x)*] € SU(2), (1.391)

so that (9,U)U! € Lgy (2. On the other hand, if 1+ X + O(X2) € SU(2),
then

Ul+ X +0XHIU™ =1+ UXxU™ + 0(X?) € SU2), (1.392)

so that UXU™! € Lgy (2), showing that the RHS of (1.389) is in Lsy (2)-

Clearly, the gauge fields do not transform covariantly. The first term
indicates that the gauge field transforms according to the adjoint repre-
sentation of the group, however the second noncovariant term spoils
this and is characteristic for gauge fields.

Under an infinitesimal gauge transformation U(x) = 1+ A(x) + O(A?),
where A(x) =iATt?, A¥ — A + §A¥. The infinitesimal gauge change
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JA* follows from the fact that

A, = (1 +AR) +0(A2)) A, (1 “AM) +0(A2))
i
- [0, (A(X))] (1 ~A(x) +0(A2))
= Ay + A [T A, + é (3uA%) 74+ 0 (A%) . (1.39)
If we expand A, = A7 into components then we can write (to order
0(A%)
ALS = AS + A 19,70 AL + gaﬂAC . (1.394)

This result differs from the transformation law of abelian gauge theory,
Ay — Ay +10,A, the difference coming from the group structure that
A, carries.

Note that the combination

(a,,a“’ +ig [, 70 Af;) G (aﬂaw - ig(T”)wAf;) G

= —i(D,A)", (1.395)
where [79, 0] = —[t?, 79]¢ = —ifP2¢ = —(T?)c2, Here i f>4¢ are struc-
ture constants and 7¢ are generators in adjoint representation of the

group. Consequently, D, in (1.395) is the covariant derivative in ad-
joint representation. From this follows that

, i i
A, - A, = —gD,,A = 04, = —gDﬂA. (1.396)
Of course one still needs a Lagrangian for A, fields themselves. This

is (by analogy with U (1)) provided by the field strength F,,, that is
defined as

[Du Dy o [0 — igAu, 8y — igA,]e
= —ig|du,Ay]e —ig[A, 0] e —g*[Au Ay] e

= —ig(0uA, —8,A,—ig[Au A)]) e

—igF,, e . (1.397)

Here again “e” denotes any test function from the representation space.
In components we can write F,, as

Fg, = 3,A% — 0,A% — ig[rh,7¢]" ALAS. (1.398)

The field strength F#” transforms covariantly according to adjoint
representation of the group, indeed

FuwN — F, N = {[D,D,]}N
= DJUD,N - D,UD,N

= U|[D,Dy|N = UF,N, (1.399)
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at the same time, however
(FuN) = F,,UN, (1.400)
and if we compare the two outcomes we get

F., — F), = UF,U™". (1.401)

Adjoint representation of a Lie group

Adjoint representation of the group Ad(U) is defined by the relation
UrU™ = Adup(U)7?,

where both U and 7¢ are in fundamental representation. From this
defining relation directly follows the group composition property
Ad(UU’) = Ad(U)Ad(U’). If we take U = 1+iA%7® + O(A?) then

Ad , (U)7¢ (1 + iAd‘rd)Tb (1 - iA°7€) + O(A?)

7+ ind [Td, ‘rb] + O(AZ)

(6an +iAT(i 1) + O(A?)) 7
- (5ab +iNAd () + O(AZ))T“.

So Ad ()4, the representative of ¢ in the adjoint representation,
is given by the structure constants: Ad(t¢)p = (T4)yp = i f9P4.

If we now use F, = F, 7% we get
F,, = Ut°UT'F}, = Ad.(U)T*Fp,.
So we see that F,,, transforms in adjoint representation, since
(F2) = Adap(U)FS, .

For a field, say y“ transforming under the adjoint representation,
the covariant derivative D, N = (9, —igAj;7*)N is replaced by

(D) = dux® = igALAd(T)anx”,
and by multiplying by 7¢ leads to

Dux = oux — iglAu x1.

Our previous reasonings directly generalize to any (compact) Lie group
G and are valid even when fermionic multiplet is changed to a multi-
plet of scalar fields. Let us now pass to arbitrary (compact) Lie group
and let us call the ensuing generators 7¢ (non necessarily related to
adjoint representation). For a simple Lie groups one can normalize
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(Hermitian) operators via Killing normalization convention

1

Tr(T“T”) = 5o (1.402)

This for instance allows to write the adjoint representation of U as
Ad,(U) = 2Tr (TaUTbU-l) . (1.403)

Since F,, — UF,,U™! one can construct the desired gauge invariant
and Lorentz invariant kinetic term for gauge fields as

1 v 1 auv rra
LA = —ETI'(F” FHV) = _ZF H Fuv’ (1404)

the constant is again chosen to maintain analogy with electromag-
netism. Corresponding candidate term Tr (F,, *F*”) is again a total
derivative, indeed

Tr (F,, *F*) = %e’“’"ﬁTr(F#,,Faﬂ)
= 2e" P Tr (0,4, —igAuA,) (0aAp —igAaApg))
= 26" P Tr (0,A,0,Ap — 2igA,A,00Ap)
= 20,e" P Tr (A,;&HAV - ig%ABAHAV)
= 20,K“. (1.405)

where, as before, K° is the Chern—Simons term.

In the action ,
Sa =3 / d*x Tr (Fu F*) , (1.406)

it is often typical to rescale

A

—

Au
a g

1 1.
= F, — —(0,A,—0,A, —i|A,A]) = =Fp, . (1407)
8 8
After this rescaling we have
Sa= —— [dT (F o F") (1.408)

where F no longer contains the coupling constant g, and all effects of
g are in the multiplicative prefactor.

Thus a gauge-invariant Lagrangian describing a gauge field couple to
a fermion field multiplet N is of the form

L= 3 Te(Fuk*) + NP ~ mN ~ VIN),  (1409)

provided that V is invariant under group G. Similarly, gauge-invariant
Lagrangian describing a gauge field coupled to a scalar field multiplet



¢ is
L = _% Tr (F ., F*) + %(Dﬂ)qj([)ﬂ)‘p +V($), (1.410)

provided V(¢) =V(U¢) froU € G.

Quantization of Yang-Mills theory

The fact that our description of Yang-Mills theories is invariant under
gauge group means that there is a redundancy in our description. In-
deed, there are gauge orbits in the configuration space which describe
the same physical configuration. So, we nee to get rid somehow of
the unwanted redundancy and concentrate only in the non-equivalent
configurations. Somehow we need to factor out from the theory the
redundant degrees of freedom. We will now show two simplified, but
illustrative examples.

Let us take the following “partition function”
Z = / dxdy ¢S = /dzreis('), (1.411)

where r = (r, ). Let us further suppose that S(r) is invariant under a
rotation in two-dimensional space, i.e.

S(r) = S(ry), for r = (r,0) — (r,0+9). (1.412)

Thus S(r) is a constant over the (circular) orbit. In this simple case, if
we only wish to sum over the contribution from inequivalent S(r) we
can simply “divide out” the orbit volume factor corresponding to the
polar angle integration [ dé = 2x. To do this we adopt the following
procedure which can be generalized to more complicated situations.
First we insert

1= /d(pé(ﬁ—go) , (1.413)

into Z. We get

Z = /dgo/dzreis('>6(6—¢p) = /dt,oZ‘p, (1.414)

where Z, = [ d?r 6 (6 - ¢) ¢'S"). At this point we note that Z, = Z,,
indeed

/eré(G_Lp)eiS(r,Q) — /dreiS(r,‘p) — /dreiS(r,kp’)

/ d’r6 (0 -¢") ST (1.415)

We thus have
Z = /d«pZ¢ = Z¢/dap = 2nZ,. (1.416)

In this way Z, is the correct “partition function”.
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¢ is
L = _% Tr (F ., F*) + %(Dﬂ)qj([)ﬂ)‘p +V($), (1.410)

provided V(¢) =V(U¢) froU € G.

Quantization of Yang-Mills theory

The fact that our description of Yang-Mills theories is invariant under
gauge group means that there is a redundancy in our description. In-
deed, there are gauge orbits in the configuration space which describe
the same physical configuration. Somehow we need to factor out from
the theory the redundant degrees of freedom and concentrate only on
the non-equivalent configurations. We will now show two simplified,
but illustrative examples how this can be done.

Let us take the following “partition function”
Z = / drdy ¢S = / d2reiSr) (1.411)

where r = (r, ). Let us further suppose that S(r) is invariant under a
rotation in two-dimensional space, i.e.

S(ry = S(ry), for r=(r0) — r, = (r,0+¢).  (1412)

Thus S(r) is a constant over the (circular) orbit. In this simple case, if
we only wish to sum over the contribution from inequivalent S(r) we
can simply “divide out” the orbit volume factor corresponding to the
polar angle integration f dé# = 2n. To do this we adopt the following
procedure which can be generalized to more complicated situations.
First we insert

1= /d(,pé(@—«p) , (1.413)

into Z. We get

Z = / de / d2retSMs0—¢) = / deZz,, (1.414)

where Z, = [ d?r6 (6 - ¢) ¢'5("). At this point we note that Z, = Z,
indeed

/ d’ro(6 - e = / dre'Stre) = / dre'Ste)

/d2r6(9—<,0')ei5(”9). (1.415)

We thus have
Z = /dgoZ‘p = Z¢/d¢ = 2nZ,. (1.416)

In this way Z, is the correct “partition function”.

Let us now consider more complicated gauge constraint then 6 = ¢.
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Here DA, is a shorthand notation for
[, DAG.

We may choose, e.g., g(r) = 0 which is such that it intersects each orbit
only once i.e. equation g(r,) = 0 with r, = (r, ¢) must have a unique
solution ¢ for any given value of r (i.e. ¢ = 8(r)). For such a general
constraint we slightly generalize our previous strategy. To this end we
define

(A (M]™" = /dgo&[g(r‘p)] - /@M, (1.417)

dg(r)
9

g=0
which then implies

(1.418)

g=0

Note that A4 () itself is invariant under the rotation r — r, since
/ deo [g(rww’)]
ot

= A0, (1.419)

[Ag (rw’)]_l

where we employed invariance of the measure under shifts. So in this
case we can write

Z = /dg&Z(p = /dga/dzreis(')Ag(r)é[g(r¢)] ) (1.420)

At this stage we note that again Z, = Z, since

Zy = /dzreis(r)Ag(r)é[g(rwl)]

/ d2r¢1_¢ eis(’“’"“’)Ag (rtp’—tp) g [8 ("ww’—w)]

/ A’ e ST A (r')0 [g(r;’)]

Z,. (1.421)

Analogous procedure can then be now applied to Yang—Mills fields.
We can write a formal functional integral for Yang—Mills fields int the
form

7 = / DA, --- e—é / d*x Tr(FHVF’”’) + interaction part (1 422)
= l‘ 7 *

where the dots represent functional-integral measures of other fields
we may wish to include in the theory. We choose a gauge fixing con-
dition x (A) = 0 that will guarantee that each gauge orbit is cut only
once, hence y(AY) = 0 must have a unique solution U for any fixed
A, (x). An example of such choice is, e.g., Lorenz gauge y(A) = 9, A*
in Maxwell electromagnetism (i.e., U(1) Yang-Mills theory). To include
this gauge fixing condition into functional integral we use the previous
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strategy. We define
(e (A7 = [ DUS[R], (1.423)

where DU is invariant Haar measure (for compact groups) to integrate
over gauge group, and yV is defined as

KV = x(aY), with aY = UA”U'l—é(BﬂU) Ul (1424)
The whole Agp [ x] is gauge invariant since

Arp [AU'] = /DU&[XU’U] = /Z)(U’U)é[XU'U]

/ DU"(S[XU”] - Arp[A], (1.425)

where we used the invariance of the Haar measure. As before we insert
this into the functional integral to fix the gauge

Z

/Z)A”m/Z)UAFp [x16 [xY]exp [iS[A,---1]

/DU/DAﬂ...AFP D16 [x] exp [is[a”]]

/@u/@Ag...AFP [vV]5[¢Y | exp [iS[AY, -]

/Z)U/Z)A,,...App x]6 [x]exp [iS[A,---1], (1.426)

where on the second line we used the fact that the gauge-field measure
is gauge invariant (i.e. DA, = DAY), on the third line we used gauge
invariance of Agp [ ], and on the fourth we reparameterized AV — A.
The functional integral after DU on the fourth line has now no explicit
U dependence. After factorizing out the volume of the gauge group,
we can write the correct partition function in the form

z = / DA, Arp [x18 x] exp [iS [A, 1] . (1.427)

In order to set up Feynman perturbation rules, we need local action
and no terms in argument of the integral, hence we need to represent
the objects App and ¢[ y] via exponents of local fields.
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Figure 1.7: Configuration space of gauge
fields with gauge orbits. Gauge slice cor-
responds to a gauge fixing condition
x =0.

Here we work with the so-called
left-invariant Haar measure, where
DU'U) = DU. Haar measure DU
is the invariant measure on the gauge
group and it formally equals to
[1x dU (x). For each fixed x, dU (x) is a
conventional Haar measure.
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First, it is not difficult to see that
App [x] = detM,, (1.428)

where M, is certain differential operator. To find the explicit form
of M, we first consider the gauge condition x* [A4,] = 0 where a is
the internal index. For example in QED we have y [A,] = §,4* =0
(Lorenz gauge), y [Al,] = 9;A" = 0 (Coulomb gauge) or y [Al,] =A%=0
(axial gauge). In QED we have, however, no internal index. Generally
we can write

sl [Au]] = [ o [ [An @]] - (1.429)

Let us now examine
/ DU [y [AY]], (1.430)
which enters the definition of Ap. Because App is multiplied by d[ x]
(cf Eq. (1.427)), the argument ¢ [x“ [A{]] in (1.430) has a non-zero
contribution only from the neighbourhood of AV with unit group

element. So we can consider U (x) = 1+ A%(x)T“. In this case the Haar
measure (for small A) is equal to [T, DA“. With this we can write

[ onolelagT)

/z)ms [x [AH]+/dz£’\YaAa] . (1.431)

Agp [x]

Now

S [x]
[ DAs [/\/+fdz 56/{2/\“]

o [xl
[ DAG | [ de ]

Arp [x]6 [x]

Sx?
oA

6 [yl det[

] . (1.432)
A=0

Thus
0 Xb

(M)()ab = m

. (1.433)
A=0

To explicitly compute M,, we consider y¢ [Al,] = 01Aj; = 0. In this



case we can write

5/\/(1 _ Xu [A114+AL[TL[] _ Xu [A#]

1
~abc b c rabc 4 b c a
f (8"A”)A + fCAROHAC + §DA

/dzé(x—z) [f‘””a“AZ + fePeALoM + %6“@ A€

ox* .
d A€ 1.434
[z ns, (1.434)
where we used infinetesimal form of transformation (see Eq. (1.394)

AL = Ad+ [P AP AC 4 é(?,,A”. In this case we see that the matrix M,
has the form

(My(2,¥))ac

: : 1 e
5(x—y) (f“h‘a"AZ + feAbor + Eamm)

S(x = y) (M, (x))ac - (1.435)

We further use formula from Grassmann calculus, namely

detiM,

/ DD exp [z‘ / dxdy ﬁ“(x)(MXu,y))ubn”(w]

/ DD exp [i / dx 7% (x) M) acn® (x)] . (1.436)
In a final step, it is convenient to modify the guage-fixing term to
§[v[Au]], where ¢ =x"+c“, (1.437)

where ¢“(x) is arbitrary function independent of the gauge field, so

Z = /Z)AH...AFP [x]6 [x%+c?] e (1.438)

It should be notes that should we have introduced gauge-fixing ¥ from
the very beginning, it would not influence our key results (1.432) and
(1.433). For instance

(5/\/[’
oA

(1.439)

A (715171 = 617] det[
A=0

At this stage we insert a constant term

/ De exp [-2’—5 / 2 (x) d4x], (1.440)

into the functional integral, which then acquires the form
Z = / Z)c/ DA, ... App [x] 6 [x® +c] 57126 [*dx (1 447)

If we now use the Grassmann integral expression for App and apply
the delta function to remove the c field, we obtain the final form of the
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Inserting this constant and then integrat-
ing to move the function from delta func-
tion into exponent is known as t Hooft
trick.
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functional integral

Z = /DADﬁDn...exp(iS—zl—g/)(zﬂ'/ﬁMXndx). (1.442)

The Grassmann fields n, 7j are known as Faddeev—Popov ghosts. These
ghosts have various peculiar properties:

» They are scalar fields under the Lorentz group, but have anti-
commuting statistics, violating the usual spin-statistics theorem.

» These ghosts couple only to the gauge field. They do not appear
in the external states of the theory. Therefore, they cannot appear
in tree diagrams at all; they only make their presence in the loop
diagrams, where we have an internal loop of circulating ghosts.

» These ghosts are an artifact of quantization. They decouple from
the physical spectrum of states.

Abelian Higgs Mechanism

The Higgs mechanism resolves two obstacles to physical relevance of
SSB, the masslessness of Goldstone bosons and of gauge vector fields.
Let us consider this in simplified context of scalar electrodynamics.
The field content of theory is one gauge vector field A, coupled to
charged complex scalar field ¢. The Lagrangian density of this theory

1S
1
L= g Fu " + (Du9)' (D'9) ~ v(e's), (1.443)

where D, = 8, +iA, is the covariant derivative and V (¢'¢) is the
potential of the scalar field. This theory is invariant under gauge trans-
formations for which the fields transform as follows

, 1
Ap(x) = A (x) = Ay () + ;@, (x) & (1.444)
$(x) > ¢ (x) =g (x). (1.445)
The equations of motion of the theory are

D*D,¢ = —¢V’ (¢*¢) (1.446)
8, F* = —j# = —ie¢*DH ¢ —ie (D" ¢) ¢. (1.447)

For constant gauge transformations we obtain a global symmetry
which implies (via Noether’s theorem) conservation of the current j,,,
and hence also time Independence of the charge O = / 7O (x, 1) d3x.

Let us now take the following form of the potential
+ 24, A g2
VI(g'g) =m’¢ o+ = (¢79)", (1.448)

with m? > 0. The symmetry is then realized in the conventional fashion,
and in quantum theory we get for vacuum state

Ol¢]) =0, (0lALl0), Q0) =0. (1.449)



